CN104538648B - 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法 - Google Patents

一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法 Download PDF

Info

Publication number
CN104538648B
CN104538648B CN201410759227.4A CN201410759227A CN104538648B CN 104538648 B CN104538648 B CN 104538648B CN 201410759227 A CN201410759227 A CN 201410759227A CN 104538648 B CN104538648 B CN 104538648B
Authority
CN
China
Prior art keywords
graphene
catalyst
cobalt alloy
composite catalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410759227.4A
Other languages
English (en)
Other versions
CN104538648A (zh
Inventor
刘景军
王峰
赵艺阁
宋夜
李志林
吉静
窦美玲
覃事永
王伟红
康建忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Bluestar Beijing Chemical Machinery Co Ltd
Original Assignee
Beijing University of Chemical Technology
Bluestar Beijing Chemical Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology, Bluestar Beijing Chemical Machinery Co Ltd filed Critical Beijing University of Chemical Technology
Priority to CN201410759227.4A priority Critical patent/CN104538648B/zh
Publication of CN104538648A publication Critical patent/CN104538648A/zh
Application granted granted Critical
Publication of CN104538648B publication Critical patent/CN104538648B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法,属于复合催化剂技术领域。铂钴合金纳米粒子的粒径为2~10nm,且均匀分散在石墨烯载体表面。制备方法通过对石墨烯进行简单的柠檬酸预处理,制备了石墨烯负载铂钴合金纳米粒子复合催化剂。该制备方法简单易行,可操作性强。制备得到的合金催化剂为固体粉末,纳米合金粒子均匀分散在石墨烯上,粒径为2~10nm。该催化剂对碱性介质或酸性介质中氧还原反应具有很高的电催化活性和稳定性,其性能优于商业Pt/C催化剂(E‑TEK)。

Description

一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
技术领域
本发明涉及能源材料技术领域,特别是一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法,属于复合催化剂技术领域。
背景技术
氧还原反应是工业领域中最重要的阴极反应之一,广泛应用于燃料电池、金属-空气电池、氯碱工业和污水电化学处理等领域。然而,由于氧还原反应本身的缓慢动力学过程,常常需要高效的电催化剂来促进反应加速进行。目前,氧还原电催化剂主要有贵金属(如铂)及其合金催化剂、非贵金属催化剂、有机金属配合物和碳材料等几大类催化剂。商业Pt/C是目前最常用的氧还原电催化剂,但是铂的储量有限且价格昂贵,限制了其在工业中的广泛应用。此外,Pt/C催化剂在强酸或强碱介质中的电化学稳定性也较差,不能满足实际工业生产中长期稳定运行的需要。由于石墨烯保留了石墨原有的平面型碳六元环共轭晶体结构,具有高比表面积、高电子迁移率、高的化学稳定性,同时具有优异的机械强度、导热性能,以及良好的耐高温和抗腐蚀特性,具有良好的应用前景。因此,石墨烯负载贵金属复合催化剂,目前受到人们的广泛重视。石墨烯基复合催化剂的优点主要体现在以下两个方面:一是将贵金属负载到比表面积较大的碳材料上,可提高其分散性,进而提高其催化性能,二是可以大幅降低贵金属的用量,从而降低成本。然而,由于石墨烯片层结构完整,表面呈化学惰性,在不破坏石墨烯原有结构的基础上,实现金属纳米粒子在石墨烯表面的均匀负载,是目前公认的难题之一。本发明创新性在于对石墨烯进行简单的柠檬酸预处理,将铂钴合金纳米粒子负载在石墨烯表面。该方法有效避免了传统的预处理方法如单酸或者混酸等处理方法对石墨烯原有结构的破坏,所得催化剂在碱性或酸性介质中对氧还原反应具有很高的活性和稳定性,其性能优于商业Pt/C催化剂(E-TEK)。
发明内容
本发明的目的在于提供一种高活性、高稳定性石墨烯负载铂钴合金纳米粒子复合催化剂及简单、快速制备方法。该方法制备出的石墨烯负载铂钴合金纳米粒子复合催化剂在碱性或酸性介质中具有很高的氧还原电催化活性和稳定性,其性能优于商业Pt/C催化剂(E-TEK)。
本发明涉及一种石墨烯负载铂钴合金纳米粒子复合催化剂及制备方法,所述的催化剂为固体粉末,铂钴合金纳米粒子的粒径为2~10nm,且均匀分散在石墨烯载体表面。合金纳米粒子与石墨烯的质量比优选1:10到1:1之间。合金纳米粒子中铂钴的摩尔比优选3:1到1:4。
本发明上述的符合催化剂的制备方法,其特征在于,包括如下步骤:
(1)取石墨烯,加入柠檬酸和去离子水,混合均匀并干燥,然后在200~400℃下保温半个小时,最后随炉冷却得到预处理石墨烯粉末;优选石墨烯:柠檬酸:去离子水的用量关系(100~200)mg:(50~200)mg:(5~20)ml。
(2)将氯铂酸乙二醇溶液和氯化钴水溶液混合均匀,再将经步骤(1)预处理的石墨烯粉末加入到上述混合溶液中,超声5min~40min,并用碱液调节溶液的pH为8~12,得到悬浊液;
(3)将(2)中的悬浊液放入反应器中,在50~120℃搅拌情况下滴加NaBH4水溶液进行还原反应,并在该温度下反应2~5h;反应结束后,得到黑色浆液;
(4)将(3)所得的黑色浆液进行抽滤并用去离子水洗涤,干燥,得到石墨烯负载铂钴合金纳米粒子复合催化剂前驱体粉末;
(5)将(4)所得的前驱体粉末放置于马弗炉中焙烧,以2~6℃/min的速率升至230℃,保温0.5~2h,然后随炉冷却,最后得到石墨烯负载铂钴合金纳米粒子复合催化剂粉末。
在本发明的一个优选实施方式中,步骤(1)中的石墨烯优选还原石墨烯。
在本发明的一个优选实施方式中,步骤(1)中的干燥方法优选真空干燥箱烘干法。
在本发明的一个优选实施方式中,步骤(1)中的保温方法为通入惰性保护气保温。
在本发明的一个优选实施方式中,步骤(2)中的碱液指的是NaOH溶液。
步骤(2)氯铂酸乙二醇溶液和氯化钴水溶液混合后,乙二醇的用量大于水的用量。
在本发明的一个优选实施方式中,硼氢化钠浓度控制在0.5~2M。
本发明采用一种简单环保、操作性强的方法制备得到石墨烯负载铂钴合金纳米粒子复合催化剂,应用于碱性介质或者酸性介质中的氧还原反应。该催化剂具有很高的催化活性和耐久性。
附图说明
图1是实施例1所得催化剂的XRD图谱,可以看出所得催化剂的衍射峰相对于纯Pt向右有所偏移,说明Co溶于Pt的晶格形成了铂钴固溶体合金,其他未标明的峰为石墨烯的衍射峰;
图2是实施例1所得催化剂的SEM图片,可以看出,合金粒子均匀分散在载体表面,粒径为2~10nm;
图3是实施例1所得催化剂与商业Pt/C(E-TEK)催化剂的碱性介质中旋转圆盘曲线对比图(电解质溶液:1M NaOH;扫描速率:5mV/s;扫描电压范围:-0.9~0.2V;转速:rpm=1600)。可以看出,制备所得催化剂相对于商业Pt/C(E-TEK)催化剂,有更正的起始还原电位和半波电位,且其极限扩散电流密度也更高一些。说明了制备所得的催化剂有更高的氧还原活性。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
制备铂钴合金比例为3:1的还原石墨烯负载铂钴合金纳米粒子复合催化剂
(1)取100mg还原石墨烯,加入50~200mg柠檬酸和5~20ml去离子水,混合均匀并干燥,然后通入Ar气,并在200~400℃保温半个小时,最后随炉冷却得到预处理还原石墨烯粉末;
(2)取50ml乙二醇,分别加入9.3ml的0.01M的氯铂酸乙二醇溶液和0.31ml的0.1M氯化钴水溶液。再将经步骤(1)预处理的还原石墨烯粉末加入到上述混合溶液中,超声30min,并用NaOH溶液调节溶液的pH为8~12,得到悬浊液;
(3)将步骤(2)所得的悬浊液放入圆底烧瓶中,在50~120℃搅拌情况下逐滴加入20ml的0.5~2M的NaBH4水溶液,并在该温度下反应3h。反应结束后,得到黑色浆液;
(4)将步骤(3)所得的黑色浆液进行抽滤并用去离子水洗涤,在室温下干燥,得到还原石墨烯负载铂钴合金纳米粒子复合催化剂前驱体粉末;
(5)将步骤(4)所得的粉末放置于马弗炉中焙烧,以2~6℃/min的速率升至230℃,保温1h,然后随炉冷却,最后得到还原石墨烯负载铂钴合金纳米粒子复合催化剂粉末。
实施例2
制备铂钴合金比例为1:1的还原石墨烯负载铂钴合金纳米粒子复合催化剂
(1)取100mg还原石墨烯,加入50~200mg柠檬酸和5~20ml去离子水,混合均匀并干燥,然后通入Ar气,并在200~400℃保温半个小时,最后随炉冷却得到预处理还原石墨烯粉末;
(2)取50ml乙二醇,分别加入7.9ml的0.01M的氯铂酸乙二醇溶液和0.79ml的0.1M氯化钴水溶液。再将经步骤(1)预处理的还原石墨烯粉末加入到上述混合溶液中,超声30min,并用NaOH溶液调节溶液的pH为8~12,得到悬浊液;
(3)将步骤(2)所得的悬浊液放入圆底烧瓶中,在50~120℃搅拌情况下逐滴加入20ml的0.5~2M的NaBH4水溶液,并在该温度下反应3h。反应结束后,得到黑色浆液;
(4)将步骤(3)所得的黑色浆液进行抽滤并用去离子水洗涤,在室温下干燥,得到还原石墨烯负载铂钴合金纳米粒子复合催化剂前驱体粉末;
(5)将步骤(4)所得的粉末放置于马弗炉中焙烧,以2~6℃/min的速率升至230℃,保温1h,然后随炉冷却,最后得到还原石墨烯负载铂钴合金纳米粒子复合催化剂粉末。
实施例3
制备铂钴合金比例为1:4的还原石墨烯负载铂钴合金纳米粒子复合催化剂
(1)取100mg还原石墨烯,加入50~200mg柠檬酸和5~20ml去离子水,混合均匀并干燥,然后通入Ar气,并在200~400℃保温半个小时,最后随炉冷却得到预处理还原石墨烯粉末;
(2)取50ml乙二醇,分别加入4.6ml的0.01M的氯铂酸乙二醇溶液和1.84ml的0.1M氯化钴水溶液。再将经步骤(1)预处理的还原石墨烯粉末加入到上述混合溶液中,超声30min,并用NaOH溶液调节溶液的pH为8~12,得到悬浊液;
(3)将步骤(2)所得的悬浊液放入圆底烧瓶中,在50~120℃搅拌情况下逐滴加入20ml的0.5~2M的NaBH4水溶液,并在该温度下反应3h。反应结束后,得到黑色浆液;
(4)将步骤(3)所得的黑色浆液进行抽滤并用去离子水洗涤,在室温下干燥,得到还原石墨烯负载铂钴合金纳米粒子复合催化剂前驱体粉末;
(5)将步骤(4)所得的粉末放置于马弗炉中焙烧,以2~6℃/min的速率升至230℃,保温1h,然后随炉冷却,最后得到还原石墨烯负载铂钴合金纳米粒子复合催化剂粉末。
以上具体实施方式描述了本发明的基本原理和主要特征。本行业的技术人员应该了解,本发明不受上述实施例的限制,任何不经过创造性劳动想到的变化或变换,都应涵盖在本发明的保护范围内。在不脱离本发明范围的前提下,本发明还会有各种变化和改进,这些变化和改进都将落入要求保护的范围内。

Claims (9)

1.一种石墨烯负载铂钴合金纳米粒子复合催化剂的制备方法,铂钴合金纳米粒子的粒径为2~10nm,且均匀分散在石墨烯载体表面;其特征在于,包括以下步骤:
(1)取石墨烯,加入柠檬酸和去离子水,混合均匀并干燥,然后在200~400℃下保温半个小时,最后随炉冷却得到预处理石墨烯粉末;
(2)将氯铂酸乙二醇溶液和氯化钴水溶液混合均匀,再将经步骤(1)预处理的石墨烯粉末加入到上述混合溶液中,超声5min~40min,并用碱液调节溶液的pH为8~12,得到悬浊液;
(3)将(2)中的悬浊液放入反应器中,在50~120℃搅拌情况下滴加NaBH4水溶液进行还原反应,并在该温度下反应2~5h;反应结束后,得到黑色浆液;
(4)将(3)所得的黑色浆液进行抽滤并用去离子水洗涤,干燥,得到石墨烯负载铂钴合金纳米粒子复合催化剂前驱体粉末;
(5)将(4)所得的前驱体粉末放置于马弗炉中焙烧,以2~6℃/min的速率升至230℃,保温0.5~2h,然后随炉冷却,最后得到石墨烯负载铂钴合金纳米粒子复合催化剂粉末。
2.按照权利要求1的方法,其特征在于,步骤(1)石墨烯:柠檬酸:去离子水的用量关系(100~200)mg:(50~200)mg:(5~20)ml。
3.按照权利要求1的方法,其特征在于,步骤(1)中的石墨烯为还原石墨烯。
4.按照权利要求1的方法,其特征在于,步骤(1)中的干燥方法为真空干燥箱烘干法;步骤(1)中的保温方法为通入惰性保护气保温。
5.按照权利要求1的方法,其特征在于,步骤(2)中的碱液为NaOH溶液。
6.按照权利要求1的方法,其特征在于,步骤(2)氯铂酸乙二醇溶液和氯化钴水溶液混合后,乙二醇的用量大于水的用量。
7.按照权利要求1的方法,其特征在于,硼氢化钠浓度控制在0.5~2M。
8.按照权利要求1的方法,其特征在于,合金纳米粒子与石墨烯的质量比为1:10-1:1。
9.按照权利要求1的方法,其特征在于,合金纳米粒子中铂钴的摩尔比为3:1-1:4。
CN201410759227.4A 2014-12-10 2014-12-10 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法 Expired - Fee Related CN104538648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410759227.4A CN104538648B (zh) 2014-12-10 2014-12-10 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410759227.4A CN104538648B (zh) 2014-12-10 2014-12-10 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN104538648A CN104538648A (zh) 2015-04-22
CN104538648B true CN104538648B (zh) 2017-01-25

Family

ID=52854143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410759227.4A Expired - Fee Related CN104538648B (zh) 2014-12-10 2014-12-10 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN104538648B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854897B (zh) * 2016-04-25 2018-11-09 中国科学院上海高等研究院 高载量铂镍有序金属间化合物及其制备方法和用途
CN108470920A (zh) * 2018-04-08 2018-08-31 北京化工大学 一种用于酸性介质的石墨烯负载铂钴钨合金纳米粒子复合催化剂及其制备方法
CN111346645B (zh) * 2020-03-13 2023-11-28 苏州大学 高分散合金纳米粒子制备方法及应用
CN111957323B (zh) * 2020-08-21 2021-06-15 中国地质大学(武汉) 硼掺杂的核壳结构催化剂及其制备方法和应用
CN113241451B (zh) * 2021-04-14 2022-10-14 北京化工大学 一种晶面调制的低铂合金催化剂及其制备方法和在燃料电池中的应用
CN113903925B (zh) * 2021-08-27 2024-02-23 北京工业大学 一种燃料电池三维碳结构负载Pt-Co合金催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2204237B1 (en) * 2008-12-31 2017-08-09 Samsung Electronics Co., Ltd. Ordered mesoporous carbon composite catalyst, method of manufacturing the same, and fuel cell using the same
PT105193A (pt) * 2010-07-09 2012-01-09 Univ Tras Os Montes E Alto Douro Catalisadores de ligas de paládio para cátodos de pilhas de combustível e respectivo método de produção
CN103212408A (zh) * 2013-02-28 2013-07-24 北京化工大学常州先进材料研究院 一种高抗CO毒性的Pt–M/石墨烯催化剂的制备方法

Also Published As

Publication number Publication date
CN104538648A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
Peng et al. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction
Chen et al. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis
CN104538648B (zh) 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
Liang et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes
Lai et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells
Cheng et al. Recent Progress of Sn‐Based Derivative Catalysts for Electrochemical Reduction of CO2
CN104269566B (zh) 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
Wang et al. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media
CN112517011B (zh) 一种碳基镍铁双金属析氧催化剂及其制备方法
Zhang et al. Cerium-based electrocatalysts for oxygen evolution/reduction reactions: progress and perspectives
Wu et al. Manganese oxide–graphene composite as an efficient catalyst for 4-electron reduction of oxygen in alkaline media
CN107012473B (zh) 一种双金属复合材料及其制备方法和应用
Li et al. Preparation of three-dimensional Fe–N co-doped open-porous carbon networks as an efficient ORR electrocatalyst in both alkaline and acidic media
Chen et al. Design and research progress of nano materials in cathode catalysts of microbial fuel cells: A review
Hossain et al. Synthesis and evaluation of copper-supported titanium oxide nanotubes as electrocatalyst for the electrochemical reduction of carbon oxide to organics
Zhang et al. CoSe2@ NiSe2 nanoarray as better and efficient electrocatalyst for overall water splitting
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN108232213A (zh) 一种氮掺杂石墨烯-碳纳米管-四氧化三钴杂化材料及其制备方法
Sravani et al. Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction
Zhang et al. Facile synthesis of Pd supported on Shewanella as an efficient catalyst for oxygen reduction reaction
Zhang et al. Microbial synthesis of efficient palladium electrocatalyst with high loadings for oxygen reduction reaction in acidic medium
Meng et al. A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction
Fan et al. Freestanding Pt nanosheets with high porosity and improved electrocatalytic performance toward the oxygen reduction reaction
Li et al. Engineering edge sites based on NiS2/MoS2/CNTs heterojunction catalyst for overall water splitting
Li et al. Ultrafine Ru nanoparticles confined in graphene-doped porous g-C3N4 for effectively boosting ammonia borane hydrolysis

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125