CN103155243B - 可充电锂-硫电池电极用石墨烯-硫纳米复合材料 - Google Patents

可充电锂-硫电池电极用石墨烯-硫纳米复合材料 Download PDF

Info

Publication number
CN103155243B
CN103155243B CN201180048678.1A CN201180048678A CN103155243B CN 103155243 B CN103155243 B CN 103155243B CN 201180048678 A CN201180048678 A CN 201180048678A CN 103155243 B CN103155243 B CN 103155243B
Authority
CN
China
Prior art keywords
composite material
nano composite
graphene
sulfur
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180048678.1A
Other languages
English (en)
Other versions
CN103155243A (zh
Inventor
刘俊
J·P·莱蒙
杨振国
Y·曹
X·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of CN103155243A publication Critical patent/CN103155243A/zh
Application granted granted Critical
Publication of CN103155243B publication Critical patent/CN103155243B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

具有包括石墨烯-硫纳米复合材料的阴极的可充电锂-硫电池可以具有改进的特性。石墨烯-硫纳米复合材料特征为具有吸附至石墨烯片材的硫粒子的石墨烯片材。硫粒子具有小于50nm的平均直径。

Description

可充电锂-硫电池电极用石墨烯-硫纳米复合材料
关于联邦资助的研究或开发的声明
本发明在美国能源部授予的合约号为DE-AC0576RL01830的政府资助下作出。美国政府对本发明享有一定的权利。
优先权
本发明要求2010年10月7日提交的名称为“Graphene-SulfurNanocomposites for Lithium-Sulfur Batteries”的美国临时专利申请第61/390,945号,和2011年2月8日提交的名称为“Graphene-SulfurNanocomposites for Rechargeable Lithium-Sulfur Battery Electrodes”的美国申请第13/023,241号的优先权。
背景技术
高性能电池可以用作供给和储存问题的部分解决方案以及与用清洁替代能源替代化石燃料基能源有关的环境问题的部分解决方案。锂-硫电池由于其高的理论比能密度(2600Wh kg-1)、高的理论比容量(1680mAhg-1)、低的材料成本和低的安全性风险而特别受关注。然而,元素硫的差的导电性、多硫化物中间体的溶解和往复,以及得到的差的循环性能限制了Li-S电池的应用和用途。因此,需要在可逆容量、速率容量(ratecapability)和循环稳定性方面改进的Li-S电池。
发明内容
本发明包括具有阴极的可充电锂-硫电池,所述阴极的特征为一种纳米复合材料,所述纳米复合材料包括石墨烯片材,并且具有吸附至该石墨烯片材的含硫粒子。硫粒子具有小于50nm的平均直径。发明还包括制备石墨烯片材的方法。基于本发明实施方案的电池可以在甚至100次循环后具有大于950m Ah g-1的可逆容量。在某些实施方案中,石墨烯-硫纳米复合材料粉末的振实密度优选大于0.92g cm-3。此外,纳米复合材料中的硫含量优选大于约70wt%。
石墨烯片材可以随机、伪随机或以层状堆叠方式排列。在随机排列中,石墨烯片材和/或具有吸附硫粒子的石墨烯片材的区域在石墨烯片材的排列上不具有可识别的图案。层状堆叠可以包括在石墨烯片材之间和/或石墨烯片材的各层之间的硫层中排列的吸附的粒子,其中硫层和石墨烯层大体上交替。伪随机排列可以包括随机石墨烯片材和堆叠相石墨烯片材的混合物。
在优选的实施方案中,阴极包括与纳米复合材料接触的聚合物以使多硫化物进入电解质中的扩散最小化。可以施加聚合物以涂覆纳米复合材料表面。或者,聚合物、石墨烯片材和硫粒子可以构成混合物。优选地,聚合物为阳离子膜。一个具体实例包括但不限于基于磺化四氟乙烯的含氟聚合物-共聚物。具有该聚合物的电池可以在0.1C甚至经过50个循环后具有至少74%初始容量的放电容量。聚合物的可替代实例包括但不限于聚环氧乙烷(PEO)。
根据本发明的一个实施方案,具有含吸附硫粒子的石墨烯片材的石墨烯-硫纳米复合材料可以通过首先使石墨氧化物热膨胀以产生石墨烯片材以及随后将石墨烯片材与包括硫和二硫化碳的第一溶液混合而制备。之后蒸发二硫化碳以产生固体纳米复合材料,将其研磨以得到含有平均直径小于约50nm的初级硫粒子的石墨烯-硫纳米复合材料粉末。
根据一个实施方案,本文在他处所述的聚合物可以通过将石墨烯-硫纳米复合材料与包括聚合物和溶剂的第二溶液混合并且然后移除溶剂而施加。
之前摘要的目的在于使美国专利和商标局以及通常而言的公众,特别是对专利或法律术语或表达不熟悉的本领域科学家、工程师和从业者能够由初步审查而快速确定本申请的技术公开内容的性质和实质。摘要不意欲定义本申请的发明(这通过权利要求而确定),也不意欲以任何方式限制发明的范围。
本发明的各种优点和新的特征在本文中记载并且将由以下详细的描述而进一步对本领域人员显而易见。在前述和以下的描述中,已经示出和记载了各种实施方案(包括优选的实施方案)。本文包括对实施本发明所设想的最佳实施方式的描述。如将会意识到的,本发明能够在不偏离本发明的情况下在各个方面作出改变。因此,以下提出的优选的实施方案的附图和说明应理解为实际上是示例说明性而不是限制性的。
附图说明
参考以下附图对本发明的实施方案作如下描述。
图1是根据本发明一个实施方案以有序堆叠排列方式排列的石墨烯-硫纳米复合材料的示意图。
