CN114000123A - 一种制备SiO2薄膜的方法、芯片及装置 - Google Patents

一种制备SiO2薄膜的方法、芯片及装置 Download PDF

Info

Publication number
CN114000123A
CN114000123A CN202111290588.5A CN202111290588A CN114000123A CN 114000123 A CN114000123 A CN 114000123A CN 202111290588 A CN202111290588 A CN 202111290588A CN 114000123 A CN114000123 A CN 114000123A
Authority
CN
China
Prior art keywords
low
frequency
sio
gas
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111290588.5A
Other languages
English (en)
Inventor
万远涛
廖世容
况诗吟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Guangte Technology Co ltd
Original Assignee
Zhejiang Guangte Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Guangte Technology Co ltd filed Critical Zhejiang Guangte Technology Co ltd
Priority to CN202111290588.5A priority Critical patent/CN114000123A/zh
Publication of CN114000123A publication Critical patent/CN114000123A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为50‑400KHz;高频功率为20‑100W,低频功率为35‑100W;沉积的气体为混合气体与笑气的混合气体,气体压力为900‑1600mtorr,其中硅烷与笑气的流量比例为90‑300:600‑800;沉积温度为250‑300℃。通过采用高低频交替生长SiO2薄膜,薄膜的致密性较高,抵抗湿气的能力强;通过调整高低频的工艺参数,得到低应力的SiO2薄膜,薄膜通过高低频的交替生长可以得到稳定的低应力SiO2薄膜,工艺稳定可以重复运行应力值保持稳定不漂移。

Description

一种制备SiO2薄膜的方法、芯片及装置
技术领域
本发明涉及芯片生产技术领域,尤其涉及一种制备SiO2薄膜的方法、芯片及装置。
背景技术
近年来,为了满足人们对信息传递的要求,光通信网络逐步向高速、全光网方向发展。半导体光电探测器作为光通信网络中重要的接收器件,其性能影响整个光通信网络的运转。评价光电探测器的主要指标有:响应度、暗电流、响应波长范围、可靠性等,其可靠性测试包括高低温冲击、高温热、高温老化等。
芯片作为光电探测器重要部件,其品质决定光电探测器的性能。
现有的探测器芯片通过PECVD的方式采用硅烷(SiH4)与笑气(N20)为原料并用纯高频(HF)13.56MHz的方式生长SiO2薄膜,该生长工艺SiO2薄膜长时间在高温热的环境下,SiO2薄膜容易吸水气,导致探测器暗电流上升。且纯高频生长的SiO2薄膜,生长的薄膜应力调整的范围小。
发明内容
为解决背景技术中存在的至少一个方面的技术问题,本发明提出一种制备 SiO2薄膜的方法、芯片及光电探测器。
本发明提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 50-400KHz;
高频功率为20-100W,低频功率为35-100W;
沉积的气体压力为900-1600mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为90-300:600-800;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;
沉积温度为250-300℃。
优选地,所述高频与所述低频交替时间为:高频10-14s;低频6-9s。
优选地,高频与所述低频交替时间为:高频13s;低频7s。
优选地,高频与所述低频交替时间为:高频12s;低频8s。
优选地,所述低频频率为100KHz。
优选地,所述高频功率为35W,低频功率为50W。
优选地,所述混合气体的流量为110sccm,所述笑气的流量为710sccm。
优选地,沉积温度为280℃。
本发明还公开了一种芯片,其采用上述任意一项制备SiO2薄膜。
本发明还公开了一种装置,包括所述的芯片。
本发明公开的一个方面带来的有益效果是:
通过采用高低频交替生长SiO2薄膜,薄膜的致密性较高,抵抗湿气的能力强;通过调整高低频的工艺参数,得到低应力的SiO2薄膜,薄膜通过高低频的交替生长可以得到稳定的低应力SiO2薄膜,工艺稳定可以重复运行应力值保持稳定不漂移。
具体实施方式
实施例1:
本实施例提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜。
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 100KHz。
高频功率为35W,低频功率为35W。
沉积的气体压力为900-1600mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为90-300:600-800;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%。本实施例中混合气体的流量为110sccm,所述笑气的流量为710sccm。选取合适的硅烷与笑气的流量比生成的SiO2薄膜是一个硅原子与2个氧原子,硅烷偏高会导致生长Si0。硅烷与笑气的流量比在一定的范围才能生长SiO2,比例偏大或偏小生长的可能是一氧化硅,Si原子偏多会导致薄膜的绝缘性能差,器件漏电。通入混合气体,对设备以及厂务的维护成本低。因为稀释后的硅烷在空气中不易自然。纯硅烷遇空气就会自然,对厂务以及设备的要求高。
沉积温度为250-300℃,本实施例中沉积温度为280℃。沉积温度过高InP 会分解,温度过低薄膜密度低,疏松,致密性差。
实施例2:
本实施例提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 50KHz。
高频功率为100W,低频功率为100W。
沉积的气体压力为900mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为300:600;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;沉积温度为270℃。
实施例3:
本实施例提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 400KHz。
高频功率为20W,低频功率为35W。
沉积的气体压力为1600mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为200:750;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;沉积温度为300℃。
实施例4:
本实施例提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 260KHz。
高频功率为80W,低频功率为60W。
沉积的气体压力为1200mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为100;650;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;沉积温度为270℃。
实施例5:
本实施例提出的一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为 350KHz。
高频功率为50W,低频功率为40W。
沉积的气体压力为1500mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为250:725;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;沉积温度为275℃。
以上实施例中,低频的引入,电离的H离子多,使得薄膜表面悬挂链被饱和,缺陷减少,导致其致密性较好。高低频交互使用时,高频与低频各别产生的不同膜层,其交界处会产生类似湿气的截止层,可以想像成氧化硅膜都有一些小孔,在两层的交界处,这些小孔都错开了,相对降低了湿气的穿透,几十次的交互后,有小孔的层与层之间错位,这样叠加整体就没有小孔。
通过采用高低频交替生长SiO2薄膜,薄膜的致密性较高,抵抗湿气的能力强;通过调整高低频的工艺参数,得到低应力(接近零应力)的SiO2薄膜,薄膜通过高低频的交替生长可以得到稳定的低应力SiO2薄膜,工艺稳定可以重复运行应力值保持稳定不漂移。虽然纯高频也可以调试出低应力的SiO2薄膜,但是其工艺很不稳定,在多次运行之后很容易产生应力偏移。
上述实施例是对PECVD沉积方式中的一些方式、参数进行选择、改变、调整。其它参数、要求、设备等参照现有技术即可。
一种芯片,其采用上述方法制备SiO2薄膜。SiO2薄膜应力值保持稳定。
一种装置,比如光电探测器,包括所述的芯片。通过上述方式形成的芯片,避免探测器暗电流上升。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种制备SiO2薄膜的方法,采用PECVD沉积方式制备SiO2薄膜,其特征在于:
采用高频与低频交替方式沉积,其中高频频率13.56MHz;低频频率为50-400KHz;
高频功率为20-100W,低频功率为35-100W;
沉积的气体压力为900-1600mtorr,沉积的气体为混合气体与笑气,其中混合气体与笑气的流量比例为90-300:600-800;所述混合气体包括硅烷和氮气,所述硅烷的体积占比为5%;
沉积温度为250-300℃。
2.根据权利要求1所述的制备SiO2薄膜的方法,其特征在于,所述高频与所述低频交替时间为:高频10-14s;低频6-9s。
3.根据权利要求2所述的制备SiO2薄膜的方法,其特征在于,述高频与所述低频交替时间为:高频13s;低频7s;或,高频12s;低频8s。
4.根据权利要求2所述的制备SiO2薄膜的方法,其特征在于,气体压力为1400mtorr。
5.根据权利要求1所述的制备SiO2薄膜的方法,其特征在于,所述低频频率为100KHz。
6.根据权利要求1所述的制备SiO2薄膜的方法,其特征在于,所述高频功率为35W,低频功率为50W。
7.根据权利要求1所述的制备SiO2薄膜的方法,其特征在于,所述混合气体的流量为110sccm,所述笑气的流量为710sccm。
8.根据权利要求1所述的制备SiO2薄膜的方法,其特征在于,沉积温度为280℃。
9.一种芯片,其特征在于,其采用如权利要求1-8任意一项制备SiO2薄膜。
10.一种装置,其特征在于,包括如权利要求9所述的芯片。
CN202111290588.5A 2021-11-02 2021-11-02 一种制备SiO2薄膜的方法、芯片及装置 Pending CN114000123A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111290588.5A CN114000123A (zh) 2021-11-02 2021-11-02 一种制备SiO2薄膜的方法、芯片及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111290588.5A CN114000123A (zh) 2021-11-02 2021-11-02 一种制备SiO2薄膜的方法、芯片及装置

Publications (1)

Publication Number Publication Date
CN114000123A true CN114000123A (zh) 2022-02-01

Family

ID=79926692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111290588.5A Pending CN114000123A (zh) 2021-11-02 2021-11-02 一种制备SiO2薄膜的方法、芯片及装置

Country Status (1)

Country Link
CN (1) CN114000123A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825545A (zh) * 2005-02-25 2006-08-30 探微科技股份有限公司 耐磨耗介电层的制作方法
CN102108497A (zh) * 2009-12-24 2011-06-29 Spp处理技术系统英国有限公司 沉积SiO2膜的方法
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN103578937A (zh) * 2012-07-30 2014-02-12 无锡华润上华半导体有限公司 氮化硅薄膜的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825545A (zh) * 2005-02-25 2006-08-30 探微科技股份有限公司 耐磨耗介电层的制作方法
CN102108497A (zh) * 2009-12-24 2011-06-29 Spp处理技术系统英国有限公司 沉积SiO2膜的方法
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN103578937A (zh) * 2012-07-30 2014-02-12 无锡华润上华半导体有限公司 氮化硅薄膜的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D GUAN,ET AL.: "Stress control of plasma enhanced chemical vapor deposited silicon oxide film from tetraethoxysilane", 《JOURNAL OF MICROMECHANICS AND MICROENGINEERING》, pages 2 *

Similar Documents

Publication Publication Date Title
CN103614769B (zh) 一种基于原位刻蚀的氮化镓同质外延方法
TWI355684B (en) Doped intride film, doped oxide film and other dop
KR100453612B1 (ko) 유전율이 낮은 수소화된 옥시탄화규소 막의 제조방법
US4572841A (en) Low temperature method of deposition silicon dioxide
US7807225B2 (en) High density plasma non-stoichiometric SiOxNy films
Nozawa et al. Preparation of photoconductive a-SiGe alloy by glow discharge
CN110144567B (zh) 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法
CN109148643B (zh) 一种解决ald方式的perc电池在电注入或光注入后效率降低的方法
TW200300965A (en) Semiconductor device and method of manufacturing the same
Zhou et al. Growth of amorphous-layer-free microcrystalline silicon on insulating glass substrates by plasma-enhanced chemical vapor deposition
CN110066986A (zh) 一种利用原子层沉积一步法可控制备不同氧氮含量的GaON薄膜的方法
CN111663181B (zh) 一种氧化镓膜的制备方法及其应用
CN111063612B (zh) 一种提高本征非晶硅钝化效果的镀膜工艺、钝化结构、异质结太阳能电池及制备工艺
CN109097834A (zh) 多孔网状结构GaN单晶薄膜、其制备方法及应用
CN114000123A (zh) 一种制备SiO2薄膜的方法、芯片及装置
CN110970528A (zh) 一种ZnMgGaO四元合金薄膜的制备方法及ZnMgGaO四元合金薄膜
CN111020529A (zh) 一种稼酸镁薄膜的制备方法及稼酸镁薄膜
CN108598212A (zh) 一种太阳能电池钝化的方法
CN103866277B (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
CN104037264B (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
Egan et al. CSG minimodules using electron-beam evaporated silicon
CN105118853A (zh) 基于MgO衬底的氧化镓薄膜及其生长方法
CN107863415B (zh) 一种热氧化结合pecvd提升太阳能电池片转化效率的方法
CN115377229A (zh) 一种二氧化硅钝化膜及其制作方法
KR20060095972A (ko) 고 밀도 화학 기상 증착법을 이용하여 재료를 증착하는방법 및 갭을 충진시키는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination