CN102974283A - 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法 - Google Patents

介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN102974283A
CN102974283A CN2012105262660A CN201210526266A CN102974283A CN 102974283 A CN102974283 A CN 102974283A CN 2012105262660 A CN2012105262660 A CN 2012105262660A CN 201210526266 A CN201210526266 A CN 201210526266A CN 102974283 A CN102974283 A CN 102974283A
Authority
CN
China
Prior art keywords
nitrogen
doped graphene
preparation
graphite mould
described step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105262660A
Other languages
English (en)
Other versions
CN102974283B (zh
Inventor
冯雷雨
杨兰琴
陈银广
罗景阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201210526266.0A priority Critical patent/CN102974283B/zh
Publication of CN102974283A publication Critical patent/CN102974283A/zh
Application granted granted Critical
Publication of CN102974283B publication Critical patent/CN102974283B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于新能源材料及其制备技术领域,涉及一种纳米复合材料介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法,包括以下步骤:将氧化石墨烯和表面活性剂加入到去离子水中,超声混合均匀,得到胶状溶液;加入介孔状石墨型氮化碳,继续超声处理,然后再加入含氮化合物,恒温搅拌,形成混合溶液;再水热反应,自然冷却,洗涤去除吸附在材料表面的氨,干燥。本发明制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料的产率高,应用范围广,可用在燃料电池、光降解反应器等方面。本发明方法具有工艺简单、成本低廉、产率高、周期短、环境友好,可以适用于工业化大规模生产介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料。

Description

介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法
技术领域
本发明属于新能源材料及其制备技术领域,涉及一种纳米复合材料介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法。
背景技术
石墨烯是由碳原子以六边形堆积的新型纳米材料,其具有很多优良的性能,诸如大比表面积、高热导率、快速电荷传递速率等,在材料化学、光电化学、催化剂等诸多领域应用广泛。为了进一步增强石墨烯的各种性能,除了从形态学上控制,掺杂外来原子也是增强石墨烯性能的一种重要方法。对石墨烯等碳基材料掺杂外来原子可以修饰内部结构,使其表面负载自由电荷密度增大,进而导电导热等性能得到增强。有研究表明,在葡萄糖生物传感器中,氮掺杂石墨烯(N-graphene)呈现出优越电子转移性能、高度的敏感性及选择性(文献ACSNano,2010,4,1790-1798)。在碱性或者酸性介质中经过氮掺杂的石墨烯还具有很强的氧还原催化活性,其用作燃料电池阴极氧还原反应的非金属催化剂的前景十分广阔(Nature,2009,323,760-764;Journal ofthe American Chemical Society,2010,132,15839-15841)。虽然,外来原子掺杂大大拓宽了石墨烯的应用领域,但是氮掺杂石墨烯仍存在氮活性位点缺失等不足,从而导致光电催化等性能不稳定。因此,有必要进一步对氮掺杂石墨烯进行改性,使其具有更加优异而稳定的化学性能。
另一方面,石墨型氮化碳(g-C3N4)是碳氮化合物中最稳定的同素异形体,在理论上是一种具有类石墨结构的层状物质。近些年,有关氮化碳物理和化学性质的研究逐渐引起了人们的广泛关注。g-C3N4已经被证明能够对一系列反应(比如光催化产氢、氧还原等)表现出良好的催化活性(文献Energy &E nvironmental Science,2012,5,6717-6731)。g-C3N4具有以上优异性能的原因可归功于其具有较高的氮元素含量以及大量的活性反应点。然而,g-C3N4也存在光电传导能力较差等不足。众所周知,孔隙率是影响材料物理化学性能的重要因素,介孔状材料通常拥有优异的性能。介孔状石墨型氮化碳(mpg-C3N4)恰好同时结合了氮化碳和介孔材料各自的优势,无疑具有诱人的应用前景。介孔状石墨型氮化碳的制备在文献中已有报道,因此,本发明中,介孔状石墨型氮化碳的制备采用文献报道的方法(文献Journal ofMaterials Chemistry,2011,21,13032-13039)。
鉴于氮掺杂石墨烯和介孔状石墨型氮化碳均具有优良的性能,可将两种材料复合在一起,形成一种非金属的无机复合材料,预期具有比两者单独更加优异的性能,可进一步扩宽其应用领域。但是,截止到目前,介孔状石墨型氮化碳/氮掺杂石墨烯纳米复合材料及其制备方法还未见公开报道。
发明内容
本发明的目的在于为克服现有技术的缺陷而提供一种介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法。
为实现上述目的,本发明采用以下技术方案:
一种介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料的制备方法,包括以下步骤:
(1)将氧化石墨烯和表面活性剂加入到去离子水中,超声混合均匀,得到胶状溶液;
(2)向步骤(1)得到的胶状溶液中加入mpg-C3N4(mpg-代表介孔状,mpg-C3N4代表介孔状氮化碳),继续超声处理,然后再加入含氮化合物,加盖恒温搅拌,形成混合溶液;
(3)将步骤(2)得到的混合溶液转入具有特氟龙内衬的不锈钢反应釜中进行水热反应,自然冷却,然后反复洗涤以去除吸附在材料表面的氨,干燥后即得到介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料。
所述的步骤(1)中,所述的表面活性剂为十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠或十八烷基硫酸钠。
所述的步骤(1)中,超声混合时间为30~60min。
所述的步骤(1)中,所述的氧化石墨烯与表面活性剂的质量比为2:1~10:1,胶状溶液的浓度为(20~50)g/L。
所述的步骤(2)中,含氮化合物为氨水、尿素或吡啶。
所述的步骤(2)中,超声处理的时间为30~60min。
所述的步骤(2)中,氧化石墨烯与mpg-C3N4的质量比为1:49~1:1,氧化石墨烯与含氮化合物的质量比1:10~1:100。
所述的步骤(2)中,恒温搅拌的温度为在20-35℃,恒温反应时间为30~60min。
所述的步骤(3)中,反应温度为150~200℃,反应时间为6~20h。
所述的步骤(3)中,用5%盐酸和蒸馏水洗涤。
所述的步骤(3)中,干燥方式为冷冻干燥和60℃烘干,干燥时间为12~48h。
一种根据上述制备方法得到的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料,其中复合材料中,介孔状石墨型氮化碳均匀无序地分布在氮掺杂石墨烯上,介孔状石墨型氮化碳的孔径10-20nm,比表面积为50-300m2/g,氮掺杂石墨烯为3-8层,层厚为0.9-1.5nm。
本发明具有以下有益效果:
本发明制备的mpg-C3N4/N-graphene溶胶纳米复合材料的产率在99%以上,应用范围广,可用在燃料电池、光降解反应器等领域。本发明方法具有工艺简单、成本低廉、产率高、周期短、环境友好等优点,可以适用于工业化大规模生产介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料。
附图说明
图1为本发明实施例所制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料的TEM形貌图。
具体实施方式
下面结合具体实施例来进一步详细说明本发明。
实施例1
本实施例中mpg-C3N4/N-graphene溶胶纳米复合材料的制备方法是由下述步骤完成:
(1)、将40mg氧化石墨烯和20mg十二烷基苯磺酸钠(氧化石墨烯与表面活性剂的质量比为2:1)加入3mL去离子水中,超声30min混合均匀,得到胶状溶液。其中,氧化石墨烯与表面活性剂的质量比为2:1,胶状溶液的浓度为20g/L;
(2)、向胶状溶液加入40mg mpg-C3N4,其中,氧化石墨烯与mpg-C3N4的质量比为1:1,继续超声30min,然后再加入1.8g氨水,(氨水的浓度为25%)(氧化石墨烯与含氮化合物氨水的质量比为1:45)于混合溶液中,在25℃条件下加盖恒温搅拌均匀30min。
(3)、将混合物转入具有特氟龙内衬的不锈钢反应釜中进行水热反应,反应温度为200℃,反应时间为12h,自然冷却,然后用5%盐酸和蒸馏水反复洗涤,冷冻干燥36h,即得到mpg-C3N4/N-graphene溶胶纳米复合材料。
本发明制备的mpg-C3N4/N-graphene溶胶纳米复合材料的产率在99%以上。
图1为实施例1制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料的TEM形貌图,其中(a)和(b)为所合成材料分别在500nm和200nm标尺下的TEM图,由图可以看出复合材料保持了N-graphene的二维空间结构和mpg-C3N4的介孔状态,进而维持材料原有的功能,而mpg-C3N4成功负载在N-graphene的表面可以同时大幅度增加N-graphene的活性位点以及mpg-C3N4光电传导能力,从而拓宽了相关材料的应用领域。图1a中薄层物质为氮掺杂石墨烯,可以看见明显的褶皱,表面比较光滑,所合成的材料层数为3-5层,层厚为1.2nm,保证了石墨烯的空间二维结构;颗粒物为介孔状石墨型氮化碳,孔径为12-15nm,比表面积为80-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。图1b为所合成材料进一步放大的TEM图。
实施例2
本实施例与实施例1不同的是:所用表面活性剂为十二烷基磺酸钠。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-5层,层厚为1.3nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例3
本实施例与实施例1不同的是:所用氧化石墨烯和十二烷基苯磺酸钠的质量分别为50mg和10mg,二者的质量比为5:1。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为4-6层,层厚为1.4nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例4
本实施例与实施例1不同的是:所用氧化石墨烯和十二烷基苯磺酸钠的质量分别为55mg和5mg,二者的质量比为10:1。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为4-8层,层厚为1.5nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例5
本实施例与实施例1不同的是:所用氧化石墨烯和十二烷基苯磺酸钠的质量分别为60mg和30mg,二者的质量比为2:1,胶状溶液的浓度为30g/L。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为5-8层,层厚为1.0nm;介孔状石墨型氮化碳的孔径为12-18nm,比表面积为60-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例6
本实施例与实施例1不同的是:所用氧化石墨烯和十二烷基苯磺酸钠的质量分别为100mg和50mg,二者的质量比为2:1,胶状溶液的浓度为50g/L。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为6-8层,层厚为1.2nm;介孔状石墨型氮化碳的孔径为10-18nm,比表面积为60-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例7
本实施例与实施例1不同的是:所用mpg-C3N4的质量为400mg,氧化石墨烯与mpg-C3N4的质量比为1:10。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-4层,层厚为1.0nm;介孔状石墨型氮化碳的孔径为12-18nm,比表面积为60-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例8
本实施例与实施例1不同的是:所用mpg-C3N4的质量为1960mg,氧化石墨烯与mpg-C3N4的质量比1:49。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-4层,层厚为0.9nm;介孔状石墨型氮化碳的孔径为15-20nm,比表面积为50-80m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例9
本实施例与实施例1不同的是:所用氨水(25%重量比)的质量为4g,氧化石墨烯与氨水的质量比为1:100。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-4层,层厚为1.4nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例10
本实施例与实施例1不同的是:所用含氮化合物为尿素。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-6层,层厚为1.4nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例11
本实施例与实施例1不同的是:所用含氮化合物为吡啶。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-8层,层厚为1.2nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例12
本实施例与实施例10不同的是:混合物在不锈钢反应釜内进行水热反应的温度为180℃。其他步骤和参数与实施例10相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为4-8层,层厚为1.4nm;介孔状石墨型氮化碳的孔径为10-16nm,比表面积为70-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例13
本实施例与实施例11不同的是:混合物在不锈钢反应釜内进行水热反应的温度为150℃。其他步骤和参数与实施例11相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为6-8层,层厚为1.5nm;介孔状石墨型氮化碳的孔径为12-18nm,比表面积为60-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例14
本实施例与实施例1不同的是:混合物在不锈钢反应釜内进行水热反应的时间为6h。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为5-8层,层厚为1.5nm;介孔状石墨型氮化碳的孔径为10-18nm,比表面积为60-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例15
本实施例与实施例13不同的是:混合物在不锈钢反应釜内进行水热反应的时间为20h。其他步骤和参数与实施例13相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为4-8层,层厚为1.3nm;介孔状石墨型氮化碳的孔径为12-16nm,比表面积为70-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例16
本实施例与实施例1不同的是:冷冻干燥时间为24h。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-5层,层厚为1.2nm;介孔状石墨型氮化碳的孔径为12-16nm,比表面积为75-200m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例17
本实施例与具体实施方式十不同的是:冷冻干燥时间为48h。其他步骤和参数与实施例10相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-4层,层厚为1.2nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
实施例18
本实施例与实施例1不同的是:干燥方式为60℃烘干,干燥时间为12h。其他步骤和参数与实施例1相同。该实施例制备的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料中,氮掺杂石墨烯的层数为3-7层,层厚为1.2nm;介孔状石墨型氮化碳的孔径为10-15nm,比表面积为80-300m2/g,均匀无序地分布在氮掺杂石墨烯表面。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料的制备方法,其特征在于:包括以下步骤:
(1)将氧化石墨烯和表面活性剂加入到去离子水中,超声混合均匀,得到胶状溶液;
(2)向步骤(1)得到的胶状溶液中加入介孔状石墨型氮化碳,继续超声处理,然后再加入含氮化合物,加盖恒温搅拌,形成混合溶液;
(3)将步骤(2)得到的混合溶液转入具有特氟龙内衬的不锈钢反应釜中进行水热反应,自然冷却,然后反复洗涤以去除吸附在材料表面的氨,干燥后即得到介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述的步骤(1)中,所述的表面活性剂为十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基硫酸钠或十八烷基硫酸钠。
3.根据权利要求1所述的制备方法,其特征在于:所述的步骤(1)中,超声混合时间为30~60min。
4.根据权利要求1所述的制备方法,其特征在于:所述的步骤(1)中,所述的氧化石墨烯与表面活性剂的质量比为2:1~10:1,胶状溶液的浓度为(20~50)g/L。
5.根据权利要求1所述的制备方法,其特征在于:所述的步骤(2)中,含氮化合物为氨水、尿素或吡啶。
6.根据权利要求1所述的制备方法,其特征在于:所述的步骤(2)中,超声处理的时间为30~60min。
7.根据权利要求1所述的制备方法,其特征在于:所述的步骤(2)中,氧化石墨烯与mpg-C3N4的质量比为1:49~1:1,氧化石墨烯与含氮化合物的质量比1:10~1:100;
或所述的步骤(2)中,恒温搅拌的温度为在20-35℃,恒温反应时间为30~60min。
8.根据权利要求1所述的制备方法,其特征在于:所述的步骤(3)中,反应温度为150~200℃,反应时间为6~20h。
9.根据权利要求1所述的制备方法,其特征在于:所述的步骤(3)中,用5%盐酸和蒸馏水洗涤;
或所述的步骤(3)中,干燥方式为冷冻干燥和60℃烘干,干燥时间为12~48h。
10.一种上述权利要求1-9中任一所述的制备方法制得的介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料,其特征在于:所述的复合材料中介孔状石墨型氮化碳均匀无序地分布在氮掺杂石墨烯上,介孔状石墨型氮化碳的孔径10-20nm,比表面积为50-300m2/g,氮掺杂石墨烯为3-8层,层厚为0.9-1.5nm。
CN201210526266.0A 2012-12-07 2012-12-07 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法 Active CN102974283B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210526266.0A CN102974283B (zh) 2012-12-07 2012-12-07 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210526266.0A CN102974283B (zh) 2012-12-07 2012-12-07 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102974283A true CN102974283A (zh) 2013-03-20
CN102974283B CN102974283B (zh) 2014-09-17

Family

ID=47848800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210526266.0A Active CN102974283B (zh) 2012-12-07 2012-12-07 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN102974283B (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254200A (zh) * 2013-05-22 2013-08-21 福州大学 一种分子级厚度的c3n4纳米片及其制备方法和应用
CN103272639A (zh) * 2013-06-09 2013-09-04 福州大学 一种共聚合改性的石墨相氮化碳纳米片可见光催化剂
CN103680996A (zh) * 2013-12-18 2014-03-26 江苏大学 一种聚吡咯/石墨型氮化碳纳米复合材料及其制备方法
CN103745836A (zh) * 2013-12-29 2014-04-23 渤海大学 g-C3N4/碳量子点复合电极的制备方法
CN103831121A (zh) * 2013-12-12 2014-06-04 温州大学 一种氮掺杂介孔石墨烯微球及其制备与应用
CN103985875A (zh) * 2014-05-21 2014-08-13 南京理工大学 一种石墨烯-氮化碳复合材料的应用
CN104021944A (zh) * 2014-05-30 2014-09-03 燕山大学 一种具有高体积比电容的氮掺杂石墨化碳微球的制备方法
CN104108705A (zh) * 2014-07-11 2014-10-22 同济大学 一种氮掺杂定向石墨烯的制备方法
CN104134801A (zh) * 2014-07-28 2014-11-05 北京万源工业有限公司 氮化碳-石墨烯包覆磷酸铁锂复合正极材料及其制备方法
CN104399510A (zh) * 2014-12-08 2015-03-11 中国科学院化学研究所 一种氧化石墨与氮化碳的光催化复合材料的制备方法
CN104472534A (zh) * 2014-11-25 2015-04-01 同济大学 一种石墨烯或其衍生物修饰的介孔状石墨相碳化氮复合抑菌材料的制备方法
CN104861784A (zh) * 2015-06-11 2015-08-26 福州大学 一种碳化氮量子点荧光墨水
CN105056891A (zh) * 2015-07-16 2015-11-18 湖南大学 石墨烯修饰的生物炭复合材料及其制备方法和应用
CN105206809A (zh) * 2015-09-11 2015-12-30 合肥国轩高科动力能源有限公司 一种c3n4-碳包覆磷酸铁锂复合正极材料及其制备方法
CN105819439A (zh) * 2016-05-24 2016-08-03 江苏大学 一种氮化碳量子点-石墨烯水凝胶纳米复合材料的制备方法
CN106025303A (zh) * 2016-07-29 2016-10-12 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法和应用
CN106207196A (zh) * 2016-08-02 2016-12-07 杭州富阳伟文环保科技有限公司 一种花状氮化钛/氮化碳/石墨烯复合纳米材料的制备方法
CN106395801A (zh) * 2016-08-30 2017-02-15 北京化工大学 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN106602012A (zh) * 2016-12-13 2017-04-26 上海交通大学 一种柔性薄膜电极及其制备方法和应用
CN106784873A (zh) * 2016-12-12 2017-05-31 佛山市聚成生化技术研发有限公司 一种氮化碳/碳纳米复合材料及其制备方法和应用
CN107185576A (zh) * 2017-05-24 2017-09-22 上海大学 一种三维结构的氮化碳/石墨烯复合材料的制备方法
CN108584931A (zh) * 2018-07-10 2018-09-28 中国石油大学(北京) 重油残渣基氮掺杂多孔石墨烯制备方法及所得多孔石墨烯
CN109261191A (zh) * 2018-11-06 2019-01-25 武汉科技大学 一种石墨相氮化碳泡沫光催化材料及其制备方法
CN115318318A (zh) * 2021-09-30 2022-11-11 湘潭大学 一种用于硝基芳烃加氢的氮掺杂石墨烯催化剂的制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167308A (zh) * 2011-01-30 2011-08-31 黑龙江大学 介孔碳与石墨烯复合材料的制备方法
CN102167310A (zh) * 2011-01-30 2011-08-31 黑龙江大学 水热法制备氮掺杂石墨烯材料的方法
CN102324522A (zh) * 2011-10-28 2012-01-18 中国科学院上海硅酸盐研究所 氮掺杂石墨烯/氧化锡纳米复合材料及其制备方法
US20120088934A1 (en) * 2010-06-17 2012-04-12 The Regents Of The University Of California Oligomer functionalized nanotubes and composites formed therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120088934A1 (en) * 2010-06-17 2012-04-12 The Regents Of The University Of California Oligomer functionalized nanotubes and composites formed therewith
CN102167308A (zh) * 2011-01-30 2011-08-31 黑龙江大学 介孔碳与石墨烯复合材料的制备方法
CN102167310A (zh) * 2011-01-30 2011-08-31 黑龙江大学 水热法制备氮掺杂石墨烯材料的方法
CN102324522A (zh) * 2011-10-28 2012-01-18 中国科学院上海硅酸盐研究所 氮掺杂石墨烯/氧化锡纳米复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUANJUN XIANG ET AL: "Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
范彦如等: "氮掺杂微纳米碳材料的制备表征及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254200B (zh) * 2013-05-22 2015-06-03 福州大学 一种分子级厚度的c3n4纳米片及其制备方法和应用
CN103254200A (zh) * 2013-05-22 2013-08-21 福州大学 一种分子级厚度的c3n4纳米片及其制备方法和应用
CN103272639A (zh) * 2013-06-09 2013-09-04 福州大学 一种共聚合改性的石墨相氮化碳纳米片可见光催化剂
CN103831121B (zh) * 2013-12-12 2015-08-19 温州大学 一种氮掺杂介孔石墨烯微球及其制备与应用
CN103831121A (zh) * 2013-12-12 2014-06-04 温州大学 一种氮掺杂介孔石墨烯微球及其制备与应用
CN103680996B (zh) * 2013-12-18 2017-08-04 江苏大学 一种聚吡咯/石墨型氮化碳纳米复合材料及其制备方法
CN103680996A (zh) * 2013-12-18 2014-03-26 江苏大学 一种聚吡咯/石墨型氮化碳纳米复合材料及其制备方法
CN103745836B (zh) * 2013-12-29 2017-01-18 渤海大学 用于超级电容器的g‑C3N4/碳量子点复合电极材料的制备方法
CN103745836A (zh) * 2013-12-29 2014-04-23 渤海大学 g-C3N4/碳量子点复合电极的制备方法
CN103985875A (zh) * 2014-05-21 2014-08-13 南京理工大学 一种石墨烯-氮化碳复合材料的应用
CN103985875B (zh) * 2014-05-21 2016-08-24 南京理工大学 一种石墨烯-氮化碳复合材料的应用
CN104021944A (zh) * 2014-05-30 2014-09-03 燕山大学 一种具有高体积比电容的氮掺杂石墨化碳微球的制备方法
CN104108705A (zh) * 2014-07-11 2014-10-22 同济大学 一种氮掺杂定向石墨烯的制备方法
CN104108705B (zh) * 2014-07-11 2016-05-18 同济大学 一种氮掺杂定向石墨烯的制备方法
CN104134801A (zh) * 2014-07-28 2014-11-05 北京万源工业有限公司 氮化碳-石墨烯包覆磷酸铁锂复合正极材料及其制备方法
CN104134801B (zh) * 2014-07-28 2016-06-01 北京万源工业有限公司 氮化碳-石墨烯包覆磷酸铁锂复合正极材料及其制备方法
CN104472534A (zh) * 2014-11-25 2015-04-01 同济大学 一种石墨烯或其衍生物修饰的介孔状石墨相碳化氮复合抑菌材料的制备方法
CN104399510A (zh) * 2014-12-08 2015-03-11 中国科学院化学研究所 一种氧化石墨与氮化碳的光催化复合材料的制备方法
CN104861784A (zh) * 2015-06-11 2015-08-26 福州大学 一种碳化氮量子点荧光墨水
CN105056891A (zh) * 2015-07-16 2015-11-18 湖南大学 石墨烯修饰的生物炭复合材料及其制备方法和应用
CN105206809A (zh) * 2015-09-11 2015-12-30 合肥国轩高科动力能源有限公司 一种c3n4-碳包覆磷酸铁锂复合正极材料及其制备方法
CN105819439A (zh) * 2016-05-24 2016-08-03 江苏大学 一种氮化碳量子点-石墨烯水凝胶纳米复合材料的制备方法
CN106025303A (zh) * 2016-07-29 2016-10-12 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法和应用
CN106025303B (zh) * 2016-07-29 2018-10-30 杭州富阳伟文环保科技有限公司 一种复合纳米材料及其制备方法和应用
CN106207196B (zh) * 2016-08-02 2018-10-23 杭州富阳伟文环保科技有限公司 一种花状氮化钛/氮化碳/石墨烯复合纳米材料的制备方法
CN106207196A (zh) * 2016-08-02 2016-12-07 杭州富阳伟文环保科技有限公司 一种花状氮化钛/氮化碳/石墨烯复合纳米材料的制备方法
CN106395801B (zh) * 2016-08-30 2018-07-24 北京化工大学 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法
CN106395801A (zh) * 2016-08-30 2017-02-15 北京化工大学 一种低温制备氮掺杂石墨烯以及氮掺杂石墨烯/金属氧化物纳米复合材料的方法
CN106540732B (zh) * 2016-10-20 2019-03-22 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN106540732A (zh) * 2016-10-20 2017-03-29 中国石油大学(北京) 一种还原氧化石墨烯/介孔石墨化氮化碳材料及制备方法
CN106784873B (zh) * 2016-12-12 2018-05-22 佛山市聚成生化技术研发有限公司 一种氮化碳/碳纳米复合材料及其制备方法和应用
CN106784873A (zh) * 2016-12-12 2017-05-31 佛山市聚成生化技术研发有限公司 一种氮化碳/碳纳米复合材料及其制备方法和应用
CN106602012A (zh) * 2016-12-13 2017-04-26 上海交通大学 一种柔性薄膜电极及其制备方法和应用
CN107185576A (zh) * 2017-05-24 2017-09-22 上海大学 一种三维结构的氮化碳/石墨烯复合材料的制备方法
CN108584931A (zh) * 2018-07-10 2018-09-28 中国石油大学(北京) 重油残渣基氮掺杂多孔石墨烯制备方法及所得多孔石墨烯
CN108584931B (zh) * 2018-07-10 2020-01-10 中国石油大学(北京) 重油残渣基氮掺杂多孔石墨烯制备方法及所得多孔石墨烯
CN109261191A (zh) * 2018-11-06 2019-01-25 武汉科技大学 一种石墨相氮化碳泡沫光催化材料及其制备方法
CN109261191B (zh) * 2018-11-06 2021-07-20 武汉科技大学 一种石墨相氮化碳泡沫光催化材料及其制备方法
CN115318318A (zh) * 2021-09-30 2022-11-11 湘潭大学 一种用于硝基芳烃加氢的氮掺杂石墨烯催化剂的制备方法和应用
CN115318318B (zh) * 2021-09-30 2024-06-11 湘潭大学 一种用于硝基芳烃加氢的氮掺杂石墨烯催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN102974283B (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
CN102974283B (zh) 介孔状石墨型氮化碳/氮掺杂石墨烯溶胶纳米复合材料及其制备方法
Liu et al. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc–air batteries
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
CN103318871B (zh) 一种以活性炭为原料合成石墨化多孔碳材料的制备方法
Zhao et al. Ultra-fine Pt nanoparticles supported on 3D porous N-doped graphene aerogel as a promising electro-catalyst for methanol electrooxidation
CN105800600A (zh) 利用果皮制备氮自掺杂三维石墨烯的方法
CN107747106B (zh) 氮、硫掺杂的三维碳纳米网络负载二硫化钼纳米材料及制备
CN102989497B (zh) 介孔状石墨型氮化碳/氮掺杂石墨烯复合材料及制备方法
CN106229521B (zh) 一种FeCx@NC核壳结构催化剂及其制备方法
CN103094584B (zh) 纳米三明治结构燃料电池非贵金属催化剂、膜电极及制备方法
CN105148991B (zh) 一种氮/硫/氯共掺杂多级孔碳催化剂及其制备方法
CN102350335B (zh) 一种室温制备纳米二氧化钛/石墨烯复合水凝胶的方法
CN104941674A (zh) 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
CN106129377B (zh) 一种三氧化二铁/石墨烯复合材料的制备方法、锂离子电池负极、锂离子电池
CN105460921A (zh) 一种硒化钼纳米片/石墨烯纳米带复合材料及其制备方法
CN105217567A (zh) 一种二硫化钼纳米片/石墨烯纳米带复合材料及其制备方法
CN106025244A (zh) 一种硒化镍/石墨烯/碳纳米管复合材料及其制备方法
CN105562057A (zh) 一种氮掺杂三维石墨烯负载钯纳米复合催化剂及其制备方法和应用
CN107154500B (zh) 介孔碳纳米球负载氧化亚锰材料的合成方法
CN105280900A (zh) 一种二硫化钨/石墨烯纳米带复合材料及其制备方法
CN106158405A (zh) 一种氢氧化镍/石墨烯纳米复合材料及其制备方法、超级电容器电极及超级电容器
Zhang et al. Three-dimensional hybrid aerogels built from graphene and polypyrrole-derived nitrogen-doped carbon nanotubes as a high-efficiency Pt-based catalyst support
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN102921444B (zh) 一种制备p25/氮掺杂石墨烯复合材料的方法
CN103943379A (zh) 一种石墨烯负载花状多孔氧化镍复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant