CN103348461A - 硅晶圆上的直通硅穿孔的制造 - Google Patents

硅晶圆上的直通硅穿孔的制造 Download PDF

Info

Publication number
CN103348461A
CN103348461A CN2011800669142A CN201180066914A CN103348461A CN 103348461 A CN103348461 A CN 103348461A CN 2011800669142 A CN2011800669142 A CN 2011800669142A CN 201180066914 A CN201180066914 A CN 201180066914A CN 103348461 A CN103348461 A CN 103348461A
Authority
CN
China
Prior art keywords
silicon
substrate
deposited
silicon plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800669142A
Other languages
English (en)
Inventor
N·拉贾戈帕兰
朴智爱
R·雅玛西
S·帕特尔
T·诺瓦克
L-Q·夏
金秉宪
R·丁
J·巴尔迪诺
M·奈克
S·拉马斯瓦米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN103348461A publication Critical patent/CN103348461A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68372Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support a device or wafer when forming electrical connections thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/11444Manufacturing methods by blanket deposition of the material of the bump connector in gaseous form
    • H01L2224/11452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13562On the entire exposed surface of the core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/13687Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种直通硅穿孔制造方法包括:在硅板中蚀刻多个直通孔。将氧化物衬垫沉积在硅板的表面上并且沉积在直通孔的侧壁及底壁上。然后,在直通孔中沉积金属导体。在可与氧化物衬垫同时使用的另一方案中,将氮化硅钝化层沉积在基板的硅板的暴露后表面上。

