CN107321372B - CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法 - Google Patents

CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法 Download PDF

Info

Publication number
CN107321372B
CN107321372B CN201710417722.0A CN201710417722A CN107321372B CN 107321372 B CN107321372 B CN 107321372B CN 201710417722 A CN201710417722 A CN 201710417722A CN 107321372 B CN107321372 B CN 107321372B
Authority
CN
China
Prior art keywords
cos
liberation
nano particle
composite material
rgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710417722.0A
Other languages
English (en)
Other versions
CN107321372A (zh
Inventor
谢吉民
赵文通
陈琳琳
朱成章
陆俊伟
钱坤
杨赛赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710417722.0A priority Critical patent/CN107321372B/zh
Publication of CN107321372A publication Critical patent/CN107321372A/zh
Application granted granted Critical
Publication of CN107321372B publication Critical patent/CN107321372B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料合成技术领域,公开了一种具有析氢效果的CoS纳米颗粒/N掺杂RGO复合材料的制备方法。本发明通过简单的一步溶剂热法合成前驱体,然后通过高温煅烧生成CoS纳米颗粒/N掺杂RGO复合材料,用于酸性条件下提高析氢性能。本发明的优点在于绿色环保,成本低,制备工艺简便,制得的催化剂易于大规模工业化生产并具备优异的电催化活性及良好的析氢稳定性。杂环原子N引入到CoS/RGO中,形成几何缺陷和杂原子的协同效应,能够降低碳材料对于氢离子的吸附自由能,更有利于氢气的析出,能够显著提高CoS的电化学性能。

Description

CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
技术领域
本发明属于材料合成技术领域,具体涉及了CoS纳米颗粒/N掺杂RGO复合材料的制备方法及其用于电化学析氢的催化剂的用途。
背景技术
最近,人类面临着日益严重的环境污染和能源危机,当前开发和利用清洁有效的能源是解决目前危机的重要挑战之一。从能源清洁及可循环的角度考虑,氢能作为一种高效、清洁、环保的二次能源具有资源丰富,热值高,环保无污染,利用形式多样等特点,已被普遍认为氢是一种理想的新能源,有着无可比拟的巨大优势和无限广阔的应用前景。然而如何通过有效的途径获得较为廉价的氢能源,是目前科研工作者研究的主要内容之一,地球上水资源丰富,通过水的电解获得氢气是有效的途径之一,但是水的电解能源转化效率低是制约其工业化生产的因素之一,因此设计和开发高性能的电解水的催化剂具有极其重要的意义。
近几年,过渡金属硫化物在能源存储及在电催化中的潜在应用得到了研究工作者的广泛关注。过渡金属Co、Ni、Fe硫化物是一类重要的HER催化剂,对MEx(M:Fe、Co、Ni;E:S、N、P)一系列硫化物催化析氢性能研究表明,在酸性电解液中,CoS2、NiS2、CoP、NiP等具有较好的电化学析氢性能。最近,CoS纳米粒子析氢性能也被研究者所关注,Sun等人用微波加热法成功合成了CoS纳米粒子,并研究了微波加热时间不同对CoS在中性溶液中析氢性能的影响。但是CoS电子传递速率慢,易团聚,稳定性差等缺点,限制了其析氢性能。本发明通过还原氧化石墨烯对CoS进行改性,增大其电子传导速率,从而增大其导电性,通过引入杂环原子氮,改变纳米粒子间层间距,进一步扩大活性位点,有效的提高了CoS电化学析氢性能。
发明内容
本发明旨在提供CoS纳米颗粒/N掺杂还原氧化石墨烯(CoS纳米颗粒/N掺杂RGO)析氢复合材料的制备方法,该方法通过简单的溶剂热法制得前驱体,在通过高温煅烧的方法获得CoS纳米颗粒/N掺杂RGO复合材料。本发明制备的CoS纳米颗粒/N掺杂RGO复合材料可显著提高单体的析氢性能。
CoS纳米颗粒/N掺杂RGO析氢复合材料的制备,具体包括以下步骤:
(1)称取一定量的Co(NO3)2·6H2O溶解到去离子水中,得到分散液A;
(2)称取一定量的双氰胺(DCDA)溶解到去离子水中;将DCDA溶液缓慢注入到得到分散液A溶液中,充分搅拌均匀得到分散液B;
(3)然后取GO溶液缓慢注入分散液B溶液中,搅拌,在超声仪中超声,得到分散液C;
(4)在剧烈搅拌下,将NH3·H2O点滴注入到分散液C中,调节溶液pH到10,形成墨绿色溶液D;
(5)称取一定量的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液D中,剧烈搅拌直至反应完全;然后将其转入水热釜中,水热反应结束后,待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥,得到黑色粉末;
(6)将冷冻干燥后的黑色粉末转移到坩埚中,在N2范围中程序升温至煅烧温度,煅烧结束后,取出研磨,得到CoS纳米颗粒/N掺杂RGO析氢复合材料。
不加DCDA,GO溶液,用同样的方法合成CoS单体;
不加DCDA,用同样的方法合成CoS/RGO。
所述GO溶液的浓度为2mg/ml,所述Co(NO3)2·6H2O,C2H5NS,GO溶液的用量比例为:0.75mmol:4mmol:20ml。
步骤(2)中DCDA的量与步骤(3)中石墨烯的质量比分别为1:2,1:1,2:1,4:1。
步骤(4)中,所述NH3·H2O的质量分数为25-28%。
步骤(5)中,所述搅拌时间30min,所述水热反应的温度为180℃,水热反应的时间为14h。
步骤(6)中,所述煅烧温度分别为300℃、600℃或800℃,煅烧时间均为4h,所述程序升温的升温速率4℃/min。
本发明所述CoS纳米颗粒/N掺杂RGO析氢复合材料,用于电化学析氢的催化剂的用途。
CoS纳米颗粒/N掺杂RGO析氢复合材料,有效提高了硫化钴单体的电化学析氢性能,相较于贵金属催化剂Pt、Rh、Ru等,具有催化活性高、反应条件温和,合成工艺简便,方法简单等优点。
本发明的有益效果为:
(1)本发明制备的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备,其制备工艺简单,成本低,易于大规模工业化生产,该材料具有良好的电化学稳定性和析氢性能,在解决环境污染和能源危机方面有良好的应用前景。
(2)电化学体系中的氮掺杂有效的增大了粒子间的层间距,增加了催化剂与电解液的接触面积,CoS纳米颗粒/N掺杂RGO析氢复合材料起始过电位70.6mV,塔菲尔斜率74.4mV dec-1,电流密度为10mA/cm2时的过电位为187.3mV;单体硫化钴的起始过电位为306.3mV,塔菲尔斜率153.5mV dec-1;CoS纳米颗粒/N掺杂RGO析氢复合材料与单体CoS在析氢方面相比较性能有了明显的提高。
(3)CoS纳米颗粒/N掺杂RGO析氢复合材料可作为性能优良的电化学析氢催化剂。氮掺杂的RGO与CoS复合所产生的协同效应既有利于提高了光生电子和空穴的寿命,促进电荷的传输,又有效地提升了复合后催化剂的稳定性。因此,CoS纳米颗粒/N掺杂RGO复合材料显著地提升了催化剂对电解水析氢性能,在电催化实际应用领域具有广阔的前景。
附图说明
图1为实施例1所制备的样品的XRD图谱,与CoS,CoS/RGO的XRD图的对比图;
图2为实施例1所制备的样品的扫描电镜图,A为单体CoS扫描电镜图,B为CoS纳米颗粒/N掺杂RGO复合材料的扫描电镜图;
图3为实施例1所制备的CoS纳米颗粒/N掺杂RGO复合材料在酸性溶液中电化学析氢效果图。
具体实施方式
下面结合说明书附图以及具体实施例对本发明作进一步说明。
实施例1:
制备CoS纳米颗粒/N掺杂RGO析氢复合材料的:
称取0.75mmol(0.2183g)的Co(NO3)2·6H2O溶解到去离子水中,搅拌直至形成均一溶液;
称取0.96mmol(0.08072g)的DCDA溶解到去离子水中,形成均一溶液;
将DCDA溶液缓慢注入到Co(NO3)2·6H2O溶液中;然后取20ml GO(2mg/ml)溶液缓慢注入上述均一的混合溶液中,剧烈搅拌,在超声仪中超声30min;在剧烈搅拌下,将NH3·H2O点滴注入到均一混合溶液中(PH=10),形成墨绿色溶液;
称取4mmol(0.3005g)的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液中,搅拌30min;然后将其转入100ml水热釜中,在180℃加热14h;待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥。将冷冻干燥后的黑色粉末转移到坩埚中,在N2范围中煅烧,在300℃,600℃,800℃温度下煅烧4h,升温速率4℃/min。然后取出研磨,得到CoS纳米颗粒/N掺杂RGO析氢复合材料。经过X射线衍射图谱(XRD)对比不同煅烧温度下的复合材料,300℃下煅烧出来的物质晶相杂乱,析氢稳定性差,原因是由于煅烧温度低,部分未完全反应的C2H5NS没有充分分解;进一步提高煅烧温度,至煅烧温度升高到600℃时,所对应的XRD图晶相较好,与标准卡片(JCPDS NO.75-0605)完全吻合,显示出CoS纳米颗粒/N掺杂RGO复合材料的成功合成;当进一步提高煅烧温度至800℃时,XRD图谱显示部分CoS转变为Co9S8,并非想要得到的物质。通过不同的煅烧温度梯度,我们初步确认了合成CoS纳米颗粒/N掺杂RGO析氢复合材料合适的煅烧温度为600℃,在以下的合成CoS纳米颗粒,CoS/RGO纳米颗粒,所用的煅烧温度均为600℃。
实施例2:
制备单体CoS纳米颗粒:
称取0.75mmol(0.2183g)的Co(NO3)2·6H2O溶解到去离子水中,搅拌形成均一混合溶液;在剧烈搅拌下,将NH3·H2O点滴注入到均一混合溶液中(PH=10),形成墨绿色溶液;称取4mmol(0.3005g)的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液中,搅拌30min;然后将其转入100ml水热釜中,在180℃加热14h;待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥。将冷冻干燥后的黑色粉末转移到坩埚中,在N2范围中煅烧,在600℃温度下煅烧4h,升温速率4℃/min。然后取出研磨,得到单体CoS纳米颗粒。
实施例3:
制备CoS/RGO纳米颗粒:
称取0.75mmol(0.2183g)的Co(NO3)2·6H2O溶解到去离子水中,搅拌形成均一溶液;然后取20ml GO(2mg/ml)溶液缓慢注入上述均一的溶液中,剧烈搅拌,在超声仪中超声30min;在剧烈搅拌下,将NH3·H2O点滴注入到均一混合溶液中(调节PH=10),形成墨绿色溶液;称取4mmol(0.3005g)的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液中,搅拌30min;然后将其转入100ml水热釜中,在180℃加热14h;待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥。将冷冻干燥后的黑色粉末转移到坩埚中,在N2范围中煅烧,在600℃温度下煅烧4h,升温速率4℃/min。然后取出研磨,得到CoS/RGO纳米颗粒。
实施例4:
制备不同氮掺杂含量的CoS纳米颗粒/N掺杂RGO复合材料
称取0.75mmol(0.2183g)的Co(NO3)2·6H2O溶解到去离子水中,搅拌形成均一溶液;分别称取一定量的DCDA溶解到去离子水中;将DCDA溶液缓慢注入到Co(NO3)2·6H2O溶液中;然后取20ml GO(2mg/ml)溶液缓慢注入上述均一的溶液中,剧烈搅拌,在超声仪中超声30min;在剧烈搅拌下,将NH3·H2O点滴注入到均一混合溶液中(PH=10),形成墨绿色溶液;称取4mmol(0.3005g)的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液中,搅拌30min;然后将其转入100ml水热釜中,在180℃加热14h;待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥。将冷冻干燥后的黑色粉末转移到10ml的坩埚中,在N2范围中煅烧,在600℃下煅烧4h,升温速率4℃/min。然后取出研磨,得到CoS/N-dopeRGO-1,CoS/N-dope RGO-2,CoS/N-dope RGO-3,CoS/N-dope RGO-4。
其中CoS/N-dope RGO-1,CoS/N-dope RGO-2,CoS/N-dope RGO-3,CoS/N-dopeRGO-4中DCDA与GO的质量比分别为1:2,1:1,2:1,4:1。
图1是在煅烧温度为600℃下,CoS单体,CoS/RGO复合材料,CoS/N-RGO复合材料的XRD图谱,如图所示CoS单体XRD图谱与标准卡片(JCPDS NO.75-0605)能够完全吻合,说明我们成功合成了CoS单体;还原氧化石墨烯(RGO)的引入,并没有改变CoS单体的晶相,在2θ为11.5°左右有个明显的C峰,说明RGO的成功引入,杂环原子氮的引入并没有明显改变CoS/RGO复合材料XRD图谱。图1显示我们在煅烧温度为600℃时,成功合成了CoS单体,CoS/RGO复合材料,CoS/N-RGO复合材料。
图2为CoS单体(A),CoS/N-RGO复合材料(B)的SEM图,图(A)显示CoS单体为无规则的颗粒状,部分形成片状,图(A)中能明显看出CoS单体团聚在一块。图(B)中我们能够清晰的看到CoS纳米颗粒成功的负载在氮掺杂还原氧化石墨烯(N-RGO)上,氮掺杂还原氧化石墨烯的引入,显著地增加了复合材料的片层状结构,有效抑制了CoS纳米颗粒的团聚,增大了复合材料与电解液的接触面积,有效的增大了催化活性面积,有利于电催化析氢活性的提高。
图3为CoS单体,CoS/RGO复合材料,CoS/N-RGO复合材料在0.5mol/L的H2SO4溶液中的极化曲线图,CoS纳米颗粒/N掺杂RGO析氢复合材料起始过电位70.6mV,塔菲尔斜率74.4mV dec-1,电流密度为10mA/cm2时的过电位为187.3mV;单体硫化钴的起始过电位为306.3mV,塔菲尔斜率153.5mV dec-1;CoS纳米颗粒/N掺杂RGO析氢复合材料与单体CoS在析氢方面相比较性能有了明显的提高。

Claims (8)

1.CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,其特征在于,包括如下步骤:
(1)称取一定量的Co(NO3)2·6H2O溶解到去离子水中,得到分散液A;
(2)称取一定量的双氰胺(DCDA)溶解到去离子水中;将DCDA溶液缓慢注入到得到分散液A溶液中,充分搅拌均匀得到分散液B;
(3)然后取GO溶液缓慢注入分散液B溶液中,搅拌,在超声仪中超声,得到分散液C;
(4)在剧烈搅拌下,将NH3·H2O点滴注入到分散液C中,调节溶液pH到10,形成墨绿色溶液D;
(5)称取一定量的C2H5NS溶解在去离子水中,在剧烈搅拌下将溶液缓慢注入到墨绿色溶液D中,剧烈搅拌直至反应完全;然后将其转入水热釜中,水热反应结束后,待其冷却到室温将其取出,用去离子水和乙醇洗涤5次,冷冻干燥,得到黑色粉末;
(6)将冷冻干燥后的黑色粉末转移到坩埚中,在N2范围中程序升温至煅烧温度,煅烧结束后,取出研磨,得到CoS纳米颗粒/N掺杂RGO析氢复合材料。
2.根据权利要求1所述的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,其特征在于,所述GO溶液的浓度为2mg/ml,所述Co(NO3)2·6H2O,C2H5NS,GO溶液的用量比例为:0.75mmol:4mmol:20ml。
3.根据权利要求1所述的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,其特征在于,步骤(2)中DCDA的量与步骤(3)中GO溶液中GO的质量比分别为1:2,1:1,2:1,4:1。
4.根据权利要求1所述的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,其特征在于,步骤(4)中,所述NH3·H2O的质量分数为25-28%。
5.根据权利要求1所述的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,其特征在于,步骤(5)中,所述搅拌时间30min,所述水热反应的温度为180℃,水热反应的时间为14h。
6.根据权利要求1所述的CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法,步骤(6)中,所述煅烧温度分别为300℃、600℃或800℃,煅烧时间均为4h,所述程序升温的升温速率4℃/min。
7.根据权利要求1~6任一项所述制备方法制得的CoS纳米颗粒/N掺杂RGO析氢复合材料。
8.将权利要求7所述的CoS纳米颗粒/N掺杂RGO析氢复合材料用于电化学析氢的催化剂的用途。
CN201710417722.0A 2017-06-06 2017-06-06 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法 Expired - Fee Related CN107321372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710417722.0A CN107321372B (zh) 2017-06-06 2017-06-06 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710417722.0A CN107321372B (zh) 2017-06-06 2017-06-06 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107321372A CN107321372A (zh) 2017-11-07
CN107321372B true CN107321372B (zh) 2019-12-03

Family

ID=60193890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710417722.0A Expired - Fee Related CN107321372B (zh) 2017-06-06 2017-06-06 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107321372B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461763B (zh) * 2018-03-12 2020-06-19 华南理工大学 一种二硫化钴/硫氮共掺杂石墨烯催化材料及制备与应用
CN108927177A (zh) * 2018-06-06 2018-12-04 天津大学 石墨烯负载二硫化钴颗粒复合材料、制备方法及其用途
CN108745381B (zh) * 2018-06-07 2020-10-09 南开大学 以mof为基底制备硫化钴催化剂的方法
CN110681407A (zh) * 2019-10-18 2020-01-14 南京理工大学 Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法
CN111977708B (zh) * 2020-06-23 2023-05-09 江苏大学 氮掺杂过渡金属硫化物的制备方法及其应用于电解水

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456969A (zh) * 2013-09-06 2013-12-18 哈尔滨工业大学 一种燃料电池用Pt-Co/C-单层石墨烯的制备方法
CN104576075A (zh) * 2014-12-31 2015-04-29 江苏江大环保科技开发有限公司 一种3D珊瑚状石墨烯/NiCo2O4复合材料的制备方法及在超级电容器中的应用
EP2960205A1 (en) * 2014-06-23 2015-12-30 Solvay SA Stable aqueous graphene suspension and its use in producing graphene polymer nanocomposites
KR20160041364A (ko) * 2014-10-07 2016-04-18 부산대학교 산학협력단 Co(II)이 결합된 3차원의 환원된 그래핀 옥사이드(reduced graphene oxide, r-GO) 에어로겔 및 이의 합성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456969A (zh) * 2013-09-06 2013-12-18 哈尔滨工业大学 一种燃料电池用Pt-Co/C-单层石墨烯的制备方法
EP2960205A1 (en) * 2014-06-23 2015-12-30 Solvay SA Stable aqueous graphene suspension and its use in producing graphene polymer nanocomposites
KR20160041364A (ko) * 2014-10-07 2016-04-18 부산대학교 산학협력단 Co(II)이 결합된 3차원의 환원된 그래핀 옥사이드(reduced graphene oxide, r-GO) 에어로겔 및 이의 합성방법
CN104576075A (zh) * 2014-12-31 2015-04-29 江苏江大环保科技开发有限公司 一种3D珊瑚状石墨烯/NiCo2O4复合材料的制备方法及在超级电容器中的应用

Also Published As

Publication number Publication date
CN107321372A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
Zhang et al. MOFs-derived Cu3P@ CoP pn heterojunction for enhanced photocatalytic hydrogen evolution
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN103721736B (zh) 氮化铁/氮掺杂石墨烯气凝胶及其制备方法和应用
CN104495937B (zh) 一种碳掺杂的二硫化钼纳米材料的制备方法
Xie et al. Three-dimensional graphene surface-mounted nickel-based metal organic framework for oxygen evolution reaction
Zhu et al. Ru-modified silicon nanowires as electrocatalysts for hydrogen evolution reaction
Rajapriya et al. Enriched oxygen vacancy promoted heteroatoms (B, P, N, and S) doped CeO2: Challenging electrocatalysts for oxygen evolution reaction (OER) in alkaline medium
CN105826572B (zh) 一种N,S双掺杂碳纳米管包覆FexC催化剂、制备方法及其应用
CN103318978B (zh) 一种介孔钴酸镍纤维的制备方法及其应用
Liu et al. Engineering of anatase/rutile TiO2 heterophase junction via in-situ phase transformation for enhanced photocatalytic hydrogen evolution
CN106563471B (zh) 一种核-壳CoS2@NG纳米复合材料及其制备与应用
Huang et al. Photocatalytic H2 production over S-scheme Co3Se4/TiO2 nanosheet with super-hydrophilic surface
Yan et al. Engineering surface bromination in carbon nitride for efficient CO2 photoconversion to CH4
CN109967100A (zh) 一种金属掺杂的CoP3、其制备方法及应用
CN104667953A (zh) 一种氮掺杂石墨炔、制备方法及其用途
Wang et al. Atomic doping modulates the electronic structure of porous cobalt phosphide nanosheets as efficient hydrogen generation electrocatalysts in wide pH range
Ying et al. Regeneration of porous Fe3O4 nanosheets from deep eutectic solvent for high-performance electrocatalytic nitrogen reduction
CN112058283B (zh) 一种硒化镍/硒化钼复合纳米电催化剂的制备方法及应用
CN109482214A (zh) 一种石墨烯负载钌金属的催化剂及制备方法与应用
CN105742655B (zh) 一种燃料电池用分级多孔碳材料及其制备和应用
CN104538648B (zh) 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
CN108336374A (zh) 一种高性能三元Fe-Co-Ni共掺杂含氮碳材料及其制备方法和应用
CN106702423A (zh) 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用
CN106207205A (zh) 一种燃料电池用PtPd电催化剂及其制备方法
Xu et al. FeWO4/nitrogen-doped multi-dimensional porous carbon for the highly efficient and stable oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191203

Termination date: 20200606