TWI518201B - 沉積二氧化矽薄膜的方法 - Google Patents

沉積二氧化矽薄膜的方法 Download PDF

Info

Publication number
TWI518201B
TWI518201B TW099144743A TW99144743A TWI518201B TW I518201 B TWI518201 B TW I518201B TW 099144743 A TW099144743 A TW 099144743A TW 99144743 A TW99144743 A TW 99144743A TW I518201 B TWI518201 B TW I518201B
Authority
TW
Taiwan
Prior art keywords
film
teos
deposited
plasma treatment
plasma
Prior art date
Application number
TW099144743A
Other languages
English (en)
Other versions
TW201139719A (en
Inventor
凱瑟琳 吉爾斯
安德魯 普萊斯
史蒂芬R 柏格斯
丹尼爾T 亞賈德
Original Assignee
Spp處理科技系統英國有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spp處理科技系統英國有限公司 filed Critical Spp處理科技系統英國有限公司
Publication of TW201139719A publication Critical patent/TW201139719A/zh
Application granted granted Critical
Publication of TWI518201B publication Critical patent/TWI518201B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

沉積二氧化矽薄膜的方法
本發明係有關於一種沉積SiO2薄膜之方法,且特別係於低於250℃使用電漿增強式化學蒸鍍(PECVD)沉積此等薄膜。
可於矽中蝕刻,例如,通孔或凹溝之矽穿孔(TSV)於金屬層沉積前需要一介電內襯。高度合意者係此等薄膜因為其最小厚度而係良好之順形薄膜,介電性質需足夠好以避免於正常使用中漏電。亦需限制沉積步驟後之濕氣吸收(若有),特別是相當普遍地當下一步驟會係真空破壞。亦合意者係其可於低溫,較佳係甚至低於200℃沉積,同時係順形且非吸收性。
使用TEOS/02先質之PECVD已被考慮,因為其一般具有良好之步階式覆蓋且先質之成本相對較低。但是,當沉積溫度降至少於200℃至250℃,介電性質(漏電及極限崩潰)降低。於Kim等人之名稱為使用RF PECVD技術自TEOS2及TEOS/O2/CF4先質之SiO2及SiOF薄膜之特性化及製備之文章-J. Phys. D: Appl. Phs. 37(2004) 2425-2431-作者描述自TEOS/O2先質對於先質使用不同之流速比例形成之薄膜。需注意於此文章之第1a圖,於200℃之沉積速率戲劇性地下降,且於較低之O2/TEOS比例,作者報導將環氧基團併納於薄膜內。其未提供有關於此等薄膜之電崩潰特性之資訊。特別注意其報導於使用較低沉積溫度沉積後曝置於空氣時增加O-H吸入薄膜內。
由一方面,本發明在於一種於一腔室內在低於250℃之溫度使用電漿增強式化學蒸鍍(PECVD)沉積SiO2薄膜之方法,包含供應於15:1與25:1間之O2/TEOS比率之作為先質之四乙基正矽酸鹽(TEOS)及O2
較佳地,先質係使用RF驅動之噴頭沉積,且較佳係此噴頭使用一高頻率之組件及一低頻率之組件驅動。於此情況,高頻率之組件較佳係13.56 MHz且低頻率之組件係350kHz至2MHz。於高頻率供應之電力係低頻率組件之電力之約二倍。
於上述情況之任一者中,此方法可包含於沉積時之薄膜上實施H2電漿處理。此處理可於真空破壞後實施。較佳係此H2電漿處理係足以於薄膜表面上重新形成Si-H鍵結。
由另一方面,本發明在於一種使用TEOS先質及含有O2之先質之SiO2薄膜之PECVD方法,包含於沉積時之薄膜上實施H2電漿處理。
先質可經由RF驅動之噴頭沉積,且此噴頭可使用可為如上所述之一高頻率之組件及一低頻率之組件驅動。
於本發明之另一方面,包含一種於低於250℃之溫度使用TOS及含有O2之先質經由RF驅動之噴頭沉積之SiO2薄膜之PEVCD之方法,其中,此噴頭係使用一高頻率之組件及一低頻率之組件驅動。此等組件可如上所述般。
於上述方法之任一者,薄膜可於150℃至200℃範圍之溫度沉積。
雖然本發明已於上界定,但其包含如上所示及於下列說明中之特徵之任何具發明性之組合。
本發明可以各種方式實施,且特別實施例現將參考附圖作例示說明,其中:第1圖顯示使用具有及不具有60 s H2電漿處理之混合頻率之SiH4 PECVD沉積及混合頻率之TEOS PECVD沉積產生之三相同厚度之沉積SiO2之電特性。方法4被使用。(6:1 O2/TEOS,於200C);第2圖顯示使用具有及不具有60 s H2電漿處理之混合頻率之TEOS PECVD沉積產生之三相同厚度之沉積SiO2之電特性。方法2被使用。(22.7:1 O2/TEOS,於150C);第3圖顯示於H2電漿處理前具不同真空破壞長度之相同TEOS/02沉積膜之應用場強度之漏電。方法4被使用(6:1 O2/TEOS,於200C);第4圖顯示於H2電漿處理(60、120及180秒)前後之TEOS/O2之FTIR光譜。光譜因為視學輔助係被疊置。注意寬的波峰3100-3500cm-1及平坦區域900-1000 cm-1,二者皆由於沉積時之膜中之O-H鍵存在。方法4被使用(6:1 O2/TEOS,於200C);第5圖顯示TEOS膜之各種電漿及熱後沉積處理之場電壓之漏電。所有沉積皆係於200℃之平台實施。所有後沉積處理皆係於原位實施,400℃之熱退火處理除外,其係於一個別之模組(無真空破壞)實施;第6圖顯示TEOS膜之各種電漿及熱後沉積處理之FTIR數據。所有沉積係於200℃之平台實施。所有後沉積處理係於原位實施,但400℃之熱退火處理除外,其係於一個別模組(無真空破壞)實施。光譜為了清楚而被偏移。注意H2電漿及400℃H2退火之於2340 cm-1之弱波峰;第7圖顯示150℃ TEOS薄膜(6:1 O2/TEOS)之FTIR光譜,顯示OH含量隨時間增加;第8a及8b圖顯示方法1(15:1 O2/TEOS)及方法2(22.7:1 O2/TEOS)之二TEOS方法(具相同氫電漿處理)之隨溫度之步階式覆蓋之變化。步階式覆蓋以較高之O2/TEOS比率而改良;第9圖顯示於曝置於大氣中24小時後於150-250℃之平台溫度沉積之未經改質之TEOS方法(O2/TEOS 6:1)之電特性;第10圖顯示於175℃之22.7:1 O2/TEOS方法之為O2/TEOS比率之函數之沉積速率。折射率(RI)對於所有條件係維持於1.461-1.469之間;第11圖顯示藉由於3300cm-1及980cm-1 FTIR波峰之變化測量之濕氣再吸收;第12圖顯示漏電係藉由使用相對於高頻率之混合式頻率而改良;第13圖顯示於175(左)及200℃之24小時再吸收後之標準(方法4) TEOS(6:1 O2/TEOS)薄膜之電回應;第14圖顯示於175℃及200℃之24小時再吸收後之方法1之TEOS(15:1 O2/TEOS)薄膜之電回應;第15圖顯示於175(左)及200℃之24小時再吸收後之方法2之TEOS(22.7:1 O2/TEOS)薄膜之電回應;第16圖顯示方法2之TEOS(22.7:1 O2/TEOS,175℃)薄膜之FTIR光譜,5天後於980cm-1區域無變化。指示無濕氣吸收;第17圖係用於沉積之裝置之示意圖。
於第17圖,一用以實施本發明實施例之示意裝置大體上係以10例示。其包含一腔室11、一噴頭12、一晶圓撐體(wafer support)13,及個別之高及低頻率源14及15。噴頭12係配置用以接收二先質(TEOS及O2)。匹配單元16及17係個別對於高及低頻率源14及15提供,且一泵取出口18被提供以移除剩餘反應氣體。