图2a和2b为根据本发明实施方案以层状堆叠方式排列的石墨烯-硫纳米复合材料在两个不同的放大率下的横截面透射电子显微镜(TEM)图像。
图3a-3d包括提供关于根据本发明实施方案合成的石墨烯-硫纳米复合材料阴极的电化学特性的数据的图。
图4为具有根据本发明实施方案施加的聚合物的石墨烯-硫纳米复合材料阴极的电压-比容量图。
具体实施方式
以下描述包括本发明一个实施方案的优选最佳方式。由该发明描述可以清楚的是本发明不限于这些说明的实施方案,而是本发明还包括各种修改及其实施方案。因此本描述应看作是说明性的而不是限制性的。尽管本发明易于进行各种修改和具有替代的结构,应理解的是不旨在限制本发明为公开的具体形式,而是,与之相反,本发明包括落入权利要求所定义的本发明精神和范围内的所有修改、替代结构和等价物。
根据本发明的实施方案合成了包括石墨烯片和硫粒子的交替层堆叠的石墨烯-硫纳米复合材料。将由石墨氧化物热膨胀制备的80mg石墨烯片材和3.2g的10重量%的含有硫的二硫化碳(CS2)溶液混合在一起。将混合物超声处理10-15分钟并且在氮气中在搅拌下于通风橱内蒸发以排除CS2。将干燥样品在氮气保护下155℃加热以更好的将硫负载至石墨烯表面。一旦CS2已经基本被移除,从而形成固体纳米复合材料,将所述固体纳米复合材料通过使用高能球磨机研磨8小时。研磨后,石墨烯-硫纳米复合材料中的硫含量通过热重分析仪在氩气中以10℃/min的扫描速率从室温至800℃测定为约71.8重量%。
还合成了聚合物涂覆的石墨烯-硫纳米复合材料。将根据本发明实施方案形成的100mg的石墨烯硫纳米复合材料与0.5g的0.1重量%的(例如,基于磺化四氟乙烯的含氟聚合物-共聚物)溶液混合。将混合物连续搅拌过夜并且然后在搅拌下加热至80℃以将溶剂从溶液中蒸发除去。涂覆的石墨烯-硫纳米复合材料通过在真空下干燥以移除任何残留溶剂而获得。
为了进行电化学表征,将根据本发明实施方案合成的石墨烯-硫纳米复合材料粉末用于制备阴极。将80重量%石墨烯-硫纳米复合材料粉末、10重量%SP型炭黑和10重量%的溶解于N-甲基-2-吡咯烷酮(NMP)的聚偏二氟乙烯(PVDF)结合以形成浆体。然后将电极浆体浇注至Al箔。电极材料的电化学测试使用具有石墨烯-硫纳米复合材料阴极和作为反电极和参比电极的锂金属的纽扣电池进行。电解质为溶解于1,3-二氧戊环(DOL)和二甲氧基乙烷(DME)(1:1体积)混合物的1M锂双(三氟甲烷)磺胺锂(LiTFSI)。使用的隔膜为多微孔膜(2400)并且将电池在氩气填充的手套箱中组装。恒流充电-放电测试在1.0~3.0V电压间隔下通过电池测试体系而进行。循环电压测试也用纽扣电池在0.1mV s-1的扫描速率下使用电化学界面而进行。
图1-4示出了本发明的多方面、实验结果和实施方案。图1为示意图,描绘了以有序堆叠方式排列的石墨烯-硫纳米复合材料。石墨烯片材100和吸附的硫粒子的层101在堆叠中交替排列。在替代的排列中(没有示出),具有吸附的硫粒子的石墨烯片材可随机排列。
图2a为示出大区域层状材料的石墨烯-硫纳米复合材料的横截面TEM图像。图2b中的高分辨TEM图像示出了交替的石墨烯层(低对比度/亮区域)201和吸附的硫粒子层(高对比度/暗区域)202。在该特定的实施方案中,硫粒子为直径小于或等于约20nm。
使用循环伏安法(CV)和恒定电流充电-放电测试方法测试基于本发明实施方案的石墨烯-硫纳米复合材料的电化学特性。CV曲线示于图3a。由于石墨烯仅起到作为电子导体的作用并且无助于电势区域的容量,图3a所示的CV特征仅可以归因于硫固有的还原和氧化,示出了两个还原峰和一个氧化峰。根据硫电极的电化学还原机理,约2.3V处的还原峰与溶解于电解质中的元素硫还原至多硫化锂(Li2Sn,4≤n<8)有关,并且在2.0V处的另一还原峰是由于多硫化物链长降低以及最终形成的Li2S所致。在反向的阳极扫描中,仅一个氧化峰出现在2.5V处,表明两个氧化反应的峰太接近以致不能分辨。对于第二氧化还原反应所观察到的大的超电势表明当由多硫化锂转化为Li2S时可出现高度极化。这是由于克服链长的改变需要更高的活化能。图3b示出了石墨烯-硫纳米复合材料在168mA g-1的恒定电流下(相应于0.1C速率)的第一充电-放电曲线。放电曲线示出了两步放电图形,相应于两类的放电反应,与图3a示出的CV结果非常一致。石墨烯-硫纳米复合材料具有967mAh g-1的初始放电容量但是在50个循环后显示52%的衰减,如图3c所示。这表明具有交替的石墨烯和硫层的层状纳米结构提供了高度传导、活性的框架但是可溶的多硫化物在循环过程中的迁移必须降低。
因此,在优选的实施方案中,将聚合物用于石墨烯-硫纳米复合材料以进一步控制可溶的硫物质。-涂覆的和未涂覆的纳米复合材料的扫描电镜(SEM)图像(未示出)表明聚合物可以涂覆石墨烯-硫纳米复合材料的粒子表面以抑制多硫化物的扩散。
参考图3c中容量与循环数的关系图,-涂覆的石墨烯-硫纳米复合材料在50个充电/放电循环后保持79.4%的初始容量,具有良好的循环稳定性。-涂覆的石墨烯-硫纳米复合材料的另外的稳定性和速率容量性能示于图3d。尽管在涂覆前和涂覆后初始放电容量改变极少,-涂覆的石墨烯-硫纳米复合材料在100次循环后在0.1C下保持74.3%的初始容量。图4示出了NAFION-涂覆的石墨烯-硫纳米复合材料在各种放电速率下(1C=1680mA g-1)比容量与电压的曲线。纳米复合材料阴极在0.2C、0.5C和1C下分别具有839mAh g-1、647mAh g-1和505mAh g-1,相应于在0.1C下测量的放电容量的保持率为89%、69%和54%。
-涂覆的电极的改进的速率容量和高的循环稳定性可归因于石墨烯层的高的电子电导性和由涂层提供的降低的多硫化物的溶解/迁移。施加的聚合物涂层,除改进的化学和电化学稳定性外,看起来还提供了改进的机械强度。特别地,磺化四氟乙烯含氟聚合物-共聚物可以形成致密的膜以覆盖石墨烯-硫纳米复合材料的表面,其阻止多硫化物由吸附的硫粒子扩散至电解质。此外,因为这是具有磺酸根离子基团的阳离子膜,所以Li离子容易通过膜扩散,而仍然抑制多硫化物阳离子的转运,最可能是由于静电排斥。
尽管本发明的大量的实施方案已示出并且描述,对本领域技术人员而言清楚的是许多改变和修改可以在不偏离本发明的情况下在其更广的方面做出。因此,所附权利要求旨在包括落入本发明真实的实质和范围内的所有改变和修改。

Claims (23)

1.一种可充电锂-硫电池,包括阴极和电解质,所述阴极的特征为一种纳米复合材料,所述纳米复合材料包括石墨烯片材,并且具有吸附至该石墨烯片材的硫粒子,所述粒子具有小于50nm的平均直径。
2.权利要求1的电池,在0.1C下在100次循环后具有大于950mAhg-1的可逆容量。
3.权利要求1的电池,还包括与纳米复合材料接触的聚合物以使多硫化物向电解质的扩散最小化。
4.权利要求3的电池,其中所述聚合物覆盖纳米复合材料表面。
5.权利要求3的电池,其中聚合物、石墨烯片材和硫粒子构成混合物。
6.权利要求3的电池,其中所述聚合物为阳离子膜。
7.权利要求3的电池,其中所述聚合物包括基于氟化四氟乙烯的含氟聚合物-共聚物。
8.权利要求1的电池,在0.1C下在50次循环后具有至少74%初始容量的放电容量。
9.权利要求3的电池,其中所述聚合物包括聚环氧乙烷。
10.权利要求1的电池,其中所述纳米复合材料的粉末具有大于0.92g cm-3的振实密度。
11.权利要求1的电池,在所述纳米复合材料中具有大于70重量%的硫含量。
12.权利要求1的电池,其中吸附的粒子排列于以交替的石墨烯层和硫层方式堆叠的石墨烯层之间的硫层中。
13.一种可充电的锂-硫电池,包括阴极和电解质并且在0.1C下在100次循环后具有大于950mAh g-1的可逆容量,所述阴极的特征为一种纳米复合材料,所述纳米复合材料包括石墨烯片材,并且具有吸附至该石墨烯片材的硫粒子,所述粒子具有小于50nm的平均直径,其中纳米复合材料中的硫含量大于70重量%。
14.制备用作可充电锂-硫电池中阴极的石墨烯-硫纳米复合材料的方法,所述石墨烯-硫纳米复合材料包括石墨烯片材,并且具有吸附至该石墨烯片材的硫粒子,该方法特征为以下步骤:
使石墨氧化物热膨胀以产生石墨烯片材;
将石墨烯片材与包括硫和二硫化碳的第一溶液混合;
使二硫化碳蒸发以产生固体纳米复合材料;并且
研磨固体纳米复合材料以得到具有平均直径小于50nm的硫粒子的石墨烯-硫纳米复合材料。
15.权利要求14的方法,还包括石墨烯-硫纳米复合材料与包括聚合物和溶剂的第二溶液混合,并且然后移除溶剂。
16.权利要求15的方法,其中所述聚合物为阳离子膜。
17.权利要求15的方法,其中所述聚合物包括基于氟化四氟乙烯的含氟聚合物-共聚物。
18.权利要求15的方法,其中所述聚合物包括聚环氧乙烷。
19.权利要求14的方法,其中所述电池在0.1C下在50次循环后具有至少74%初始容量的放电容量。
20.权利要求14的方法,其中所述石墨烯-硫纳米复合材料的粉末具有大于0.92g cm-3的振实密度。
21.权利要求14的方法,还包括形成交替的石墨烯层和硫层的堆叠,所述硫层包括位于石墨烯层之间的吸附的粒子。
22.权利要求14的方法,其中所述可充电锂-硫电池具有大于950mAh g-1的可逆容量。
23.权利要求14的方法,其中所述石墨烯-硫纳米复合材料具有大于70重量%的硫负载。
CN201180048678.1A 2010-10-07 2011-06-21 可充电锂-硫电池电极用石墨烯-硫纳米复合材料 Expired - Fee Related CN103155243B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US39094510P 2010-10-07 2010-10-07
US61/390,945 2010-10-07
US13/023,241 US8753772B2 (en) 2010-10-07 2011-02-08 Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
US13/023,241 2011-02-08
PCT/US2011/041186 WO2012047329A2 (en) 2010-10-07 2011-06-21 Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

Publications (2)

Publication Number Publication Date
CN103155243A CN103155243A (zh) 2013-06-12
CN103155243B true CN103155243B (zh) 2015-07-29

Family

ID=45925392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180048678.1A Expired - Fee Related CN103155243B (zh) 2010-10-07 2011-06-21 可充电锂-硫电池电极用石墨烯-硫纳米复合材料

Country Status (6)

Country Link
US (2) US8753772B2 (zh)
EP (1) EP2625735A4 (zh)
JP (1) JP2013539193A (zh)
KR (1) KR20130119432A (zh)
CN (1) CN103155243B (zh)
WO (1) WO2012047329A2 (zh)

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339770B (zh) * 2010-11-09 2016-05-25 康奈尔大学 含硫纳米多孔材料、纳米粒子、方法和应用
WO2013049663A1 (en) * 2011-09-30 2013-04-04 The Regents Of The University Of California Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells
CA2754372A1 (en) 2011-10-04 2013-04-04 Hydro-Quebec Positive-electrode material for lithium-ion secondary battery and method of producing same
DK2794475T3 (da) 2011-12-21 2020-04-27 Univ California Forbundet korrugeret carbonbaseret netværk
CN103187558B (zh) * 2011-12-28 2015-07-01 清华大学 硫-石墨烯复合材料的制备方法
CN103187570B (zh) * 2011-12-28 2015-09-30 清华大学 硫-石墨烯复合材料的制备方法
CN104541349A (zh) 2012-03-05 2015-04-22 加州大学评议会 具有由互连波纹状碳基网络制成的电极的电容器
JP5962158B2 (ja) * 2012-03-09 2016-08-03 東レ株式会社 リチウムイオン電池用正極材料およびその製造方法、ならびにリチウムイオン電池
JP6167561B2 (ja) * 2012-03-09 2017-07-26 東レ株式会社 カーボン硫黄複合体およびそれを用いた電気化学素子ならびにリチウムイオン電池
CN102709533A (zh) * 2012-06-12 2012-10-03 广州市香港科大霍英东研究院 一种高功率、高比容量的锂硫电池正极材料的制备方法
KR20150032670A (ko) * 2012-06-19 2015-03-27 이 아이 듀폰 디 네모아 앤드 캄파니 전해질 첨가제 및 이오노머 물품을 포함하는 전기화학 전지와 그의 제조 및 사용 방법
WO2014019089A1 (en) * 2012-07-30 2014-02-06 Zhongwei Chen Low cost synthesis of single material bifunctional nonprecious catalyst for electrochemical devices
KR101365679B1 (ko) 2012-08-16 2014-02-20 부산대학교 산학협력단 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
CN103682280B (zh) * 2012-09-07 2016-12-21 中国科学院宁波材料技术与工程研究所 锂硫电池正极材料、其制备方法及锂硫电池
DE102012018621A1 (de) 2012-09-14 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Alkali-Chalkogen-Batterie mit geringer Selbstentladung und hoher Zyklenfestigkeit und Leistung
CN103000864B (zh) * 2012-10-25 2015-08-05 北京理工大学 一种硫复合正极材料及其制备方法
CN103811731B (zh) * 2012-11-09 2016-02-03 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
WO2014109523A1 (ko) 2013-01-08 2014-07-17 주식회사 엘지화학 리튬-황 전지용 양극 활물질 및 이의 제조방법
CN103117377B (zh) * 2013-01-31 2016-01-13 天津大学 一种新的电极修饰方法
KR101817260B1 (ko) 2013-02-22 2018-01-11 삼성전자주식회사 그래핀-나노소재 복합체, 이를 채용한 전극 및 전기소자, 및 상기 그래핀-나노소재 복합체의 제조방법
CN105684195A (zh) * 2013-05-31 2016-06-15 南加州大学 包覆颗粒
US9299473B2 (en) 2013-06-11 2016-03-29 Hamilton Sundstrand Corporation Composite electrically conductive structures
US20160141620A1 (en) * 2013-06-21 2016-05-19 The Regents Of The University Of California A long-life, high-rate lithium/sulfur cell utilizing a holistic approach to enhancing cell performance
KR101494085B1 (ko) 2013-07-05 2015-02-17 연세대학교 산학협력단 나노 입자가 분산된 그래핀 복합체, 이의 제조방법 및 이를 포함하는 이차 전지
CN103387226A (zh) * 2013-07-05 2013-11-13 清华大学深圳研究生院 石墨烯的制备方法
KR101501267B1 (ko) * 2013-07-31 2015-03-12 주식회사 포스코 리튬-설퍼 전지용 양극재, 이의 제조 방법 및 리튬 설퍼 전지
CN103560235B (zh) * 2013-11-15 2016-02-03 哈尔滨工业大学 石墨烯包覆的硫/多孔碳复合正极材料的制备方法
CN105830273A (zh) * 2013-12-18 2016-08-03 株式会社爱发科 锂硫二次电池
WO2015141952A1 (ko) * 2014-03-19 2015-09-24 (주)오렌지파워 리튬 설퍼 전지
WO2015150144A1 (en) * 2014-04-03 2015-10-08 Basf Se Composites comprising nanosheets of a transition metal oxide for cathodes of lithium sulfur cells
CN105244476A (zh) * 2014-06-11 2016-01-13 中国科学院苏州纳米技术与纳米仿生研究所 氮掺杂石墨烯包覆纳米硫正极复合材料、其制法及应用
KR101992350B1 (ko) * 2014-06-13 2019-06-24 주식회사 엘지화학 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함한 리튬-황 전지
CN106575806B (zh) 2014-06-16 2020-11-10 加利福尼亚大学董事会 混合电化学电池
KR101583948B1 (ko) 2014-06-24 2016-01-08 현대자동차주식회사 리튬황 전지용 양극
US20170229703A1 (en) * 2014-08-07 2017-08-10 Academia Sinica Method of preparation a battery electrode by spray coating, an electrode and a battery made by method thereof
DE102014221046A1 (de) * 2014-10-16 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Lithium-Schwefel-Akkumulator
CA2968139C (en) 2014-11-18 2023-01-10 The Regents Of The University Of California Porous interconnected corrugated carbon-based network (iccn) composite
FR3030890B1 (fr) * 2014-12-22 2019-07-26 Arkema France Matiere active d'electrode pour batterie li/s
CN104577080B (zh) * 2014-12-29 2017-02-22 中国地质大学(武汉) 一种高倍率性能锂硫电池的复合正极材料及制备方法
US11258059B2 (en) 2015-02-18 2022-02-22 Global Graphene Group, Inc. Pre-sulfurized cathode for alkali metal-sulfur secondary battery and production process
US10461321B2 (en) 2015-02-18 2019-10-29 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a pre-sulfurized cathode and production process
US9666899B2 (en) 2015-03-30 2017-05-30 Nanotek Instruments, Inc. Active cathode layer for metal-sulfur secondary battery
CN104852025B (zh) * 2015-04-07 2017-05-17 浙江理工大学 一种锂硫电池用氧化石墨烯包覆硫颗粒复合正极材料及其制备方法
US9666865B2 (en) 2015-04-17 2017-05-30 Nanotek Instruments, Inc. Magnesium-sulfur secondary battery containing a metal polysulfide-preloaded active cathode layer
CN107925052A (zh) 2015-06-22 2018-04-17 阿卜杜拉国王科技大学 锂电池、阳极以及阳极的制造方法
WO2017028301A1 (en) * 2015-08-20 2017-02-23 Robert Bosch Gmbh Sulfur-carbon composite comprising carbon substrate and sulfur for lithium-sulfur batteries and process for preparing the same
WO2017053962A1 (en) 2015-09-24 2017-03-30 Massachusetts Institute Of Technology Systems and methods of preparing lithium sulfur electrode using sacrificial template
US20170092954A1 (en) * 2015-09-25 2017-03-30 Board Of Regents, The University Of Texas System Multi-layer carbon-sulfur cathodes
US10170756B2 (en) 2015-12-16 2019-01-01 Uchicago Argonne, Llc Li2S batteries having high capacity, high loading, and high coulombic efficiency
US10193144B2 (en) 2015-12-17 2019-01-29 Uchicago Argonne, Llc High capacity lithium ion batteries having oxides, peroxides, or superoxides as cathode active material
WO2017112575A1 (en) 2015-12-22 2017-06-29 The Regents Of The University Of California Cellular graphene films
US10069141B2 (en) 2015-12-30 2018-09-04 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid sulfur particles and cathode active materials containing the hybrid particles
US10707535B2 (en) 2016-01-15 2020-07-07 Global Graphene Group, Inc. Production process for alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
US11152639B2 (en) 2016-01-15 2021-10-19 Global Graphene Group, Inc. Alkali metal-sulfur batteries having high volumetric and gravimetric energy densities
CN108475590B (zh) 2016-01-22 2021-01-26 加利福尼亚大学董事会 高电压装置
US10147941B2 (en) 2016-03-15 2018-12-04 The Hong Kong Polytechnic University Synthesis method for cathode material in lithium-sulfur battery
US10683419B2 (en) 2016-03-23 2020-06-16 The Regents Of The University Of California Redox-active supramolecular polymer binders derived from perylene bisimide nanowires enable high-rate lithium-sulfur batteries
CA3018568A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Devices and methods for high voltage and solar applications
US10734642B2 (en) 2016-03-30 2020-08-04 Global Graphene Group, Inc. Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries
CN107293688B (zh) * 2016-04-01 2020-01-10 中国科学院成都有机化学有限公司 一种用于锂硫电池体系的石墨烯电极结构
EP3440683B1 (en) 2016-04-01 2021-12-08 The Regents Of The University Of California Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
CN107452961A (zh) * 2016-05-31 2017-12-08 罗伯特·博世有限公司 用于锂硫电池的包含硫分子插层在石墨烯层间结构的复合正极材料及其制备方法
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
US11254616B2 (en) 2016-08-04 2022-02-22 Global Graphene Group, Inc. Method of producing integral 3D humic acid-carbon hybrid foam
US9878303B1 (en) 2016-08-04 2018-01-30 Nanotek Instruments, Inc. Integral 3D humic acid-carbon hybrid foam and devices containing same
US10731931B2 (en) 2016-08-18 2020-08-04 Global Graphene Group, Inc. Highly oriented humic acid films and highly conducting graphitic films derived therefrom and devices containing same
US10597389B2 (en) 2016-08-22 2020-03-24 Global Graphene Group, Inc. Humic acid-bonded metal foil film current collector and battery and supercapacitor containing same
US10647595B2 (en) 2016-08-30 2020-05-12 Global Graphene Group, Inc. Humic acid-derived conductive foams and devices
US10593932B2 (en) 2016-09-20 2020-03-17 Global Graphene Group, Inc. Process for metal-sulfur battery cathode containing humic acid-derived conductive foam
AU2017321294B2 (en) 2016-08-31 2021-12-09 The Regents Of The University Of California Devices comprising carbon-based material and fabrication thereof
US10003078B2 (en) 2016-09-20 2018-06-19 Nanotek Instruments, Inc. Metal-sulfur battery cathode containing humic acid-derived conductive foam impregnated with sulfur or sulfide
KR102006727B1 (ko) * 2016-11-02 2019-08-02 주식회사 엘지화학 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
CN106532016B (zh) * 2016-12-28 2019-03-15 西北工业大学 一种锂硫电池复合正极材料及其制备方法
CN106602063B (zh) * 2016-12-30 2020-08-11 长兴德烯科技有限公司 一种石墨烯花的制备方法及其在锂硫电池中的应用
CN106848318B (zh) * 2017-01-09 2019-06-04 迟钝 一种锂硫电池正极材料及其制备方法和应用
US10651464B2 (en) 2017-02-13 2020-05-12 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a nano sulfur-loaded cathode and manufacturing method
US11495792B2 (en) 2017-02-16 2022-11-08 Global Graphene Group, Inc. Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material
US10211455B2 (en) 2017-02-20 2019-02-19 Nanotek Instruments, Inc. Lithium secondary batteries containing protected particles of anode active materials and method of manufacturing
US10084182B2 (en) * 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
US11978904B2 (en) 2017-02-24 2024-05-07 Honeycomb Battery Company Polymer binder for lithium battery and method of manufacturing
US10840502B2 (en) 2017-02-24 2020-11-17 Global Graphene Group, Inc. Polymer binder for lithium battery and method of manufacturing
US10411264B2 (en) 2017-02-27 2019-09-10 Global Graphene Group, Inc. Cathode active material layer for lithium secondary battery and method of manufacturing
US10985373B2 (en) 2017-02-27 2021-04-20 Global Graphene Group, Inc. Lithium battery cathode and method of manufacturing
US11742475B2 (en) 2017-04-03 2023-08-29 Global Graphene Group, Inc. Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10916766B2 (en) 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
US10770721B2 (en) 2017-04-10 2020-09-08 Global Graphene Group, Inc. Lithium metal secondary battery containing anode-protecting polymer layer and manufacturing method
US10483533B2 (en) 2017-04-10 2019-11-19 Global Graphene Group, Inc. Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing
US10862129B2 (en) 2017-04-12 2020-12-08 Global Graphene Group, Inc. Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method
US10243217B2 (en) 2017-05-24 2019-03-26 Nanotek Instruments, Inc. Alkali metal battery having a deformable quasi-solid electrode material
US10535892B2 (en) 2017-05-30 2020-01-14 Global Graphene Group, Inc. Shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US10170789B2 (en) 2017-05-31 2019-01-01 Nanotek Instruments, Inc. Method of producing a shape-conformable alkali metal battery having a conductive and deformable quasi-solid polymer electrode
US11394058B2 (en) * 2017-06-02 2022-07-19 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery
US11335946B2 (en) 2017-06-02 2022-05-17 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery
WO2018225619A1 (ja) * 2017-06-05 2018-12-13 積水化学工業株式会社 硫黄-炭素材料複合体、リチウム硫黄二次電池用正極材及びリチウム硫黄二次電池
US10651512B2 (en) 2017-06-30 2020-05-12 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
US10454141B2 (en) 2017-06-30 2019-10-22 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
WO2019014404A1 (en) 2017-07-14 2019-01-17 The Regents Of The University Of California SINGLE PATH FROM CARBON NANOPOINTS TO HIGHLY CONDUCTIVE POROUS GRAPHENE FOR SUPERCONDENSER APPLICATIONS
US10700357B2 (en) 2017-08-14 2020-06-30 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode material and manufacturing method
US10964951B2 (en) 2017-08-14 2021-03-30 Global Graphene Group, Inc. Anode-protecting layer for a lithium metal secondary battery and manufacturing method
US10804537B2 (en) 2017-08-14 2020-10-13 Global Graphene Group, Inc. Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing
US11081731B2 (en) 2017-10-18 2021-08-03 International Business Machines Corporation High-capacity rechargeable batteries
US10637043B2 (en) 2017-11-30 2020-04-28 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries containing same
US10873083B2 (en) 2017-11-30 2020-12-22 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries
KR102483069B1 (ko) 2017-12-06 2022-12-29 한양대학교 산학협력단 리튬 황 이차전지용 양극활물질, 및 그 제조 방법
US10573894B2 (en) 2018-02-21 2020-02-25 Global Graphene Group, Inc. Protected particles of anode active materials for lithium batteries
US10601034B2 (en) 2018-02-21 2020-03-24 Global Graphene Group, Inc. Method of producing protected particles of anode active materials for lithium batteries
US11721832B2 (en) 2018-02-23 2023-08-08 Global Graphene Group, Inc. Elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10971722B2 (en) 2018-03-02 2021-04-06 Global Graphene Group, Inc. Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10964936B2 (en) 2018-03-02 2021-03-30 Global Graphene Group, Inc. Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries
US10818926B2 (en) 2018-03-07 2020-10-27 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11005094B2 (en) 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
US11043694B2 (en) 2018-04-16 2021-06-22 Global Graphene Group, Inc. Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US10971723B2 (en) 2018-04-16 2021-04-06 Global Graphene Group, Inc. Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles
US11121398B2 (en) 2018-06-15 2021-09-14 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing cathode material particulates
US10978698B2 (en) 2018-06-15 2021-04-13 Global Graphene Group, Inc. Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery
US10854927B2 (en) 2018-06-18 2020-12-01 Global Graphene Group, Inc. Method of improving cycle-life of alkali metal-sulfur secondary battery
US10862157B2 (en) 2018-06-18 2020-12-08 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer
US10985376B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing an electrode-protecting layer
US10985365B2 (en) 2018-06-18 2021-04-20 Global Graphene Group, Inc. Lithium-sulfur battery containing two anode-protecting layers
US10978744B2 (en) 2018-06-18 2021-04-13 Global Graphene Group, Inc. Method of protecting anode of a lithium-sulfur battery
US10957912B2 (en) 2018-06-18 2021-03-23 Global Graphene Group, Inc. Method of extending cycle-life of a lithium-sulfur battery
US10777810B2 (en) 2018-06-21 2020-09-15 Global Graphene Group, Inc. Lithium metal secondary battery containing a protected lithium anode
US11276852B2 (en) 2018-06-21 2022-03-15 Global Graphene Group, Inc. Lithium metal secondary battery containing an elastic anode-protecting layer
US10873088B2 (en) 2018-06-25 2020-12-22 Global Graphene Group, Inc. Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
CN108963231A (zh) * 2018-07-23 2018-12-07 戚明海 一种石墨烯改性锂硫电池正极活性材料及其制备方法
US11043662B2 (en) 2018-08-22 2021-06-22 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US11239460B2 (en) 2018-08-22 2022-02-01 Global Graphene Group, Inc. Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries
US10886528B2 (en) 2018-08-24 2021-01-05 Global Graphene Group, Inc. Protected particles of cathode active materials for lithium batteries
US11223049B2 (en) 2018-08-24 2022-01-11 Global Graphene Group, Inc. Method of producing protected particles of cathode active materials for lithium batteries
EP3629402A1 (de) * 2018-09-27 2020-04-01 Siemens Aktiengesellschaft Lithium-ionen-akkumulator und material sowie verfahren zum herstellen desselben
US10629899B1 (en) 2018-10-15 2020-04-21 Global Graphene Group, Inc. Production method for electrochemically stable anode particulates for lithium secondary batteries
US10971724B2 (en) 2018-10-15 2021-04-06 Global Graphene Group, Inc. Method of producing electrochemically stable anode particulates for lithium secondary batteries
CN109301230B (zh) * 2018-11-13 2021-08-13 南昌大学 一种锂硫电池用复合正极材料及其制备方法
US10971725B2 (en) 2019-01-24 2021-04-06 Global Graphene Group, Inc. Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer
US11791450B2 (en) 2019-01-24 2023-10-17 Global Graphene Group, Inc. Method of improving cycle life of a rechargeable lithium metal battery
CN109904419B (zh) * 2019-01-31 2020-09-25 鲍君杰 一种锂硫电池正极材料的制备方法
US12040482B2 (en) 2019-05-31 2024-07-16 Lg Energy Solution, Ltd. Sulfur-carbon composite, positive electrode for lithium-sulfur battery comprising same, and lithium-sulfur battery comprising positive electrode
US11198611B2 (en) 2019-07-30 2021-12-14 Lyten, Inc. 3D self-assembled multi-modal carbon-based particle
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
US11631893B2 (en) 2019-10-25 2023-04-18 Lyten, Inc. Artificial solid electrolyte interface cap layer for an anode in a Li S battery system
US11342561B2 (en) 2019-10-25 2022-05-24 Lyten, Inc. Protective polymeric lattices for lithium anodes in lithium-sulfur batteries
US11508966B2 (en) 2019-10-25 2022-11-22 Lyten, Inc. Protective carbon layer for lithium (Li) metal anodes
US11539074B2 (en) 2019-10-25 2022-12-27 Lyten, Inc. Artificial solid electrolyte interface (A-SEI) cap layer including graphene layers with flexible wrinkle areas
US11127942B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Systems and methods of manufacture of carbon based structures incorporated into lithium ion and lithium sulfur (li s) battery electrodes
US11133495B2 (en) 2019-10-25 2021-09-28 Lyten, Inc. Advanced lithium (LI) ion and lithium sulfur (LI S) batteries
US11127941B2 (en) 2019-10-25 2021-09-21 Lyten, Inc. Carbon-based structures for incorporation into lithium (Li) ion battery electrodes
US11398622B2 (en) 2019-10-25 2022-07-26 Lyten, Inc. Protective layer including tin fluoride disposed on a lithium anode in a lithium-sulfur battery
KR20230024384A (ko) * 2020-06-12 2023-02-20 슈퍼캡 테크놀로지스 코포레이션 황 캐소드, 황 캐소드 재료, 및 이를 제조하는 장치 및 방법
CN114079038B (zh) * 2020-08-12 2023-09-26 清华大学 一种高硫载量锂硫电池正极及其制备方法
US11735745B2 (en) 2021-06-16 2023-08-22 Lyten, Inc. Lithium-air battery
US11870063B1 (en) 2022-10-24 2024-01-09 Lyten, Inc. Dual layer gradient cathode electrode structure for reducing sulfide transfer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485941A (zh) * 2002-09-23 2004-03-31 ����Sdi��ʽ���� 锂-硫电池的正极活性物质及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9022A (en) * 1852-06-15 Organ
EP1068647A1 (en) * 1998-03-31 2001-01-17 Celanese Ventures GmbH Lithium battery and electrode
KR100390748B1 (en) 2002-06-18 2003-07-12 Square Technologies Co Ltd E Lithium sulfur battery using polytetrafluoroethylene as positive electrode binder
EP2250688B1 (en) * 2008-03-05 2015-11-25 EaglePicher Technologies, LLC Lithium-sulfur battery and cathode therefore
US8236446B2 (en) 2008-03-26 2012-08-07 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US8580432B2 (en) * 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
JP5650418B2 (ja) * 2009-03-12 2015-01-07 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材
EP2228855B1 (en) * 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
US9112240B2 (en) * 2010-01-04 2015-08-18 Nanotek Instruments, Inc. Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485941A (zh) * 2002-09-23 2004-03-31 ����Sdi��ʽ���� 锂-硫电池的正极活性物质及其制备方法

Also Published As

Publication number Publication date
US20120088154A1 (en) 2012-04-12
US8753772B2 (en) 2014-06-17
US8999574B2 (en) 2015-04-07
EP2625735A2 (en) 2013-08-14
WO2012047329A3 (en) 2012-08-16
US20140203469A1 (en) 2014-07-24
EP2625735A4 (en) 2016-03-23
WO2012047329A2 (en) 2012-04-12
KR20130119432A (ko) 2013-10-31
CN103155243A (zh) 2013-06-12
JP2013539193A (ja) 2013-10-17

Similar Documents

Publication Publication Date Title
CN103155243B (zh) 可充电锂-硫电池电极用石墨烯-硫纳米复合材料
Yi et al. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries
JP7023731B2 (ja) 無機-有機ハイブリッド膜でコーティングされた正極活物質としての硫黄粒子および該粒子を含む電池
Yan et al. Manganese dioxide nanosheet functionalized sulfur@ PEDOT core–shell nanospheres for advanced lithium–sulfur batteries
Zhu et al. Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries
US9847527B2 (en) Non-metal anode alkali and alkaline-earth ion batteries with hexacyanometallate cathode
EP2839529B1 (en) Alkali and alkaline-earth ion batteries with hexacyanometallate cathode and non-metal anode
CN102456869B (zh) 通过用氧化石墨烯形成复合材料而增强电极(阳极和阴极)性能
Shao et al. Core–shell sulfur@ polypyrrole composites as high-capacity materials for aqueous rechargeable batteries
Zang et al. Bimetallic Sulfide/Sulfur Doped T3C2T x MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries
Ding et al. A high-capacity TiO 2/C negative electrode for sodium secondary batteries with an ionic liquid electrolyte
Pham et al. A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte
Li et al. A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0. 5Mn0. 5O2 nano/micro hierarchical microspheres
Zhao et al. A double-shelled structure confining sulfur for lithium-sulfur batteries
Kuo et al. Water-based process to the preparation of nickel-rich Li (Ni0. 8Co0. 1Mn0. 1) O2 cathode
Han et al. Artificial solid electrolyte interphase for thermally stable rechargeable aqueous zinc batteries
Wang et al. Engineering the interplanar spacing of K-birnessite for ultra-long cycle Zn-ion battery through “hydrothermal potassium insertion” strategy
Yao et al. Effect of binders on the microstructural and electrochemical performance of high‐sulphur‐loading electrodes in lithium‐sulphur batteries
Yu et al. Hybrid high-performance aqueous batteries with potassium-based cathode|| zinc metal anode
Zheng et al. Synthesis and electrochemical performance of a LiMn1. 83Co0. 17O4 shell/LiMn2O4 core cathode material
Kiai et al. Functionalized double side coated separator for lithium-sulfur batteries with enhanced cycle life
KR101930395B1 (ko) 폴리에틸렌이마인과 이산화망간을 포함하는 리튬-황 이차전지용 양극재료 및 이를 포함하는 리튬-황 이차전지
Yuan et al. Electrochemical performances of lithium ion batteries from hydrothermally synthesized LiFePO 4 and carbon spherules
Tang et al. Uniform carbon coating drastically enhances the electrochemical performance of a Fe3O4 electrode for alkaline nickel–iron rechargeable batteries
CN105390690B (zh) 一种表面活性剂辅助的超薄Li4Ti5O12纳米片的制备方法及其在锂电池和钠电池中的使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

Termination date: 20210621