CN117737691A - 二氧化硅厚层的沉积 - Google Patents

二氧化硅厚层的沉积 Download PDF

Info

Publication number
CN117737691A
CN117737691A CN202310815161.5A CN202310815161A CN117737691A CN 117737691 A CN117737691 A CN 117737691A CN 202310815161 A CN202310815161 A CN 202310815161A CN 117737691 A CN117737691 A CN 117737691A
Authority
CN
China
Prior art keywords
optionally
chamber
deposition step
substrate
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310815161.5A
Other languages
English (en)
Inventor
M·埃德蒙兹
W·罗伊尔
C·L·琼斯
D·戈麦斯·桑切斯
K·克鲁克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPTS Technologies Ltd
Original Assignee
SPTS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPTS Technologies Ltd filed Critical SPTS Technologies Ltd
Publication of CN117737691A publication Critical patent/CN117737691A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请案的实施例涉及二氧化硅厚层的沉积。提供一种通过等离子体增强化学气相沉积PECVD将二氧化硅沉积到衬底上的方法、一种上面沉积有至少一个二氧化硅层的衬底以及一种用于通过等离子体增强化学气相沉积将二氧化硅沉积到衬底上的等离子体增强化学气相沉积设备。

Description

二氧化硅厚层的沉积
技术领域
本申请案的实施例涉及电介质层,特定来说,涉及二氧化硅厚层的沉积。
背景技术
电介质薄层广泛用于制造半导体装置、MEMS装置以及光学及电光装置或结构。在沉积工艺期间,无论是通过CVD、PECVD、HDP-CVD、PEALD还是ALD,应力都将被并入到电介质薄层中。此应力可由于例如电介质薄层及底层衬底的热膨胀系数之间的差的外在因素或例如电介质薄层的微结构中的缺陷的内在因素。电介质薄层中可存在的压缩或拉伸应力可导致不希望的晶片变形,这继而可证明对后续工艺步骤是有问题的,或者可导致电介质薄层本身以裂纹或分层的形式失效。
当涂层厚度增加时,控制应力变得越来越具挑战性。在需要厚度大于10μm的SiO2厚层的应用中,常规PECVD工艺倾向于是高沉积速率工艺的优选技术。这些常规工艺倾向于需要低沉积速率或多个应力平衡层以实现具有最小晶片变形的无裂纹层。这导致具有低总沉积速率的复杂的沉积工艺。例如,US 9472610 B2公开,不可能在280℃或更低的温度下沉积厚度为20微米或更大的二氧化硅层而不由于层中的应力累积而开裂,且因此使用交替的拉伸应力及压缩应力层压层来形成二氧化硅沉积物。US 2012/015113A1公开形成总层厚度高达3.5微米的多层热SACVD及PECVD SiO2
当考虑沉积工艺时,晶片可接受的热预算是另一个约束,因为沉积速率、层密度及应力全部受沉积温度影响。在许多MEMS及3D封装应用中,存在苛刻的低温约束,其将沉积温度限制在约300℃以下,以便防止装置损坏或翘曲。
因此,需要在所需热预算内以高沉积速率及可接受的晶片翘曲沉积厚SiO2层的方法。
发明内容
本发明在其实施例中的至少一些中解决上文描述的问题及需要。
根据本发明的第一方面,提供一种通过等离子体增强化学气相沉积(PECVD)将二氧化硅沉积到衬底上的方法,所述方法包括以下步骤:
在腔室中提供所述衬底;
通过PECVD执行第一沉积步骤,以将中间层沉积到所述衬底上,所述中间层包括氮化硅;及
通过PECVD执行第二沉积步骤,以将至少一个二氧化硅层沉积到所述中间层上,
其中所述第一沉积步骤包括将包括硅烷、氮气及氢气或氨气的第一气体混合物引入所述腔室中,且在约220℃与约300℃之间的温度下在所述腔室中维持来自所述第一气体混合物的等离子体,以将所述中间层沉积到所述衬底上,
其中所述第二沉积步骤包括将包括正硅酸四乙酯的第二气体混合物引入所述腔室中,且在约220℃与约300℃之间的温度下在所述腔室中维持来自所述第二气体混合物的等离子体,以将所述至少一个二氧化硅层沉积到所述中间层上,及
其中所述中间层具有-400MPa与-100MPa之间的总压缩应力,且所述至少一个二氧化硅层中的每一者具有-50MPa与+50MPa之间的总中性应力,且所述至少一个二氧化硅层的总厚度为至少10μm。
本发明可使具有至少10μm的总厚度的TEOS基二氧化硅层能够以高达1.5μm/分钟的高沉积速率及低热预算内的温度沉积到硅晶片上而不开裂。在不希望被理论或猜想束缚的情况下,相信包括氮化硅(SiN)的中间层改进正硅酸四乙酯(TEOS)基二氧化硅(SiO2)层到衬底上的粘附性,特别是在衬底包括硅(Si)或由硅(Si)形成的情况下,且当中性应力SiO2层沉积到中间层上时,中间层的压缩应力减小中间层/SiO2堆叠的净应力。净压缩应力增加TEOS基SiO2层的开裂阈值。令人惊讶的是,中间层的提供减小TEOS基SiO2层的密度,这继而使更厚的SiO2层能够在达到SiO2的开裂阈值之前沉积。已经证明,无论中间层是从由包括氨的气体混合物形成的等离子体沉积,还是从由不含氨的气体混合物形成的等离子体沉积,此效应都会发生。
第一气体混合物可大体上不含氨。第一气体混合物可由硅烷、氮气及氢气组成或基本上由硅烷、氮气及氢气组成。替代地,第一气体混合物可由硅烷、氮气及氨气组成或基本上由硅烷、氮气及氨气组成。第二气体混合物可进一步包括氧气。第二气体混合物可进一步包括氢气。第二气体混合物可进一步包括氦气。第二气体混合物可由正硅酸四乙酯、氦气、氢气及氧气组成或基本上由正硅酸四乙酯、氦气、氢气及氧气组成。
在第一沉积步骤期间,硅烷、氮气、氢气及氨可各自依以sccm为单位的相关联流速引入腔室中。在第二沉积步骤期间,正硅酸四乙酯、氦气、氢气及氧气可各自依以sccm为单位的相关联流速引入腔室中。在第二沉积步骤期间,氦气可通过两个或更多个气体入口引入腔室中。优选地,来自两个或更多个气体入口中的第一气体入口的氦气流速可高于来自两个或更多个气体入口中的第二气体入口的氦气流速。优选地,第一气体入口也可用作将正硅酸四乙酯引入腔室中的气体入口。通过使至少两个单独的氦气源进入腔室,通过第一气体入口引入腔室中的氦气可充当通过第一气体入口引入腔室中的正硅酸四乙酯的载气,且通过第二气体入口引入腔室中的氦气可用来稳定等离子体及维持可重现操作。
硅烷可在第一沉积步骤期间以约50sccm到约400sccm,任选地约90sccm到约350sccm,任选地约180到约330sccm的范围内或任选地约325sccm的流速引入腔室中。
氮气可在第一沉积步骤期间以约2000sccm到约8,000sccm,任选地约2500sccm到约7,000sccm,任选地约2600sccm到约6,500sccm的范围内或任选地约6,000sccm的流速引入腔室中。
如果在第一沉积步骤中存在,那么氢气可以约250到约750sccm,任选地约400sccm到约600sccm的范围内或任选地约500sccm的流速引入腔室中。
如果在第一沉积步骤中存在,那么氨气可以约25sccm到约500sccm,任选地约35sccm到约475sccm的范围内或任选地约450sccm的流速引入腔室中。
正硅酸四乙酯可在第二沉积步骤期间以约1sccm到约10sccm,任选地约3sccm到约7sccm的范围内或任选地约5sccm的流速引入腔室中。
如果在第二沉积步骤中存在,那么氧气可在第二沉积步骤期间以约1.0slpm到约10slpm,任选地约4.0slpm到约8.0slpm的范围内或任选地约6.5slpm的流速引入腔室中。
如果在第二沉积步骤中存在,那么氢气可在第二沉积步骤期间以约0.25到约2.0slpm,任选地约0.75slpm到约1.5slpm的范围内或任选地约1.0slpm的流速引入腔室中。
如果在第二沉积步骤中存在,那么氦气的总流速可在第二沉积步骤中以约1000sccm到约2000sccm,任选地约1200sccm到约1650sccm的范围内或任选地约1450sccm的流速引入腔室中。在第二沉积步骤中通过至少两个气体入口中的第一气体入口引入腔室中的氦气的流速可在约600sccm到约1900sccm,任选地约800sccm到约1650sccm的范围内或任选地约1250sccm。在第二沉积步骤中通过至少两个气体入口中的第二气体入口引入腔室中的氦气的流速可在约50sccm到约500sccm,任选地约100sccm到约300sccm的范围内或任选地约200sccm。
在第一沉积步骤期间,工艺温度可小于约280℃。工艺温度可大于约225℃。在第一沉积步骤期间,工艺温度可为大约250℃。在第二沉积步骤期间,工艺温度可小于约280℃。工艺温度可大于约225℃。在第二沉积步骤期间,工艺温度可为大约250℃。将衬底维持在这些温度下可将衬底保持在低热预算约束内,这使本方法适用于将氮化硅及二氧化硅层沉积到温度敏感衬底上。例如,所述方法可用于将氮化硅及二氧化硅层沉积到包括装置层及/或互连件的温度敏感衬底上,所述装置层及/或互连件可包含嵌入到附接到衬底的电介质或裸片中的铜层。
当等离子体在第一沉积步骤中维持在腔室中时,腔室可具有约1托到约3托的范围内,或任选地约2托的压力。当等离子体在第二沉积步骤中维持在腔室中时,腔室可具有约3托到约5托的范围内,或任选地约4托的压力。
本发明的第一方面的步骤可在电容耦合PECVD反应器中执行。
使用约500W到约1500W,任选地约540W到约1320W,或任选地约700W到约1000W的范围内的高频RF功率维持第一沉积步骤中的等离子体。第一沉积步骤中的高频RF功率可具有约10MHz到约15MHz的范围内,优选地13.56MHz的频率。
第二沉积步骤中的等离子体可使用高频RF功率来维持。优选地,可使用高频RF功率及低频RF功率来维持等离子体。
第二沉积步骤中的高频RF功率可具有约10MHz到约15Mhz的范围内,优选地13.56MHz的频率。第二沉积步骤中的高频RF功率可具有约1500W到约3000W,任选地约1750W到2300W的范围内,或任选地约1950W的功率。
第二沉积步骤中的低频RF功率可具有在100kHz到约500kHz,任选地约200kHz到约450kHz,任选地约300kHz到约400kHz的范围内,或任选地约375kHz的频率。低频RF功率可在第二沉积步骤中具有约200W到约600W,任选地约400W到约550W的范围内,或任选地约350W的功率。
中间层的总压缩应力可为至少-100MPa,任选地至少-200MPa,任选地至少-250MPa或任选地至少-300MPa。中间层的厚度可为至少0.05μm,任选地至少0.25μm,或任选地至少0.5μm。至少一个二氧化硅层中的每一者的总中性应力可在-30MPa与+30MPa之间。至少一个二氧化硅层的总应力可在-50MPa与+50MPa之间,任选地在-30MPa与+30MPa之间。二氧化硅层的总厚度可为至少20μm,任选地至少30μm,或任选地至少40μm。至少一个二氧化硅层中的每一者的厚度可为至少1μm,任选地至少2μm,或任选地至少5μm。至少一个二氧化硅层可以至少1.0μm/分钟,任选地至少1.25μm/分钟或任选地至少1.5μm/分钟的沉积速率沉积到所述中间层上。
至少一个二氧化硅层可由单个二氧化硅层组成或基本上由单个二氧化硅层组成。替代地,至少一个二氧化硅层可由两个或更多个二氧化硅层组成。两个或更多个二氧化硅层可沉积在同一腔室中。第二沉积步骤可紧接在第一沉积步骤之后执行,而不中断腔室内的真空条件。替代地,可在第一沉积步骤与第二沉积步骤之间从腔室移除衬底。衬底可在第一沉积步骤与第二沉积步骤之间传送到不同腔室。替代地,第一沉积步骤及第二沉积步骤可在同一腔室中执行。本发明人已经发现,在第一沉积步骤之后,可从腔室移除衬底,且借此导致真空条件的中断,而中间层二氧化硅堆叠的工艺性能没有明显变化。因此,衬底可在同一腔室中或在具有相同性能的不同腔室中处理,从而允许改进的工艺效率及工艺灵活性。
所述衬底可为半导体衬底。所述衬底可为含硅衬底。所述半导体衬底可为硅。
根据本发明的第二方面,提供一种使用根据第一方面的方法在其上沉积有至少一个二氧化硅层的衬底,其中所述至少一个二氧化硅层中的每一者具有-50MPa与+50MPa之间的总中性应力,且所述至少一个二氧化硅层的总厚度为至少10μm。
所述衬底可为半导体衬底。所述衬底可为含硅衬底。所述衬底可为硅。所述衬底可包括多个裸片。所述衬底可包括特征,例如附接到衬底的一或多个装置层及/或互连件或裸片。所述特征可为温度敏感的。所述特征可包括铜层,例如嵌入电介质材料中的铜层。至少一个二氧化硅层中的每一者的总中性应力可在-30MPa与+30MPa之间。至少一个二氧化硅层的总应力可在-50MPa与+50MPa之间,任选地在-30MPa与+30MPa之间。至少一个二氧化硅层的总厚度可为至少20μm,任选地至少30μm,或任选地至少40μm。至少一个二氧化硅层中的每一者的厚度可为至少1μm,任选地至少2μm,或任选地至少5μm。
根据本发明的第三方面,提供一种用于使用根据本发明的第一方面的方法通过等离子体增强化学气相沉积将二氧化硅沉积到衬底上的等离子体增强化学气相沉积设备,所述设备包括:
腔室;
衬底支撑件,其安置在腔室内用于在其上支撑衬底;
至少一个气体入口,其用于以一定流速将气体或气体混合物引入所述腔室中;
等离子体产生构件,其用于维持所述腔室中的等离子体;
高频电源构件,其经配置以向所述至少一个气体入口供应高频RF电源;
低频电源构件,其经配置以向所述衬底支撑件及所述至少一个气体入口中的至少一者供应低频RF电源;及
控制器,其经配置以在第一组处理条件与第二组处理条件之间切换,其中所述第一组处理条件经配置以执行第一沉积步骤以将中间层沉积到所述衬底上,所述中间层包括氮化硅,且所述第二组处理条件经配置以执行第二沉积步骤以将至少一个二氧化硅层沉积到所述中间层上,
其中所述第一组处理条件经配置以通过将包括硅烷、氮气及氢气或氨气的第一气体混合物通过所述至少一个气体入口引入所述腔室中,且使用等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第一气体混合物的等离子体维持在所述腔室中以将所述中间层沉积到所述衬底上来执行所述第一沉积步骤,
其中所述第二组处理条件经配置以通过将包括正硅酸四乙酯的第二气体混合物通过所述至少一个气体入口引入所述腔室中,且使用等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第二气体混合物的等离子体维持在所述腔室中以将所述至少一个二氧化硅层沉积到所述中间层上来执行所述第二沉积步骤。
第二气体混合物可进一步包括氧气。第二气体混合物可进一步包括氢气。第二气体混合物可进一步包括氦气。所述至少一个气体入口可包括两个或更多个气体入口。优选地,所述两个或更多个气体入口中的第一气体入口经配置以将氦气及正硅酸四乙酯引入所述腔室中,且所述两个或更多个气体入口中的第二气体入口经配置以将氦气引入所述腔室中。所述低频电源构件可经配置以向所述至少一个气体入口供应低频RF电源。
虽然上文已描述本发明,但其扩展到上文或以下描述、图或技术方案中陈述的特征的任何创造性组合。举例来说,关于本发明的一个方面公开的任何特征可与关于本发明的其它方面中的任一者公开的任何特征组合。
为了避免疑问,每当在本文参考“包括”或“包含”及类似术语时,本发明也被理解为包含更多限制性术语,例如“由……组成”及“基本上由……组成”。
为了避免疑问,具有负数值的应力的测量被理解为指示压缩应力,而具有正数值的应力的测量被理解为指示拉伸应力。
为了避免疑问,在所关注的温度范围内通过PECVD沉积的氮化硅或SiN被理解为是包括硅、氮及氢或由硅、氮及氢组成的非晶薄膜,且在一些实施例中可描述为α-SiN:H或α-Si 1-x Nx:Hy。Si、N及H的比例可随着沉积参数而变化。然而,为了方便及简洁,这些薄膜在本文被称为氮化硅或SiN。这些薄膜具有优良的电介质性质。由TEOS前体沉积的PECVD二氧化硅或SiO2薄膜也是非晶电介质膜,其并入氢原子及潜在的痕量碳。在所关注的温度范围内沉积的PECVD TEOS基氧化物不是化学计量的SiO2,而是包括硅、氧及氢或由硅、氧及氢组成的非晶薄膜,且在一些实施例中可被描述为α-SiO:H或α-Si 1-x Ox:Hy薄膜。然而,为了方便及简洁,这些PECVD TEOS基氧化物在本文中被称为二氧化硅或SiO2
附图说明
现将参考附图仅通过实例来描述本发明的实施例,其中:
图1展示具有中性及压缩应力两者的来自N2/H2前体的PECVD SiN层的FTIR光谱;
图2展示具有中性及压缩应力两者的来自NH3前体的PECVD SiN层的FTIR光谱;
图3展示沉积在具有中性应力的来自NH3前体的SiN层、具有中性应力的来自N2/H2前体的SiN层及硅衬底上的来自TEOS前体的PECVD SiO2层的FTIR光谱;
图4展示A)没有根据本发明的中间层及B)具有根据本发明的中间层的在涂覆有二氧化硅层的硅衬底中形成的40μm沟槽的SEM图像。
具体实施方式
根据本发明的示范性方法(及比较实例)适用于沉积中间层及二氧化硅层的设备包含SPTS DeltaTMfxP平行板PECVD设备,其可从位于英国南威尔斯新港的SPTS技术有限公司商购。使用此设备执行下文描述的所有示范性实施例及比较实例。然而,预期结果通常可在电容耦合PECVD系统上实现。应力测量是在Tenor FlxTM3300-R系统上进行的。
在下面的示范性方法中,中间层由氮化硅(SiN)形成。然而,预期除了SiN之外,包括一或多个其它组分的中间层也将表现出下面讨论的优点。
本发明的PECVD设备包括:腔室;衬底支撑件,其安置在腔室内用于在其上支撑衬底;至少一个气体入口,其用于以一定流速将气体或气体混合物引入所述腔室中;等离子体产生构件,其用于维持所述腔室中的等离子体;高频电源构件,其经配置以向所述至少一个气体入口供应高频RF电源;低频电源构件,其经配置以向所述衬底支撑件及所述至少一个气体入口中的至少一者供应低频RF电源;及控制器。所述控制器经配置以在第一组处理条件与第二组处理条件之间切换,其中所述第一组处理条件经配置以执行第一沉积步骤以将中间层沉积到所述衬底上,所述中间层包括氮化硅,且所述第二组处理条件经配置以执行第二沉积步骤以将至少一个二氧化硅层沉积到所述中间层上。所述第一组处理条件经配置以通过将包括硅烷、氮气及氢气或氨气的第一气体混合物通过所述至少一个气体入口引入所述腔室中,且使用等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第一气体混合物的等离子体维持在所述腔室中以将所述中间层沉积到所述衬底上来执行所述第一沉积步骤,所述第二组处理条件经配置以通过将包括正硅酸四乙酯、氦气、氢气及氧气的第二气体混合物通过所述至少一个气体入口引入所述腔室中,且使用等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第二气体混合物的等离子体维持在所述腔室中以将所述至少一个二氧化硅层沉积到所述中间层上来执行所述第二沉积步骤。
所述至少一个气体入口可包括两个或更多个气体入口。优选地,所述两个或更多个气体入口中的第一气体入口经配置以将氦气及正硅酸四乙酯引入所述腔室中,且所述两个或更多个气体入口中的第二气体入口经配置以将氦气引入所述腔室中。
在13.56MHz及375kHz下操作的两个RF电源耦合到经定位朝向腔室顶部的气体分配板(也称为“喷头”)。衬底与气体分配板下方的衬底支撑件同轴定位。衬底支撑件被电阻加热,且由于冷却机构,能够控制衬底支撑件及继而衬底温度。当实现适当的RF及工艺气体压力时,在气体分配板与衬底支撑件/衬底之间产生等离子体。腔室由泵送系统抽空,且附接到在真空下操作的输送模块。
衬底优选地是半导体衬底,且最优选地由硅形成。在本文讨论的实施例中,衬底呈300mm直径的硅晶片的形式,其标准厚度为约775μm。然而,在本发明的方法及设备中也可使用其它衬底材料、衬底几何形状、直径及厚度。应了解,执行本发明所需的沉积条件(包含气体流动速率、腔室压力及施加到衬底及/或气体入口的功率)预期将以本领域中已知的方式随着衬底材料及几何形状而变化。在本文讨论的实施例中,硅晶片具有形成在硅晶片的上表面中的沟槽,沟槽具有大约40μm的深度,且本发明的方法用于用经沉积二氧化硅层填充沟槽。然而,二氧化硅层同样可沉积在此衬底的其它特征上,包含通孔、裸硅表面或附接到衬底表面的裸片。
本发明人已经发现,通过用包括SiN的中间层涂覆衬底(特别是包含硅或由硅组成的衬底),可大体上增加可在开裂或分层发生之前沉积的中性/低应力TEOS基SiO2层的厚度。在没有包括SiN的中间层的情况下,之前可沉积的不开裂或分层的SiO2的最大厚度为20μm,且只能通过交替拉伸及压缩应力的多层的层压或以非常低的沉积速率沉积。然而,当使用由PECVD沉积的包括SiN的0.5μm厚的中间层时,以高达1.5μm/分钟的沉积速率,针对中性应力(+22MPa)中间层获得大于30μm的SiO2层厚度,且针对压缩应力(-200MPa)中间层获得大于40μm的SiO2层厚度。已在0.05μm与0.5μm之间的中间层厚度观察到开裂阈值厚度的此增加,不过这种效应预期也扩展到更厚的中间层。
图4中展示通过现有方法处理的衬底与根据本发明方法的实施例处理的衬底之间的比较。图4展示大约40μm中性应力TEOS基SiO2层的硅沉积中横截面为40μm的深沟槽的两张SEM图像。在标记为“A”的图像中,在SiO2层与衬底之间没有中间层,而在标记为“B”的图像中,首先沉积总应力约为-200MPa的N2/H2基压缩SiN层,随后沉积单个中性应力TEOS基SiO2层。在图像A中,例如在沟槽的右侧壁的中间及靠近SiO2层的上表面两者上观察到严重的开裂。相比之下,图像B展示除了来自样品制备的劈开损伤之外,没有开裂的迹象。
示范性实施例
本发明的示范性实施例包括在第一沉积步骤中将硅烷(SiH4)、氮气(N2)及氢气(H2)或氨气(NH3)引入PECVD腔室中。将等离子体维持在腔室内,使得可发生PECVD工艺,这使包括氮化硅(SiN)的中间层沉积到衬底上。优选地,中间层由SiN组成或基本上由SiN组成。
在第一沉积步骤之后的第二沉积步骤中,将包括正硅酸四乙酯(TEOS)、氧气(O2)、H2及氦气(He)的气体混合物引入含有衬底的PECVD腔室,所述腔室可为与在第一沉积步骤中使用的腔室相同或不同的腔室。将等离子体维持在腔室内,使得可发生PECVD工艺,这使至少一个二氧化硅(SiO2)层沉积在中间层上。
可优选地避免在第一沉积步骤中使用氨来产生中间层。因此,本发明人研究在第一沉积步骤中有及没有氨的中间层的性质。下文在表1中给出用于沉积无NH3及NH3基SiN层中的每一者的工艺条件。每一情况下的沉积都在250℃下执行。
表1
图1展示以SiH4/N2/H2的气体混合物在不使用氨的情况下产生的Si衬底上的两个SiN层的FTIR光谱。衬底贡献已被减除。所述光谱展示与大约3340cm-1处的N-H拉伸、大约2130cm-1处的Si-H拉伸、大约1170cm-1处的N-H弯曲及850cm-1处的Si-N拉伸有关的吸收峰。在光谱于Si-N峰上归一化的情况下,我们可看到,当与中性SiN相比时,Si-H拉伸峰在2130cm-1处面积略有减小且波数增加,且在其接近压缩SiN的N-H弯曲模式时,向Si-H拉伸峰的更高波数移位。
图2展示具有中性及压缩应力的NH3基PECVD SiN层的FTIR光谱。在这种情况下,气体混合物是SiH4/NH3/N2。光谱与图1中的光谱相似,除了针对NH3基SiN的N-H弯曲峰更突出以外。
图3展示到硅上的1μm TEOS基SiO2沉积及到硅衬底上的N2/H2基SiN层的FTIR吸收光谱(在减除衬底及SiN贡献后)。FTIR光谱展示以大约1083cm-1为中心的SiO峰逐渐变宽。针对NH3基SiN层观察到类似的结果。下文在表2依据硅及四种SiN变体上的SiO峰的半高全宽(FWHM)呈现SiO峰的宽度的变化。
表2
结构 FWHM(cm-1)
TEOS基SiO2 102
中性应力N2/H2基SiN上的TEOS基SiO2 118
压缩应力N2/H2基SiN上的TEOS基SiO2 123
中性应力NH3基SiN上的TEOS基SiO2 122
压缩应力NH3基SiN上的TEOS基SiO2 124
从表2中可看出,峰的宽度随着中性SiN层的引入而增加,且当所述层被压缩时稍微进一步变宽。较宽的峰指示密度较小的层,这允许在SiO2的开裂发生之前沉积较厚的层。
研究了中间层的折射率,且其在下面的表3中展示。对于N2/H2及NH3基SiN沉积两者,SiO2层的折射率随着SiN层中的压缩应力的增加而减小,由N2/H2形成的SiN层的折射率变化更明显。在中间层顶部具有及没有SiO2层的情况下,中间层的总应力也在下面的表4中展示。没有中间层的中性应力SiO2层中的总应力为-7MPa。
表3
结构 折射率
中性应力N2/H2基SiN 2.3488
压缩应力N2/H2基SiN 2.1529
中性应力NH3基SiN 1.9868
压缩应力NH3基SiN 1.9319
表4
N2/H2基层展示较高的折射率,这指示N2/H2层中在与其NH3基对应物相比时更高的Si含量。SiN/SiO2堆叠的净应力比从个别层的应力值预期的压缩性小,表明中间层正在修改SiO2层的性质。在两种情况下,应力都可通过修改工艺条件来调节。
中性应力SiO2层使用TEOS/O2/H2/He化学物在大约250℃下沉积,且能够支持高达1.5μm/分钟的沉积速率。工艺细节见下文表5。
表5
工艺参数 中性TEOS基SiO2
压力(托) 4
TEOS流速(sccm) 5
O2流速(slpm) 6.5
H2流速(slpm) 1
He流速(sccm) 200/1250
高频功率(瓦特) 1950
低频功率(瓦特) 350
1250sccm的He流速充当TEOS的载气,而200sccm的He流速在另一管线中被直接馈送到气体分配板,以稳定等离子体并维持可重现操作。通过调整高频及低频源的功率,可有效地控制SiO2层的总应力。例如,可用2300W的高频源及550W的低频源使所述层压缩,而可用1500W的高频源使所述层拉伸。所述层的测量应力值及折射率在下文表6中展示。
表6
在不被任何理论或猜想束缚的情况下,中间层中的SiN似乎出人意料地影响SiO2的结构,如通过在1183cm-1处Si-O FTIR峰的变宽所测量的,这指示TEOS基SiO2层的密度减小。如由SiO2层的折射率及FTIR光谱确定,TEOS中的结构变化似乎相对独立于中间层中的SiN的来源。在不希望被任何理论或猜想束缚的情况下,推测中间层中SiN的存在改进TEOS基SiO2到衬底上的粘附性,特别是当衬底由Si形成或包括Si时。推测当中性应力SiO2层沉积到中间层上时,中间层的压缩应力减小中间层/SiO2堆叠的净应力。净压缩应力增加TEOS基SiO2层的开裂阈值,且增加在开裂或分层发生之前可沉积的SiO2层的厚度。令人惊讶的是,中间层中的SiN影响上述SiO2层的结构,如通过1183cm-1处Si-O FTIR峰的变宽所测量。此峰变宽指示TEOS基SiO2层的密度减小。如由折射率及FTIR确定,TEOS基SiO2层中的结构变化似乎相对独立于中间层的SiN组分的来源。
应注意,中性应力TEOS基SiO2可作为单层沉积或分步骤沉积以形成多个SiO2层,每一层具有中性应力,而开裂性能没有变化。优选地,如果存在多个SiO2层,那么至少一个SiO2层的总应力在-50MPa与+50MPa之间,任选地在-30MPa与+30MPa之间,以确保SiO2沉积物的总应力整体是中性的。提供多层SiO2可允许在第二沉积步骤期间周期性地清洁腔室,以防止SiO2层的污染。如果需要,可在单一晶片腔室或集群工具或多站PECVD工具中沉积多个SiO2层。中间层及TEOS基SiO2可在同一腔室或不同腔室中沉积,而开裂性能没有变化。在中间层沉积之后,所述工艺可在真空下继续,或者可在开始TEOS基SiO2沉积之前执行真空中断。腔室及沉积顺序的选择将在很大程度上通过工具配置管控。

Claims (27)

1.一种通过等离子体增强化学气相沉积PECVD将二氧化硅沉积到衬底上的方法,所述方法包括以下步骤:
在腔室中提供所述衬底;
通过PECVD执行第一沉积步骤,以将中间层沉积到所述衬底上,所述中间层包括氮化硅;及
通过PECVD执行第二沉积步骤,以将至少一个二氧化硅层沉积到所述中间层上,
其中所述第一沉积步骤包括将包括硅烷、氮气及氢气或氨气的第一气体混合物引入所述腔室中,且在约220℃与约300℃之间的温度下在所述腔室中维持来自所述第一气体混合物的等离子体,以将所述中间层沉积到所述衬底上,
其中所述第二沉积步骤包括将包括正硅酸四乙酯的第二气体混合物引入所述腔室中,且在约220℃与约300℃之间的温度下在所述腔室中维持来自所述第二气体混合物的等离子体,以将所述至少一个二氧化硅层沉积到所述中间层上,及
其中所述中间层具有-400MPa与-100MPa之间的总压缩应力,且所述至少一个二氧化硅层中的每一者具有-50MPa与+50MPa之间的总中性应力,且所述至少一个二氧化硅层的总厚度为至少10μm。
2.根据权利要求1所述的方法,其中所述第二气体混合物进一步包括氧气。
3.根据权利要求1或权利要求2所述的方法,其中所述第二气体混合物进一步包括氢气。
4.根据权利要求1或权利要求2所述的方法,其中所述第二气体混合物进一步包括氦气。
5.根据权利要求4所述的方法,其中在所述第二沉积步骤期间,所述氦气通过两个或更多个气体入口引入所述腔室中。
6.根据权利要求1或权利要求2所述的方法,其中硅烷在所述第一沉积步骤期间以约50sccm到约400sccm,任选地约90sccm到约350sccm,任选地约180到约330sccm的范围内或任选地约325sccm的流动速率引入所述腔室中。
7.根据权利要求1或权利要求2所述的方法,其中氮气在所述第一沉积步骤期间以约2000sccm到约8,000sccm,任选地约2500sccm到约7,000sccm,任选地约2600sccm到约6,500sccm的范围内或任选地约6,000sccm的流动速率引入所述腔室中。
8.根据权利要求1或权利要求2所述的方法,其中氢气在所述第一沉积步骤中以约250到约750sccm,任选地约400sccm到约600sccm的范围内或任选地约500sccm的流动速率引入所述腔室中。
9.根据权利要求1或权利要求2所述的方法,其中氨气在所述第一沉积步骤中以约25sccm到约500sccm,任选地约35sccm到约475sccm的范围内或任选地约450sccm的流动速率引入所述腔室中。
10.根据权利要求1或权利要求2所述的方法,其中正硅酸四乙酯在所述第二沉积步骤期间以约1sccm到约10sccm,任选地约3sccm到约7sccm的范围内或任选地约5sccm的流动速率引入所述腔室中。
11.根据权利要求2所述的方法,其中氧气在所述第二沉积步骤期间以约1.0slpm到约10slpm,任选地约4.0slpm到约8.0slpm的范围内或任选地约6.5slpm的流动速率引入所述腔室中。
12.根据权利要求3所述的方法,其中氢气在所述第二沉积步骤期间以约0.25slpm到约2.0slpm,任选地约0.75slpm到约1.5slpm的范围内或任选地约1.0slpm的流动速率引入所述腔室中。
13.根据权利要求4所述的方法,其中在所述第二沉积步骤中引入所述腔室中的氦气的总流动速率在约1000sccm到约2000sccm,任选地约1200sccm到约1650sccm的范围内或任选地为约1450sccm。
14.根据权利要求5所述的方法,其中在所述第二沉积步骤中通过所述至少两个气体入口中的第一气体入口引入所述腔室中的氦气的所述流动速率在约600sccm到约1900sccm,任选地约800sccm到约1700sccm的范围内或任选地为约1250sccm,及/或在所述第二沉积步骤中通过所述至少两个气体入口中的第二气体入口引入所述腔室中的氦气的所述流动速率在约50sccm到约500sccm,任选地约100sccm到约300sccm的范围内或任选地为约200sccm。
15.根据权利要求1或权利要求2所述的方法,其中在所述第一沉积步骤及/或所述第二沉积步骤期间,工艺温度小于约280℃及/或所述工艺温度大于约225℃。
16.根据权利要求1或权利要求2所述的方法,其中所述第一沉积步骤中的所述等离子体使用具有10MHz到约15MHz的范围内的频率,任选地13.56MHz的频率的高频RF功率维持,所述高频RF功率具有在约500W到约1500W,任选地约540W到约1320W,任选地约700W到约1000W的范围内的功率。
17.根据权利要求1或权利要求2所述的方法,其中所述第二沉积步骤中的所述等离子体使用具有在10MHz到约15MHz的范围内的频率,任选地13.56MHz的频率的高频RF功率及具有在100kHz到约500kHz,任选地约200kHz到约450kHz,任选地约300kHz到约400kHz的范围内,或任选地约375kHz的频率的低频RF功率维持。
18.根据权利要求17所述的方法,其中所述第二沉积步骤中的所述高频RF功率具有约1500W到约3000W,任选地约1750W到2300W的范围内,或任选地约1950W的功率。
19.根据权利要求17所述的方法,其中所述第二沉积步骤中的所述低频RF功率具有约200W到约600W,任选地约300W到约550W的范围内,或任选地约350W的功率。
20.根据权利要求1或权利要求2所述的方法,其中所述中间层的所述总压缩应力为至少-100MPa,任选地至少-200MPa,任选地至少-250MPa或任选地至少-300MPa。
21.根据权利要求1或权利要求2所述的方法,其中所述中间层的厚度为至少0.05μm,任选地至少0.25μm,或任选地至少0.5μm。
22.根据权利要求1或权利要求2所述的方法,其中所述至少一个二氧化硅层中的每一者的所述总中性应力在-30MPa与+30MPa之间。
23.根据权利要求1或权利要求2所述的方法,其中所述衬底是硅。
24.根据权利要求1或权利要求2所述的方法,其中在所述第一沉积步骤与所述第二沉积步骤之间从所述腔室移除所述衬底。
25.一种使用根据权利要求1至24中任一权利要求所述的方法在上面沉积有至少一个二氧化硅层的衬底,其中所述至少一个二氧化硅层中的每一者具有-50MPa与+50MPa之间的总中性应力,且所述至少一个二氧化硅层的所述总厚度为至少10μm。
26.根据权利要求25所述的衬底,其中所述至少一个二氧化硅层的所述总厚度为至少20μm,任选地至少30μm,或任选地至少40μm。
27.一种用于使用根据权利要求1至24中任一权利要求所述的方法通过等离子体增强化学气相沉积将二氧化硅沉积到衬底上的等离子体增强化学气相沉积设备,所述设备包括:
腔室;
衬底支撑件,其安置在所述腔室内用于在上面支撑衬底;
至少一个气体入口,其用于以一定流动速率将气体或气体混合物引入所述腔室中;
等离子体产生构件,其用于维持所述腔室中的等离子体;
高频电源构件,其经配置以向所述至少一个气体入口供应高频RF电源;
低频电源构件,其经配置以向所述至少一个气体入口供应低频RF电源;及
控制器,其经配置以在第一组处理条件与第二组处理条件之间切换,其中所述第一组处理条件经配置以执行第一沉积步骤以将中间层沉积到所述衬底上,所述中间层包括氮化硅,且所述第二组处理条件经配置以执行第二沉积步骤以将至少一个二氧化硅层沉积到所述中间层上,
其中所述第一组处理条件经配置以通过将包括硅烷、氮气及氢气或氨气中任一者的第一气体混合物通过所述至少一个气体入口引入所述腔室中,且使用所述等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第一气体混合物的等离子体维持在所述腔室中以将所述中间层沉积到所述衬底上来执行所述第一沉积步骤,
其中所述第二组处理条件经配置以通过将包括正硅酸四乙酯的第二气体混合物通过所述至少一个气体入口引入所述腔室中,且使用所述等离子体产生构件在约220℃到约300℃之间的温度下将来自所述第二气体混合物的等离子体维持在所述腔室中以将所述至少一个二氧化硅层沉积到所述中间层上来执行所述第二沉积步骤。
CN202310815161.5A 2022-09-21 2023-07-04 二氧化硅厚层的沉积 Pending CN117737691A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2213794.7 2022-09-21
GBGB2213794.7A GB202213794D0 (en) 2022-09-21 2022-09-21 Deposition of thick layers of silicon dioxide

Publications (1)

Publication Number Publication Date
CN117737691A true CN117737691A (zh) 2024-03-22

Family

ID=84817756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310815161.5A Pending CN117737691A (zh) 2022-09-21 2023-07-04 二氧化硅厚层的沉积

Country Status (6)

Country Link
US (1) US20240096616A1 (zh)
EP (1) EP4343019A1 (zh)
JP (1) JP2024045016A (zh)
KR (1) KR20240040603A (zh)
CN (1) CN117737691A (zh)
GB (1) GB202213794D0 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028924B2 (en) * 2010-03-25 2015-05-12 Novellus Systems, Inc. In-situ deposition of film stacks
US20120015113A1 (en) 2010-07-13 2012-01-19 Applied Materials, Inc. Methods for forming low stress dielectric films
US8076250B1 (en) * 2010-10-06 2011-12-13 Applied Materials, Inc. PECVD oxide-nitride and oxide-silicon stacks for 3D memory application
GB201207448D0 (en) * 2012-04-26 2012-06-13 Spts Technologies Ltd Method of depositing silicon dioxide films
GB201410317D0 (en) 2014-06-10 2014-07-23 Spts Technologies Ltd Substrate

Also Published As

Publication number Publication date
EP4343019A1 (en) 2024-03-27
KR20240040603A (ko) 2024-03-28
JP2024045016A (ja) 2024-04-02
US20240096616A1 (en) 2024-03-21
GB202213794D0 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
TWI788311B (zh) 拓撲受限電漿增強循環沉積方法
US8846525B2 (en) Hardmask materials
TW202111148A (zh) 包括介電層之結構、其形成方法及執行形成方法的反應器系統
US8178443B2 (en) Hardmask materials
TWI437117B (zh) 用於應力的SiN膜的胺基乙烯基矽烷前驅物
US8435608B1 (en) Methods of depositing smooth and conformal ashable hard mask films
JP4066332B2 (ja) シリコンカーバイド膜の製造方法
US9165762B2 (en) Method of depositing silicone dioxide films
US10403502B2 (en) Boron doped tungsten carbide for hardmask applications
TW201219595A (en) Smooth silicon-containing films
TWI518201B (zh) 沉積二氧化矽薄膜的方法
JP2003531493A (ja) 炭化ケイ素密着プロモータ層を用いた低誘電率フッ素含有アモルファスカーボンへの窒化ケイ素の密着性を高めるための方法
CN102460679A (zh) 硼膜界面工程
KR20050034566A (ko) 실리콘 탄화물막을 제조하는 방법
JP2011508434A (ja) 低ウェットエッチング速度の窒化シリコン膜
US6436822B1 (en) Method for making a carbon doped oxide dielectric material
JPH10335322A (ja) 絶縁膜の形成方法
JP2017147438A (ja) 接着向上法
US20180148833A1 (en) Methods for depositing flowable silicon containing films using hot wire chemical vapor deposition
Boogaard et al. Characterization of SiO2 films deposited at low temperature by means of remote ICPECVD
CN117737691A (zh) 二氧化硅厚层的沉积
US20210391170A1 (en) Method of Deposition
JP2015106572A (ja) シリコン窒化膜の形成方法及びシリコン窒化膜
TW202413690A (zh) 二氧化矽厚層之沈積
KR101008490B1 (ko) 저온 화학기상증착에 의한 산화막 증착 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication