CN102108497A - 沉积SiO2膜的方法 - Google Patents

沉积SiO2膜的方法 Download PDF

Info

Publication number
CN102108497A
CN102108497A CN2010106156689A CN201010615668A CN102108497A CN 102108497 A CN102108497 A CN 102108497A CN 2010106156689 A CN2010106156689 A CN 2010106156689A CN 201010615668 A CN201010615668 A CN 201010615668A CN 102108497 A CN102108497 A CN 102108497A
Authority
CN
China
Prior art keywords
film
plasma
frequency component
teos
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106156689A
Other languages
English (en)
Other versions
CN102108497B (zh
Inventor
凯瑟琳·贾尔斯
安德鲁·普赖斯
斯蒂芬·罗伯特·伯吉斯
丹尼尔·托马斯·阿尔卡德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPP Process Technology Systems UK Ltd
Original Assignee
SPP Process Technology Systems UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPP Process Technology Systems UK Ltd filed Critical SPP Process Technology Systems UK Ltd
Publication of CN102108497A publication Critical patent/CN102108497A/zh
Application granted granted Critical
Publication of CN102108497B publication Critical patent/CN102108497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及一种在以下条件下沉积无机SiO2膜的方法:温度低于250℃,使用等离子体增强化学气相沉积(PECVD),在包括供应正硅酸四乙酯(TEOS)和O2,或其来源,以作为前体的室中,其中O2/TEOS比率介于15∶1至25∶1之间。

Description

沉积SiO<sub>2</sub>膜的方法
技术领域
本发明涉及一种沉积SiO2膜的方法,具体地涉及使用等离子体增强化学气相沉积(PECVD)在低于250℃沉积这样的膜。
背景技术
硅通孔(TSV),其可以例如是在硅中的蚀刻通孔或沟道,其在金属层沉积之前需要电介质衬里。非常期望的是,这些膜是良好的保形膜,原因在于它们的厚度最小,介电性能必需足够良好,以避免在正常使用中的电流泄漏。在沉积步骤之后还必须限制水分吸收(如果有的话),特别是通常下一个步骤在真空中断(vacuum break)后进行时。还期望的是,它们可以在低温沉积,优选在甚至低于200℃的温度沉积,同时是保形的和不吸收的。
使用TEOS/O2前体的PECVD已经被考虑,因为它们通常具有良好的阶梯覆盖率(step coverage),并且该前体的成本较低。但是,当沉积温度降低至低于200℃-250℃时,介电性能(泄漏和最终的击穿)变得劣化。在Kim等的文中题目为使用RF PECVD技术由TEOS2和TEOS/O2/CF4前体制备和表征SiO2和SiOF膜(Characterisation and Preparation SiO2 and SiOF films usingRF PECVD technique from TEOS2 and TEOS/O2/CF4 Precursors),J.Phys.D:Appl.Phs.37(2004)2425-2431的文章中,作者们描述了使用不同的前体流量的比率由TEOS/O2前体形成的膜。应注意,在该文章的图1a中,在200℃的沉积速率急剧下降,并且在更低的O2/TEOS比率的情况下,作者们报道了将乙氧基结合到该膜中。它们没有提供关于膜的电击穿特性的信息。特别是应注意到,它们报道随着使用更低的沉积温度,当膜在沉积后暴露于空气中时,向膜中的O-H吸收增加。
发明内容
一个方面,本发明是一种在以下条件下沉积SiO2膜的方法:温度低于250℃,使用等离子体增强化学气相沉积(PECVD),在包括供应正硅酸四乙酯(TEOS)和O2或其来源作为前体的室中,O2/TEOS比率介于15∶1至25∶1之间。
优选地,前体使用RF驱动的喷头进行沉积,并且优选喷头是使用高频成分和低频成分驱动的。在高频成分优选为13.56MHz而低频成分优选为350kHz至2MHz的情况下,以高频供应的功率可以近似为低频成分的功率的两倍。
在任何上述情况下,所述方法可以包括对沉积膜进行H2等离子体处理。该处理可以在真空中断后进行。优选H2等离子体处理足以在膜的表面上重新形成Si-H键。
另一个方面,本发明是一种SiO2膜的PECVD方法,该方法使用TEOS前体和含O2的前体,所述方法包括对沉积的膜进行H2等离子体处理。
前体可以通过RF驱动的喷头沉积,并且喷头可以使用可以如上所述的高频成分和低频成分驱动。
在又一个方面中,本发明可以包括在低于250℃的温度使用TOS和含O2的前体通过RF驱动的喷头沉积SiO2膜的PEVCD方法,其中喷头是使用高频成分和低频成分驱动的。这些成分可以如上所述。
在任何上述方法中,可以在150℃至200℃的范围的温度沉积膜。
尽管本发明是如上定义的,但是它包括上面或在下面的说明中设定的特征的任何发明组合。
附图说明
本发明可以以各种方式进行,并且现在将通过参考附图描述作为实例的具体实施方案,其中:
图1显示了使用混频SiH4 PECVD沉积和混频TEOS PECVD沉积,在使用和不使用60s H2等离子体处理情况下形成的三个相同的厚度的沉积的SiO2的电特性。使用方法4。(6∶1 O2/TEOS@200℃)。
图2显示了使用混频TEOS PECVD沉积,在使用和不使用60s H2等离子体处理情况下形成的三个相同的厚度的沉积的SiO2的电特性。使用方法2。(22.7∶1 O2/TEOS@150℃);
图3显示了在H2等离子体处理之前,在不同的真空中断长度条件下相同的TEOS/O2沉积膜随施加的场强度的电泄漏。使用方法4(6∶1 O2/TEOS@200℃);
图4显示了在H2等离子体处理(60,120和180秒)之前和之后的TEOS/O2膜的FTIR光谱。光谱是在目视辅助下叠加的。注意宽峰3100-3500cm-1和平坦区域900-1000cm-1,两者均归因于在沉积的膜中的O-H键的存在。使用方法4(6∶1 O2/TEOS@200℃);
图5显示了对于各种等离子体和热的沉积后处理的TEOS膜随场电压的电泄漏。所有沉积是在200℃平台处进行的。所有沉积后处理是原位进行的,除了400℃热退火处理在单独的组件中进行的(没有真空中断)之外;
图6显示了对于各种等离子体和热的沉积后处理的TEOS膜的FTIR数据。所有沉积是在200℃平台处进行的。所有沉积后处理是原位进行的,除了400℃热退火处理在单独的组件(没有真空中断)中进行的。光谱为了清楚起见进行了补偿。对于H2等离子体和400℃H2退火,注意在2340cm-1的弱峰;
图7显示了表现出随时间OH含量增加的150℃TEOS膜(6∶1 O2/TEOS)的FTIR数据。
图8a和8b显示了对于两种TEOS方法的阶梯覆盖率随着温度的变化(使用相同的氢等离子体处理)方法1(15∶1 O2/TEOS)和方法2(22.7∶1 O2/TEOS)。阶梯覆盖率随着更高的O2/TEOS比率而改善;
图9显示了在暴露于气氛中24小时后在150-250℃(O2/TEOS 6∶1)的平台温度沉积的未改性的TEOS方法的电特性;
图10显示了对于在175℃的22.7∶1 O2/TEOS方法的作为O2/TEOS比率的函数的沉积速率。对于全部条件,折射率(RI)保持在1.461-1.469之间;
图11显示了如通过在3300cm-1和980cm-1FTIR峰的变化测量的水分再吸收;
图12显示了通过使用混频与高频改善泄漏;
图13显示了在175℃(左)和200℃的24小时再吸收后的标准(方法4)TEOS(6∶1 O2/TEOS)膜电响应;
图14显示了在175℃和200℃的24小时再吸收后的方法1TEOS(15∶1O2/TEOS)膜电响应;
图15显示了在175℃(左)和200℃的24小时再吸收后的方法2TEOS(22.7∶1 O2/TEOS)膜电响应;
图16显示了方法2TEOS(22.7∶1 O2/TEOS,175℃)膜FTIR光谱,在5天后980cm-1区域没有变化。表示没有水分吸收。
图17是用于沉积的设备的示意图。
在图17中,总体上以10表示用于进行本发明的实施方案的示意性设备。其包括室11、喷头12、波形转换器载体(waversupport)13和相应的高和低频源14和15。喷头12被安置成接收两种前体(TEOS和O2)。安置匹配单元16和7,它们分别用于高频和低频源14和15,并且安置用于除去过剩反应气体的泵送出口18。
使用设备并且使用下列工艺条件进行一系列试验:
方法1-DEP:2400mT,1500sccm O2,1000sccm He,1.0ccm TEOS,666W HF,334W LF,14mm ES(15∶1)
PLAS:2000mT,1000sccm H2,1000W HF,20mm ES
方法2-DEP:2000mT,1500sccm O2,1000sccm He,0.66ccm TEOS,666W HF,334W LF,14mm ES(22.7∶1)
PLAS:2000mT,1000sccm H2,1000W HF,20mm ES
方法3-DEP:2800mT,500sccm O2,1000sccm He,1.25ccm TEOS,900W HF,11mm ES(4∶1)
方法4-DEP:3500mT,750sccm O2,1000sccm He,1.25ccm TEOS,666W HF,334W HF,14mm ES(6∶1)
PLAS:如所述的或2000mT,1000sccm H2,1000W HF,20mm ES
在工艺压力是以mT测量的情况下,O2,TEOS和He载气流量以sccm计,RF功率以瓦特测量,其中HF为13.56MHz并且LF在375kHZ,并且电极(喷头)与基板的间隔ES以mm计。
在上述方法中所述的条件在最初的沉积工艺(DEP)和后续的等离子体处理(PLAS)之间区分。给定的压力为室压力。使用氦气作为工艺载气。在括号中给出的比率为O2与TEOS的比率。图1显示了H2等离子体处理对低温(200℃)沉积膜的影响。泄漏击穿通常被认为在1.00E-07至1.00E-06之间的某处发生,并且观察到氢等离子体处理膜显著地改善了击穿特性。
图2说明了在对在150℃沉积的膜的没有等离子体处理和等离子体处理之间的关系,并且再次观察到改善了击穿特性。图3类似地说明了依赖于等离子体处理发生时的这些特性,并且观察到有效的是,即使真空中断相当长,但是似乎有利的是具有至少不超过24小时的真空中断。
图4显示了具有不同长度的等离子体处理的多个膜的FTIR光谱。当与没有等离子体处理的膜比较时,观察到等离子体处理消除了在~3300和980cm-1的OH峰。在2340cm-1还有很小的峰,这表明在膜表面附近不再存在Si-H键,这使得膜疏水,并且降低水蒸气在其主体具有较少的OH的膜的表面上或通过该表面的吸收。
图5和6说明了不同类型的退火的影响,并且观察到H2等离子体处理显著好于防止再吸收。图7显示随时间的再吸收。
因此,从这些图可以看出,H2等离子体处理降低膜中的水分,并且降低了向膜中的再吸收的速率,优选地,至少部分地,由于形成疏水表面。即使在150℃的沉积温度,结果也是优异的。因此,可能可以在低于该温度的温度获得有用的膜。可以在真空中断后进行处理,并且它们可能通过这种中断得到增强。
优选地,H2等离子体处理温度低,例如200℃乃至更低,约125℃或150℃。
还注意到,使用氦和NH3等离子体处理和H2烘箱退火没有提供相同的结果。
图8a和8b显示了阶梯覆盖率与平台13的载体的温度。阶梯覆盖率随着温度增加并且随着O2/TEOS比率增加而改善。但是,可以在历时观点看的低温实现可接受的阶梯覆盖率。
图9显示了沉积温度对等离子体处理膜的泄漏电流的影响,并且观察到在高温的结果更好,但是等离子体可接受的结果可以在非常低的温度实现。
图10说明了沉积速率与O2/TEOS比率的关系,并且观察到沉积速率随着该比率增加而下降。
如上述已经解释的,喷头优选在混频下供电,并且典型的布置为13.56MHz的高频和375kHz的低频。但是,据认为可以以至少达到不超过2MHz的频率增加低频成分。已经确定的是,低频成分的引入不改变沉积速率,因此不认为通过离子轰击增大膜的密度。图11显示了引入低频分量对再吸收的影响。用于该实验的沉积条件如方法4中所述,服从于图中所示的RF成分的变化。当采用与单一的13.56MHz RF源相反的混频时,显然有更少的再吸收。在SiO2膜的沉积速率或折射率没有显著变化的情况下,可能LF成分改变等离子体中的气体物种。图12比较了仅有高频和混频之间泄漏电流的差别。所使用的虚线(dot)1、虚线2和虚线3表示在波形转换器(waver)上的不同的点的测量。观察到在泄漏特性方面有显著的改善。通常,可以得到出结论:低频功率的存在提供更少的OH再吸收和更高的击穿电压。
图14和16有效地比较了对于不同的O2/TEOS比率在175℃和200℃再吸收24小时后的电响应。观察到在6∶1的低比率时,在175℃有显著的再吸收,但是当比率增加时,劣化程度和性能下降。
图16说明了方法2膜的良好吸收性能。从上面可以看出,在低于200℃的温度沉积的具有良好泄漏特性和良好阶梯覆盖率的膜可以使用混频RF功率和理想的H2等离子体处理步骤以较高的O2/TEOS比率如约22∶1实现。但是,该数据还显示了可以使用这些标准的选择实现改善的膜。
设想的是,膜可以在低至125℃的温度沉积。

Claims (15)

1.一种在以下条件下沉积无机SiO2膜的方法:温度低于250℃,使用等离子体增强化学气相沉积(PECVD),在包括供应正硅酸四乙酯(TEOS)和O2作为前体的室中,其中O2/TEOS的比率介于15∶1至25∶1之间。
2.根据权利要求1所述的方法,其中所述前体是使用RF驱动的喷头沉积的,其中所述喷头使用高频成分和低频成分驱动。
3.根据权利要求2所述的方法,其中高频成分处于13.56MHz,而低频成分为350kHz至2MHz。
4.根据权利要求2或3所述的方法,其中以高频供应的功率近似为低频成分的功率的两倍。
5.根据权利要求1至4中任一项所述的方法,所述方法还包括对沉积的膜进行H2等离子体处理。
6.根据权利要求5所述的方法,其中H2等离子体处理在真空中断后进行。
7.根据权利要求5或6所述的方法,其中所述H2等离子体处理在膜的表面上形成或重新形成Si-H键。
8.一种等离子体增强化学气相沉积(PECVD)SiO2膜的方法,所述方法使用TEOS前体和含氧的前体,所述方法包括对沉积的膜进行H2等离子体处理。
9.根据权利要求8所述的方法,其中所述前体通过RF驱动的喷头沉积,并且其中所述喷头使用高频成分和低频成分驱动。
10.一种SiO2膜的等离子体增强化学气相沉积(PECVD)方法,所述方法在低于250℃的温度,使用TEOS和含氧的前体通过RF驱动的喷头进行沉积,其中所述喷头是使用高频成分和低频成分驱动的。
11.根据权利要求10所述的方法,其中高频成分为13.5MHz,而低频成分在350kHz至2MHz的范围内。
12.根据前述权利要求中任一项所述的方法,其中所述膜是在约150℃-约200℃的范围内的温度沉积的。
13.根据权利要求5或从属于权利要求5的权利要求6至12中任一项所述的方法,其中将单一RF频率用于H2等离子体。
14.根据权利要求13所述的方法,其中所述单一RF频率为13.56。
15.根据权利要求5或从属于权利要求5的权利要求6至14中任一项所述的方法,其中等离子体温度在约125℃至约250℃的范围内,优选约200℃。
CN201010615668.9A 2009-12-24 2010-12-24 沉积SiO2膜的方法 Active CN102108497B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0922647.3A GB0922647D0 (en) 2009-12-24 2009-12-24 Methods of depositing SiO² films
GB0922647.3 2009-12-24

Publications (2)

Publication Number Publication Date
CN102108497A true CN102108497A (zh) 2011-06-29
CN102108497B CN102108497B (zh) 2015-07-15

Family

ID=41716978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010615668.9A Active CN102108497B (zh) 2009-12-24 2010-12-24 沉积SiO2膜的方法

Country Status (6)

Country Link
EP (1) EP2362003B1 (zh)
JP (1) JP6058876B2 (zh)
KR (1) KR101472733B1 (zh)
CN (1) CN102108497B (zh)
GB (1) GB0922647D0 (zh)
TW (1) TWI518201B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348461A (zh) * 2010-12-22 2013-10-09 应用材料公司 硅晶圆上的直通硅穿孔的制造
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN106783535A (zh) * 2016-11-28 2017-05-31 武汉新芯集成电路制造有限公司 一种改善peteos薄膜缺陷的方法和半导体结构
CN107039267A (zh) * 2015-12-21 2017-08-11 Spts科技有限公司 改善粘附性的方法
CN108018538A (zh) * 2017-11-24 2018-05-11 中航(重庆)微电子有限公司 采用pe-teos工艺制备二氧化硅薄膜的方法及设备
CN111235547A (zh) * 2020-04-27 2020-06-05 上海陛通半导体能源科技股份有限公司 化学气相沉积方法
CN114000123A (zh) * 2021-11-02 2022-02-01 浙江光特科技有限公司 一种制备SiO2薄膜的方法、芯片及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029004A (ja) * 2013-07-30 2015-02-12 株式会社アルバック プラズマcvd装置及び成膜方法
GB201410317D0 (en) * 2014-06-10 2014-07-23 Spts Technologies Ltd Substrate
US9390910B2 (en) * 2014-10-03 2016-07-12 Applied Materials, Inc. Gas flow profile modulated control of overlay in plasma CVD films
KR101772772B1 (ko) * 2015-12-08 2017-08-29 주식회사 포스코 표면 처리된 기판 및 이의 제조방법
EP3354771A4 (en) * 2015-09-21 2018-10-31 Posco Color-treated substrate and color treatment method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356722A (en) * 1992-06-10 1994-10-18 Applied Materials, Inc. Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
US7247252B2 (en) * 2002-06-20 2007-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of avoiding plasma arcing during RIE etching

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523442A1 (de) * 1995-06-28 1997-01-02 Antec Angewandte Neue Technolo Verfahren zur Beschichtung von Gegenständen aus Metall oder Metall-Legierungen oder entsprechenden Oberflächen
JP2973905B2 (ja) * 1995-12-27 1999-11-08 日本電気株式会社 半導体装置の製造方法
US6028014A (en) * 1997-11-10 2000-02-22 Lsi Logic Corporation Plasma-enhanced oxide process optimization and material and apparatus therefor
JP3933793B2 (ja) * 1998-06-16 2007-06-20 富士通株式会社 シリコン酸化膜の形成方法及び薄膜磁気ヘッドの製造方法
JP3248492B2 (ja) * 1998-08-14 2002-01-21 日本電気株式会社 半導体装置及びその製造方法
JP3184177B2 (ja) * 1999-03-26 2001-07-09 キヤノン販売株式会社 層間絶縁膜の形成方法、半導体製造装置、及び半導体装置
JP2005150299A (ja) * 2003-11-13 2005-06-09 Seiko Epson Corp 半導体チップ、半導体装置及び半導体装置の製造方法、回路基板及び電子機器
US7888273B1 (en) * 2006-11-01 2011-02-15 Novellus Systems, Inc. Density gradient-free gap fill
JP4985411B2 (ja) * 2008-01-08 2012-07-25 住友電気工業株式会社 半導体光素子を作製する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356722A (en) * 1992-06-10 1994-10-18 Applied Materials, Inc. Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
US7247252B2 (en) * 2002-06-20 2007-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of avoiding plasma arcing during RIE etching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE-KEUN KIM 等: "Characterization and preparation of SiO2 and SiOF films using an RF PECVD technique from TEOS/O2 and TEOS/O2/CF4 precursors", 《JOURNAL OF PHYSICS D: APPLIED PHYSICS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348461A (zh) * 2010-12-22 2013-10-09 应用材料公司 硅晶圆上的直通硅穿孔的制造
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN107039267A (zh) * 2015-12-21 2017-08-11 Spts科技有限公司 改善粘附性的方法
CN106783535A (zh) * 2016-11-28 2017-05-31 武汉新芯集成电路制造有限公司 一种改善peteos薄膜缺陷的方法和半导体结构
CN108018538A (zh) * 2017-11-24 2018-05-11 中航(重庆)微电子有限公司 采用pe-teos工艺制备二氧化硅薄膜的方法及设备
CN111235547A (zh) * 2020-04-27 2020-06-05 上海陛通半导体能源科技股份有限公司 化学气相沉积方法
CN114000123A (zh) * 2021-11-02 2022-02-01 浙江光特科技有限公司 一种制备SiO2薄膜的方法、芯片及装置

Also Published As

Publication number Publication date
EP2362003A2 (en) 2011-08-31
JP2011135084A (ja) 2011-07-07
GB0922647D0 (en) 2010-02-10
KR101472733B1 (ko) 2014-12-15
JP6058876B2 (ja) 2017-01-11
TW201139719A (en) 2011-11-16
EP2362003B1 (en) 2017-07-05
KR20110074478A (ko) 2011-06-30
TWI518201B (zh) 2016-01-21
CN102108497B (zh) 2015-07-15
EP2362003A3 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
CN102108497B (zh) 沉积SiO2膜的方法
US7955650B2 (en) Method for forming dielectric film using porogen gas
US8357435B2 (en) Flowable dielectric equipment and processes
US7989365B2 (en) Remote plasma source seasoning
KR101573299B1 (ko) 유동성 유전 장치 및 프로세스
US9018108B2 (en) Low shrinkage dielectric films
US9165762B2 (en) Method of depositing silicone dioxide films
US20130288485A1 (en) Densification for flowable films
JPH09270421A (ja) 表面処理装置および表面処理方法
KR20150053967A (ko) 저비용의 유동 가능한 유전체 필름들
KR20080107270A (ko) 무기 실라잔계 유전체 막의 제조 방법
WO2006078719A2 (en) Interface engineering to improve adhesion between low k stacks
JP5614589B2 (ja) 絶縁膜材料を用いた成膜方法および絶縁膜
JP4881153B2 (ja) 水素化シリコンオキシカーバイド膜の生成方法。
TW201622031A (zh) 以自由基協助的介電薄膜處理
JP2007109984A (ja) 酸化膜形成方法
US20110318502A1 (en) Methods of depositing sio2 films
JP2018062713A (ja) プラズマcvd装置及びプラズマcvd法
JP2005039074A (ja) 常圧プラズマcvd装置及び常圧プラズマcvd法
JP2006173235A (ja) 絶縁層の形成方法、熱処理装置及び記憶媒体
JP2008130575A (ja) 膜形成材料および膜形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant