CN102983168A - 带双扩散的条形栅隧穿场效应晶体管及其制备方法 - Google Patents

带双扩散的条形栅隧穿场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN102983168A
CN102983168A CN2012105016914A CN201210501691A CN102983168A CN 102983168 A CN102983168 A CN 102983168A CN 2012105016914 A CN2012105016914 A CN 2012105016914A CN 201210501691 A CN201210501691 A CN 201210501691A CN 102983168 A CN102983168 A CN 102983168A
Authority
CN
China
Prior art keywords
control gate
highly doped
source region
region
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105016914A
Other languages
English (en)
Other versions
CN102983168B (zh
Inventor
黄如
黄芊芊
邱颖鑫
詹瞻
王阳元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201210501691.4A priority Critical patent/CN102983168B/zh
Publication of CN102983168A publication Critical patent/CN102983168A/zh
Priority to PCT/CN2013/079013 priority patent/WO2014082451A1/zh
Priority to US14/130,496 priority patent/US9054075B2/en
Application granted granted Critical
Publication of CN102983168B publication Critical patent/CN102983168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7311Tunnel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种带双扩散的条形栅调制型隧穿场效应晶体管及其制备方法,属于CMOS场效应晶体管逻辑器件与电路领域。该隧穿场效应晶体管包括一个半导体衬底、一个高掺杂源区、一个高掺杂漏区、一个双扩散源区、一个栅介质层和一个控制栅,所述控制栅为栅长大于栅宽的条形结构,控制栅的一侧与高掺杂漏区连接,控制栅的另一侧向高掺杂源区横向延伸,位于控制栅下的区域为沟道区,该控制栅的栅宽小于2倍的源耗尽层宽度,双扩散源区和高掺杂源区的掺杂区域一致,双扩散源区和高掺杂漏区的掺杂类型一致,位于高掺杂源区部分的控制栅下的沟道区有双扩散源掺杂杂质。本发明提高了TFET器件的性能且制备方法简单。

Description

带双扩散的条形栅隧穿场效应晶体管及其制备方法
技术领域
本发明属于CMOS超大集成电路(ULSI)中的场效应晶体管逻辑器件与电路领域,具体涉及一种带双扩散的条形栅隧穿场效应晶体管及其制备方法。
背景技术
在摩尔定律的驱动下,传统MOSFET的特征尺寸不断缩小,如今已经到进入纳米尺度,随之而来,器件的短沟道效应等负面影响也愈加严重。漏致势垒降低、带带隧穿等效应使得器件关态漏泄电流不断增大,同时,传统MOSFET的亚阈值斜率受到热电势的限制无法随着器件尺寸的缩小而同步减小,由此增加了器件功耗。功耗问题如今已经成为限制器件等比例缩小的最严峻的问题。
为了能将器件应用在超低压低功耗领域,采用新型导通机制而获得超陡亚阈值斜率的器件结构和工艺制备方法已经成为小尺寸器件下大家关注的焦点。近些年来研究者们提出了一种可能的解决方案,就是采用隧穿场效应晶体管(TFET)。TFET不同于传统MOSFET,其源漏掺杂类型相反,利用栅极控制反向偏置的P-I-N结的带带隧穿实现导通,能突破传统MOSFET亚阈值斜率60mV/dec的限制,并且其漏电流非常小。TFET具有低漏电流、低亚阈值斜率、低工作电压和低功耗等诸多优异特性,但由于受源结隧穿几率和隧穿面积的限制,TFET面临着开态电流小的问题,远远比不上传统MOSFET器件,极大限制了TFET器件的应用。另外,具有陡直亚阈值斜率的TFET器件在实验上也较难实现,这是因为实验较难在源结处实现陡直的掺杂浓度梯度以致器件开启时隧穿结处的电场不够大,这会导致TFET的亚阈值斜率相对理论值退化。因此,如何在源结实现陡直的掺杂浓度梯度而获得超低的亚阈值斜率,也成为了TFET器件的另一个重要问题。
发明内容
本发明的目的在于提出一种带双扩散的条形栅隧穿场效应晶体管及其制备方法。在与现有的CMOS工艺完全兼容的条件下,该结构改变了传统隧穿场效应晶体管的栅版图结构,能等效实现陡直的源结掺杂浓度的效果,显著地优化TFET器件的亚阈值斜率,并同时提升器件的导通电流。另外,在源端通过相反类型的双扩散掺杂能进一步优化该器件的源端隧穿结,进一步增大带带隧穿开启时的电场,优化TFET器件的亚阈特性和导通电流。
本发明的技术方案如下:
本发明隧穿场效应晶体管包括一个半导体衬底、一个高掺杂源区、一个高掺杂漏区、一个双扩散源区、一个控制栅和一个栅介质层,所述高掺杂源区和高掺杂漏区分别位于控制栅的两侧,且掺有不同掺杂类型的杂质,与通常的隧穿场效应晶体管的控制栅相比,本发明控制栅为栅长大于栅宽的条形结构,控制栅的一侧与高掺杂漏区连接,控制栅的另一侧向高掺杂源区横向延伸,即条形控制栅部分位于高掺杂源区和高掺杂漏区之间,另一部分延伸到高掺杂源区,所述高掺杂源区靠条形栅自对准形成,条形栅下无高掺杂源,位于控制栅下的区域仍是沟道区,高掺杂源区和高掺杂漏区的掺杂浓度均在1×1019cm-3至1×1021cm-3之间,衬底掺杂浓度在1×1014cm-3至1×1017cm-3之间,所诉双扩散源区也靠条形栅自对准形成,和高掺杂源区的掺杂区域一致,但相对高掺杂漏区的掺杂扩散深度更大,浓度更小,因此延伸到高掺杂源区的部分条形栅下的沟道区有双扩散源掺杂杂质,双扩散源区和高掺杂漏区的掺杂类型一致,扩散深度约10nm~1μm,掺杂浓度在1×1017cm-3至1×1020cm-3之间。所述控制栅的位于高掺杂源区和高掺杂漏区之间的长度与延伸到高掺杂源区的长度比为1∶1-1∶5,控制栅的栅宽小于2倍的源耗尽层宽度,源耗尽层宽度的范围为25nm-1.5um。
上述隧穿场效应晶体管的制备方法,包括以下步骤:
(1)在半导体衬底上通过浅槽隔离定义有源区;
(2)生长栅介质层;
(3)淀积控制栅材料,接着光刻和刻蚀,形成条形栅图形;
(4)光刻暴露出双扩散源区,以光刻胶和控制栅为掩膜,离子注入形成双扩散源区,然后长时间退火激活掺杂杂质并使得杂质同时向内扩散;
(5)光刻暴露出漏掺杂区,以光刻胶为掩膜,离子注入形成高掺杂漏区,掺杂类型和双扩散源区一致,但剂量更大;
(6)光刻暴露出源掺杂区,以光刻胶和控制栅为掩膜,离子注入形成另一种掺杂类型的高掺杂源区,然后快速高温热退火激活源漏掺杂杂质;
(7)最后进入常规CMOS后道工序,包括淀积钝化层、开接触孔以及金属化等,即可制得所述的隧穿场效应晶体管,如图6所示。
上述的制备方法中,所述步骤(1)中的半导体衬底材料选自Si、Ge、SiGe、GaAs或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅(SOI)或绝缘体上的锗(GOI)。
上述的制备方法中,所述步骤(2)中的栅介质层材料选自SiO2、Si3N4和高K栅介质材料。
上述的制备方法中,所述步骤(2)中的生长栅介质层的方法选自下列方法之一:常规热氧化、掺氮热氧化、化学气相淀积和物理气相淀积。
上述的制备方法中,所述步骤(3)中的控制栅材料选自掺杂多晶硅、金属钴,镍以及其他金属或金属硅化物。
本发明的技术效果如下:
一、在相同的有源区面积下,该器件利用延展进源区内的条形栅,能实现更大的隧穿面积,进而能得到高于传统TFET的导通电流;并通过在源区注入相反类型的双扩散杂质,能使得该器件源结处的隧穿结获得更加陡峭的能带弯曲,从而使得器件发生带带隧穿时的电场更大,进一步提高TFET器件的亚阈值斜率和开态电流;
二、在不增加工艺步骤的前提下,仅仅通过简单的版图设计(即条形栅形貌),利用条形栅两侧的PN结耗尽效应使得栅下表面沟道能带提高,因此当该器件发生带带隧穿时能获得比传统TFET更陡的能带和更窄的隧穿势垒宽度,等效实现了陡直的隧穿结掺杂浓度梯度的效果,从而大幅提高传统TFET的亚阈特性;
三、该器件制备工艺简单,制备方法与传统的MOSFET工艺完全兼容。
简而言之,该器件结构采用条形栅结构和双扩散源调制了传统TFET器件的源端隧穿结,实现了源结具有更加陡直的能带弯曲和更大的隧穿电场的效果,大大提高了TFET器件的性能且制备方法简单。与现有的TFET相比,在同样的工艺条件、同样的工艺步骤和同样的有源区尺寸下,该器件可以得到更高的导通电流和更陡直的亚阈值斜率,且能保持低的泄漏电流,有望在低功耗领域得到采用,有较高的实用价值。
附图说明
图1是半导体衬底上生长栅介质层并淀积栅材料的工艺步骤示意图;
图2a是光刻并刻蚀后形成的控制栅的器件沿图2b虚线方向的剖面图,图2b是相应的器件俯视图;
图3a是光刻暴露出双扩散源区并离子注入形成双扩散源区后的器件沿图3b虚线方向的剖面图,图3b是相应的器件俯视图;
图4a是光刻暴露出漏区并离子注入形成和双扩散源区相同掺杂类型的高掺杂漏区后的器件沿图4b虚线方向的剖面图,图4b是相应的器件俯视图;
图5a是光刻暴露出源区并离子注入形成相反类型的高掺杂源区后的器件沿图5b虚线方向的剖面图,图5b是相应的器件俯视图;
图6是本发明的带双扩散的条形栅隧穿场效应晶体管的器件俯视图;
图7a是本发明晶体管沿图6中AA’方向的剖面图;
图7b是本发明晶体管沿图6中BB’方向的剖面图;
图7c是本发明晶体管沿图6中CC’方向的剖面图;
图中:
1——半导体衬底        2——栅介质层
3——控制栅            4——光刻胶
5——双扩散源区        6——高掺杂漏区
7——相反类型的高掺杂源区
具体实施方式
下面通过实例对本发明做进一步说明。需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。
本发明制备方法的一具体实例包括图1至图5b所示的工艺步骤:
1、在晶向为(100)的体硅硅片硅衬底1上采用浅槽隔离技术制作有源区隔离层,衬底掺杂浓度为轻掺杂;然后热生长一层栅介质层2,栅介质层为SiO2,厚度为1~5nm;淀积栅材料3,栅材料为掺杂多晶硅层,厚度为150~300nm,如图1所示。
2、光刻出条形栅图形,刻蚀栅材料3直到栅介质层2,如图2a、2b所示,条形栅宽度典型为1μm。
3、光刻出双扩散源区图形,以光刻胶4和栅为掩膜进行P+离子注入,形成双扩散P+源区5,离子注入的能量为100keV,注入杂质为BF2 +,如图3a、3b所示;进行一次长时间热退火,激活杂质的同时推进杂质扩散。
4、光刻出漏区图形,以光刻胶4为掩膜进行P+离子注入,形成高掺杂P+漏区6,离子注入的能量为40keV,注入杂质为BF2 +,如图4a、4b所示。
5、光刻出源区图形,以光刻胶4和栅为掩膜进行N+离子注入,形成高掺杂N+源区7,离子注入的能量为50keV,注入杂质为As+,如图5a、5b所示;进行一次快速高温退火,激活源漏掺杂的杂质。
6、最后进入常规CMOS后道工序,包括淀积钝化层、开接触孔以及金属化等,即可制得所述的带双扩散的条形栅隧穿场效应晶体管,如图6-7所示。
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种隧穿场效应晶体管,其特征在于,包括一个半导体衬底、一个高掺杂源区、一个高掺杂漏区、一个双扩散源区、一个栅介质层和一个控制栅,所述控制栅为栅长大于栅宽的条形结构,控制栅的一侧与高掺杂漏区连接,控制栅的另一侧向高掺杂源区横向延伸,位于控制栅下的区域为沟道区,该控制栅的栅宽小于2倍的源耗尽层宽度,双扩散源区和高掺杂源区的掺杂区域一致,双扩散源区和高掺杂漏区的掺杂类型一致,位于高掺杂源区部分的控制栅下的沟道区有双扩散源掺杂杂质。
2.如权利要求1所述的隧穿场效应晶体管,其特征在于,控制栅的位于高掺杂源区和高掺杂漏区之间的长度与延伸到高掺杂源区的长度比为1∶1-1∶5。
3.如权利要求1所述的隧穿场效应晶体管,其特征在于,源耗尽层宽度的范围为25nm-1.5um。
4.如权利要求1所述的隧穿场效应晶体管,其特征在于,高掺杂源区和高掺杂漏区的掺杂浓度均在1×1019cm-3至1×1021cm-3之间,衬底掺杂浓度在1×1014cm-3至1×1017cm-3
5.如权利要求1所述的隧穿场效应晶体管,其特征在于,双扩散源区和高掺杂漏区的掺杂类型一致,扩散深度范围为10nm~1μm,掺杂浓度在1×1017cm-3至1×1020cm-3之间。
6.如权利要求1所述的隧穿场效应晶体管的制备方法,包括以下步骤:
1)在半导体衬底上通过浅槽隔离定义有源区;
2)生长栅介质层;
3)淀积控制栅材料,接着光刻和刻蚀,形成条形栅图形;
4)光刻暴露出双扩散源区,以光刻胶和控制栅为掩膜,离子注入形成双扩散源区,然后长时间退火激活掺杂杂质并使得杂质同时向内扩散;
5)光刻暴露出漏掺杂区,以光刻胶为掩膜,离子注入形成高掺杂漏区,掺杂类型和双扩散源区一致;
6)光刻暴露出源掺杂区,以光刻胶和控制栅为掩膜,离子注入形成另一种掺杂类型的高掺杂源区,然后快速高温热退火激活源漏掺杂杂质;
7)最后进入常规CMOS后道工序,制得所述的隧穿场效应晶体管。
7.如权利要求6所述的制备方法,其特征在于,所述步骤1)中的半导体衬底材料选自Si、Ge、SiGe、GaAs或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅或绝缘体上的锗。
8.如权利要求6所述的制备方法,其特征在于,所述步骤2)中的栅介质层材料选自SiO2、Si3N4和高K栅介质材料。
9.如权利要求6所述的制备方法,其特征在于,所述步骤2)中的生长栅介质层的方法选自下列方法之一:常规热氧化、掺氮热氧化、化学气相淀积和物理气相淀积。
10.如权利要求6所述的制备方法,其特征在于,所述步骤3)中的控制栅材料选自掺杂多晶硅、金属钴,镍以及其他金属或金属硅化物。
CN201210501691.4A 2012-11-29 2012-11-29 带双扩散的条形栅隧穿场效应晶体管及其制备方法 Active CN102983168B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210501691.4A CN102983168B (zh) 2012-11-29 2012-11-29 带双扩散的条形栅隧穿场效应晶体管及其制备方法
PCT/CN2013/079013 WO2014082451A1 (zh) 2012-11-29 2013-07-08 带双扩散的条形栅隧穿场效应晶体管及其制备方法
US14/130,496 US9054075B2 (en) 2012-11-29 2013-07-08 Strip-shaped gate tunneling field effect transistor with double-diffusion and a preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210501691.4A CN102983168B (zh) 2012-11-29 2012-11-29 带双扩散的条形栅隧穿场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN102983168A true CN102983168A (zh) 2013-03-20
CN102983168B CN102983168B (zh) 2015-04-15

Family

ID=47857025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210501691.4A Active CN102983168B (zh) 2012-11-29 2012-11-29 带双扩散的条形栅隧穿场效应晶体管及其制备方法

Country Status (3)

Country Link
US (1) US9054075B2 (zh)
CN (1) CN102983168B (zh)
WO (1) WO2014082451A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474464A (zh) * 2013-08-27 2013-12-25 北京大学 一种复合机制的条形栅隧穿场效应晶体管及其制备方法
CN103560144A (zh) * 2013-11-13 2014-02-05 北京大学 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN103579324A (zh) * 2013-11-18 2014-02-12 北京大学 一种三面源隧穿场效应晶体管及其制备方法
WO2014079218A1 (zh) * 2012-11-26 2014-05-30 北京大学 条形栅调制型隧穿场效应晶体管及其制备方法
WO2014082451A1 (zh) * 2012-11-29 2014-06-05 北京大学 带双扩散的条形栅隧穿场效应晶体管及其制备方法
CN104347692A (zh) * 2014-09-04 2015-02-11 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN104900519A (zh) * 2014-03-04 2015-09-09 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN105355660A (zh) * 2015-12-11 2016-02-24 上海集成电路研发中心有限公司 一种隧穿场效应晶体管及其制造方法
CN106531622A (zh) * 2016-12-29 2017-03-22 中国科学院微电子研究所 一种砷化镓基mosfet栅介质的制备方法
CN109478562A (zh) * 2016-11-17 2019-03-15 华为技术有限公司 隧穿场效应晶体管及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10424581B2 (en) * 2016-04-18 2019-09-24 Samsung Electronics Co., Ltd. Sub 59 MV/decade SI CMOS compatible tunnel FET as footer transistor for power gating
US20180138307A1 (en) * 2016-11-17 2018-05-17 Globalfoundries Inc. Tunnel finfet with self-aligned gate
WO2018120170A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 隧穿场效应晶体管的制作方法及隧穿场效应晶体管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074583A (zh) * 2010-11-25 2011-05-25 北京大学 一种低功耗复合源结构mos晶体管及其制备方法
US20120193679A1 (en) * 2006-02-01 2012-08-02 International Business Machines Corporation Heterojunction tunneling field effect transistors, and methods for fabricating the same
CN102664192A (zh) * 2012-05-08 2012-09-12 北京大学 一种自适应复合机制隧穿场效应晶体管及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW523881B (en) * 2001-02-08 2003-03-11 Samsung Electronics Co Ltd Non-volatile memory device and method of manufacturing the same
CN101006338A (zh) 2004-10-14 2007-07-25 株式会社东芝 基于fet的核酸探测传感器
CN101777499B (zh) * 2010-01-22 2011-08-24 北京大学 一种基于平面工艺自对准制备隧穿场效应晶体管的方法
CN102005481B (zh) 2010-11-03 2011-12-28 北京大学 一种t型栅结构的低功耗隧穿场效应晶体管
CN102157559B (zh) 2011-03-01 2012-05-02 北京大学 一种叉指型栅结构的低功耗隧穿场效应晶体管
US9159809B2 (en) * 2012-02-29 2015-10-13 United Microelectronics Corp. Multi-gate transistor device
CN102945861B (zh) * 2012-11-26 2015-12-23 北京大学 条形栅调制型隧穿场效应晶体管及其制备方法
CN102983168B (zh) 2012-11-29 2015-04-15 北京大学 带双扩散的条形栅隧穿场效应晶体管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193679A1 (en) * 2006-02-01 2012-08-02 International Business Machines Corporation Heterojunction tunneling field effect transistors, and methods for fabricating the same
CN102074583A (zh) * 2010-11-25 2011-05-25 北京大学 一种低功耗复合源结构mos晶体管及其制备方法
CN102664192A (zh) * 2012-05-08 2012-09-12 北京大学 一种自适应复合机制隧穿场效应晶体管及其制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981421B2 (en) 2012-11-26 2015-03-17 Peking University Strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof
WO2014079218A1 (zh) * 2012-11-26 2014-05-30 北京大学 条形栅调制型隧穿场效应晶体管及其制备方法
US9054075B2 (en) 2012-11-29 2015-06-09 Peking University Strip-shaped gate tunneling field effect transistor with double-diffusion and a preparation method thereof
WO2014082451A1 (zh) * 2012-11-29 2014-06-05 北京大学 带双扩散的条形栅隧穿场效应晶体管及其制备方法
CN103474464B (zh) * 2013-08-27 2016-02-17 北京大学 一种复合机制的条形栅隧穿场效应晶体管及其制备方法
CN103474464A (zh) * 2013-08-27 2013-12-25 北京大学 一种复合机制的条形栅隧穿场效应晶体管及其制备方法
WO2015027676A1 (zh) * 2013-08-27 2015-03-05 北京大学 一种隧穿场效应晶体管及其制备方法
WO2015070528A1 (zh) * 2013-11-13 2015-05-21 北京大学 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN103560144A (zh) * 2013-11-13 2014-02-05 北京大学 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN103560144B (zh) * 2013-11-13 2016-02-17 北京大学 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN103579324A (zh) * 2013-11-18 2014-02-12 北京大学 一种三面源隧穿场效应晶体管及其制备方法
CN103579324B (zh) * 2013-11-18 2016-04-06 北京大学 一种三面源隧穿场效应晶体管及其制备方法
US9490363B2 (en) 2013-11-18 2016-11-08 Peking University Tunneling field effect transistor having a three-side source and fabrication method thereof
CN104900519A (zh) * 2014-03-04 2015-09-09 中芯国际集成电路制造(上海)有限公司 晶体管的形成方法
CN104347692A (zh) * 2014-09-04 2015-02-11 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN104347692B (zh) * 2014-09-04 2017-06-06 北京大学 抑制输出非线性开启的隧穿场效应晶体管及其制备方法
CN105355660A (zh) * 2015-12-11 2016-02-24 上海集成电路研发中心有限公司 一种隧穿场效应晶体管及其制造方法
CN109478562A (zh) * 2016-11-17 2019-03-15 华为技术有限公司 隧穿场效应晶体管及其制造方法
CN106531622A (zh) * 2016-12-29 2017-03-22 中国科学院微电子研究所 一种砷化镓基mosfet栅介质的制备方法

Also Published As

Publication number Publication date
CN102983168B (zh) 2015-04-15
US20150048313A1 (en) 2015-02-19
US9054075B2 (en) 2015-06-09
WO2014082451A1 (zh) 2014-06-05

Similar Documents

Publication Publication Date Title
CN102983168B (zh) 带双扩散的条形栅隧穿场效应晶体管及其制备方法
CN102664165B (zh) 基于标准cmos ic工艺制备互补隧穿场效应晶体管的方法
CN102184955B (zh) 互补隧道穿透场效应晶体管及其形成方法
CN102945861B (zh) 条形栅调制型隧穿场效应晶体管及其制备方法
CN102074583B (zh) 一种低功耗复合源结构mos晶体管及其制备方法
CN102664192B (zh) 一种自适应复合机制隧穿场效应晶体管及其制备方法
CN103579324B (zh) 一种三面源隧穿场效应晶体管及其制备方法
CN103594376B (zh) 一种结调制型隧穿场效应晶体管及其制备方法
CN103560144B (zh) 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN104362095B (zh) 一种隧穿场效应晶体管的制备方法
CN103474464B (zh) 一种复合机制的条形栅隧穿场效应晶体管及其制备方法
CN102364690B (zh) 一种隧穿场效应晶体管及其制备方法
CN104241374A (zh) 一种深能级杂质隧穿场效应晶体管及其制备方法
CN102194884A (zh) 一种混合导通机制的场效应晶体管
CN102117833B (zh) 一种梳状栅复合源mos晶体管及其制作方法
CN102117834B (zh) 一种带杂质分凝的复合源mos晶体管及其制备方法
CN102324434B (zh) 一种肖特基势垒mos晶体管及其制备方法
CN104332409B (zh) 基于深n阱工艺隔离隧穿场效应晶体管的制备方法
CN109478562A (zh) 隧穿场效应晶体管及其制造方法
CN105390531B (zh) 一种隧穿场效应晶体管的制备方法
CN103996713A (zh) 垂直沟道双机制导通纳米线隧穿晶体管及制备方法
CN117637616A (zh) 半导体结构的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant