CN103811775A - 一种用于燃料电池氧还原催化剂的多孔纳米复合材料 - Google Patents

一种用于燃料电池氧还原催化剂的多孔纳米复合材料 Download PDF

Info

Publication number
CN103811775A
CN103811775A CN201410082663.2A CN201410082663A CN103811775A CN 103811775 A CN103811775 A CN 103811775A CN 201410082663 A CN201410082663 A CN 201410082663A CN 103811775 A CN103811775 A CN 103811775A
Authority
CN
China
Prior art keywords
composite material
porous
oxygen reduction
nano composite
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410082663.2A
Other languages
English (en)
Inventor
陈军
杜婧
程方益
王诗文
陶占良
梁静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201410082663.2A priority Critical patent/CN103811775A/zh
Publication of CN103811775A publication Critical patent/CN103811775A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种用于燃料电池氧还原催化剂的多孔纳米复合材料,为M-N-C多孔纳米复合材料,M-N-C中M为非贵金属铁、钴或镍,N为氮,C为碳,小粒径的金属纳米颗粒均匀地分散、嵌在氮掺杂的多孔碳载体材料内部,其中非贵金属纳米颗粒的粒径范围为5-100nm,多孔碳载体中含氮的质量百分比为3-7%。本发明的优点在于:该多孔M-N-C纳米复合材料由于其碳基底的原位氮掺杂,分布均匀的非贵金属纳米颗粒的嵌入,高比表面积的多孔结构的形成明显改善了其催化氧还原的能力,有利于提高材料的循环稳定性;该复合材料制备的前驱体成本低、容易制得,制备过程易于控制,操作简单,便于实现工业化大规模生产。

Description

一种用于燃料电池氧还原催化剂的多孔纳米复合材料
技术领域
 本发明涉及燃料电池用氧还原催化剂的制备,特别是一种用于燃料电池氧还原催化剂的多孔纳米复合材料。
背景技术
燃料电池由于其能量密度高、能量转化效率高和无污染等优点,已被人们看作是最有前景的能源转换技术之一。近年来燃料电池已经取得了可观的发展,但是其大规模市场化的应用还面临着成本高、性能偏低等问题。目前,燃料电池中使用最广泛的阴极氧还原催化剂是碳负载铂及铂合金催化剂。但是,由于铂、钌等贵金属价格昂贵、资源稀缺,使得燃料电池的制作成本较高,严重限制了燃料电池的商业化进程。因此,开发低成本、高性能的非贵金属氧还原催化剂已成为燃料电池发展的迫切任务。
在众多被研究的非贵金属催化剂中,非贵金属和氮掺杂的碳基氧还原催化剂由于其优异的催化性能受到了广泛的关注。一般地,非贵金属和氮掺杂的碳基M-N-C类催化剂(M表示非贵金属,N表示氮,C表示碳)大部分是通过热解含有金属盐和氮原子的大环化合物制备得到的,参见: G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443; H. W. Liang, W. Wei, Z. S. Wu, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002。但是,由于这种合成方法大部分是在氨气条件下高温热解碳化并氮掺杂,这就造成了碳质量的损失,活性位点的减少,同时会影响催化剂的使用寿命。另外,不同的大环化合物前驱体也会影响M-N-C类催化剂的结构,如金属颗粒的大小、金属含量、氮含量以及碳材料的结构,参见:H. Zhu, J. Yin, X. L. Wang, H. Y. Wang, X. R. Yang, Adv. Funct. Mater 2013, 23, 1305。因此,为了制备廉价且高效的M-N-C类催化剂,寻求一种低成本的前驱体且能较易的转化为高金属含量、高氮掺杂量、高比表面积的多孔碳基材料具有十分重要的意义。
发明内容
本发明的目的在于针对上述存在问题,提供一种用于燃料电池氧还原催化剂的多孔纳米复合材料,该多孔纳米复合材料性能优异、循环稳定性高,通过在较低的温度下热解过渡金属铁、钴或镍的配合物实现金属和氮的原位共掺杂;这种直接热解简单复合物前驱体同时产生了微孔和介孔,从而有利于氧还原催化剂活性位点的暴露和传质;用于制备M-N-C纳米复合催化剂呈现出小粒径的金属纳米颗粒均匀地分散、嵌在高比表面积的多孔碳载体材料内部,还保持有高的氮含量的特性,从而表现出优异的催化活性和稳定性。
本发明的技术方案:
一种用于燃料电池氧还原催化剂的多孔纳米复合材料,为多孔M-N-C纳米复合材料,M-N-C中M为非贵金属铁、钴或镍,N为氮,C为碳,小粒径的非贵金属纳米颗粒均匀地分散、镶嵌在氮掺杂的多孔碳载体材料内部,其中金属纳米颗粒的粒径范围为5-100 nm,多孔碳载体中氮的质量百分比为3-7%。
一种所述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,步骤如下:
1)席夫碱配合物(salenM)的合成, M为铁、钴或镍
分别将席夫碱配体(salenH2)和铁、钴或镍的硝酸盐溶于无水乙醇中,然后在40-80℃水浴下将铁、钴或镍的硝酸盐乙醇溶液逐滴加入席夫碱配体乙醇溶液中,滴完后冷凝回流0.5-3小时,冷却至室温后进行减压抽滤,然后用蒸馏水及乙醇洗涤2-3次,烘干得到席夫碱配合物(salenM);
2)将席夫碱配合物(salenM)在保护气下进行高温热解反应,反应温度为500-1000 oC,升温速率为1-10 oC/min,反应时间为1-10小时,反应结束后降温至18-25 oC,然后将热解后的样品置于浓度为0.1-1.0 mol/L的硫酸溶液中,在50-90 oC条件下热处理5-10小时以除去产生的不稳定的物相,水洗后将样品置于保护气中在同样温度下进行二次热处理即可得到多孔纳米复合材料。
所述无水乙醇与席夫碱配体(salenH2)的用量比为3 mL:1 mmol;无水乙醇与硝酸盐的用量比为5 mL:3 mmol;硝酸盐与席夫碱配体(salenH2)的摩尔比为1:1。
所述保护气为氩气、氮气或体积比为9-19:1的氩气与氢气的混合气。
一种所述用于燃料电池氧还原催化剂的多孔纳米复合材料的应用,用作为氧还原催化剂,其性能测试方法如下:
将制得的多孔M-N-C纳米复合材料、粘结剂分散在无机或有机分散剂中,超声分散均匀,将其滴在旋转圆盘电极(RDE)上,然后在空气中干燥制成电极,干燥温度为283-313 K;以该电极为工作电极,以铂片电极为对电极,以饱和甘汞电极为参比电极,注入电解液,组装成氧还原催化剂的测试装置。
所述粘结剂为聚四氟乙烯、聚偏氟乙烯、全氟-3,6-二环氧-4-甲基-7-癸烯-硫酸聚合物中的一种或两种以上任意比例的混合物;分散剂为N-甲基吡咯烷酮、乙醇、异丙醇、水中的一种或两种以上任意比例的混合物;多孔M-N-C纳米复合材料、粘结剂和分散剂的用量比为5-15mg:50-100μL:300-1000μL。
所述电解液由碱性或酸性溶液组成,酸、碱电解质在水溶液中的浓度为0.01-1.0 mol/L,其中固体酸碱电解质为H2SO4、HClO4、KOH或NaOH。
本发明的优点在于:该多孔M-N-C纳米复合材料由于其碳基底的原位氮掺杂,分布均匀的非贵金属纳米颗粒的嵌入,高比表面积的多孔结构的形成明显改善了其催化氧还原的能力,金属颗粒均匀的锚定在多孔碳基底中,有利于提高材料的循环稳定性;该复合材料制备的前驱体成本低、容易制得,制备过程易于控制,操作简单,便于实现工业化大规模生产;该复合材料的催化性能与铂碳催化剂类似,其循环稳定性优于铂碳催化剂,在燃料电池阴极氧还原催化剂上具有潜在的应用前景。
附图说明
图1为钴-氮-碳纳米复合材料的XRD图。
图2为钴-氮-碳纳米复合材料的TEM图。
图3为钴-氮-碳纳米复合材料氧还原催化剂在氧气饱和的0.1mol/L KOH溶液中不同转速的极化曲线。
图4为M-N-C纳米复合材料氧还原催化剂及铂碳催化剂在氧气饱和的0.1 mol/L KOH溶液中900转每分钟转速下的极化曲线。
图5为铁-氮-碳纳米复合材料的XRD图。
图6为铁-氮-碳纳米复合材料的TEM照片。
图7为铁-氮-碳纳米复合材料氧还原催化剂在氧气饱和的0.1mol/L KOH溶液中不同转速的极化曲线。
图8为镍-氮-碳纳米复合材料的XRD图。
图9为镍-氮-碳纳米复合材料的TEM照片。
图10为镍-氮-碳纳米复合材料氧还原催化剂在氧气饱和的0.1mol/L KOH溶液中不同转速的极化曲线。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1:
一种用于燃料电池氧还原催化剂的多孔纳米复合材料,由小粒径的钴纳米颗粒均匀地分散、嵌在氮掺杂的多孔碳载体材料内部,其中钴金属纳米颗粒的粒径范围6-7 nm,钴金属的质量百分比为25.8%,多孔碳载体中含氮的质量百分比为3.53%。
上述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,步骤如下:
1)席夫碱配合物:双水杨醛缩乙二胺合钴(Ⅱ)的合成
在三口瓶中将3.5 g 席夫碱配体(salenH2)溶于30 mL无水乙醇中,然后量取3.5 g硝酸钴溶解于20 mL无水乙醇中并在65 ℃水浴下逐滴加入三口瓶中,滴完后,冷凝回流1小时,冷却后进行减压抽滤,并用蒸馏水及乙醇洗涤2次,用烘箱烘干得到双水杨醛缩乙二胺合钴(Ⅱ)配合物;
2)将上述制备的双水杨醛缩乙二胺合钴(Ⅱ)配合物转入管式炉中,于氩气气氛下700 oC煅烧1小时,升温速率为5 oC/min,待管式炉温度降至22 oC后,将热解后的样品置于0.5 M的稀硫酸溶液中,在80 oC条件下处理8小时以除去产生的不稳定的物相,水洗后将样品置于氩气气氛中在700 oC进行二次热处理1小时,即可得到多孔钴-氮-碳纳米复合材料。
图1为该多孔钴-氮-碳纳米复合材料的XRD图,图中显示:除了碳的衍射峰其他的衍射峰均可归属于金属钴。
图2为该钴-氮-碳纳米复合材料的TEM照片,图中可以看到颗粒大小为6 nm左右的钴颗粒均匀的分散、嵌在碳基质中。
检测表明:将制备的多孔钴-氮-碳复合材料作为氧还原催化剂时,其起始电位为0.91 V,半波电位为0.80 V。
将上述制备的多孔钴-氮-碳纳米复合材料作为氧还原催化剂,其性能测试方法如下:
将10 mg制得的多孔钴-氮-碳纳米复合材料、80 μL的聚四氟乙烯与全氟-3,6-二环氧-4-甲基-7-癸烯-硫酸共聚物的溶液(Nafion溶液)分散于450 μL、体积比为1:1的乙醇-水溶液中,超声分散30分钟,取6.0 μL滴在旋转圆盘电极(RDE)上,然后在空气中室温条件干燥制成电极;以该电极为工作电极,以铂片电极为对电极,以饱和甘汞电极为参比电极组成三电极体系,在氧气饱和的0.1 mol/L的KOH溶液中进行线性扫描测试,扫描速度为5 mV/s,检测结果如图3所示:其起始电位为0.91 V,半波电位为0.80 V。
图4为M-N-C纳米复合材料氧还原催化剂及铂碳催化剂在氧气饱和的0.1 mol/L KOH溶液中900转每分钟转速下的极化曲线,图中的41为实施例1制备的钴-氮-碳纳米复合材料催化剂在900转每分钟,扫速为5 mV/s时的线性扫描伏安图,与图4中的44比较可知,实施例1制备的催化剂与Pt含量为20%的Pt/C催化剂的性能相当。
实施例2:
一种用于燃料电池氧还原催化剂的多孔纳米复合材料,由小粒径的铁及碳化铁纳米颗粒均匀地分散、嵌在氮掺杂的多孔碳载体材料内部,其中铁及碳化铁纳米颗粒的粒径范围为20-40 nm,铁金属的质量百分比为10.2%,多孔碳载体中含氮的质量百分比为4.02%。
上述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,步骤与实施例1基本相同,不同之处在于;用硝酸亚铁取代硝酸钴,制得多孔铁-氮-碳纳米复合材料。
图5为该多孔铁-氮-碳纳米复合材料的XRD图,图中显示:除了碳的衍射峰,所制样品中含有金属铁和Fe3C相。
图6为该铁-氮-碳纳米复合材料的TEM照片,图中可以看到颗粒大小为20-40 nm左右的铁及碳化铁颗粒均匀的分散、嵌在碳基质中。
检测表明:将制备的多孔铁-氮-碳复合材料作为氧还原催化剂时,其起始电位为0.96 V,半波电位为0.83 V。
将上述制备的多孔铁-氮-碳纳米复合材料作为氧还原催化剂,其性能测试方法与实施例1相同。图7为铁-氮-碳纳米复合材料氧还原催化剂在氧气饱和的0.1mol/L KOH溶液中不同转速的极化曲线,图中表明:其起始电位为0.96 V,半波电位为0.83 V。
图4中的42为实施例2制备的铁-氮-碳复合材料催化剂在900转每分钟,扫速为5 mV/s时的线性扫描伏安图,与图4中的44比较可知,实施例2制备的催化剂起始电位高于Pt含量为20%的Pt/C。
实施例3:
一种用于氧还原催化剂的多孔纳米复合材料,由小粒径的镍纳米颗粒均匀地分散、嵌在氮掺杂的多孔碳载体材料内部,其中镍金属纳米颗粒的粒径范围为20-30 nm,镍金属的质量百分比为19.1%,多孔碳载体中含氮的质量百分比为3.16%。
上述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,步骤与实施例1基本相同,不同之处在于;用硝酸镍取代硝酸钴,制得多孔镍-氮-碳纳米复合材料。
图8为该多孔镍-氮-碳纳米复合材料的XRD图,图中显示:除了碳的衍射峰,其他所有的衍射峰均可归属为金属镍。
图9为该镍-氮-碳纳米复合材料的TEM照片,图中可以看到颗粒大小为20-40 nm左右的金属镍颗粒均匀的分散、嵌在碳基质中。
检测表明:将制备的多孔镍-氮-碳复合材料作为氧还原催化剂时,其起始电位为0.85 V,半波电位为0.75 V。
上述制备的多孔镍-氮-碳纳米复合材料作为氧还原催化剂,其性能测试方法与实施例1相同。图10为镍-氮-碳纳米复合材料氧还原催化剂在氧气饱和的0.1mol/L KOH溶液中不同转速的极化曲线,图中表明:其起始电位为0.85 V,半波电位为0.75 V。
对比实施例:
以商业化的20% Pt/C为对比样品,其性能测试方法如下:
将10 mg Pt/C催化剂、100 μL的聚四氟乙烯与全氟-3,6-二环氧-4-甲基-7-癸烯-硫酸共聚物的溶液(Nafion溶液)分散于1100 μL的乙醇溶液中,超声分散30分钟,取6.0 μL滴在旋转圆盘电极(RDE)上,然后在空气中室温条件干燥制成电极;以该电极为工作电极,以铂片电极为对电极,以饱和甘汞电极为参比电极的三电极体系,在氧气饱和的0.1 mol/L的KOH溶液中进行线性扫描测试,扫描速度为5 mV/s,图4中的44为对比例Pt/C催化剂在900转每分钟,扫速为5 mV/s时的线性扫描伏安图。
以上所述仅为本发明的部分实施例,并非用来限制本发明。但凡依本发明内容所做的均等变化与修饰,都为本发明的保护范围之内。

Claims (7)

1.一种用于燃料电池氧还原催化剂的多孔纳米复合材料,其特征在于:为多孔M-N-C纳米复合材料,M-N-C中M为非贵金属铁、钴或镍,N为氮,C为碳,小粒径的非贵金属纳米颗粒均匀地分散、镶嵌在氮掺杂的多孔碳载体材料内部,其中金属纳米颗粒的粒径范围为5-100 nm,多孔碳载体中氮的质量百分比为3-7%。
2.一种如权利要求1所述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,其特征在于步骤如下:
1)席夫碱配合物(salenM)的合成, M为铁、钴或镍
分别将席夫碱配体(salenH2)和铁、钴或镍的硝酸盐溶于无水乙醇中,然后在40-80℃水浴下将铁、钴或镍的硝酸盐乙醇溶液逐滴加入席夫碱配体乙醇溶液中,滴完后冷凝回流0.5-3小时,冷却至室温后进行减压抽滤,然后用蒸馏水及乙醇洗涤2-3次,烘干得到席夫碱配合物(salenM);
2)将席夫碱配合物(salenM)在保护气下进行高温热解反应,反应温度为500-1000 oC,升温速率为1-10 oC/min,反应时间为1-10小时,反应结束后降温至18-25 oC,然后将热解后的样品置于浓度为0.1-1.0 mol/L的硫酸溶液中,在50-90 oC条件下热处理5-10小时以除去产生的不稳定的物相,水洗后将样品置于保护气中在同样温度下进行二次热处理即可得到多孔纳米复合材料。
3.根据权利要求2所述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,其特征在于:所述无水乙醇与席夫碱配体(salenH2)的用量比为3 mL:1 mmol;无水乙醇与硝酸盐的用量比为5 mL:3 mmol;硝酸盐与席夫碱配体(salenH2)的摩尔比为1:1。
4.根据权利要求2所述用于燃料电池氧还原催化剂的多孔纳米复合材料的制备方法,其特征在于:所述保护气为氩气、氮气或体积比为9-19:1的氩气与氢气的混合气。
5.一种如权利要求1所述用于燃料电池氧还原催化剂的多孔纳米复合材料的应用,其特征在于:用作为氧还原催化剂,其性能测试方法如下:
将制得的多孔M-N-C纳米复合材料、粘结剂分散在无机或有机分散剂中,超声分散均匀,将其滴在旋转圆盘电极(RDE)上,然后在空气中干燥制成电极,干燥温度为283-313 K;以该电极为工作电极,以铂片电极为对电极,以饱和甘汞电极为参比电极,注入电解液,组装成氧还原催化剂的测试装置。
6.根据权利要求5所述用于燃料电池氧还原催化剂的多孔纳米复合材料的应用,其特征在于:所述粘结剂为聚四氟乙烯、聚偏氟乙烯、全氟-3,6-二环氧-4-甲基-7-癸烯-硫酸聚合物中的一种或两种以上任意比例的混合物;分散剂为N-甲基吡咯烷酮、乙醇、异丙醇、水中的一种或两种以上任意比例的混合物;多孔M-N-C纳米复合材料、粘结剂和分散剂的用量比为5-15mg:50-100μL:300-1000μL。
7.根据权利要求5所述用于燃料电池氧还原催化剂的多孔纳米复合材料的应用,其特征在于:所述电解液由碱性或酸性溶液组成,酸、碱电解质在水溶液中的浓度为0.01-1.0 mol/L,其中固体酸碱电解质为H2SO4、HClO4、KOH或NaOH。
CN201410082663.2A 2014-03-06 2014-03-06 一种用于燃料电池氧还原催化剂的多孔纳米复合材料 Pending CN103811775A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410082663.2A CN103811775A (zh) 2014-03-06 2014-03-06 一种用于燃料电池氧还原催化剂的多孔纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410082663.2A CN103811775A (zh) 2014-03-06 2014-03-06 一种用于燃料电池氧还原催化剂的多孔纳米复合材料

Publications (1)

Publication Number Publication Date
CN103811775A true CN103811775A (zh) 2014-05-21

Family

ID=50708222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410082663.2A Pending CN103811775A (zh) 2014-03-06 2014-03-06 一种用于燃料电池氧还原催化剂的多孔纳米复合材料

Country Status (1)

Country Link
CN (1) CN103811775A (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624218A (zh) * 2015-01-30 2015-05-20 西南石油大学 一种过渡金属氧还原反应催化剂的制备方法
CN104659381A (zh) * 2015-01-15 2015-05-27 华中科技大学 一种复合材料、其制备方法及应用
CN104907035A (zh) * 2015-06-25 2015-09-16 浙江大学 多孔碳载钴汽柴油脱硫吸附柱的制备方法
CN105289651A (zh) * 2015-10-21 2016-02-03 中国科学院过程工程研究所 一种催化氧化VOCs的双金属催化剂及其制备方法和用途
CN105344369A (zh) * 2015-11-30 2016-02-24 北京化工大学 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
CN105498823A (zh) * 2016-02-26 2016-04-20 南开大学 一种氮掺杂多孔碳负载钴催化剂的制备方法和应用
CN106694018A (zh) * 2016-12-14 2017-05-24 北京化工大学 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN106848330A (zh) * 2016-12-09 2017-06-13 新乡医学院 一种氧还原催化剂纳米复合材料的制备方法
CN106862589A (zh) * 2017-02-15 2017-06-20 珠海市吉林大学无机合成与制备化学重点实验室 金属镍‑氮掺杂多孔碳材料、制备方法及其应用
CN106915735A (zh) * 2017-01-25 2017-07-04 广西大学 一种氮或金属掺杂碳材料的制备方法
CN107073440A (zh) * 2014-08-19 2017-08-18 普尔玛斯公司 制备多孔金属‑碳材料的方法
CN107146894A (zh) * 2017-05-23 2017-09-08 南京师范大学 一种超薄多孔Co/Fe‑N‑C纳米复合材料及其制备方法和应用
CN107170994A (zh) * 2017-04-14 2017-09-15 首都师范大学 一种Fe‑N掺杂多孔碳氧还原催化剂
CN107216605A (zh) * 2017-06-22 2017-09-29 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN107376916A (zh) * 2017-07-19 2017-11-24 桂林电子科技大学 一种C‑Co复合纳米材料及其制备方法和应用
CN107486233A (zh) * 2017-09-05 2017-12-19 济南大学 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN107681166A (zh) * 2017-09-19 2018-02-09 上海交通大学 一种碳模板诱导Fe‑N生长制备碳催化剂的方法及碳催化剂
CN107715880A (zh) * 2017-10-18 2018-02-23 上海纳米技术及应用国家工程研究中心有限公司 非贵金属颗粒锚定在石墨烯片的纳米复合材料的制备方法及其产品和应用
CN108067278A (zh) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 一种非贵金属多孔氮掺杂碳电催化剂的制备方法
CN108080015A (zh) * 2017-12-25 2018-05-29 西北师范大学 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN108110264A (zh) * 2017-12-26 2018-06-01 成都新柯力化工科技有限公司 一种用于固体氧化物燃料电池的合金催化剂及制备方法
CN108232208A (zh) * 2016-12-22 2018-06-29 现代自动车株式会社 用于燃料电池的混合型催化剂及用于制造其的方法
CN108336374A (zh) * 2018-01-24 2018-07-27 桂林电子科技大学 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN108417851A (zh) * 2018-01-25 2018-08-17 深圳大学 一种三元合金纳米催化剂及其制备方法与应用
CN108751163A (zh) * 2018-07-07 2018-11-06 盐城师范学院 一种氮掺杂多孔碳材料的制备方法
CN109309214A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆镍纳米复合材料的制备方法
CN110538673A (zh) * 2019-09-17 2019-12-06 郑州轻工业学院 一种用于电催化还原co2的铁氮共掺杂碳催化剂的制备方法及其应用
CN112023945A (zh) * 2020-09-01 2020-12-04 广州大学 一种介孔碳基电催化剂的制备方法
CN112117469A (zh) * 2020-09-10 2020-12-22 广州大学 一种泡沫镍电催化剂及其制备方法
CN112615015A (zh) * 2020-12-17 2021-04-06 河南师范大学 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN112701303A (zh) * 2020-12-31 2021-04-23 杭州电子科技大学 一种碳管插层氮掺杂碳包覆钴颗粒催化剂的制备方法及其应用
CN116425142A (zh) * 2023-04-04 2023-07-14 福州大学 一种基于席夫碱的金属氮掺杂多孔碳材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143378A (zh) * 2013-03-04 2013-06-12 太原理工大学 一种燃料电池阴极非贵金属氧还原电催化剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143378A (zh) * 2013-03-04 2013-06-12 太原理工大学 一种燃料电池阴极非贵金属氧还原电催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANG LIU ET AL: ""Development of non-precious metal oxygen-reduction catalyst for PEM fuel cells based on N-doped ordered porous carbon"", 《APPLIED CATALYST B:ENVIROMENTAL》, vol. 93, no. 12, 18 September 2009 (2009-09-18) *
ZHIQIANG ZHU ET AL: ""Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode for Lithium-ion Batteries"", 《NANO LETTERS》, vol. 14, no. 1, 11 December 2013 (2013-12-11) *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073440A (zh) * 2014-08-19 2017-08-18 普尔玛斯公司 制备多孔金属‑碳材料的方法
CN104659381B (zh) * 2015-01-15 2017-02-01 华中科技大学 一种复合材料、其制备方法及应用
CN104659381A (zh) * 2015-01-15 2015-05-27 华中科技大学 一种复合材料、其制备方法及应用
CN104624218A (zh) * 2015-01-30 2015-05-20 西南石油大学 一种过渡金属氧还原反应催化剂的制备方法
CN104624218B (zh) * 2015-01-30 2017-02-01 西南石油大学 铁和/或钴和/或镍金属氧还原反应催化剂的制备方法
CN104907035A (zh) * 2015-06-25 2015-09-16 浙江大学 多孔碳载钴汽柴油脱硫吸附柱的制备方法
CN105289651A (zh) * 2015-10-21 2016-02-03 中国科学院过程工程研究所 一种催化氧化VOCs的双金属催化剂及其制备方法和用途
CN105344369A (zh) * 2015-11-30 2016-02-24 北京化工大学 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
CN105498823A (zh) * 2016-02-26 2016-04-20 南开大学 一种氮掺杂多孔碳负载钴催化剂的制备方法和应用
CN108067278A (zh) * 2016-11-18 2018-05-25 中国科学院大连化学物理研究所 一种非贵金属多孔氮掺杂碳电催化剂的制备方法
CN106848330A (zh) * 2016-12-09 2017-06-13 新乡医学院 一种氧还原催化剂纳米复合材料的制备方法
CN106694018A (zh) * 2016-12-14 2017-05-24 北京化工大学 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN108232208A (zh) * 2016-12-22 2018-06-29 现代自动车株式会社 用于燃料电池的混合型催化剂及用于制造其的方法
CN106915735A (zh) * 2017-01-25 2017-07-04 广西大学 一种氮或金属掺杂碳材料的制备方法
CN106862589A (zh) * 2017-02-15 2017-06-20 珠海市吉林大学无机合成与制备化学重点实验室 金属镍‑氮掺杂多孔碳材料、制备方法及其应用
CN107170994A (zh) * 2017-04-14 2017-09-15 首都师范大学 一种Fe‑N掺杂多孔碳氧还原催化剂
CN107146894A (zh) * 2017-05-23 2017-09-08 南京师范大学 一种超薄多孔Co/Fe‑N‑C纳米复合材料及其制备方法和应用
CN107216605A (zh) * 2017-06-22 2017-09-29 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN107216605B (zh) * 2017-06-22 2019-08-16 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN107376916B (zh) * 2017-07-19 2020-07-24 桂林电子科技大学 一种C-Co复合纳米材料及其制备方法和应用
CN107376916A (zh) * 2017-07-19 2017-11-24 桂林电子科技大学 一种C‑Co复合纳米材料及其制备方法和应用
CN109309214A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 碳包覆镍纳米复合材料的制备方法
CN107486233A (zh) * 2017-09-05 2017-12-19 济南大学 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN107681166B (zh) * 2017-09-19 2020-06-02 上海交通大学 一种碳模板诱导Fe-N生长制备碳催化剂的方法及碳催化剂
CN107681166A (zh) * 2017-09-19 2018-02-09 上海交通大学 一种碳模板诱导Fe‑N生长制备碳催化剂的方法及碳催化剂
CN107715880A (zh) * 2017-10-18 2018-02-23 上海纳米技术及应用国家工程研究中心有限公司 非贵金属颗粒锚定在石墨烯片的纳米复合材料的制备方法及其产品和应用
CN107715880B (zh) * 2017-10-18 2020-04-28 上海纳米技术及应用国家工程研究中心有限公司 非贵金属颗粒锚定在石墨烯片的纳米复合材料的制备方法及其产品和应用
CN108080015B (zh) * 2017-12-25 2020-07-31 西北师范大学 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN108080015A (zh) * 2017-12-25 2018-05-29 西北师范大学 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN108110264B (zh) * 2017-12-26 2020-02-18 成都新柯力化工科技有限公司 一种用于固体氧化物燃料电池的合金催化剂及制备方法
CN108110264A (zh) * 2017-12-26 2018-06-01 成都新柯力化工科技有限公司 一种用于固体氧化物燃料电池的合金催化剂及制备方法
CN108336374A (zh) * 2018-01-24 2018-07-27 桂林电子科技大学 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN108336374B (zh) * 2018-01-24 2020-09-29 桂林电子科技大学 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN108417851A (zh) * 2018-01-25 2018-08-17 深圳大学 一种三元合金纳米催化剂及其制备方法与应用
CN108751163A (zh) * 2018-07-07 2018-11-06 盐城师范学院 一种氮掺杂多孔碳材料的制备方法
CN108751163B (zh) * 2018-07-07 2021-09-14 盐城师范学院 一种氮掺杂多孔碳材料的制备方法
CN110538673A (zh) * 2019-09-17 2019-12-06 郑州轻工业学院 一种用于电催化还原co2的铁氮共掺杂碳催化剂的制备方法及其应用
CN110538673B (zh) * 2019-09-17 2022-05-27 郑州轻工业学院 一种用于电催化还原co2的铁氮共掺杂碳催化剂的制备方法及其应用
CN112023945A (zh) * 2020-09-01 2020-12-04 广州大学 一种介孔碳基电催化剂的制备方法
CN112023945B (zh) * 2020-09-01 2022-07-05 广州大学 一种介孔碳基电催化剂的制备方法
CN112117469A (zh) * 2020-09-10 2020-12-22 广州大学 一种泡沫镍电催化剂及其制备方法
CN112615015A (zh) * 2020-12-17 2021-04-06 河南师范大学 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN112615015B (zh) * 2020-12-17 2022-07-29 河南师范大学 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN112701303A (zh) * 2020-12-31 2021-04-23 杭州电子科技大学 一种碳管插层氮掺杂碳包覆钴颗粒催化剂的制备方法及其应用
CN112701303B (zh) * 2020-12-31 2022-03-25 杭州电子科技大学 一种碳管插层氮掺杂碳包覆钴颗粒催化剂的制备方法及其应用
CN116425142A (zh) * 2023-04-04 2023-07-14 福州大学 一种基于席夫碱的金属氮掺杂多孔碳材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN103811775A (zh) 一种用于燃料电池氧还原催化剂的多孔纳米复合材料
Li et al. Polycrystalline CoP/CoP2 structures for efficient full water splitting
CN106159287B (zh) 一种复合型燃料电池阴极催化剂NGPC/NCNTs及其制备方法
CN105529472B (zh) 一种Co-N双掺杂片状多孔二维碳材料及其制备方法
Jiang et al. Self-assembly synthesis of cobalt-and nitrogen-coembedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media
CN107093749B (zh) 一种双金属共掺杂碳纳米复合材料、双金属-氮-碳纳米催化剂及其制备方法和应用
Xu et al. Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction
CN104923204A (zh) 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用
CN107146894A (zh) 一种超薄多孔Co/Fe‑N‑C纳米复合材料及其制备方法和应用
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
CN105576262B (zh) 一种用于燃料电池阴极的高氧还原活性的铁/碳化氮共掺杂复合材料
CN103816894B (zh) 掺杂型石墨烯负载PtRu合金纳米电催化剂及其制备方法
Zhang et al. Hierarchical architecture of well‐aligned nanotubes supported bimetallic catalysis for efficient oxygen redox
Ahmed et al. Transition metals (Co or Ni) encapsulated in carbon nanotubes derived from zeolite imidazolate frameworks (ZIFs) as bifunctional catalysts for the oxygen reduction and evolution reactions
Peng et al. Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts
Zeng et al. Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions
CN105948139A (zh) 一种二维CuCo2S4纳米片及其制备方法和作为电催化剂在氧还原和析氧反应中的应用
CN110102330A (zh) 一种Co@N,S(two)-Kb高分散核壳结构催化剂、制备方法及其应用
CN110756188A (zh) 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN108649237B (zh) 一种基于凝胶热解的钴-氮掺杂碳复合材料及其制备方法和应用
CN113881965A (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN111841616A (zh) 一种双功能原子分散铁氮配位材料催化剂的制备方法
CN103316679A (zh) 一种有序介孔非贵金属-氮-石墨化碳材料的制备方法
CN113690452B (zh) 通过聚合物-金属配合物辅助碳化mof技术制备催化剂的方法及所得催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140521