使用一裝置,一系列之實驗係使用下列方法之條件實行:
方法1-DEP:2400mT,1500sccm O2,1000sccm He,1.0ccm TEOS,666W HF,334W LF,14mm ES(15:1)
PLAS:2000mT,1000sccm H2,1000W HF,20mm ES
方法2-DEP:2000mT,1500sccm O2,1000sccm He,0.66ccm TEOS,666W HF,334W LF,14mm ES(22.7:1)
PLAS:2000mT,1000sccm H2,1000W HF,20mm ES
方法3-DEP:2800mT,500sccm O2,1000sccm He,1.25ccm TEOS,900W HF,11mm ES(4:1)
方法4-DEP:3500 mT,750 sccm O2,1000 sccm He,1.25 ccm TEOS,666 W HF,334W LF,14 mm ES(6:1)
PLAS:如所述或2000 mT,1000 sccm H2,1000 W HF,20 mm ES
若方法之壓力係以mT測量,O2、TEOS及He載體氣流係以sccm,RF電力係以瓦測量,且HF係13.56MHz且LF係於375kHZ,且電極(噴頭)至基材分隔ES係以mm。
於上述方法所示之條件係劃分為起始沉積方法(DEP)及其後之電漿處理(PLAS)。所示之壓力係腔室壓力。氦氣係作為此方法之載體氣體。弧號內所示之比率係O2對TEOS之比率。第1圖顯示H2電漿處理對於低溫200℃沉積薄膜之作用。漏電崩潰一般係視為於1.00 E-07與1.00 E-06間之某處發生,且會見到經氫電漿處理之薄膜顯著改良崩潰特性。
第2圖例示於150℃沉積之薄膜上之無電漿處理與電漿處理間之關係,且再次見到崩潰特性被改良。第3圖相似地例示此特性對於電漿處理發生之依賴性,且可見到即使於相當長時間之真空破壞後亦有效,但似乎有利地係具有真空破壞達至少24小時為止。
第4圖顯示多數個具有不同電漿處理長度之薄膜之FTIR光譜。當與不具有電漿處理之薄膜相比,會見到電漿處理移除~3300及980CM-1之OH波峰。亦於2340CM-1具有一極小之波峰,表示Si-H鍵存在於更接近薄膜之表面上,此使薄膜呈疏水性,且降低於薄膜表面(其於其本體上具有相對較少之OH)上或經由此表面之水蒸氣吸收。
第5及6圖例示不同型式之退火之作用。且會觀察到H2電漿處理係比避免再吸收明顯更佳。第7圖係觀看隨時間之再吸收。
因此,由此等圖式可見到H2電漿處理較佳地至少部份係藉由產生一疏水性表面而降低薄膜內之濕氣及降低再吸收於薄膜內之速率。結果係優異的,即使於150℃之沉積溫度。因此,可供使用之薄膜可能於低於此溫度獲得。處理可於真空破壞後實行,且其可藉由此一破壞而增強。
較佳地,H2電漿處理溫度係低,例如,200℃或甚至更低,約125℃或150℃。
亦需注意使用氦及NH3電漿處理及H2爐退火不會提供相同結果。
第8a及8b圖顯示對比於撐體平台13之溫度之步階式覆蓋。步階式覆蓋於溫度增加時及於O2/TEOS比率增加時改良。但是,可接受之步階式覆蓋可於歷史上之低溫達成。
第9圖顯示沉積溫度對於一經電漿處理之薄膜之漏電之作用,且可見到此等結果於高溫時較佳,但電漿可接受之結果可於相當低之溫度達成。
第10圖例示沉積速率與O2/TEOS比率之關係,且可見到沈積速率於此比率增加時下降。
如上所闡釋般,噴頭較佳係以混合式之頻率驅動,且一典型之配置係13.56MHz之高頻率及375kHz之低頻率。但是,相信低頻率組件於頻率可增加至少達2MHz為止。已測定低頻率組件之引入不會改變沉積速率,因此,不被認為可藉由離子轟擊增加薄膜之密度。第11圖顯示引入低頻率組件對再吸收之作用。此實驗之沉積條件係如方法4所示,接受此圖所示之RF組件之變化。相對於單一之13.56MHz RF源,當使用混合式頻率時會見到較少之再吸收。當SiO2薄膜沉積速率或折射率無顯著改變,可能係LF組件改變電漿之氣體物種。第12圖比較與高頻率與混合式頻率間之漏電差異。點1、點2,及點3之參考編號指示於該晶圓上之不同測量點。可見到於漏電特性有顯著改良。一般,可斷定低頻率電力之存在提供較少之OH再吸收及較高之崩潰電壓。
第14至16圖有效地比較對於不同O2/TEOS比率之於175℃及200℃之24小時再吸收後之電回應。可見到於6:1之低比率,於175℃具顯著之再吸收,但當此比率增加時,惡化及性能之程度減少。
第16圖例示一方法2之膜之良好吸收性能。
由上可見到具有良好漏電特性及良好步階式覆蓋之於低於200℃之溫度沉積之薄膜可於諸如約22:1之相對較高之O2/TEOS比率使用混合式頻率之RF電力及理想之H2電漿處理步驟達成。但是,數據亦顯示改良之薄膜可使用選擇此等標準而達成。
薄膜被想像可於低達125℃之溫度沉積。
10‧‧‧裝置
11‧‧‧腔室
12‧‧‧噴頭
13‧‧‧晶圓撐體
14‧‧‧高頻率源
15‧‧‧低頻率源
16,17‧‧‧匹配單元
18‧‧‧泵取出口
第1圖顯示使用具有及不具有60s H2電漿處理之混合頻率之SiH4 PECVD沉積及混合頻率之TEOS PECVD沉積產生之三相同厚度之沉積SiO2之電特性。方法4被使用。(6:1 O2/TEOS,於200C);
第2圖顯示使用具有及不具有60 s H2電漿處理之混合頻率之TEOS PECVD沉積產生之三相同厚度之沉積SiO2之電特性。方法2被使用。(22.7:1 O2/TEOS,於150C);
第3圖顯示於H2電漿處理前具不同真空破壞長度之相同TEOS/02沉積膜之應用場強度之漏電。方法4被使用(6:1 O2/TEOS,於200C);
第4圖顯示於H2電漿處理(60、120及180秒)前後之TEOS/O2之FTIR光譜。光譜光譜因為視覺輔助係被疊置。注意寬的波峰3100-3500cm-1及平坦區域900-1000 cm-1,二者皆由於此沉積膜中之O-H鍵存在。方法4被使用(6:1 O2/TEOS,於200C);
第5圖顯示TEOS膜之各種電漿及熱後沉積處理之場電壓之漏電。所有沉積皆係於200℃之平台實施。所有後沉積處理皆係於原位實施,400℃之熱退火處理除外,其係於一個別之模組(無真空破壞)實施;
第6圖顯示TEOS膜之各種電漿及熱後沉積處理之FTIR數據。所有沉積係於200℃之平台實施。所有後沉積處理係於原位實施,但400℃之熱退火處理除外,其係於一個別模組(無真空破壞)實施。光譜為了清楚而被偏移。注意H2電漿及400℃H2退火之於2340 cm-1之弱波峰;
第7圖顯示150℃ TEOS薄膜(6:1 O2/TEOS)之FTIR光譜,顯示OH含量隨時間增加;
第8a及8b圖顯示方法1(15:1 O2/TEOS)及方法2(22.7:1 O2/TEOS)之二TEOS方法(具相同氫電漿處理)之隨溫度之步階式覆蓋之變化。步階式覆蓋以較高之O2/TEOS比率而改良;
第9圖顯示於曝置於大氣中24小時後於150-250℃之平台溫度沉積之未經改質之TEOS方法(O2/TEOS 6:1)之電特性;
第10圖顯示於175℃之22.7:1 O2/TEOS方法之為O2/TEOS比率之函數之沉積速率。折射率(RI)對於所有條件係維持於1.461-1.469之間;
第11圖顯示藉由於3300cm-1及980cm-1 FTIR波峰之變化測量之濕氣再吸收;
第12圖顯示漏電係藉由使用相對於高頻率之混合式頻率而改良;
第13圖顯示於175(左)及200℃之24小時再吸收後之標準(方法4)TEOS(6:1 O2/TEOS)薄膜之電回應;
第14圖顯示於175℃及200℃之24小時再吸收後之方法1之TEOS(15:1 O2/TEOS)薄膜之電回應;
第15圖顯示於175(左)及200℃之24小時再吸收後之方法2之TEOS(22.7:1 O2/TEOS)薄膜之電回應;
第16圖顯示方法2之TEOS(22.7:1 O2/TEOS,175℃)薄膜之FTIR光譜,5天後於980 cm-1區域無變化。指示無濕氣吸收;
第17圖係用於沉積之裝置之示意圖。
10‧‧‧裝置
11‧‧‧腔室
12‧‧‧噴頭
13‧‧‧晶圓撐體
14‧‧‧高頻率源
15‧‧‧低頻率源
16,17‧‧‧匹配單元
18‧‧‧泵取出口

Claims (13)

  1. 一種於一腔室內於低於250℃之溫度使用電漿增強式化學蒸鍍(PECVD)沉積一無機SiO2薄膜之方法,包含供應具有於15:1與25:1間之O2/TEOS比率之作為先質之四乙基正矽酸鹽(TEOS)及O2;其中,該等先質係使用一RF驅動之噴頭沉積,其中,該噴頭係使用一高頻率組件及一低頻率組件驅動,以及該高頻率組件係於13.56MHz,且該低頻率組件係350kHz-2MHz。
  2. 如申請專利範圍第1項之方法,其中,於該高頻率供應之電力係該低頻率組件之電力之約二倍。
  3. 如申請專利範圍第1項之方法,進一步包含對該沉積時之薄膜實施一H2電漿處理,其中該H2電漿處理溫度係200℃或更低。
  4. 如申請專利範圍第3項之方法,其中,該H2電漿處理係於一真空破壞後實施。
  5. 如申請專利範圍第3項之方法,其中,該H2電漿處理於該薄膜之表面上形成或再形成Si-H鍵。
  6. 如申請專利範圍第1項之方法,其中該薄膜係於約150℃至約200℃範圍之溫度沉積。
  7. 一種使用一TEOS先質及一含氧先質電漿增強式化學蒸鍍(PECVD)一SiO2薄膜之方法,包含於沉積時之薄膜上實施一H2電漿處理,其中該H2電漿處理溫度係200℃或更低。
  8. 如申請專利範圍第7項之方法,其中該H2電漿處理僅使用H2氣體。
  9. 如申請專利範圍第7項之方法,其中該SiO2薄膜係沉積於一晶圓撐體,以及於該經沉積之薄膜的H2電漿處理期間,該晶圓撐體係無偏壓(unbiased)。
  10. 如申請專利範圍第7項之方法,其中,該等先質係經由一RF驅動之噴頭沉積,且其中,該噴頭係使用一高頻率組件及一低頻率組件驅動。
  11. 如申請專利範圍第7項之方法,其中,該薄膜係於約150℃-約200℃範圍之溫度沉積。
  12. 如申請專利範圍第1項之方法,其中,一單一之RF頻率係被用於該H2電漿。
  13. 如申請專利範圍第12項之方法,其中,該單一之RF頻率係13.56MHz。
TW099144743A 2009-12-24 2010-12-20 沉積二氧化矽薄膜的方法 TWI518201B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GBGB0922647.3A GB0922647D0 (en) 2009-12-24 2009-12-24 Methods of depositing SiO² films

Publications (2)

Publication Number Publication Date
TW201139719A TW201139719A (en) 2011-11-16
TWI518201B true TWI518201B (zh) 2016-01-21

Family

ID=41716978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099144743A TWI518201B (zh) 2009-12-24 2010-12-20 沉積二氧化矽薄膜的方法

Country Status (6)

Country Link
EP (1) EP2362003B1 (zh)
JP (1) JP6058876B2 (zh)
KR (1) KR101472733B1 (zh)
CN (1) CN102108497B (zh)
GB (1) GB0922647D0 (zh)
TW (1) TWI518201B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329575B2 (en) * 2010-12-22 2012-12-11 Applied Materials, Inc. Fabrication of through-silicon vias on silicon wafers
GB201207448D0 (en) * 2012-04-26 2012-06-13 Spts Technologies Ltd Method of depositing silicon dioxide films
JP2015029004A (ja) * 2013-07-30 2015-02-12 株式会社アルバック プラズマcvd装置及び成膜方法
GB201410317D0 (en) * 2014-06-10 2014-07-23 Spts Technologies Ltd Substrate
US9390910B2 (en) * 2014-10-03 2016-07-12 Applied Materials, Inc. Gas flow profile modulated control of overlay in plasma CVD films
KR101772772B1 (ko) * 2015-12-08 2017-08-29 주식회사 포스코 표면 처리된 기판 및 이의 제조방법
EP3354771A4 (en) * 2015-09-21 2018-10-31 Posco Color-treated substrate and color treatment method therefor
GB201522552D0 (en) * 2015-12-21 2016-02-03 Spts Technologies Ltd Method of improving adhesion
CN106783535A (zh) * 2016-11-28 2017-05-31 武汉新芯集成电路制造有限公司 一种改善peteos薄膜缺陷的方法和半导体结构
CN108018538A (zh) * 2017-11-24 2018-05-11 中航(重庆)微电子有限公司 采用pe-teos工艺制备二氧化硅薄膜的方法及设备
CN111235547B (zh) * 2020-04-27 2020-08-07 上海陛通半导体能源科技股份有限公司 化学气相沉积方法
CN114000123A (zh) * 2021-11-02 2022-02-01 浙江光特科技有限公司 一种制备SiO2薄膜的方法、芯片及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356722A (en) * 1992-06-10 1994-10-18 Applied Materials, Inc. Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
DE19523442A1 (de) * 1995-06-28 1997-01-02 Antec Angewandte Neue Technolo Verfahren zur Beschichtung von Gegenständen aus Metall oder Metall-Legierungen oder entsprechenden Oberflächen
JP2973905B2 (ja) * 1995-12-27 1999-11-08 日本電気株式会社 半導体装置の製造方法
US6028014A (en) * 1997-11-10 2000-02-22 Lsi Logic Corporation Plasma-enhanced oxide process optimization and material and apparatus therefor
JP3933793B2 (ja) * 1998-06-16 2007-06-20 富士通株式会社 シリコン酸化膜の形成方法及び薄膜磁気ヘッドの製造方法
JP3248492B2 (ja) * 1998-08-14 2002-01-21 日本電気株式会社 半導体装置及びその製造方法
JP3184177B2 (ja) * 1999-03-26 2001-07-09 キヤノン販売株式会社 層間絶縁膜の形成方法、半導体製造装置、及び半導体装置
US7247252B2 (en) * 2002-06-20 2007-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of avoiding plasma arcing during RIE etching
JP2005150299A (ja) * 2003-11-13 2005-06-09 Seiko Epson Corp 半導体チップ、半導体装置及び半導体装置の製造方法、回路基板及び電子機器
US7888273B1 (en) * 2006-11-01 2011-02-15 Novellus Systems, Inc. Density gradient-free gap fill
JP4985411B2 (ja) * 2008-01-08 2012-07-25 住友電気工業株式会社 半導体光素子を作製する方法

Also Published As

Publication number Publication date
EP2362003A2 (en) 2011-08-31
CN102108497A (zh) 2011-06-29
JP2011135084A (ja) 2011-07-07
GB0922647D0 (en) 2010-02-10
KR101472733B1 (ko) 2014-12-15
JP6058876B2 (ja) 2017-01-11
TW201139719A (en) 2011-11-16
EP2362003B1 (en) 2017-07-05
KR20110074478A (ko) 2011-06-30
CN102108497B (zh) 2015-07-15
EP2362003A3 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
TWI518201B (zh) 沉積二氧化矽薄膜的方法
US9165762B2 (en) Method of depositing silicone dioxide films
US7488693B2 (en) Method for producing silicon oxide film
US7989365B2 (en) Remote plasma source seasoning
US8647722B2 (en) Method of forming insulation film using plasma treatment cycles
JP5269093B2 (ja) 低ウェットエッチング速度の窒化シリコン膜
US8551892B2 (en) Method for reducing dielectric constant of film using direct plasma of hydrogen
US7951683B1 (en) In-situ process layer using silicon-rich-oxide for etch selectivity in high AR gapfill
US20050178333A1 (en) System and method of CVD chamber cleaning
US20140186544A1 (en) Metal processing using high density plasma
TW201411721A (zh) 用於流動性膜之經改良的緻密化作用
TW201417179A (zh) 低成本流動性介電質薄膜
WO2006078719A2 (en) Interface engineering to improve adhesion between low k stacks
WO2007118026A2 (en) Step coverage and pattern loading for dielectric films
WO2001001472A1 (en) Method and apparatus for forming a film on a substrate
TW201622031A (zh) 以自由基協助的介電薄膜處理
KR19990006652A (ko) 불소 첨가 절연막의 형성 방법
JP2007109984A (ja) 酸化膜形成方法
US20110318502A1 (en) Methods of depositing sio2 films
TW202117058A (zh) 矽化合物及使用其沉積膜的方法
CN117737691A (zh) 二氧化硅厚层的沉积
US20010018275A1 (en) Method of using SACVD deposition and corresponding deposition reactor
JP2007273686A (ja) 半導体装置の製造方法
JPH098029A (ja) フッ素を含有する絶縁膜及びその形成方法
JP2006173235A (ja) 絶縁層の形成方法、熱処理装置及び記憶媒体