Description

硅晶圆上的直通硅穿孔的制造
背景
本发明的实施例涉及用于电子电路中的直通硅穿孔的制造。
正在开发具有愈来愈小的有源及无源特征(active andpassive features)的诸如举例而言集成电路、显示电路、存储器电路、电力电路、以及光伏电路的电子电路。电子电路的三维(3D)结构藉由以多层堆栈结构垂直堆栈多个基板形成,所述基板中的每一个在所述基板上具有特征。不同基板的特征利用位于基板的周边边缘外部的常规线结合彼此连接。然而,因为线结合延伸至堆栈基板的外部,所以所得的3D电路结构覆盖较大区域,从而增加了电路尺寸并且降低了电路的区域密度。
使用直通硅穿孔(Through-silicon via;TSV)以将垂直安置的层中的电路的特征电气连接,以提供具有较高区域密度且无侧接线的3D电路结构。在TSV制造中,在诸如硅晶圆或者具有硅层的玻璃面板之类的含硅基板中蚀刻穿孔,所述含硅基板可能已具有预制电路。蚀刻穿孔填充电导体,例如,包含诸如铜(Cu)、银(Ag)、金(Au)、钨(W)、以及焊料之类的金属的金属导体;或者例如多晶硅的掺杂半导体。诸如氧化硅层及氮化硅层之类的介电层还可用以在将金属导体沉积在穿孔中之前对穿孔的侧壁加衬垫以作为扩散阻断层、密封层、以及其它绝缘层、扩散阻断层或渗透减少层。然后堆栈多个基板并且由TSV形成垂直电连接以将所得的三维电路的上层或下层特征及各部分连接。这些3D结构通常被称为3D封装、系统级封装、或芯片堆栈多芯片模块(MCM)。与线接合方法相比较,TSV允许在较小区域“占地面积(footprint)”中增加功能并且TSV还可藉由显著缩短在垂直堆栈的上层电路之间的电气路径提供更快操作速度。
在某些TSV制造工艺中,将包含诸如硅晶圆之类的硅板的基板接合至诸如玻璃面板之类的支撑面板,以在TSV的制造期间保护易损坏的硅晶圆。然而,通常使用在250℃以上的温度会劣化的接合黏着剂将硅晶圆接合至支撑面板。尤其是介电质沉积方法的将材料沉积至TSV特征中的常规工艺,在比黏着接合材料的劣化温度高的温度进行。因此,接合黏着剂在处理期间热降解,从而产生正在制造的TSV电路的破坏、损坏或失效。在TSV制造中的温度降解问题尚未由常规处理方法解决。
因此,出于包括这些以及其它不足的各种原因,并且尽管开发了将介电质以及其它材料沉积在TSV特征中的各种方法,仍需要在TSV特征的制造中不断寻求进一步改良。
发明内容
直通硅穿孔制造方法包含:在硅板中蚀刻多个直通孔,所述直通孔包含侧壁及底壁。藉由以下步骤将氧化物衬垫沉积在直通孔的侧壁及底壁上:在包含处理电极及气体分配器的处理区中提供硅板;将沉积气体引入处理区中,所述沉积气体包含包括四乙氧基硅烷(tetraethylorthosilane)的含硅气体、以及包括氧气的氧前驱物;以及藉由以第一频率在从约200瓦至约1500瓦的功率水平将电流施加到处理电极来激发(energizing)沉积气体以形成等离子体。然后,在直通孔中沉积金属导体。
附图说明
从以下描述、所附权利要求书以及图标本发明的实例的附图更好地理解本发明的这些特征、态样及优点。然而,应了解可通常将特征中的每一个用于本发明,而不仅用于特定附图的内容中,并且本发明包括这些特征的任何组合,其中:
图1A为包含具有电子电路的硅板的基板的示意剖视图,所述电子电路在所述电子电路上包含有源及无源特征;
图1B为图示图1A的基板翻转且接合至载体的示意剖视图;
图1C为图示将氮化硅钝化层沉积在基板的暴露表面上的沉积腔室的示意图;
图1D为图示在基板上包含图案化抗蚀特征的抗蚀层的示意图;
图1E为图标在位于图案化抗蚀特征之间的硅板的暴露区域中蚀刻直通孔的蚀刻腔室的示意图;
图1F为图示蚀刻直通由载体支撑的硅板的完成直通孔的示意图;
图1G为在沉积腔室中将氧化物衬垫沉积在硅板及基板的直通孔的暴露表面上的示意图;
图1H为图示将密封层沉积在硅板上的氧化物衬垫上的示意图;
图1I为图示将氮化硅钝化层沉积在基板的暴露表面上的示意图;
图1J为图示在电镀浴中将包含电镀金属的金属导体沉积至硅板的直通孔中的示意图;
图1K为图示沉积在硅板中的直通孔中的金属导体的示意图;
图1L为图示将沉积在硅板的表面上的过量金属导体化学机械研磨的示意图;
图1M为图示在硅板中的直通孔的金属导体的暴露接触部分的示意图;
图1N为图示减少及去除在基板的含金属部分上的原生氧化物层的示意图;
图1O为图示沉积在清洁金属导体及基板表面上的保护涂层的示意图;
图1P为图示包含沉积在清洁金属导体及基板表面上的三层涂层的保护涂层的示意图;
图1Q为图示使清洁金属导体接触周围的聚酰亚胺涂层的连接器凸块的示意图;
图2为用于在基板的硅板上形成TSV特征的工艺的示例性方案(version)的流程图;
图3为图示改变沉积氮化硅钝化层的应力水平或折射率以增加施加到处理电极的主要频率电流的功率水平的图形;
图4A为图示沉积至0.5微米(厚)或0.05微米(薄)的厚度的氮化硅钝化层的测量得到的应力水平中的增量(delta)应力变化的图形;
图4B为图示沉积至0.5微米(厚)或0.05微米(薄)的厚度的氮化硅钝化层在633nm水平测量得到的增量折射率的图形;
图4C为图示蚀刻沉积在基板的表面上的不同类型的氮化硅层的干式蚀刻速度的图形;
图4D为图示对于不同工艺沉积在顶部基板表面及在基板中的TSV穿孔的底部上的层的厚度的图形;
图5图示包含具有高深宽比且在硅板中蚀刻的直通孔的TSV特征的横截面SEM显微照片,所述TSV特征具有在直通孔的侧壁及底壁上沉积的氧化物衬垫;
图6A及图6B为图示在对于厚(图5A)及薄(图5B)氧化物衬垫沉积物的直通孔侧壁及底壁上沉积的氧化物衬垫材料的傅立叶变换红外(FTIR)光谱迹线的图形;
图7为基板处理腔室的实施例的示意部分剖视图,所述基板处理腔室为等离子体腔室且适合于处理基板和/或将各种二氧化硅、氮化硅或其它层沉积至基板上;
图8A为图示在图7中的基板支撑件的一个实施例的等角侧视图;
图8B为图示在图7中的基板支撑件的一个实施例的等角仰视图;
图9A为图示在图7中的基板支撑件的一个实施例的仰视示意图;
图9B为沿着图9A的线9B-9B获取的基板支撑件的一个实施例的横截面侧视图;
图9C为图9B的基板支撑件的一个实施例的剖视图的放大部分;
图9D为沿着图9A的线9D-9D获取的横截面侧视图;
图9E为图9D的基板支撑件的一个实施例的横截面图的放大部分;
图10A为电阻加热器的实施例的示意俯视图;以及
图10B为电阻加热器的实施例的示意侧视图。
具体实施方式
直通硅穿孔(TSV)通常使用数个不同的循序执行的工艺在包含硅板20的基板18中制造,如例如在图1A至图1Q中所示。硅板20为直通硅穿孔的容器且可为例如:多晶硅;由单晶硅组成的硅晶圆;或者其它形式的结晶硅或非晶硅。在本文中描述示例性直通硅穿孔制造工艺,其中在图2中图标说明性实例。然而,还可使用将对本领域普通技术人员显而易见的其它工艺,并且所有此类工艺的组合皆落入本发明的范围。同样,在不背离本权利要求书的范围的情况下,本文描述的示例性处理步骤可以不同次序执行,用其它处理步骤代替,或者完全消除。因此,权利要求不应限于本文描述的示例性且说明性的工艺及设备。
在一个示例性实施例中,基板18包括硅板20,所述硅板20具有前表面21及后表面23,所述前表面21中具有一个或多个特征22,如图1A所示。按照图2,特征22可能已在硅板20上制造,或者以后制造。特征22可包括,例如:诸如集成电路、存储器芯片、显示器、光伏电池、或其它电路之类的电子电路;诸如晶体管之类的有源特征;以及诸如电阻器和电容器之类的无源特征。在所示的实例中,在前表面21上形成特征22以向下延伸至硅板20中。还可在硅板20的前表面21上形成包含互联线、接触孔和/或其它导电特征的薄导体层(未图标),以连接至特征22或用于其它连接应用。
将硅板20翻转且安装在载体24上以将硅板20的后表面23暴露,如图1B中所示。载体24在制造直通硅穿孔期间支撑硅板20。适合的载体24可为例如玻璃、聚合物、陶瓷、或半导体板;或者可由其它材料制造。在一个实施例中,载体24为硅晶圆或玻璃板中的任一个。
硅板20的前表面21可按照图2利用在硅板20与载体24之间的黏着层28接合至载体24,以将硅板20的后表面23暴露,所述硅板20的后表面23现在成为所得基板18的暴露处理表面23。适合的黏着层28包括,例如,诸如可紫外线(UV)固化或可热固化的热塑性树脂之类的热塑性黏着剂。适合的黏着层28由密苏里州罗拉市的Brewer Science或明尼苏达州圣保罗市的3M公司制造。某些热塑性树脂在小于350℃或者甚至小于250℃的温度、或者乃至在约200℃的温度流动且固化。
氮化硅钝化层
在一个可选处理步骤中,将氮化硅钝化层26沉积在基板18的暴露表面23上,如图1C中所示。在硅板20接合至载体24之后,当基板18呈现出诸如翘曲或其它变形之类的形状变形时,将氮化硅钝化层26用作应力补偿层。当已知基板18在稍后处理步骤中遭受形状变形时,还可将氮化硅钝化层26用作预防应力补偿层。氮化硅钝化层26藉由抵消诱发至基板18中的应力而调整基板18的形状,否则所述应力会使基板18的形状翘曲或变形。例如,在翘曲状态中,基板18可形成弓形并且沿着基板18的周边边缘部分地向内弯曲,以界定凸形或凹形表面,其中基板18的中心部分高于或低于基板18的周边边缘。翘曲可在所述工艺中的任一个中的接合或加热阶段、或者移除硅板20的一部分的研磨或抛光步骤期间发生,所有这些工艺或步骤可导致在硅板20与下层载体24之间形成的不均匀应力。氮化硅钝化层26减小这种形状变形并且还可作为防潮层,并且甚至可将下层特征22密封而与环境隔离。
按照图2,在包含气体分配器36及处理电极38a、38b的沉积腔室34的沉积区30中,氮化硅钝化层26被沉积在基板18的暴露表面23上。在一个实施例中,将基板18传送至沉积区30中并且与气体分配器36的表面保持设定间距,例如,从约7.5mm(300密耳)至约20mm(约750密耳)的设定间距。将沉积气体40引入腔室34中,所述沉积气体40包含诸如硅烷(SiH4)之类的含硅气体以及诸如氨气(NH3)之类的含氮气体。还可将稀释剂气体添加至处理气体,所述稀释剂气体可稳定等离子体或横跨基板18产生更均匀的沉积厚度。适合的稀释剂气体包括氮气(N2)、氦气(He)、或氩气(Ar)。在一个实施例中,沉积气体40包含:硅烷,所述硅烷的流速为从约50sccm至约1000sccm(例如,约650sccm);氨气,所述氨气的流速为从约100sccm至约1000sccm;以及包含氮气的稀释剂气体,所述稀释剂气体的流速为从约500sccm至约25000sccm(例如,约22000sccm)。将沉积区30中的沉积气体保持为从约2托至约5.5托(例如,约3.5托)的压力。在沉积工艺期间,将基板18保持在从约100℃至约220℃(例如,约180℃)的温度。有利地,低压沉积工艺降低用以将硅板20结合至下层载体24的黏着层28的流动或回流。等离子体可藉由在从约500瓦至约1600瓦(例如,约1100瓦)的功率水平,以13.6MHz的主要频率将电流施加到处理电极38a、38b来持续。此外,等离子体可还藉由在从约10瓦至约200瓦的功率水平,以约350kHz的次要频率施加低频功率来增强。所得的工艺等离子体将氮化硅钝化层26沉积在基板18的表面23上,所述氮化硅钝化层26可作为应力补偿层及防潮层两者。钝化层26具有从约2g/cm3至约3g/cm3的密度,例如约2.2g/cm3的密度。钝化层26可沉积至从约0.1微米至约10微米的厚度。
如上所述的氮化硅沉积工艺具有若干优点及益处。首先,已发现沉积氮化硅钝化层26的内在应力水平可调谐。具体地,可选择施加到沉积区30中的处理电极38a、38b的主要频率(HF)电流的功率水平,以调整在沉积钝化层26中的应力水平。例如,图3图示沉积氮化硅钝化层26的应力水平的变化,用于增加施加到处理电极38a、38b的HF电流的功率水平。可以看出随着施加到处理电极38a、38b的HF电流的功率水平从约1050瓦增加至约1280瓦,沉积的氮化硅钝化层的内在应力水平的值从约0MPa逐渐降低至约-450MPa。负应力水平表示由KLA TencorSpectraFx100工具测量的所测量压缩应力,所述KLA TencorSpectraFx100工具由加利福尼亚州米尔皮塔斯市的KLATencor制造。
取决于在基板18中观察到的形状变形的程度或类型,并且甚至在沉积氮化硅钝化层26之前,氮化硅钝化层26的可调谐应力水平允许钝化层26中所要的内在应力藉由控制施加到沉积腔室34中的处理电极38a、38b的HF电流的功率水平而设定至所要的预定水平。例如,当硅板20的表面23为凹表面时,需要具有拉伸应力的氮化硅钝化层26将凹面形状校正且矫正为平面或平坦的表面。作为另一实例,当硅板20的表面23为凸表面时,需要具有压缩应力的氮化硅钝化层26将凸表面校正且矫正为平坦表面。因此,选择施加到处理电极38a、38b的主要频率电流的功率水平,以藉由选择一功率水平值将基板18的表面23调整为大体平坦的表面,所述功率水平值为至少约1050瓦、或者甚至从约1050瓦至约1300瓦。施加到沉积腔室34中的处理电极38a、38b的HF电流的功率水平可由控制器控制,所述控制器如下所述地控制腔室34。
进一步观察到,如图3的第二Y轴上所示,基板18的百分比不均匀性还呈现出与施加到处理电极38a、38b的主要频率电流的功率水平的线性相关。例如,当将施加到处理电极38a、38b的HF电流的功率水平从约1050瓦增加至约1280瓦时,沉积氮化硅钝化层26的百分比不均匀性从约1.2%的值增加至约2.7%的值。从这些结果可以决定,施加到电极38a、38b的HF功率水平应通常较低以提供较好均匀性。选择的功率水平范围应允许沉积钝化层26的不均匀性保持在足够低的水平,而氮化硅钝化层26的内在应力保持在所需高水平。
对低温沉积的氮化硅钝化层26测量的特性也是意外且惊奇的,尤其考虑到在小于约220℃的相对较低的沉积温度下沉积层26。图4A图示两个氮化硅钝化层26(即,具有0.5微米的厚度的「厚」氮化硅钝化层26、以及具有0.05微米的厚度的「薄」氮化硅钝化层26)的所测量应力水平在时间上的变化。可以看出,厚氮化硅钝化层26显示了在6天之后应力水平变化小于10MPa,并且薄氮化硅钝化层26显示了在6天之后应力水平变化小于5MPa。
同样地,在氮化硅钝化层26的折射率(RI)的变化在约6天的时段期间同样大体上比常规工艺中的变化低。图4B为图示对于沉积至0.5微米(厚)或0.05微米(薄)的厚度的氮化硅钝化层26在633nm下使用常规椭圆计量法测量的增量折射率。再次,可以看出,厚氮化硅钝化层26显示了在6天之后RI变化小于0.001,并且薄氮化硅钝化层26显示了在6天之后RI变化小于0.0005。
在氮化硅钝化层沉积工艺的另一实施例中,将工艺条件设定以沉积具有贯穿(through)氮化硅钝化层26的厚度的应力梯度的层26。例如,应力梯度可藉由控制工艺条件(诸如施加到电极38a、38b的电流的功率水平)以将施加的功率水平从第一水平改变至第二水平、然后视情况改变至第三水平、且仍视情况改变至其它水平而形成,所述应力梯度包含贯穿氮化硅钝化层26的厚度的变化的拉伸或压缩应力水平。应力梯度的轮廓(profile)经调适以补偿在此时或通过稍后工艺在硅板20中诱发的应力。因此,应力梯度经调适以具有应力值的轮廓,所述应力值与在无钝化氮化硅层26的基板18内的应力的轮廓相反。如此降低或消除基板18的硅板20的表面翘曲及弓形形成。
应力梯度藉由改变等离子体密度、离子轰击能量、气体压力、或处理气体的组分的流速而在氮化硅钝化层26中形成。例如,应力梯度可由处理气体形成,所述处理气体包含按以下体积流速比提供的SiH4、NH3和N2:1.4:1:40。在沉积工艺期间,将基板18放置在如前所述的沉积腔室34中并且保持在从约100℃至约200℃(例如,约180℃)的温度。最初,在第一阶段中,腔室压力保持在从约4托至约6托(例如,约4.2托)。此后,在第二阶段中,将腔室压力保持在从约2托至约4托(例如,约2.2托)的压力。藉由在从约1000瓦至约1300瓦的功率水平将电流施加至腔室电极来保持等离子体。可将具有应力梯度的氮化硅钝化层26沉积到至少约10微米的厚度,例如从约0.1微米至约6微米。
在另一方案中,在蚀刻直通硅穿孔之前沉积抗氟性氮化硅钝化层26。例如SF6、CF4及其它此类气体的含氟气体通常用于蚀刻硅材料,因为氟离子与硅反应以形成挥发性硅氟化合物。然而,在硅蚀刻工艺期间,氟离子可与氮化硅钝化层26反应且侵蚀掉氮化硅钝化层26。此举在直通硅穿孔蚀刻工艺期间导致氮化硅钝化层26的更加严重基蚀(undercutting)。在所述实施例中,在蚀刻直通硅穿孔之前沉积抗氟性氮化硅钝化层26。抗氟性氮化硅钝化层26藉由在沉积期间利用氧掺杂氮化硅层以将氧掺杂至氮化硅层中以形成氮氧化硅层而沉积。氮氧化硅层使氮化硅钝化层26更加抗氟,并且因而防止在硅蚀刻工艺期间所述层的基蚀。所得的抗氟性氮化硅钝化层26还可在先前所述层的相同低温下沉积,并且具有氮化硅钝化层26的所有所要的特性,即,密封性、低应力、以及热稳定性,所述特性使得所述层适合于直通硅穿孔中的背面钝化应用。抗氟性氮化硅钝化层26的适合氧含量为至少约10%,或者甚至从约10%至约30%。
在一方案中,抗氟性氮化硅钝化层26包含氧掺杂氮化硅层,所述氧掺杂氮化硅层在低于200℃的沉积温度在PECVD(等离子体增强化学气相沉积)沉积腔室34中沉积。例如,可将基板18传送至沉积区30中并且与气体分配器36的表面保持设定间距,例如,从约7.5mm(300密耳)至约20mm(约750密耳)的设定间距。将沉积气体40引入腔室34,所述沉积气体40包含诸如硅烷(SiH4)之类的含硅气体、诸如氨气(NH3)之类的含氮气体、以及诸如氧化亚氮(N2O)或二氧化碳(CO2)之类的含氧气体。还可将稀释剂气体添加至处理气体,所述稀释剂气体可稳定等离子体或横跨基板18产生更均匀的沉积厚度。适合稀释剂气体可包括氮气(N2)、氦气(He)、或氩气(Ar)。在一个实施例中,沉积气体40包含:硅烷,所述硅烷的流速从约50sccm至约1000sccm(例如,约720sccm);氨气,所述氨气的流速为从约100sccm至约1000sccm;氧化亚氮或二氧化碳,所述氧化亚氮或二氧化碳的流速为从约500sccm至约10000sccm;以及包含氮气的稀释剂气体,所述稀释剂气体的流速为从约500sccm至约25000sccm(例如,约9000sccm)。将在沉积区30中的处理气体保持在从约2托至约5.5托(例如,约4.2托)的压力。在沉积工艺期间,将基板18保持在从约100℃至约220℃(例如,约180℃)的温度。等离子体可藉由在从约500瓦至约1600瓦(例如,约1350瓦)的功率水平以13.6MHz的频率将电流施加到处理电极38a、38b来持续。此外,等离子体可还藉由在从约10瓦至约200瓦的功率水平,以约350kHz的频率施加低频功率来增强。所得的工艺等离子体将抗氟性氮化硅钝化层26沉积在基板18的表面23上,所述抗氟性氮化硅钝化层26包含氮氧化硅层。钝化层26可沉积至从约0.1微米至约10微米的厚度。
在后续穿孔蚀刻工艺中,氟自由基以比缺乏氧掺杂的氮化硅慢得多的速度侵蚀氧掺杂氮化硅层。图4C图示与缺乏氧的其它氮化硅层相比氧掺杂氮化硅层(为环状)的低得多的干式蚀刻速度。如由图示的最后一层表示的甚至其它形式的掺杂剂不如氧掺杂氮化硅层一样慢地蚀刻。因此,在低温下产生的氧掺杂氮化硅具有良好钝化层的所要特性以及在氟气中的低蚀刻速度。
在沉积可选氮化硅钝化层之后,按照图2且在图1F中所图示,贯穿硅板20蚀刻多个直通孔44以形成用于直通硅穿孔(TSV)的孔。在蚀刻工艺之前,将基板18的表面涂布抗蚀刻层32,所述抗蚀刻层32本身可为光刻胶层,或者可为具有诸如二氧化硅或氮化硅层之类的硬模层的光刻胶层。使用常规平版印刷工艺图案化且产生抗蚀刻层32的各种组分以在硅板20上形成多个抗蚀特征33,如图1D中所示。
此后,在蚀刻工艺中蚀刻具有抗蚀特征33的上层图案的硅板20的暴露硅部分39。在蚀刻工艺中,将基板18放置在蚀刻腔室52的蚀刻区50中,并且将蚀刻气体54引入蚀刻区50中,如图1E中所示。在一个实施例中,蚀刻气体54包含诸如SF6、CF4、NF6、C4F8、CHF3等等的含氟气体,并且还可视情况包括诸如氩气之类的稀释剂气体。在一方案中,以约10sccm至约4000sccm、或者甚至例如从约100sccm至约1000sccm的体积流速,用包含SF6的蚀刻气体54蚀刻掉硅板20的暴露硅部分39。等离子体可藉由在从约50瓦至约2000瓦的功率水平以400MHz或13.6MHz的频率将电流施加到蚀刻区50周围的处理电极56a、56b来持续。在蚀刻工艺期间,将基板18保持在小于约80℃(例如,从约20℃至约60℃)的温度。将基板18与气体分配器55保持从约75mm(约3英寸)至约180mm(约7英寸)的间距。
蚀刻等离子体将暴露硅部分39蚀刻以在所述暴露硅部分39中形成多个直通孔44,如图1F中所示。通常,直通孔44大体上垂直并且贯穿硅板20的大部分延伸,或者直通孔44甚至贯穿硅板20的整个厚度延伸。在一个实施例中,直通孔44具有至少约10:1、或者甚至从约10:1至约15:1的深宽比(在蚀刻之后立即获得的裸孔的高度除以所述孔的宽度所得的比率)。在一个实施例中,直通孔44具有从约4微米至约50微米的直径。在蚀刻工艺之后,可使用常规抗蚀灰化及剥离工艺将基板18上的抗蚀特征33的残余物移除(例如,藉由使用含氧等离子体来灰化诸如卤素气体之类的残余抗蚀气体及其它气体),以移除任何残余硬模材料。灰化或剥离工艺可在蚀刻腔室52中或在不同的腔室中进行。
氧化物衬垫
在一方案中,将氧化物衬垫45沉积在硅板20的表面46上以及蚀刻至硅板20中的直通孔44的侧壁48及底壁49的暴露表面上,按照图2且在图1G中所示的。硅板20的表面46可由硅组成,或者可在所述硅板20的表面46上具有诸如可选氮化硅钝化层26之类的其它层(如图所示)。氧化物衬垫45在沉积腔室34a的沉积区30a中使用低温等离子体增强化学气相沉积工艺来沉积。在所述工艺中,将沉积气体40a引入含有基板18的沉积区30a中,所述沉积气体40a包含包括四乙氧基硅烷(TEOS)的含硅前驱物、以及包括氧气(O2)的氧前驱物。在一方案中,经由诸如氦气之类的载气输送并且以从约400mgm(毫克/分钟)至约12000mgm(例如,约3000mgm)的质量流速提供TEOS前驱物。以从约2000sccm至约17000sccm(例如,约12000sccm)的流速提供沉积气体40a。将在沉积区30a中的气体压力保持在从约2托至约8托(例如,约5.5托)的压力。在沉积工艺期间,将基板18保持在小于约250℃(例如,从约100℃至约250℃)的温度。将基板18与气体分配器36a保持从约5mm(约200密耳)至约13mm(约500密耳)的间距。等离子体藉由在从约100瓦至约1200瓦(例如,1000瓦)的功率水平以13.6MHz的主要频率将电流施加到处理电极38a1、38b1来保持。此外,等离子体还可藉由以高达400kHz(例如,350KHz)的次要频率将低频功率施加到处理电极38a1、38b1来增强。可以在从约10瓦至约500瓦的功率水平施加次要功率。所得的等离子体沉积氧化物衬垫45具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。在一方案中,将氧化物衬垫45沉积至从约0.1微米至约4微米或者甚至从约4微米至约6微米的厚度。
图5图示数个不同直通硅穿孔(TSV)60的横截面的SEM显微照片,所述数个不同直通硅穿孔(TSV)60包含贯穿硅板20蚀刻的高深宽比直通孔44,并且具有沉积在直通孔44的侧壁48及底壁49上的氧化物衬垫45。如图可见,即使对于高深宽比孔,氧化物衬垫45也提供了对直通孔44的底壁40及侧壁44的良好覆盖。这些直通孔44具有至少约10:1的深宽比,例如,从约12:1至约14:1的深宽比。所得的TSV60具有从约10微米至约12微米的直径、以及约140微米的高度。在所述应用中,将氧化物衬垫45沉积在直通孔44的侧壁48及底壁49上以将金属导体与硅板20周围的硅材料电气隔离,所述金属导体随后沉积在TSV60内部。在这些实例中,将氧化物衬垫45沉积至约2.5微米的估计厚度,并且发现来自SEM照片的测量厚度为从约2.3微米至约2.7微米。因此,沉积的氧化物衬垫45具有厚度变化小于5%的良好侧壁及底壁覆盖。氧化物衬垫45还说明了至少约9MV/cm(例如,约10.2MV/cm)的相对较高的击穿电压。更进一步,稍后发现氧化物衬垫45具有对沉积在氧化物衬垫45之上的金属导体68的良好黏着。
低温氧化物沉积工艺还为TSV60提供了良好结果。例如,氧化物衬垫45在周围室温条件下表现出出乎意料地良好的湿气稳定性,如图5A及图5B中所示。在所述实验中,将氧化物衬垫45在250℃的沉积温度以两个不同厚度(即,以约2微米的较厚厚度、以及以约0.5微米的较薄厚度)沉积至直通孔44中。在暴露于环境1天及10天之后,将厚氧化物衬垫层及薄氧化物衬垫层刮掉并且用傅立叶变换红外(FTIR)光谱法分析。图5A及图5B图示在暴露于环境10天之后氧化物衬垫材料的FTIR图形。-OH与Si-O-Si曲线的面积的比率表示沉积的氧化物衬垫材料的水蒸汽吸收量。在暴露1天及10天之后的FTIR结果展示在表I中:
表I
FTIR光谱中的-OH峰值与Si-O-Si峰值的面积的比率
工艺         第1天   第10天   增量
厚氧化物衬垫 2.00    2.31     0.31
薄氧化物衬垫 1.88    2.27     0.39
根据表1,可见对于厚氧化物衬垫及薄氧化物衬垫,表示吸收至暴露1天至10天的氧化物衬垫材料中的水蒸汽量的变化的增量仅分别为0.3%或0.4%。如此表示在10天的周期期间-OHFTIR峰值与Si-O-Si FTIR峰值的比率变化小于0.5%。如此意谓使用当前低温工艺沉积的氧化物衬垫材料随时间的推移的稳定的并且不从空气中吸收大量水分。相反,常规氧化物沉积工艺的抗潮湿性较弱。这些结果出乎意料地好,因为氧化物通常在周围空气条件下呈现出较差的薄膜稳定性。
在另一方案中,氧化物衬垫45包含使用TEOS沉积的共形氧化物衬垫。有利地,与在硅板20中蚀刻的直通孔44的侧壁48及底壁49相比,共形氧化物衬垫在硅板20的暴露表面46上沉积较高厚度,如图1中所示。在所述工艺中,氧化物衬垫45在沉积腔室34a的沉积区30a中使用低温等离子体增强化学气相沉积工艺沉积。在所述工艺中,将沉积气体40a引入含有基板18的沉积区30a中,所述沉积气体40a包含包括四乙氧基硅烷(TEOS)的含硅前驱物、以及包括氧气(O2)的氧前驱物。在一方案中,TEOS前驱物经由诸如氦气之类的载气输送并且以从约500mgm(毫克/分钟)至约12000mgm(例如,约3000mgm)的质量流速提供。以从约2000sccm至约17000sccm(例如,约12000sccm)的流速提供沉积气体40a。将在沉积区30a中的气体压力保持在从约2托至约8托(例如,约5.5托)的压力。在沉积工艺期间,将基板18保持在小于约250℃(例如,从约100℃至约250℃)的温度。将基板18与气体分配器36a保持从约5mm(200密耳)至约13mm(500密耳)的间距。等离子体藉由在从约200瓦至约1500瓦(例如,1000瓦)的功率水平以13.6MHz的频率将电流施加到处理电极38a1、38b1来保持。此外,等离子体还可藉由以从约350kHz的频率将低频功率施加到处理电极38a1、38b1来增强。可以在从约10瓦至约500瓦的功率水平施加低频功率。所得的等离子体沉积氧化物衬垫45,所述氧化物衬垫45具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。在一方案中,将氧化物衬垫45沉积至从约1微米至大约2微米(或者甚至从约2微米至约6微米)的厚度。
TSV穿孔的共形氧化物盖
当低温氧化物层以PECVD工艺在低温下使用TEOS在高深宽比直通孔44中沉积时,由于直通孔44的高深宽比,所得的氧化物层可能具有与下层结构的不良共形性。例如,具有至少约10的深宽比的直通孔44可在直通孔44内部产生非共形涂层。当直通孔44的临界尺寸(CD)大小还较小(例如,CD小于约5微米时)时,所述问题会加重。在这种高深宽比、小CD直通孔44中,在直通孔44的底壁49处沉积具有至少约1000埃的厚度的较厚PECVD沉积的氧化物层。另外,在与表面46邻接的直通孔44的顶部边缘及转角处悬垂的氧化物可由于缺乏可见沉积线(line of sight deposition),在后续PVD沉积步骤期间产生不良阶梯覆盖,并且还可在将导体或金属材料沉积至直通孔44中期间产生空隙。出于这些原因,高深宽比直通孔44需要更加共形的氧化物层。可经由基于热CVD的工艺沉积共形氧化物层以即使在高深宽比直通孔44的侧壁48及底壁49上也提供至少约50%共形的涂层。然而,不利地,在基板18的顶表面46处的共形氧化物层的氧化物厚度通常低于低温PECVD氧化物层的厚度。由于在孔44的底部缺乏可用自由基,所以在直通孔44的底壁49处蚀刻掉共形氧化物层的后续蚀刻工艺的蚀刻速度比顶表面46要快。因此,在氧化物层的开放式蚀刻期间,在顶表面46上的共形氧化物层及低温钝化氮化硅层皆可被蚀刻掉,如此是不希望的。
在一方案中,所述问题藉由将包含非共形氧化硅或氮化硅层的覆盖层(capping layer)沉积在共形低温氧化硅层的顶部上而解决,覆盖层及下层皆覆盖基板的顶表面46。包含非共形氧化硅层的覆盖层的厚度可根据在基板18的顶表面46上氧化物层的开放表面区域的蚀刻速度而变化。如上所述,在小于约200℃的温度在PECVD腔室中沉积氮化硅钝化层26。此后,以PECVD工艺在低温下使用TEOS在直通孔44中沉积非共形低温氧化物层。
然后,将基板18传送至沉积腔室34a的沉积区30a以沉积包含氧化硅的覆盖层。在所述工艺中,将沉积气体40a引入含有基板18的沉积区30a中,所述沉积气体40a包含包括四乙氧基硅烷(TEOS)的含硅前驱物、以及包括氧气(O2)的氧前驱物。在一方案中,TEOS前驱物经由诸如氦气之类的载气输送并且以从约100mgm(毫克/分钟)至约4000mgm(例如,约400mgm)的质量流速提供。氦气流速可从约2500sccm至约8000sccm,例如约9000sccm。以从约2500sccm至约8500sccm(例如,约8000sccm)的流速提供氧气。将在沉积区30a中的气体压力保持在从约3托至约6托(例如,约3.5托)的压力。在沉积工艺期间,将基板18保持在小于约250℃的温度,例如,从约100℃至约200℃(例如,约180℃)的温度。将基板18与气体分配器36a保持从约6.4mm(250密耳)至约13mm(500密耳)的间距。等离子体藉由在从约100瓦至约1200瓦(例如,约350瓦)的功率水平以13.6MHz的频率将电流施加到处理电极38a1、38b1来保持。此外,等离子体还可藉由以从约350kHz的频率以及在从约0瓦至约400瓦(例如,约150瓦)的功率水平将低频功率施加到处理电极38a1、38b1而增强。
在另一方案中,将基板18传送至沉积腔室34a的沉积区30a以沉积包含氮化硅的覆盖层。在所述工艺中,将基板18再次传送至沉积腔室34a的沉积区30a。将沉积气体40a引入含有基板18的沉积区30a中,所述沉积气体40a包含包括硅烷(SiH4)的含硅前驱物、以及包括氨气(NH3)的含氮气体。在一方案中,以从约10sccm至约1000mgm(例如,约100sccm)的流速提供硅烷。以从约100sccm至约6000sccm(例如,约450sccm)的流速提供氨气。此外,可以从约1000sccm至约10000sccm(例如,约10000sccm)的流速提供氮气。将在沉积区30a中的气体压力保持在从约1托至约6托(例如,约3.5托)的压力。在沉积工艺期间,将基板18保持在小于约250℃(例如,从约100℃至约200℃(例如,约180℃))的温度。将基板18与气体分配器36a保持从约5mm(200密耳)至约13mm(500密耳)的间距。等离子体藉由在从约10瓦至约100瓦(例如,约75瓦)的功率水平以13.6MHz的频率将电流施加到处理电极38a1、38b1来保持。在又一方案中,在硅板20中蚀刻直通孔44之前,将包含PECVD低温氧化物层的氧化物盖沉积在钝化氮化硅层顶部。图4D为图示对于不同工艺在基板18中的直通孔44的顶表面46上或底壁49处沉积的层厚度的图形。
氧化物衬垫上的密封层
视情况,在沉积氧化物衬垫45之后,可在氧化物衬垫45上沉积具有二氧化硅或氮化硅的密封层64以密封氧化物衬垫45,如图1H中所示。密封层64比下层氧化物衬垫45致密,例如所述密封层64具有从约2g/cm3至约3g/cm3的密度,所述密度比氧化物衬垫45的密度高至少约50%。密封层64还应充当优良防潮层。适合的密封层64可由使用常规PECVD工艺(所述PECVD工艺诸如使用四乙氧基硅烷、氧气、以及氦气稀释剂)沉积的氧化硅制成。在所述工艺中,工艺条件包括3000mgm的TEOS、5500sccm的氧气、以及6000sccm的He的处理气体流。将腔室保持在从约2托至约8托(例如,约5.5托)的气体压力。在沉积工艺期间,将基板18保持在从约100℃至约220℃(例如,约180℃)的温度。藉由在从约200瓦至约1500瓦的功率水平将电流施加至腔室电极来形成等离子体。所得的等离子体沉积包含氧化硅的密封层64,所述密封层64具有从约2g/cm3至约3g/cm3(例如,从约2.1g/cm3至约2.5g/cm3)的密度。
密封层64的另一实施例可由以低温工艺沉积的氮化硅制成以提供覆盖氧化物层的共形氮化硅层。当氧化物衬垫45相对较薄并且允许原子金属物质扩散穿过氧化物衬垫45时,所述密封层64是有用的。密封层64提供了扩散阻断层,所述扩散阻断层防止金属物质(诸如金属原子)扩散穿过由氧化物衬垫45及密封层64界定的复合层。例如,包含氮化硅的密封层64可经由等离子体增强化学气相沉积而沉积。适合的处理气体由SiH4、NH3、以及N2组成。可以约10000sccm至约30000sccm的以下流量范围提供处理气体的各组分。SiH4与N2的体积流量比为至少约1:10。腔室压力应从约2托至约8托,例如约3.5托。在沉积工艺期间,将基板18保持在从约100℃至约200℃(例如,约180℃)的温度。藉由在从约500瓦至约1600瓦的功率水平将电流施加至腔室电极来保持等离子体。所得的等离子体沉积氮化物层,所述氮化物层具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。
在又一方案中,将密封层64沉积至足够厚度以适应硅板20的表面的化学机械研磨。硅层64的足够厚度包含从约1微米至约6微米。在容器中,密封层64还可用以防止在如下所述的后续蚀刻工艺期间过多地蚀刻硅板20的表面46。
按照图2,在沉积氧化物衬垫45及视情况密封层64之后,使用活性离子蚀刻(RIE)工艺将在直通孔44的底壁49上形成的氧化物衬垫45蚀刻掉。在所述工艺中,将基板18放置在类似于先前所述并且如图1E中所示的蚀刻腔室的蚀刻腔室52中,或者放置在不同的蚀刻腔室中,并且使用常规氧化物蚀刻工艺在不过度蚀刻掉在直通孔44的侧壁48上的氧化物衬垫45的情况下,将形成在直通孔44的底壁49上的氧化物衬垫45蚀刻掉。需要将在直通孔44的底壁49上的氧化物衬垫45移除以允许随后沉积至直通孔44中的金属导体与下层特征形成电接触。然而,氧化物衬垫45应当保留在侧壁48上以防止含金属的物质经由侧壁49扩散至硅板20中或含硅物质在其它方向扩散。
在氧化物蚀刻工艺的一实例中,在蚀刻腔室52的蚀刻区50中形成诸如含氟气体之类的氧化物蚀刻气体80的等离子体,以将在直通孔44的底壁41上的二氧化硅层28蚀刻掉。与在直通孔44的侧壁48上的氧化物衬垫45相比,活性离子蚀刻工艺优先将在面对冲击离子的平坦表面上的氧化物衬垫45蚀刻掉,诸如在第二平板20的表面46上的氧化物衬垫45以及在直通孔44的底壁上的氧化物衬垫45。在一个实施例中,蚀刻气体包含诸如SF6、CF4、NF6、C4F8、CHF3等等的含氟气体,以及诸如氩气之类的稀释剂气体。在一方案中,用蚀刻气体将直通孔44的底壁41上的二氧化硅层28蚀刻掉,所述蚀刻气体包含:SF6,所述SF6的体积流速为从约20sccm至约1000sccm、或者甚至例如从约50sccm至约400sccm、或者乃至从约100sccm至约200sccm;C4F8,所述C4F8的体积流速为从约20sccm至约1000sccm、或者甚至从约50sccm至400sccm、或者乃至从约100sccm至约200sccm;以及氩气,所述氩气的体积流速为从约50sccm至约500sccm、或者甚至例如从约100sccm至300sccm。蚀刻气体本身或者除上文列出的气体以外还可包含:流速从约50sccm至约1000sccm、或者甚至从约150sccm至约300sccm的CHF3;以及流速从约50sccm至约2000sccm、或者甚至从约200sccm至约400sccm的CF4。将蚀刻气体54保持在从约1mTorr至约500mTorr、或者甚至从约10mTorr至约100mTorr(例如,从约20mTorr至约40mTorr)的压力下。等离子体可藉由在从约200瓦至约4000瓦(例如,从约300瓦至约1000瓦)的功率水平以13.6MHz的频率将电流施加到处理区50周围的处理电极56a、56b来持续。此外,等离子体还可藉由在从约1000瓦至约3000瓦的功率水平将功率施加至天线来增强。
此后,按照图2,将金属导体68沉积至直通孔44中。金属导体可包括一层或多层金属、元素金属或所述元素金属的合金、金属化合物、或者甚至籽晶层。在所述工艺中,将金属导体68沉积至直通孔44中以将所述孔填充且形成导电TSV60。金属导体68可为元素金属、金属合金、金属化合物、或者上述物质的混合物。将金属导体68沉积至直通孔44中利用电导体将所述孔填充,所述电导体作为将硅板20上的两层或两层以上有源或无源特征与其它硅板(未图示)连接的互连。适合的金属导体47包括铝、铜、金、钛、钨、以及上述物质的合金和化合物。
在一个实施例中,金属导体68包括金属阻断层,所述金属阻断层在沉积金属导体68的块之前沉积。金属阻断层(未图示)包含一层导电材料,所述层导电材料作为金属或硅物质扩散穿过阻断层的阻断。适合的阻断层包含,例如,钛、钽、或氮化钛,所述阻断层可经由常规CVD或物理气相沉积工艺(PVD)工艺沉积。在一方案中,将包含所要的钛成分的溅射靶72悬垂在溅射腔室74中,如图1I中所示,并且将基板18放置在腔室中的溅射区77中的支撑件76上。将包含氩气的溅射气体78引入腔室74中,所述包含氩气的溅射气体78的体积流速为从约1sccm至约100sccm、或者甚至从约4sccm至约25sccm、或者乃至约11sccm。将腔室压力保持在从约0.2mTorr至约2mTorr,例如约2mTorr。在溅射工艺期间,将基板18保持在从约室温至小于100℃(例如,约50℃)的温度。等离子体藉由在从约10KW至约100KW、或者甚至从约30KW至约40KW的功率水平施加电流以将溅射靶72与支撑件76相对于彼此偏压来保持。所得的等离子体沉积金属阻断层,所述金属阻断层通常沉积至从约100埃至约1微米、或者甚至从约1000埃至约4000埃的厚度。
在沉积阻断层之后,金属导体68可藉由首先沉积籽晶层(也未图示),且然后将块状电镀金属电镀至直通孔44中来沉积。在后续电镀或其它金属沉积工艺期间,使用籽晶层将块状金属导体种晶或开始沉积块状金属导体。在一个实施例中,适合的籽晶层包含经由诸如溅射之类的PVD工艺沉积的一层铝或铜。在一个实施例中,籽晶层包含经由诸如溅射之类的PVD工艺沉积的铜层。在一方案中,将包含所要的铜成分的溅射靶72悬垂在溅射腔室74中,如图1I中所示,并且将基板18放置在腔室中的溅射区77中的支撑件76上。将包含氩气的溅射气体78引入腔室74中,所述包含氩气的溅射气体78的体积流速为从约2sccm至约200sccm、或者甚至从约4sccm至约25sccm(例如,约11sccm)。将腔室压力保持在从约0.1mTorr至约20mTorr、或者甚至从约0.2mTorr至约2mTorr(例如,约2mTorr)。在溅射工艺期间,将基板18保持在从约室温至约100℃(例如,约50℃)的温度。等离子体藉由在从约10KW至约200KW、或者甚至从约30KW至约40KW的功率水平施加电流以将溅射靶72与支撑件76相对于彼此偏压来保持。所得的等离子体将具有铜金属导体的籽晶层沉积至硅板20的直通孔44中。籽晶层通常沉积至从约2000埃至约2微米的厚度。
在沉积籽晶层之后,可使用常规电镀工艺将金属导体68的块沉积至直通孔44中,如图1J中所示。由所述工艺形成的电镀层经由先前沉积的籽晶层种晶。在所述工艺中,具有直通孔44的基板18的硅板20悬垂在电镀浴80中且作为阴极电极82,并且另一电极84还悬垂在电镀浴中。将基板18例如作为阴极电极82充电,并且另一电极84可作为阳极。电镀浴80包含金属离子溶液,当所述金属离子溶液经由流经电镀浴的功率源86的电流启动时,导致金属导体68沉积至直通孔44中。例如,用于沉积铜的适合的电镀浴80包含浓度为在包含水与酸(诸如硫酸或磺酸)的溶液中从约30克/公升至约75克/公升的铜离子、以及所需任何附加添加剂,诸如有机添加剂(抑制剂、加速剂、调平剂)和氯离子。功率源86藉由将适当电压供应至电极82、84,在阴极上供应从约0.1mA/cm2至约20mA/cm2的电流密度范围的电流。电镀工艺操作达足以完全填充穿孔的时间,例如,从约10分钟至约120分钟的时间,并且可在硅晶圆的表面上产生在0.1微米与10微米之间的额外铜覆盖层。在另一实施例中,将包含铝的金属导体68以常规电镀工艺沉积在直通孔44中。
在将金属导体68沉积在硅板20的直通孔44以形成TSV之后,按照图2,将基板18翻转并且将硅板20的表面上的过量金属导体68经由化学机械研磨(CMP)工艺研磨掉,以将沉积至硅板20的直通孔44中的金属导体68的顶部暴露。在适合的化学机械研磨工艺中,硅板20的表面经由安装在循环研磨器92上的研磨垫90研磨。研磨浆94经由连接至研磨浆源98的浆配送器96供应。随着将基板18隔离或相对于研磨垫90旋转,可将在硅板20的表面46上的过量金属导体从基板18研磨掉。适合的研磨浆94包含悬浮在水或酒精溶液中的基本粒子。进行化学机械研磨步骤直至研磨掉在表面46上的所有金属导体68为止。还可使用研磨工艺移除氧化物衬垫45、氮化硅钝化层26的任何残余物、或者仍然保留在硅板25的表面38上的其它此类材料。结果,将金属导体47的顶部暴露以作为金属触点90。
TSV背侧穿孔展示
在研磨之后,将基板18翻转以在直通孔44的顶部暴露金属导体68的金属触点90,如图1M中所示。在暴露于环境时,原生氧化物膜91有时可在TSV60的金属导体68的暴露金属触点90的表面上形成。例如,包含氧化铜的原生氧化物膜99可在诸如铜之类的金属导体68上形成;而包含氧化铝的原生氧化物膜99可在铝特征上形成。在这些情况下,按照图2使用原生氧化物处理工艺处理原生氧化物膜99,以减小或移除形成金属或非氧化物金属化合物的薄膜且允许与其它导体及互连的较佳电接触。
在一个实施例中,使用可选原生氧化物处理工艺处理且移除形成在暴露金属触点90上的原生氧化物膜91,以将所述金属触点90转换为金属导体68的原始金属元素或金属化合物。例如,可将氧化铜移除处理步骤用于包含铜的金属导体68,以将在铜上形成的氧化铜薄膜还原为金属元素铜。在示例性原生氧化物处理工艺中,将基板18在处理腔室93的还原区92中保持在从约100℃至约220℃的温度。将处理气体94引入还原区92中,所述处理气体94包含(i)诸如氨气(NH3)或氢气(H2)之类的还原气体、以及(ii)诸如氮气之类的稀释剂气体。在另一实施例中,还原气体94包含体积流速从约100sccm至约3000sccm的氨气或氢气,没有氮气,或者包含体积流速从约10000sccm至约20000sccm的氮气。由还原气体94形成等离子体达从约5秒至约40秒的时间段以处理在TSV特征60的金属导体68上的原生氧化物膜91,以经由还原工艺大体上移除所有原生氧化物膜。等离子体藉由例如在从约150瓦至约1200瓦的功率水平以约13.6MHz的主要频率将功率施加到处理电极96a、96b来产生。此外,等离子体可还藉由例如在从约100瓦至约300瓦的功率水平,以约350kHz的次要频率向处理电极96a、96b供电来进一步增强。
在移除原生氧化物膜91之后,按照图2将包含第二氮化硅钝化层的保护涂层97沉积在基板18的暴露表面上,以将沉积在直通孔44中的金属导体的顶部覆盖,如图1O中所示。视情况,在按照图2沉积钝化氮化硅层之前可使用硅烷浸渍步骤。在所述步骤中,将处理气体94引入处理区92中,所述处理气体94包含大体上仅包括硅烷(SiH4)、或者具有稀释剂气体的硅烷的浸渍气体。在所述工艺期间,将基板18与气体分配器95保持从约5mm(约200密耳)至约16.5mm(约650密耳)的间隔。还将基板18保持在从约100℃至约220℃的温度。在一个实施例中,浸渍气体包含体积流速从约100sccm至约1000sccm的硅烷;并且视情况,浸渍气体包含流速从约10000sccm至约25000sccm的氮气。等离子体藉由例如在从约150瓦至约1200瓦的功率水平,将频率为13.6MHz的主要频率功率施加到电极96a、96b由处理气体形成。此外,等离子体可还藉由例如在从约100至约300瓦的功率水平,以约350kHz的次要频率向电极96a、96b供电来进一步增强。形成等离子体达从约5秒至约20秒的时间段以将基板18的暴露表面用硅烷气体浸渍,以在基板表面上形成黏着层。在一个实施例中,例如,当使用硅烷浸渍步骤以将暴露金属导体68(诸如铜)浸渍时,硅烷浸渍藉由形成金属-Si或在所述情况下沿着Cu/SiN界面形成Cu-Si接合来增强黏着力。界面黏着能为原生氧化物移除时间、浸渍时间、以及硅烷流速的强函数。此外,为了避免在硅板20及载体24中产生热应力及翘曲的过高温度,以低温等离子体增强化学气相沉积工艺来沉积保护涂层97。保护涂层97还可为良好扩散阻断层,所述扩散阻断层防止金属原子扩散穿过所述层而污染基板18的其它区域。例如,当金属导体68包含诸如铜之类的金属时,选择保护涂层97以防止铜扩散,并且还提供良好击穿电压电气隔离以及防潮性。
在另一实施例中,保护涂层97包含三层涂层98,所述三层涂层98包含三个不同的层98a、98b、98c,如图1P中所示。在一方案中,三层涂层98包含具有氮化硅的下层98a,所述氮化硅的下层98a作为对来自TSV特征60中的金属导体的金属原子的扩散阻断层,并且还可作为在基板18的顶表面处的化学机械研磨终止层。下层98a可具有从约200埃至约1500埃的厚度。
可将下层98a沉积在腔室93的处理区92中的基板18的清洁且浸渍表面上。在所述工艺中,将基板18与气体分配器保持在从约8mm(约300密耳)至约19mm(约750密耳)的相同间距。还将基板18保持在从约100℃至约220℃(例如,约180℃)的温度。将处理气体94经由气体分配器95引入腔室100中,所述处理气体94包含诸如硅烷(SiH4)之类的含硅气体、以及诸如氨气(NH3)之类的含氮气体。还可将稀释剂气体添加至处理气体,所述稀释剂气体协助等离子体形成并且还可稳定等离子体,适合的稀释剂气体包括氮气(N2)、氦气(He)、以及氩气(Ar)。在一个实施例中,处理气体94包含:硅烷,所述硅烷的流速为从约50sccm至约1000sccm(例如,约650sccm);氨气,所述氨气以从约100sccm至约1000sccm的流速提供;以及诸如氮气之类的稀释剂气体,所述稀释剂气体的流速为从约500sccm至约25000sccm(例如,约22000sccm)。将腔室压力保持在从约2托至约5.5托,例如,约3.5托。等离子体可藉由在从约500瓦至约1600瓦(例如,约1100瓦)的功率水平以13.6MHz的频率将电流施加到处理电极96a、96b来保持。此外,等离子体可还藉由在从约10瓦至约200瓦的功率水平以约350kHz的频率施加低频功率来增强。所得的等离子体沉积由氮化硅层组成的下层98a,所述下层98a具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。
在沉积下层98a之后,沉积由氧化硅组成的中间层98b。中间层98b具有高击穿电压,例如,超过约4MV/cm、或者甚至约5MV/cm的击穿电压。中间层98b还具有良好阶梯覆盖,例如,至少约10%以覆盖具有不同高度的TSV穿孔60的阶梯覆盖,例如,高度在相同基板18上可在从约1微米至约20微米的范围。在一个实施例中,中间层98b具有从约0.5微米至约3微米的厚度。
在一个实施例中,使用处理气体94沉积包含氧化硅的中间层98b,所述处理气体94包含(i)包括硅烷(SiH4)及四乙氧基硅烷(TEOS)的含硅气体,(ii)包含氧气(O2)或氧化亚氮(N2O)的含氧气体;以及稀释剂气体,诸如氦气(He)或氩气(Ar)。将基板18保持在从约5mm(约200密耳)至约16.5mm(约650密耳)的间距,并且保持在从约100℃至约220℃(例如,约180℃)的温度。在一方案中,处理气体94包含:四乙氧基硅烷,所述四乙氧基硅烷的质量流速为从约500mgm至约12000mgm;硅烷,所述硅烷的体积流速为从约50sccm至约1000sccm,例如约500sccm;氧化亚氮,所述氧化亚氮的流速为从约1000sccm至约15000sccm;氧气,所述氧气的流速从约2000sccm至约17000sccm;以及氦气,所述氦气的流速为从约1000sccm至约15000sccm。将腔室压力保持在从约2托至约7托,例如,约2.4托。等离子体藉由在从约200瓦至约1500瓦(例如,约650瓦)的功率水平以13.6MHz的频率将电流施加到处理电极96a、96b形成;并且视情况,藉由以350kHz的频率并且在从约50至约500瓦(例如,约150瓦)的功率水平施加低频功率形成。所得的等离子体沉积具有氧化硅的中间层98b,所述中间层98b具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。
此后,在基板18上形成包含氮化硅的上层98c以完成三层涂层98。上层98c可作为防潮层以及化学机械研磨终止层。上层98c还提供良好稳定性、密封、以及与氧化物的低湿式蚀刻速度比,所述低湿式蚀刻速度比使得CMP研磨比较容易。上层98c还在对于包含铜的金属导体的CMP研磨中提供了特别好的兼容性(compatibility)。在一个实施例中,上层98c具有从约0.5微米至约3微米的厚度。还可将上层98c沉积至具有较高密度,例如至少约2g/cm3、或者从约2g/cm3至约3g/cm3的密度。
具有氮化硅层的上层98c可使用包含SiH4、NH3以及N2的处理气体沉积,所述SiH4、NH3以及N2例如按以下体积流速比1.4:1:40提供。在沉积工艺期间,将基板18保持在从约100℃至约220℃(例如,约180℃)的温度。将腔室压力保持在从约2托至约8托,例如,约3.5托。藉由在从约500瓦至约1600瓦的功率水平将电流施加至腔室电极来保持等离子体。将基板18保持在从约5.1mm(200密耳)至约16.5mm(650密耳)的间距,并且保持在从约100℃至约220℃(例如,约180℃)的温度。在一方案中,处理气体94包含:四乙氧基硅烷,所述四乙氧基硅烷的质量流速为从约500mgm至约12000mgm;硅烷,所述硅烷的体积流速为从约50sccm至约1000sccm(例如,约650sccm);氧化亚氮,所述氧化亚氮的流速为从约1000sccm至约15000sccm;氧气,所述氧气的流速为从约2000sccm至约17000sccm;以及氦气,所述氦气的流速为从约1000sccm至约15000sccm。将腔室压力保持在从约2托至约7托。等离子体藉由在从约200瓦至约1500瓦的功率水平以13.6MHz的频率将电流施加到处理电极96a、96b形成;并且视情况,在从约50瓦至约500瓦的功率水平施加低频功率形成。所得的等离子体沉积具有氧化硅的上层98c,所述上层98c具有从约2g/cm3至约3g/cm3(例如,约2.2g/cm3)的密度。
取代三层方案,保护涂层98还可包含足够厚度的单层氧化硅或氮化硅。使用上述工艺中的任一工艺沉积单层,只是操作所述工艺达较长时间以获得较高沉积厚度。例如,单层二氧化硅可使用上述氧化硅沉积工艺操作达约10秒至约5分钟来沉积,以获得从约0.1微米至约6微米的厚度。同样地,单层氮化硅可使用上述氮化硅沉积工艺操作达约10秒至约5分钟来沉积,以获得从约0.1微米至约6微米的厚度。
在第三实施例中,保护涂层98包含两层,即,氮化硅层及氧化硅层,所述氮化硅层在沉积氧化硅层之后沉积。第二实施例允许研磨或磨掉整个氧化硅层并且终止在氮化硅层处的研磨或磨削工艺。例如,可将氮化硅层沉积达10秒至约5分钟,以获得从约0.1微米至约6微米的厚度;并且此后,可将二氧化硅层沉积达约10秒至约5分钟,以获得从约0.1微米至约6微米的厚度。
在第四实施例中,保护涂层98包含氧化硅层,所述氧化硅层在沉积防潮氮化硅层之后沉积。再次,例如,可将二氧化硅层沉积达约10秒至约5分钟,以获得从约0.1微米至约6微米的厚度;并且此后,可将氮化硅层沉积达约10秒至约5分钟,以获得从约0.1微米至约6微米的厚度。
在又一方案中,沉积在硅板20的表面及连接器凸块116上的聚酰亚胺层99延伸穿过聚酰亚胺层99,以接触下层TSV60的金属导体68而与金属导体68形成电连接。例如,连接器凸块116可由元素金属或所述元素金属的合金、或者金属化合物或所述金属化合物的混合物形成,例如,诸如铜的元素金属。通常,连接器凸块116由与用以形成TSV60的金属导体相同的金属导体68形成。此后,将保护涂层97沉积在聚酰亚胺层99以及连接器凸块116之上,用于将这些表面钝化并且提供防潮层。适合的保护涂层97包含如先前所述沉积的氮化硅。
在制造了TSV60之后,按照图2将基板18解除结合以将硅板20与载体24分离。在典型解除结合工艺中,最终的硅板20使用热机械激活(activated)滑出技术从载体24移除。所述技术使用韧性(compliant)夹具系统以保护在基板18的背侧上形成的特征及形貌,同时将基板18加热至高于接合材料的软化点的温度。对于解除结合,用韧性真空夹具系统(未图标)在两侧将基板18固定于适当解除结合模块中并且均匀加热。当达到解除结合温度时,将硅板20从载体24滑去。解除结合模块在平板20及载体的整个区域上将平板20及载体两者支撑,以将平板20及载体两者在解除结合程序期间保持平坦且无应力。在将平板20与载体分离之后,将在薄硅板20上具有TSV特征的薄硅板20移送至单晶圆清洗腔室,其中利用适当溶剂将剩余黏着剂从平板20的背侧移除。
此后,按照图2使用常规冲切(die cutting)法将硅板20切割以分离在硅板20上形成的各个电子电路,诸如集成电路芯片、显示器、太阳能电池等等。使用诸如扩散接合之类的常规接合方法将冲切电子电路彼此接合,或者接合至其它电子电路,以形成包含以垂直定向堆栈的多个电子电路的多层堆栈。
基板处理腔室
本文描述的包括例如各种钝化及衬垫沉积工艺的工艺可在基板处理腔室100中执行,所述执行的说明性示例性实施例在图7中图示,所述衬垫沉积工艺包括图2的流程图中所示的氮化硅及二氧化硅沉积工艺。可在所述腔室中实施本文描述的一些或所有沉积工艺、以及诸如清洁原生氧化物及硅烷浸渍之类的预沉积工艺;然而,通常在常规蚀刻工艺腔室中实施蚀刻工艺。提供腔室100以图示示例性腔室;然而,如将对本领域普通技术人员显而易见的,还可使用其它腔室。因此,本发明的范围不应限于本文所述的示例性腔室。通常,腔室100为适合于处理基板18(诸如硅晶圆)的等离子体增强化学气相沉积(PE-CVD)腔室。
可调适成受益于本文所述的实施例的PECVD系统的实例包括
Figure BDA00003625364600291
SE CVD系统、
Figure BDA00003625364600292
GTTM CVD系统或
Figure BDA00003625364600294
CVD系统,所有这些系统皆可购自加利福尼亚州圣克拉拉美市的应用材料公司。
Figure BDA00003625364600293
SE CVD系统(例如,200mm或300mm)具有两个隔离处理区102A、102B,所述两个隔离处理区102A、102B可用以在基板18(在腔室中未图示)上沉积层,所述层诸如氮化硅层、氧化硅层、或者包括导电薄膜、碳掺杂氧化硅及其它材料的其它层,并且所述
Figure BDA00003625364600295
SECVD系统在美国专利号5,855,681及6,495,233中描述,所述两个专利皆以引用的方式并入。在美国专利号6,364,954中揭示
Figure BDA00003625364600296
CVD腔室,所述专利也以引用的方式并入。尽管示例性实施例包括两个处理区,但是可以预期本文所述的实施例可有利地用于具有单个处理区或多于两个处理区的系统。还可预期,本文描述的实施例可有利地用于其它等离子体腔室,所述其它等离子体腔室包括蚀刻腔室、离子植入腔室、等离子体处理腔室、以及剥离腔室等等。进一步可以预期,本文描述的实施例可有利地用于可购自其它制造商的等离子体处理腔室。
基板处理腔室100包含处理腔室主体102,所述处理腔室主体102具有界定一对处理区120A及120B的侧壁112、底壁116及内侧壁101。可将处理区120A至120B中的每一个同样地配置,并且为了简洁起见,将仅描述处理区120B中的组件。
腔室100包含具有主动冷却系统的基板支撑件128,所述主动冷却系统允许在宽的温度范围主动控制安置在基板支撑件128上的基板的温度,同时基板经历许多工艺及腔室条件。经由在系统100中的底壁116中形成的通道122将基板支撑件128安置在处理区120B中。基板支撑件128经调适以在基板支撑件128的上表面上支撑基板(未图示)。基板支撑件128可包括例如电阻元件的加热元件以将基板温度加热且控制在所要的处理温度。或者,基板支撑件128可由远程加热元件加热,诸如灯组件。
基板支撑件128由轴126耦接至电力出口或电力箱103,所述电力出口或电力箱103可包括在处理区120B内控制基板支撑件128上升及运动的驱动系统。轴126还含有将电力提供至基板支撑件128的电力接口。电力箱103还包括电力及温度指示器的接口,诸如热电偶界面。轴126还包括基座组件129,所述基座组件129经调适以可拆卸地耦接至电力箱103。将圆周环135图示在电力箱103之上。在一个实施例中,圆周环135为调适为机械挡块(stop)或台阶(land)的肩部,所述肩部经配置以在基座组件129与电力箱103的上表面之间提供机械接口。经由在底壁116中形成的通道124安置杆130,并且使用杆130启动经由基板支撑件128安置的基板举升销161。基板举升销161选择性地将基板与基板支撑件128间隔以促进基板与机器人(未图示)的交换,所述机器人用于经由基板传送口160将基板传送进出处理区120B。
腔室100的基板支撑件128允许在完整工艺循环的处理期间始终对基板18进行主动温度控制。本文描述的某些实施例提供小于400℃、或者甚至小于250℃的温度的低温控制;而其它实施例使用嵌入式加热元件提供在超过400℃的温度下的较高温度控制,所述嵌入式加热元件具有带有唯一元素类型的最小温度梯度(<10℃)。本文描述的某些实施例可藉由经由基板支撑件128的主体流动主动冷却剂从例如射频(RF)耦合的外源或诸如嵌入式加热元件之类的内源中的任一个移除较大热负荷(例如,超过2000瓦)。本文描述的某些实施例藉由主动控制加热元件及经由基板支撑件128的主体的冷却剂的流速来提供较低所要温度梯度。
本文描述的某些实施例提供在宽范围中主动控制基板的温度、同时基板经历许多工艺及腔室条件(例如,加热器面板、插入腔室中的耦合射频、处理气体、化学产品等等)的能力。主动温度控制可经由两个主动温度通量达成:第一,经由铜焊/嵌入式加热元件将热提供至基板支撑件128;以及第二,经由内部冷却剂路径从基板支撑件128移除热。因此,基板支撑件128表面(上面静置基板)的温度可藉由控制所述两个通量的水平控制至所要温度设定点。增加的热可藉由将更多功率传送至加热元件并且降低冷却剂的流速(或者降低冷却剂入口温度)产生,或者可进行相反操作以达成较冷基板支撑温度。较宽温度控制范围藉由控制在热源(来自加热元件的内部或来自腔室或工艺条件的外部)与热排放(内部主动冷却剂)之间的互动而达成。在一个实施例中,此举藉由将加热元件在支撑主体中接近于静置基板18的支撑表面安置,且藉由将冷却通道安置在轴的下部主体中能够排出所要热量的高度而达成,以使可达成的最高温度最大化。
本文描述的某些实施例进一步提供将温度均匀性控制在所控温度的范围内的10℃的内的能力。在一个实施例中,此举可藉由将加热元件相对于如上所述冷却通道安置而达成,并且还可藉由利用安置在加热元件与冷却通道之间的气隙而达成,以进一步控制热流的路径。在一个实施例中,冷却通道、气隙、以及加热元件的放置产生不大于千分之五英寸的支撑表面的最大平面偏转,如此降低了基板18在处理期间滑动的可能性。
在一个实施例中,基板支撑件128包含铝合金。在一个实施例中,铝合金为含有镁及硅的铝合金,诸如铝6061。铝合金提供三个重要特征:1)高热导率,所述高热导率有助于来自热源的热流与冷却剂的互动;2)经由各种机械加工技术处理的能力(例如,将轴组件铜焊以在中间高度处并入冷却通道,喷丸处理支撑表面以增加辐射热损耗,将涂层通道镀镍以能够流动硬水);以及3)降低生产成本。
将腔室盖104耦接至腔室主体102的顶部。盖104容纳与盖104耦接的一个或多个气体分配系统108。气体分配系统108包括进气口通道140,所述进气口通道140经由喷淋头组件142将反应物及清洗气体传送至处理区120B中。喷淋头组件142包括环形底板148,所述环形底板148具有阻隔板144,所述阻隔板144安置在朝向面板146的中间。射频(RF)源165耦接至喷淋头组件142。射频源165向喷淋头组件142供电以促进在喷淋头组件142的面板146与加热基板支撑件128之间产生等离子体。在一个实施例中,射频源165可为主要频率射频(HFRF)功率源,诸如13.56MHz的射频产生器。在另一实施例中,射频源165可包括HFRF功率源及次要频率射频(LFRF)功率源,诸如300kHz的射频产生器。或者,可将射频源耦接至处理腔室主体102的其它部分(诸如基板支撑件128)以促进等离子体产生。将介电质绝缘体158安置在盖104与喷淋头组件142之间以防止将射频功率传导至盖104。可将遮蔽环106安置在基板支撑件128的周边上,所述基板支撑件128的周边在基板支撑件128的所要高度啮合基板。
视情况,在气体分配系统108的环形底板148中形成冷却通道147以在操作期间将环形底板148冷却。诸如水、乙二醇、气体等等的热传送流体可经由冷却通道147循环以使得底板148保持在预定温度。
将腔室衬垫组件127非常靠近腔室主体102的侧壁101、112地安置在处理区120B之内,以防止将侧壁101、112暴露于在处理区120B之内的处理环境中。衬垫组件127包括圆周泵送腔125,所述泵送腔125耦接至泵送系统164,所述泵送系统164经配置以从处理区120B排出气体及副产物并且控制在处理区120B之内的压力。多个排气口131可在腔室衬垫组件127上形成。排气口131经配置以允许气体以促进在系统100之内的处理的方式从处理区120B流动至圆周泵送腔125。
图8A为在基板处理腔室100中使用的基板支撑件128的一个实施例的等角俯视图。基板支撑件128包括轴126及基座组件129,所述基座组件129与圆形基板支撑件128相对。在一个实施例中,轴126配置为管状构件或中空轴。在一个实施例中,可将基座组件129用作与电连接的可拆卸配合接口,所述电连接安置在电力出口或电力箱103中或电力出口或电力箱103之上。基板支撑件128包括周边凸耳205,所述周边凸耳205环绕大体上平坦的基板接收支撑表面210。支撑表面210可经调适以支撑200mm的基板、300mm的基板、或450mm的基板。在一个实施例中,支撑表面210包括多个结构215,所述多个结构215可为在支撑表面210的平面之上延伸的凸块或突部。多个结构215中的每一个的高度大体上相等以提供略高于支撑表面210或与支撑表面210间隔开的大体平坦的基板接收平面或表面。在一个实施例中,结构215中的每一个由一种材料形成或涂布,所述材料不同于支撑表面210的材料。基板支撑件128还包括多个开口220,所述多个开口220穿过所述基板支撑件128形成并且经调适以容纳举升销161(图7)。
在一个实施例中,基板支撑件128的主体及轴126由导电金属材料制成,而基座组件129由导电金属材料及绝缘材料的组合制成。与由陶瓷制成的基板支撑件128相比,由导电金属材料制造基板支撑件128降低了制造成本。另外,导电金属材料可用来遮蔽嵌入式加热器(在所述视图中未图示)免受射频功率。此举增加基板支撑件128的效率及寿命,如此降低了制造成本。
在一个实施例中,基板支撑件128的主体及轴126仅由铝材料制造,诸如铝合金。在特定实施例中,基板支撑件128及轴两者由6061铝制成。在一个实施例中,基座组件129包含铝部分及绝缘部分(诸如安置在所述绝缘部分中的聚醚醚酮(PEEK)树脂),以将基座组件129的部分与基板支撑件128及轴126的导电部分电气绝缘。在一个实施例中,基板支撑件128的主体由铝材料制成,而安置在支撑表面210上的结构215中的每一个由诸如氧化铝的陶瓷材料制成或涂布。
在一个实施例中,基板支撑件128的支撑表面210经纹理化。支撑表面210可使用本领域中已知的技术纹理化,例如,喷丸处理、回蚀工艺、或者上述技术的组合。在一个实施例中,基板支撑件128的纹理化支撑表面210的均方根(RMS)粗糙度可为从约0.75微米至约6微米,例如在约1.5微米和约5微米之间,例如约2微米。
图8B为基板支撑件128的一个实施例的等角仰视图。轴126包括第一端212及第二端214,所述第一端212耦接至基板支撑件128,且所述第二端214耦接至基座组件129,所述基座组件129与基板支撑件128相对。在所述实施例中,基座组件129包括有槽导电部分(slotted conductive portion)225,所述有槽导电部分225耦接至和/或含有介电质插头230。在一个实施例中,有槽导电部分225可配置为插头或公接口,所述插头或公接口经调适以与电力箱103配合(图7)。在图8B中所示的实施例中,导电部分225可在具有至少部分穿过外表面或壁形成的槽的横截面中为圆形。介电质插头230可配置为插座或母接口或包含配置为插座或母接口的一部分或多个部分,所述插座或所述母接口经调适以容纳或与在电力箱103之内的电连接配合。在一个实施例中,有槽导电部分225可为轴126的整体延伸部并且由铝材料制成,而介电质插头230由PEEK树脂制成。
基座组件129还包括圆周环135,所述圆周环135经调适以容纳O型环240,所述O型环240与图7中所示的电力箱103接口连接。在所述实施例中,有槽导电部分225包括开口,所述开口经调适以容纳介电质插头230,并且所述介电质插头230紧固至有槽导电部分225。介电质插头230还包括开口或在开口中形成的插座,以容纳来自电力箱103的电导线。
图9A为基板支撑件128的一个实施例的仰视示意图。介电质插头230具有冷却通道入口302、冷却通道出口304、以及导电插头320,所述冷却通道入口302用于将冷却剂输送至冷却通道,所述冷却通道出口304用于将冷却剂从冷却通道移除。
图9B为沿具有主动冷却系统的基板支撑件128的一个实施例的图9A的线9B-9B获取的横截面侧视图。图9C为图9B的基板支撑件128的一个实施例的放大横截面图。在一个实施例中,主动冷却系统包含电阻加热器组件305、冷却通道组件306、以及热控制间隙308。电阻加热器305安置或封装在基板支撑件128的导电体300中。在一个实施例中,导电体300由一种材料制成,所述材料由诸如铝之类的导电金属组成。
冷却通道组件306具有冷却通道307、冷却通道入口302、冷却通道出口30、以及流体再循环器309,所述流体再循环器309用于将热传送流体或「冷却剂」供应至冷却通道组件。在一个实施例中,冷却通道307为环状通道,所述环状通道安置在环绕轴126的中空部分的轴126的主体内。参看图9E,冷却通道307由上壁350、相对下壁352、内部周边壁354、以及外部周边壁356界定。在一个实施例中,冷却通道307为连续环,所述连续环环绕轴126的中空部分的直径。在某些实施例中,冷却通道307为部分环,所述部分环仅环绕轴126的中空部分的一部分。
在一个实施例中,冷却通道入口302为延伸穿过基板支撑件128组件128的轴126的纵向通道。冷却通道入口302的第一端与流体再循环器309耦接,并且冷却通道入口302的第二端与冷却通道307流体耦接。在一个实施例中,冷却通道出口304为延伸穿过基板支撑件128组件128的轴126的纵向通道。冷却通道出口304的第一端与冷却通道307耦接,并且冷却通道出口的第二端与流体再循环器309耦接。
在操作中,可以再利用热传送流体并且将热传送流体由流体再循环器309经由冷却通道组件306连续泵送。在某些实施例中,热传送流体可在进入冷却通道入口302之前由流体再循环器309加热或冷却至预选温度。例如,流体再循环器309可包含泵(未图示)、冷却器或加热器(也未图示)、以及恒温器(也未图示),所述泵用于经由冷却通道组件306泵送热传送流体,所述冷却器或加热器用于冷却或加热热传送流体,并且所述恒温器用于监视热传送流体的温度并且控制冷却器或加热器以将所述温度保持在所要水平。流体再循环器309还可包含用于监视流体压力的压力计、仪表、用于控制流量的阀门、以及用于控制热传送流体的流量的其它组件,为了简洁起见不再进行描述。在操作中,将热传送流体供应至冷却通道组件306的冷却通道入口302。将热传送流体泵送至冷却通道入口302中,热传送流体经由冷却通道306流动以加热或冷却基板支撑件128的导电体300(取决于热传送流体及基板支撑件128的相对温度),并且将热传送流体从冷却通道出口304移除或排出。
在一个实施例中,热传送流体可包含水、乙二醇、气体等等。在一个实施例中,热传送流体包含水及乙二醇的混合物,例如,50%水与50%乙二醇的混合物。在某些实施例中,可将单独储存容器与冷却通道出口304耦接以储存已使用的冷却剂。如图9D中所示,由轴126的主体将冷却通道入口302及冷却通道出口304与电源线315a、315b隔离。
在一个实施例中,将热控制间隙308安置在基板支撑件128的导电体300中,所述导电体300环绕轴126的中空部分以进一步控制热流的路径。热传送流体经由基板支撑件128的轴126的流动在支撑表面210的中心处产生局部冷点,热控制间隙308在基板支撑件128的支撑表面210的中心周围增加热阻,进而充当散冷器。参看图9C,热控制间隙308由上壁312、相对下壁313、以及环绕热控制间隙308的周边壁314形成。在一个实施例中,周边壁314为圆形,因此使热控制间隙308为圆形形状。热控制间隙308还可为任何其它形状,所述形状为主动冷却系统提供所要的热控制量。例如,热控制间隙308可具有选择自诸如椭圆形、正方形、矩形、以及非均匀形状之类的其它形状的形状。在一个实施例中,热控制间隙308具有在约2英寸(5.1cm)与约6英寸(15.2cm)之间的直径。在一个实施例中,热控制间隙308具有在约3英寸(7.6cm)与约4英寸(10.2cm)之间的直径。热控制间隙308的直径可变化以提供所要的热控制量。热控制间隙308的上壁与下壁之间的距离(例如,高度)还可变化以提供所要的热控制量。在一个实施例中,热控制间隙308的高度在约0.1英寸(0.3cm)与约1英寸(2.5cm)之间。在另一实施例中,热控制间隙308的高度在约0.4英寸(1cm)与约0.5英寸(1.3cm)之间。
在一个实施例中,将电阻加热器305的顶表面安置在离基板支撑件128的支撑表面210约0.10英寸(0.3cm)与约0.80英寸(2cm)之间。在另一实施例中,将电阻加热器305的顶表面安置在离基板支撑件128的支撑表面210约0.15英寸(0.4cm)与约0.20英寸(0.5cm)之间。在一个实施例中,将热控制间隙308的上壁312安置在离基板支撑件128的支撑表面210约0.5英寸(1.3cm)与约1.5英寸(3.8cm)之间。在另一实施例中,将热控制间隙308的上壁安置在离基板支撑件128的支撑表面210约0.9英寸(2.3cm)与约1.2英寸(3.0cm)之间。在一个实施例中,将冷却通道307的上壁350安置在离基板支撑件128的支撑表面210约3英寸(7.6cm)与约5英寸(12.7cm)之间。在另一实施例中,将冷却通道307的上壁350安置在离基板支撑件128的支撑表面210约4英寸(10.2cm)与约4.5英寸(11.4cm)之间。
在一个实施例中,将冷却通道307安置在与电阻加热元件305相距一距离「X」处。在一个实施例中,将热控制间隙308的上壁312安置在与电阻加热器305的底表面相距一距离「Y」处。在一个实施例中,将热控制间隙308的下壁313安置在与冷却通道307相距一距离「Z」处。在一个实施例中,距离「X」、「Y」、以及「Z」经选择以从基板支撑件128排出所要的热量。
图9D为沿具有本文描述的主动冷却系统的基板支撑件128的一个实施例的图9A的线9D-9D获取的横截面侧视图。如图9B中所示,将轴126耦接至电力出口或电力箱103,如图7中所示。电阻加热器305由安置在轴126中的导电线315a、315b耦接至安置在电力箱103中的功率源310。轴126还包括经调适以容纳热电偶(未图标)的纵向通道或孔350。在所述实施例中,介电质插头230包括安置在介电质插头230中的一个或多个导电插头320,以将导电线315与安置在电力箱103中的一个或多个相应插座326a、326b耦接。在一个实施例中,导电插头320为多触点插头。导电线315及导电插头320可在操作期间经电气偏压,但是可由介电质插头230的周边壁325与有槽导电部分225、轴126、以及基板支撑件128电气隔离。
在一个实施例中,轴126及基板支撑件128由铝制成且电气接地。铝材料将加热元件封装且充当电阻加热器305的有效射频遮蔽件。通过铝材料的射频遮蔽消除了对带通滤波器过滤掉耦合到电阻加热器305的射频的需求,所述需求在由不同材料(诸如陶瓷)制成的加热基板支撑件128中是需要的。使用导电插头320作为电阻加热器305的功率端子的电气接口的设计使来自电力箱103的标准仪表线及连接器能够与定制设计的电连接器相反地使用。将导电插头320安装在包含PEEK树脂的唯一基础设计上。导电插头320包含功率端子组件,所述功率端子组件经由紧固至基座组件129的导电部分225上的介电质插头230机械地支撑。PEEK树脂将带电功率端子(导电插头320)相对于接地加热器主体(基板支撑件128及轴126)电气隔离。因此,基板支撑件128藉由消除带通滤波器且利用较便宜的铝材料将成本降至最低,如此显著降低制造成本。进一步,如本文描述的基板支撑件128可经改装以在无大范围重新设计和/或停机时间的情况下更换在现有腔室中的原始基板支撑件128。
图10A为电阻加热器305的一个实施例的示意俯视图。图10为电阻加热器305的一个实施例的示意侧视图。在一个实施例中,电阻加热器305包含加热元件410。如图10A中所示,将加热元件410图案化以在电阻加热器305的中心部中提供中心密集图案,以提供匹配且补偿基板热损耗的辐射加热轮廓。例如,参看图9D,与导电支撑主体300的边缘相比,加热元件410可朝向导电支撑主体300的中心彼此更加接近地间隔。冷却剂穿过轴126的流动相对于支撑表面210的边缘在支撑表面210的中心产生冷点。尽管图示为中心密集,但应了解,加热元件410可经调适以涵盖基板损耗热轮廓中的任何变化。例如,加热元件410可经调适以藉由改变加热元件410的大小、间距、电阻系数、输入功率等等以提供可变热量输出,以更加接近地匹配基板损耗轮廓。
表I总结了使用本文描述的主动冷却系统的基板支撑件128的热及结构建模模拟。入口温度[℃]表示热传送流体进入冷却通道组件时热传送流体的入口温度。出口温度[℃]表示热传送流体排出主动冷却组件时热传送流体的出口温度。体积流速[GPM]表示流经冷却通道组件的冷却剂的每分钟加仑数。温度设定点[℃]表示电阻加热器的设定点温度。温度梯度[℃]表示在使用本文描述的主动冷却系统的基板支撑件128的支撑表面上的高温与低温之间的温差。最大变形[密耳]表示基板支撑件128的最大平面偏转。偏转具有两种模式:第一,基板支撑件128的支撑表面及导电体可能翘曲;第二,基板支撑件128的轴可能归因于在内部流体与外部流体之间的温度变化而倾斜。最大变形结果指示本文所述的实施例可产生不大于五千分之一英寸(5密耳)的支撑表面的最大平面偏转。
Figure BDA00003625364600391
表1:基板支撑件128的热及结构建模的结果。
本文描述的腔室100及基板支撑件128藉由在工艺循环期间提供主动温度控制来提供基板的改良低温处理。基板支撑件128还可提供在小于400℃、或者甚至小于250℃的温度的良好温度控制;而其它实施例提供在超过400℃的温度的较高温度控制。例如,基板支撑件128可藉由经由基板支撑件128的主体流动主动冷却剂从例如RF耦合的外源或诸如嵌入式加热元件之类的内源中的任一个移除较大热负荷(例如,超过2000瓦)。基板支撑件128还藉由主动控制加热元件及经由基板支撑件128的主体的冷却剂的流速来提供较低温度梯度。如此允许基板支撑件128具有在宽范围的工艺及等离子体条件中主动控制基板的温度,同时基板经历许多工艺及腔室条件(例如,加热器面板、插入腔室中的耦合射频、处理气体、化学产品等等)的能力。主动温度控制可经由两个主动温度通量达成:第一,经由铜焊/嵌入式加热元件将热提供至基板支撑件128;以及第二,经由内部冷却剂路径从基板支撑件128移除热。因此,基板支撑件128表面(上面静置基板)的温度可藉由控制所述两个通量的水平而控制至所要温度设定点。
尽管图示且描述了本发明的示例性实施例,但是本领域普通技术人员可设计并入本发明并且还可在本发明的范围内的其它实施例。此外,术语「之下」、「之上」、「底部」、「顶部」、「向上」、「向下」、「第一」和「第二」、以及其它相对或位置术语相对于附图中的示例性实施例图示并且为可互换的。因此,所附权利要求不应限于对用于说明本发明的本文描述的较佳方案、材料或空间排列的描述。

Claims (15)

1.一种直通硅穿孔制造方法,所述方法包含:
(a)在硅板中蚀刻多个直通孔,所述直通孔包含侧壁及底壁;
(b)藉由以下步骤将氧化物衬垫沉积在所述硅板的表面上并且沉积在所述直通孔的所述侧壁及底壁上:
(i)在处理区中提供所述硅板,所述处理区包含处理电极及气体分配器;
(ii)将所述硅板保持在小于约250℃的温度;
(iii)将沉积气体引入所述处理区,所述沉积气体包含包括四乙氧基硅烷的含硅气体、以及包括氧气的氧前驱物;以及
(iv)藉由以第一频率将电流施加到所述处理电极来激发所述沉积气体以形成等离子体;以及
(c)在所述直通孔中沉积金属导体。
2.如权利要求1所述的方法,其中在步骤(a)中的所述直通孔具有至少约10:1的深宽比。
3.如权利要求1所述的方法,其中将所述硅板保持在从约100℃至约250℃的温度。
4.如权利要求1所述的方法,其中步骤(b)包含以下步骤中的至少一个:
(1)以在约400毫克/分钟与约12000毫克/分钟之间的质量流速引入所述四乙氧基硅烷;或者
(2)以在约2000sccm与约17000sccm之间的质量流速引入所述沉积气体。
5.如权利要求1所述的方法,其中步骤(b)包含以下步骤中的至少一个:
(1)将所述沉积气体保持在约2托与约8托之间的压力下;以及
(2)藉由在从约100瓦至约1200瓦的功率水平以所述第一频率、并且在高达400瓦的功率水平以次要频率将电流施加到所述处理电极而形成所述等离子体。
6.如权利要求1所述的方法,其中在步骤(b)之后且在步骤(c)之前,将密封层沉积在所述氧化物衬垫之上,所述密封层包含二氧化硅或氮化硅。
7.如权利要求1所述的方法,所述方法进一步包含:在步骤(c)之后,将所述基板翻转并且将所述硅板的后表面化学机械研磨以将沉积至所述硅板的所述直通孔中的所述金属导体的顶部暴露。
8.如权利要求1所述的方法,所述方法进一步包含:在步骤(c)之后,藉由以下步骤将形成在所述直通孔中的所述金属导体的暴露部分上的原生氧化物膜移除:
(i)在包含一对还原处理电极的还原处理区中提供所述硅板;
(ii)将所述硅板保持在从约100℃至约220℃的还原温度下;
(iii)将包含氨气或氢气的还原气体引入所述还原处理区中,其中所述还原气体的体积流速在约100sccm与约3000sccm之间;以及
(iv)以约13.6MHz的主要频率、并且在从约150瓦至约1200瓦的功率水平将功率施加到所述还原处理电极。
9.如权利要求8所述的方法,所述方法进一步包含:在移除所述原生氧化物膜之后,进行一硅烷浸渍步骤,所述硅烷浸渍步骤包含:
(i)在包含一对浸渍处理电极的浸渍处理区中提供所述基板;
(ii)将所述基板保持在从约100℃至约220℃的浸渍温度;
(iii)将浸渍气体引入所述处理区,所述浸渍气体包含体积流速在约100sccm与约1000sccm之间的硅烷;以及
(iv)以约13.6MHz的主要频率、并且在约150瓦与约1200瓦之间的功率水平将功率施加到所述浸渍处理电极。
10.一种直通硅穿孔制造方法,所述方法包含:
(a)在硅板中蚀刻多个直通孔,所述直通孔包含侧壁及底壁;
(b)藉由以下步骤将氧化物衬垫沉积在所述硅板的表面上并且沉积在所述直通孔的所述侧壁及底壁上:
(i)在处理区中提供所述硅板,所述处理区包含处理电极及气体分配器;
(ii)将沉积气体引入所述处理区,所述沉积气体包含包括四乙氧基硅烷的含硅气体、以及包括氧气的氧前驱物;以及
(iii)藉由以第一频率将电流施加到所述处理电极来激发所述沉积气体以形成等离子体;
(c)在所述直通孔中沉积金属导体;以及
(d)藉由激发还原气体以形成等离子体将形成在所述直通孔中的所述金属导体的暴露部分上的原生氧化物膜移除,所述还原气体包含体积流速在约100sccm与约3000sccm之间的氨气或氢气、以及体积流速在约10000sccm与约20000sccm之间的氮气。
11.一种直通硅穿孔制造方法,所述方法包含:
(a)在硅板中蚀刻多个直通孔,所述直通孔包含侧壁及底壁;
(b)藉由以下步骤将氧化物衬垫沉积在所述硅板的表面上并且沉积在所述直通孔的所述侧壁及底壁上:
(i)在处理区中提供所述硅板,所述处理区包含处理电极及气体分配器;
(ii)将沉积气体引入所述处理区,所述沉积气体包含包括四乙氧基硅烷的含硅气体、以及包括氧气的氧前驱物;以及
(iii)藉由以第一频率将电流施加到所述处理电极来激发所述沉积气体以形成等离子体;
(c)在所述直通孔中沉积金属导体;以及
(d)在步骤(c)之后,进行硅烷浸渍步骤,所述硅烷浸渍步骤包含:
(i)将所述基板保持在从约100℃至约220℃的温度;以及
(ii)激发浸渍气体以形成等离子体,所述浸渍气体包含体积流速在约100sccm至约1000sccm之间的硅烷。
12.如权利要求9或11所述的方法,其中所述浸渍气体包含流速从约1000sccm至约25000sccm的氮气。
13.如权利要求9或11所述的方法,所述方法进一步包含:在所述硅烷浸渍之后,将保护涂层沉积于沉积在所述直通孔中的所述金属导体的顶部。
14.如权利要求9或11所述的方法,所述方法进一步包含:沉积包含以下至少一个的保护涂层:
(1)单层氧化硅或氮化硅,所述单层厚度从约0.5微米至约6微米;
(2)氮化硅层及氧化硅层;或者
(3)(i)下层,所述下层包含厚度从约200至约1500
Figure FDA00003625364500042
的氮化硅层;(ii)中间层,所述中间层由厚度从约0.5微米至约3微米的氧化硅组成;以及(iii)上层,所述上层包含厚度从约0.5微米至约3微米的氮化硅。
15.一种直通硅穿孔制造方法,所述方法包含:
(a)形成硅板,所述硅板具有前表面及后表面,所述前表面中具有一个或多个特征;
(b)提供用于支撑所述硅板的载体;
(c)藉由在所述硅板的所述前表面与所述载体之间使用黏着层将所述硅板的所述前表面接合至所述载体以将所述硅板的所述后表面暴露来形成基板;
(d)将氮化硅钝化层沉积在所述基板的所述硅板的所述暴露后表面上;
(e)在所述硅板中蚀刻多个直通孔,所述直通孔包含侧壁及底壁;以及
(f)将金属导体沉积在所述直通孔中以形成多个直通硅穿孔。
CN2011800669142A 2010-12-22 2011-12-09 硅晶圆上的直通硅穿孔的制造 Pending CN103348461A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/977,060 2010-12-22
US12/977,060 US8329575B2 (en) 2010-12-22 2010-12-22 Fabrication of through-silicon vias on silicon wafers
PCT/US2011/064179 WO2012087613A2 (en) 2010-12-22 2011-12-09 Fabrication of through-silicon vias on silicon wafers

Publications (1)

Publication Number Publication Date
CN103348461A true CN103348461A (zh) 2013-10-09

Family

ID=46314739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800669142A Pending CN103348461A (zh) 2010-12-22 2011-12-09 硅晶圆上的直通硅穿孔的制造

Country Status (6)

Country Link
US (2) US8329575B2 (zh)
JP (1) JP2014507065A (zh)
KR (1) KR20140014119A (zh)
CN (1) CN103348461A (zh)
TW (1) TW201250882A (zh)
WO (1) WO2012087613A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075059A (zh) * 2016-06-15 2018-12-21 应用材料公司 用于高功率等离子体蚀刻处理的气体分配板组件
CN110178201A (zh) * 2017-01-13 2019-08-27 应用材料公司 用于低温氮化硅膜的方法及设备

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009055450A1 (en) * 2007-10-25 2009-04-30 Applied Materials, Inc. Adhesion improvement of dielectric barrier to copper by the addition of thin interface layer
US8563095B2 (en) * 2010-03-15 2013-10-22 Applied Materials, Inc. Silicon nitride passivation layer for covering high aspect ratio features
US8487410B2 (en) 2011-04-13 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Through-silicon vias for semicondcutor substrate and method of manufacture
US8816505B2 (en) 2011-07-29 2014-08-26 Tessera, Inc. Low stress vias
SE538062C2 (sv) * 2012-09-27 2016-02-23 Silex Microsystems Ab Kemiskt pläterad metallvia genom kisel
US9508674B2 (en) 2012-11-14 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Warpage control of semiconductor die package
US10020187B2 (en) * 2012-11-26 2018-07-10 Applied Materials, Inc. Apparatus and methods for backside passivation
US9157014B2 (en) 2012-11-29 2015-10-13 Micron Technology, Inc. Adhesives including a filler material and related methods
US9564398B2 (en) 2013-03-12 2017-02-07 Taiwan Semiconductor Manufacturing Co., Ltd. Chemical direct pattern plating interconnect metallization and metal structure produced by the same
TWI578592B (zh) * 2013-03-12 2017-04-11 應用材料股份有限公司 有機發光二極體元件及包括其之封裝結構的沉積方法
US8945978B2 (en) 2013-06-28 2015-02-03 Sunpower Corporation Formation of metal structures in solar cells
US20150017798A1 (en) * 2013-07-11 2015-01-15 United Microelectronics Corp. Method of manufacturing through-silicon-via
US9362111B2 (en) 2014-02-18 2016-06-07 Applied Materials, Inc. Hermetic CVD-cap with improved step coverage in high aspect ratio structures
US9613842B2 (en) 2014-02-19 2017-04-04 Globalfoundries Inc. Wafer handler and methods of manufacture
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10373820B2 (en) * 2016-06-01 2019-08-06 Asm Ip Holding B.V. Deposition of organic films
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US10541218B2 (en) * 2016-11-29 2020-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Redistribution layer structure and fabrication method therefor
JP2019057634A (ja) * 2017-09-21 2019-04-11 東芝メモリ株式会社 半導体装置の製造方法
JP7133975B2 (ja) * 2018-05-11 2022-09-09 東京エレクトロン株式会社 エッチング方法およびエッチング装置
US11427912B2 (en) * 2018-06-25 2022-08-30 Applied Materials, Inc. High temperature rotation module for a processing chamber
US11342256B2 (en) 2019-01-24 2022-05-24 Applied Materials, Inc. Method of fine redistribution interconnect formation for advanced packaging applications
IT201900006740A1 (it) * 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di strutturazione di substrati
IT201900006736A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di fabbricazione di package
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US20210035767A1 (en) * 2019-07-29 2021-02-04 Applied Materials, Inc. Methods for repairing a recess of a chamber component
USD884855S1 (en) * 2019-10-30 2020-05-19 Applied Materials, Inc. Heater pedestal
US11862546B2 (en) 2019-11-27 2024-01-02 Applied Materials, Inc. Package core assembly and fabrication methods
US11257790B2 (en) 2020-03-10 2022-02-22 Applied Materials, Inc. High connectivity device stacking
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US11400545B2 (en) 2020-05-11 2022-08-02 Applied Materials, Inc. Laser ablation for package fabrication
US11232951B1 (en) 2020-07-14 2022-01-25 Applied Materials, Inc. Method and apparatus for laser drilling blind vias
US11676832B2 (en) 2020-07-24 2023-06-13 Applied Materials, Inc. Laser ablation system for package fabrication
US11521937B2 (en) 2020-11-16 2022-12-06 Applied Materials, Inc. Package structures with built-in EMI shielding
US11404318B2 (en) 2020-11-20 2022-08-02 Applied Materials, Inc. Methods of forming through-silicon vias in substrates for advanced packaging
US11705365B2 (en) 2021-05-18 2023-07-18 Applied Materials, Inc. Methods of micro-via formation for advanced packaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959978A (zh) * 2005-10-31 2007-05-09 台湾积体电路制造股份有限公司 半导体元件及其形成方法
CN101847616A (zh) * 2009-03-23 2010-09-29 台湾积体电路制造股份有限公司 用于硅通孔的阻挡件
CN102108497A (zh) * 2009-12-24 2011-06-29 Spp处理技术系统英国有限公司 沉积SiO2膜的方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872947A (en) 1986-12-19 1989-10-10 Applied Materials, Inc. CVD of silicon oxide using TEOS decomposition and in-situ planarization process
US4892753A (en) 1986-12-19 1990-01-09 Applied Materials, Inc. Process for PECVD of silicon oxide using TEOS decomposition
JP3017627B2 (ja) * 1993-11-15 2000-03-13 アプライド マテリアルズ インコーポレイテッド 薄膜形成方法
JPH09199501A (ja) * 1995-10-02 1997-07-31 Applied Materials Inc SiF4を用いて安定な弗素ドープ膜を堆積するプロセス及び装置
US6040198A (en) * 1995-11-30 2000-03-21 Fujitsu Limited Element concentration measuring method and apparatus, and semiconductor device fabrication method and apparatus
US5573962A (en) 1995-12-15 1996-11-12 Vanguard International Semiconductor Corporation Low cycle time CMOS process
US5795820A (en) * 1996-07-01 1998-08-18 Advanced Micro Devices Method for simplifying the manufacture of an interlayer dielectric stack
US5691215A (en) 1996-08-26 1997-11-25 Industrial Technology Research Institute Method for fabricating a sub-half micron MOSFET device with insulator filled shallow trenches planarized via use of negative photoresist and de-focus exposure
US5691250A (en) 1996-08-29 1997-11-25 Taiwan Semiconductor Manufacturing Company, Ltd Method of forming a metal contact to a novel polysilicon contact extension
US5710076A (en) 1996-09-03 1998-01-20 Industrial Technology Research Institute Method for fabricating a sub-half micron MOSFET device with global planarization of insulator filled shallow trenches, via the use of a bottom anti-reflective coating
US5858882A (en) 1997-03-24 1999-01-12 Vanguard International Semiconductor Corporation In-situ low wafer temperature oxidized gas plasma surface treatment process
US5792690A (en) 1997-05-15 1998-08-11 Vanguard International Semiconductor Corporation Method of fabricating a DRAM cell with an area equal to four times the used minimum feature
US20010000160A1 (en) 1997-08-14 2001-04-05 Infineon Technologies Ag Method for treatment of semiconductor substrates
US6177350B1 (en) 1998-04-14 2001-01-23 Applied Materials, Inc. Method for forming a multilayered aluminum-comprising structure on a substrate
US6355571B1 (en) 1998-11-17 2002-03-12 Applied Materials, Inc. Method and apparatus for reducing copper oxidation and contamination in a semiconductor device
US20010049181A1 (en) * 1998-11-17 2001-12-06 Sudha Rathi Plasma treatment for cooper oxide reduction
US6274426B1 (en) 1999-02-25 2001-08-14 Taiwan Semiconductor Manufacturing Company Self-aligned contact process for a crown shaped dynamic random access memory capacitor structure
US6277757B1 (en) 1999-06-01 2001-08-21 Winbond Electronics Corp. Methods to modify wet by dry etched via profile
US6426285B1 (en) 1999-11-03 2002-07-30 Taiwan Semiconductor Manufacturing Company Method to solve intermetallic dielectric cracks in integrated circuit devices
US6352938B2 (en) * 1999-12-09 2002-03-05 United Microelectronics Corp. Method of removing photoresist and reducing native oxide in dual damascene copper process
US6503851B2 (en) 2000-08-31 2003-01-07 Micron Technology, Inc. Use of linear injectors to deposit uniform selective ozone TEOS oxide film by pulsing reactants on and off
US6521302B1 (en) * 2000-09-26 2003-02-18 Applied Materials, Inc. Method of reducing plasma-induced damage
US6555467B2 (en) 2001-09-28 2003-04-29 Sharp Laboratories Of America, Inc. Method of making air gaps copper interconnect
US6492245B1 (en) 2001-10-16 2002-12-10 Taiwan Semiconductor Manufacturing Company Method of forming air gap isolation between a bit line contact structure and a capacitor under bit line structure
US7169704B2 (en) * 2002-06-21 2007-01-30 Samsung Electronics Co., Ltd. Method of cleaning a surface of a water in connection with forming a barrier layer of a semiconductor device
US7411352B2 (en) * 2002-09-19 2008-08-12 Applied Process Technologies, Inc. Dual plasma beam sources and method
KR100497111B1 (ko) * 2003-03-25 2005-06-28 삼성전자주식회사 웨이퍼 레벨 칩 스케일 패키지, 그를 적층한 적층 패키지및 그 제조 방법
WO2004109770A2 (en) 2003-06-05 2004-12-16 Oticon A/S Through wafer via process and amplifier with through wafer via
US7049230B2 (en) * 2003-11-26 2006-05-23 Hynix Semiconductor Inc. Method of forming a contact plug in a semiconductor device
JP4408713B2 (ja) * 2004-02-03 2010-02-03 Necエレクトロニクス株式会社 半導体装置の製造方法
US7220687B2 (en) * 2004-06-25 2007-05-22 Applied Materials, Inc. Method to improve water-barrier performance by changing film surface morphology
US7429529B2 (en) 2005-08-05 2008-09-30 Farnworth Warren M Methods of forming through-wafer interconnects and structures resulting therefrom
US7465669B2 (en) * 2005-11-12 2008-12-16 Applied Materials, Inc. Method of fabricating a silicon nitride stack
US7371695B2 (en) * 2006-01-04 2008-05-13 Promos Technologies Pte. Ltd. Use of TEOS oxides in integrated circuit fabrication processes
US7524755B2 (en) * 2006-02-22 2009-04-28 Chartered Semiconductor Manufacturing, Ltd. Entire encapsulation of Cu interconnects using self-aligned CuSiN film
JP4425235B2 (ja) * 2006-03-28 2010-03-03 三洋電機株式会社 半導体装置及びその製造方法
TWI370515B (en) * 2006-09-29 2012-08-11 Megica Corp Circuit component
JP5277552B2 (ja) * 2007-03-19 2013-08-28 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5595644B2 (ja) * 2008-06-26 2014-09-24 スパンション エルエルシー 半導体装置及びその製造方法
US7910473B2 (en) 2008-12-31 2011-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Through-silicon via with air gap
JP2010161215A (ja) * 2009-01-08 2010-07-22 Sharp Corp 半導体装置及びその製造方法
US8263497B2 (en) 2009-01-13 2012-09-11 International Business Machines Corporation High-yield method of exposing and contacting through-silicon vias
KR100937945B1 (ko) * 2009-08-05 2010-01-21 주식회사 아토 반도체 소자의 제조 방법
US7943514B2 (en) * 2009-09-03 2011-05-17 Texas Instruments Incorporated Integrated circuits having TSVs including metal gettering dielectric liners
US8927433B2 (en) 2009-12-18 2015-01-06 Electronics And Telecommunications Research Institute Conductive via hole and method for forming conductive via hole
US20110318502A1 (en) 2009-12-24 2011-12-29 Spp Process Technology Systems Uk Limited Methods of depositing sio2 films
US8492816B2 (en) * 2010-01-11 2013-07-23 International Business Machines Corporation Deep trench decoupling capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959978A (zh) * 2005-10-31 2007-05-09 台湾积体电路制造股份有限公司 半导体元件及其形成方法
CN101847616A (zh) * 2009-03-23 2010-09-29 台湾积体电路制造股份有限公司 用于硅通孔的阻挡件
CN102108497A (zh) * 2009-12-24 2011-06-29 Spp处理技术系统英国有限公司 沉积SiO2膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.ARCHARD 等: "《Low Temperature PECVD OF Dielectric Films for TSV Applications》", 《ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE》, 4 June 2010 (2010-06-04), pages 764 - 768 *
SHASHANK C.DESHMUKH 等: "《Low-temperature plasma enhanced chemical vapor deposition of SiO2》", 《APPL.PHYS.LETT》, vol. 65, no. 25, 19 December 1994 (1994-12-19) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075059A (zh) * 2016-06-15 2018-12-21 应用材料公司 用于高功率等离子体蚀刻处理的气体分配板组件
CN109075059B (zh) * 2016-06-15 2023-12-01 应用材料公司 用于高功率等离子体蚀刻处理的气体分配板组件
CN110178201A (zh) * 2017-01-13 2019-08-27 应用材料公司 用于低温氮化硅膜的方法及设备

Also Published As

Publication number Publication date
US20120164827A1 (en) 2012-06-28
US20120164829A1 (en) 2012-06-28
KR20140014119A (ko) 2014-02-05
US8329575B2 (en) 2012-12-11
WO2012087613A2 (en) 2012-06-28
US8283237B2 (en) 2012-10-09
WO2012087613A3 (en) 2012-08-16
TW201250882A (en) 2012-12-16
JP2014507065A (ja) 2014-03-20

Similar Documents

Publication Publication Date Title
CN103348461A (zh) 硅晶圆上的直通硅穿孔的制造
US9362111B2 (en) Hermetic CVD-cap with improved step coverage in high aspect ratio structures
US5064683A (en) Method for polish planarizing a semiconductor substrate by using a boron nitride polish stop
KR101911469B1 (ko) 고 종횡비 피쳐들을 덮기 위한 실리콘 질화물 패시베이션 층
US6656840B2 (en) Method for forming silicon containing layers on a substrate
CN1643651A (zh) 多室基材处理系统中执行的整合原位蚀刻制程
US20100184302A1 (en) Method of Forming Conformal Dielectric Film Having Si-N Bonds by PECVD
CN101120438B (zh) 半导体器件的制造方法、半导体器件
CN101114592A (zh) 半导体装置及其制造方法
US20100200989A1 (en) Liner materials and related processes for 3-d integration
WO2011104550A2 (en) Method of forming and patterning conformal insulation layer in vias and etched structures
CN105745740A (zh) 用于稳定蚀刻后界面以使下一处理步骤之前的队列时间问题最小化的方法
TWI764002B (zh) 形成非晶碳膜及蝕刻基板之方法
JP2001298028A (ja) 半導体デバイス製造方法
US20200075321A1 (en) Non-uv high hardness low k film deposition
US20230343733A1 (en) Wafer bonding structure, wafer bonding method and chip bonding structure
CN104979268B (zh) 叠层结构的形成方法以及互连结构的形成方法
US7425346B2 (en) Method for making hybrid dielectric film
CN101996941B (zh) 制造半导体装置的方法
US7910484B2 (en) Method for preventing backside defects in dielectric layers formed on semiconductor substrates
KR20140105808A (ko) 루테늄 필름들의 화학 기상 증착 (cvd) 및 그 용도들
US7528071B2 (en) Method for fabricating semiconductor device
KR20170129234A (ko) 결함 평탄화
JP2016539495A (ja) アモルファスシリコン膜の蒸着方法及び蒸着装置
KR100852520B1 (ko) 전자 디바이스의 제조 방법 및 프로그램을 기록한 기록매체

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131009