CN111346645B - 高分散合金纳米粒子制备方法及应用 - Google Patents

高分散合金纳米粒子制备方法及应用 Download PDF

Info

Publication number
CN111346645B
CN111346645B CN202010177973.8A CN202010177973A CN111346645B CN 111346645 B CN111346645 B CN 111346645B CN 202010177973 A CN202010177973 A CN 202010177973A CN 111346645 B CN111346645 B CN 111346645B
Authority
CN
China
Prior art keywords
salt
mixed solution
solution
concentration
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010177973.8A
Other languages
English (en)
Other versions
CN111346645A (zh
Inventor
王慧华
李林
王婵娜
王德永
屈天鹏
田俊
候栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010177973.8A priority Critical patent/CN111346645B/zh
Publication of CN111346645A publication Critical patent/CN111346645A/zh
Application granted granted Critical
Publication of CN111346645B publication Critical patent/CN111346645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高分散合金纳米粒子及其制备方法与应用,采用以下步骤:将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子。该方法具有操作简便、合成周期短、产品质量易于控制和粒径尺寸均匀等优点。

Description

高分散合金纳米粒子制备方法及应用
技术领域
本发明属于氧还原催化剂制备技术领域,特别涉及采用超声法制备高分散合金纳米粒子的方法。
背景技术
面对日益严重的能源短缺和环境危机,开发新型绿色、高效储能材料及器件,已经成为全人类共同关注的问题和社会发展的必然趋势。金属—空气电池以活泼金属(锂、镁、铝、锌等)为负极,以空气(氧气)为正极,通过金属被氧化、空气(氧气)被还原的电极反应,将化学能转变成电能,具有无毒、无污染、能量密度高、储量大、价格低等优点,是极具竞争力的可持续清洁能源之一。目前,金属-空气电池因为其缓慢的氧还原反应(ORR),严重降低了整个电池的转换效率,成为其商业化应用的重大瓶颈。氧还原催化剂可加速其反应速率,降低电极反应过电位,提高电池的能量转换效率,成为金属-空气电池应用领域的关键技术之一。Pt,Pd及其合金对氧还原反应具有良好的催化效果,但因其储量有限,成本高而受到限制,替代或减少Pt、Pd用量迫在眉睫。
金属纳米粒子因具有粒径小、比表面积大、活性位点多,且可避免块体材料因为空隙扩散引起的系列副反应,因此在催化剂应用方面较传统合金块体材料或合金粉末更具竞争力。值得说明的是,固溶体纳米粒子(单相合金)除了拥有金属纳米粒子特性之外,其溶质和溶剂原子因尺寸差异会发生晶格畸变,同时伴随内部电荷中心偏移,形成活化中心,氧还原催化效率升高。现有技术制备金属纳米粒子多集中在单一组元,且存在工艺复杂、周期长、粒径尺寸难以控制且极易团聚等缺点,因此迫切需要寻找一种高效、粒径可控、分散度好、性能优异的金属纳米粒子制备方法。
发明内容
本发明主要以石墨烯为载体,乙酸钴 (四水)、氯化亚锡和氯化钯为原料,通过超声处理快速合成石墨烯负载三元钯基单相合金纳米粒子,其合金纳米粒子平均粒径为2~5nm,且能够长时间保持这种分散状态,避免纳米粒子易团聚的缺点。另外,本发明通过优化离子浓度降低钯含量,获得一种成本相对低廉、性能优异的三元钯基合金,其氧还原催化效率明显优于单一钯或Pt/C催化参比剂,具有良好的市场应用前景。
本发明采用以下技术方案:
一种快速制备高分散合金纳米粒子的方法,包括以下步骤,将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子。
本发明中,将氧化石墨烯在惰性气氛中焙烧制备还原石墨烯(RGO);优选的,焙烧为750~850℃加热25~3530min,比如800℃加热30min。
本发明中,氧化石墨烯(GO)纯度>99%,厚度1~3nm,直径>50um,比表面积100~200m2/g;为现有产品。氧化石墨烯经高温处理可转变成还原石墨烯(RGO);经高温处理过程,RGO的大部分含氧官能团消失,仅残余的极少量O-H和C-O官能团,这些官能团对于纳米粒子氧化物附着起重要作用,能够改善纳米金属粒子在石墨烯表面的分布状态。
本发明中,金属盐为钯盐和非钯盐,非钯盐优选为钴盐、锡盐,优选的,非钯盐为乙酸钴和氯化亚锡,钯盐为氯化钯;所述酸为柠檬酸,醇为乙二醇。
本发明中,混合液中,还原石墨烯浓度为0.1~0.3g/L,钯盐浓度为0.001~0.01mol/L,比如0.005~0.01mol/L;优选的,钴盐的浓度为0.04~0.06mol/L,比如0.05mol/L;锡盐的浓度为0.001~0.01mol/L,比如0.005~0.007ml/L。优选的,金属盐为钯盐、锡盐、钴盐时,钯盐的浓度大于锡盐的浓度,钯盐与锡盐的浓度和为钴盐浓度的15%~25%。
本发明中,混合液中,以水为溶剂,柠檬酸的浓度为0.04~0.1mol/L;乙二醇的用量为混合液体积的30~35%。
本发明中,混合液在冰水浴条件下超声处理;所述超声处理的时间为2~4h,频率为10~20KHz。
本发明中,离心分离的转速为20000 r/min;烘干为在高纯N2气氛中100℃烘干;得到高分散合金纳米粒子。
本发明公开了一种高分散、高效且粒径可控、低成本的多元合金纳米粒子制备方法,解决了现有技术制备金属纳米粒子存在工艺复杂、周期长、粒径尺寸难以控制且极易团聚、氧还原性能不佳等缺点。本发明方法中,瞬时产生的高温、高压将水分子或有机物分解成具有强还原能力的H·自由基和水合电子 (e)等,进而将溶液中金属离子还原成金属原子或低价金属离子,并同步负载到高分散的石墨烯片层上,具有操作简单,合成周期短,成本低,产物粒径可控、组成可控、产率较高、分散度高等优点。本发明可促使溶液中多种金属离子同时被还原,在构建晶体结构时,其他金属原子容易进入钯晶格中形成固溶体(二元或三元单相合金),固溶体因为内部结构原子尺寸差异会发生晶格畸变,可形成晶格诱导效应,且固溶原子间产生相互耦合作用,从而赋予该合成粒子优异的氧还原催化性能。
本发明中合金纳米粒子制备受到各组分离子在溶液中浓度的影响,是决定晶格畸变大小的重要因素,也是影响氧还原催化剂性能的关键。本发明中通过优化三元单相钯基合金组成,即通过金属Sn替代部分Pd,一方面降低Pd含量以减少成本,另一方面调整固溶原子晶格畸变效应,可获得性能更为优异的氧还原催化剂。
与现有技术相比,本发明的优点是:
A:本发明利用超声法快速合成合金纳米粒子,操作简单,合成周期短;
B:本发明可制备多元单相合金、中间合金纳米粒子;
C:本发明制备的合金纳米粒子粒径较小(2~5nm),分散度极高;
D:本发明获得的三元单相合金纳米粒子因晶格畸变、电子中心偏移而产生良好的氧还原和氧析出双功能催化活性;
E:本发明通过优化离子浓度合成Co5Sn0.5Pd0.5单相合金,不仅达到降钯减成本的目的,而且其氧还原性能达到最佳,远超单钯或Pt/C催化剂;
F:本发明采用大比表面还原石墨烯作为纳米粒子载体,可显著提高纳米粒子分散性,避免纳米粒子因为表面活性大而极易团聚的不利影响。
附图说明
图1 是本发明合成高分散、单相合金纳米粒子流程图;
图2 是石墨烯对Co-Sn-Pd纳米粒子分散度影响(a)石墨烯载体;(b)无石墨烯载体;
图3 是实施实例3中制备的Pd-Co-Sn单相合金纳米粒子有无石墨烯载体的氧还原稳定性能 (a)无石墨烯载体;(b):有石墨烯载体;
图4 是实施实例3中制备的Pd-Co-Sn单相合金纳米粒子的TEM和纳米粒子粒径分布图;
图5是对比例中合金纳米粒子的XRD物相分析;
图6 是实施例中RGO负载不同组成合金纳米粒子的XRD物相分析;
图7实施例中合成合金纳米粒子氧还原性能比较图;A-LSV,B-阴影区放大;
图8实施例中石墨烯负载合金纳米粒子双功能氧电极性能比较。
具体实施方式
下面结合具体实施方法对本发明进行进一步详细说明,但本发明的保护范围并不限于所述内容。
本发明公开的快速制备合金纳米粒子的方法如下,将酸、醇加入到石墨烯和金属盐混合溶液中,得到混合液;然后将混合液超声处理一定时间,得到处理液;最后将处理液离心分离后取沉淀烘干,得到高分散合金纳米粒子;图1 是本发明合成高分散、单相合金纳米粒子流程图。
本发明中,氧化石墨烯(GO)纯度>99%,厚度1~3nm,直径>50um,比表面积100~200m2/g;为现有产品。氧化石墨烯经高温处理自然冷却后可转变成还原石墨烯(RGO);本发明中所述化学试剂均为化学纯(99.99%),超声波发生器为常规器件。
实施例1 高分散Co5Pd1/RGO合金纳米粒子
制备如下:
(1):将氧化石墨烯(GO)在管式炉内氮气气氛下升温至800℃,保温30min后冷却得到还原石墨烯(RGO);
(2):将0.498 g的四水乙酸钴(0.05mol/L)和0.07g氯化钯(0.01mol/L)依次溶入40 ml含有还原石墨烯(0.01g/L)的去离子水中,搅拌溶解;
(3):向(2)溶液中加入0.384g柠檬酸(0.05mol/L)和20mL乙二醇,磁力搅拌20min;
(4):将超声波发生器的超声头置于(3)溶液中,距离反应器底部3 cm,15KHz持续超声3 h;
(5):将(4)超声后的溶液置于高速离心机中进行离心分离(20000r/min),然后将沉淀物在高纯N2气氛中100℃烘干,得到Pd1Co5/RGO负载型合金纳米粒子,XRD物相分析为单一Pd基固溶体,且因为原位还原度,ICP分析其实际化学组成为Co2.61Pd0.97
实施例2 高分散Co5 Sn0.3Pd0.7/RGO合金纳米粒子
制备如下:
(1):将氧化石墨烯(GO)在管式炉内氮气气氛下升温至800℃,保温30min后冷却得到还原石墨烯(RGO);
(2):将0.498 g的四水乙酸钴(0.05mol/L)、0.027g的氯化亚锡(0.003mol/L)和0.05g氯化钯(0.007mol/L)依次溶入40 ml的去离子水(含有0.01g/L还原石墨烯),搅拌溶解;
(3):向(2)溶液中加入0.384g柠檬酸(0.05mol/L)和20mL乙二醇,磁力搅拌20min;
(4):将超声波发生器超声头置于(3)溶液中,距离反应器底部约3 cm,15KHz持续超声3 h;
(5):将超声后的(4)溶液置于高速离心机中(20000r/m)进行离心分离,然后将沉淀物在高纯N2气氛中100℃烘干,得到Co5Pd0.7Sn0.3/RGO负载型合金纳米粒子,XRD物相分析为单一Pd基固溶体,ICP分析其实际化学组成为Co2.14Pd0.67Sn0.21
实施例3 高分散Co5 Sn0.5Pd0.5/RGO合金纳米粒子
制备如下:
(1):将氧化石墨烯(GO)在管式炉内氮气气氛下升温至800℃,保温30min后冷却得到还原石墨烯(RGO);
(2):将0.498 g的四水乙酸钴(0.05mol/L)、0.045g的氯化亚锡(0.005mol/L)和0.036g氯化钯(0.005mol/L)依次溶入40 ml的去离子水(含有0.01g/L还原石墨烯),搅拌溶解;
(3):向(2)溶液中加入0.384g柠檬酸(0.05mol/L)和20mL乙二醇,磁力搅拌20min;
(4):将超声波发生器超声头置于(3)溶液中,距离反应器底部约3 cm,15KHz持续超声3 h;
(5):将(4)超声后的溶液置于高速离心机中进行离心分离(20000r/m),然后将沉淀物在高纯N2气氛中100℃烘干,得到Co5Pd0.5Sn0.5/RGO负载型合金纳米粒子,XRD物相分析为单一Pd基固溶体,ICP分析合金金属实际化学组成为Co2.32Pd0.47Sn0.38
将上述步骤(2)去离子水中的还原石墨烯去掉,其余不变,得到低分散Co5Sn0.5Pd0.5合金纳米粒子。
图2、3分别是上述合成的Co5Sn0.5Pd0.5纳米粒子有无石墨烯载体的分散以及氧还原稳定性测试图,图4是上述合成的Co5Pd0.5Sn0.5/RGO纳米粒子的TEM、粒径分布图。从图2(a)中可以看出,纳米粒子在石墨烯表层呈现均匀分布,颗粒呈球形,80%以上粒子粒径为3~5nm,与粒径分布图保持一致(图4),而没有石墨烯载体的纳米粒子团聚较为严重(图2b);图3显示Co-Sn-Pd纳米粒子负载在石墨烯上比未负载的纳米粒子具有更加优良的氧还原催化稳定性。
对比例
在实施例3的基础上做单因素变化,形成对比,以体现本发明创造性:
如果超声功率采用8KW,其余不变,得到的对比粒子进行XRD物相分析,出现Co-Sn合金的衍射峰,没有得到单一Pd基固溶体;如果采用超声功率采用25KW,其余不变,得到的对比粒子进行氧还原催化效率评价,氧还原起峰电位位于Co5Pd1和Co5Sn0.3Pd0.7之间。
如果采用30mL乙二醇,其余不变,得到的粒子粒径偏大,70%左右集中在16~20nm;如果采用20mL乙醇,其余不变,得到的粒子进行XRD物相分析,同样出现Co-Sn合金的衍射峰,没有得到单一Pd基固溶体。
如果将氯化亚锡替换为三氯化铁(0.005mol/L),其余不变,得到的粒子进行XRD物相分析,出现明显Co-Fe合金的衍射峰,没有得到单一Pd基固溶体。
如果将焙烧法制备的还原石墨烯替换为常规化学还原法制备的还原石墨烯(商购产品),其余不变,得到的粒子进行XRD物相分析,同样没有得到单一Pd基固溶体。以上对比试样的XRD如图5所示,从图中可以看出,本发明的合成条件一旦发生改变,则形成的合金类型将会发生改变,无法得到单一Pd基固溶体。
实施例4 高分散Co5 Sn0.7Pd0.3/RGO合金纳米粒子
制备如下:
(1):将氧化石墨烯(GO)在管式炉内氮气气氛下升温至800℃,保温30min后冷却得到还原石墨烯(RGO);
(2):将0.498 g的四水乙酸钴(0.05mol/L)、0.063g的氯化亚锡(0.007mol/L)和0.021g氯化钯(0.005mol/L)依次溶入40 ml的去离子水(含有0.01g/L还原石墨烯),搅拌溶解;
(3):向(2)溶液中加入0.384g柠檬酸(0.05mol/L)和20mL乙二醇,磁力搅拌20min;
(4):将超声波发生器超声头置于(3)溶液中,距离反应器底部约3 cm,15KHz持续超声3 h;
(5):将超声后的(4)溶液置于高速离心机中(20000r/m)进行离心分离,然后将沉淀物在高纯N2气氛中100℃烘干,得到Co5 Sn0.7Pd0.3/RGO负载型合金纳米粒子,XRD物相分析其产物粒子除Pd基固溶体外,还包括CoSn2中间合金纳米粒子,XRD物相分析显示有CoSn2衍射峰,说明单相合金固溶度减小,CoSn2中间合金纳米粒子含量增加。
实施例5 Co5Sn1/RGO负载型合金纳米粒子
制备如下:
(1):将氧化石墨烯(GO)在管式炉内氮气气氛下升温至800℃,保温30min后冷却得到还原石墨烯(RGO);
(2):将0.498 g的四水乙酸钴(0.05mol/L)、氯化亚锡(0.01mol/L)依次溶入40 ml的去离子水(含有0.01g/L还原石墨烯),搅拌溶解;
(3):向(2)溶液中加入0.384g柠檬酸(0.05mol/L)和20mL乙二醇,磁力搅拌20min;
(4):将超声波发生器超声头置于(3)溶液中,距离反应器底部约3 cm,15KHz持续超声3 h;
(5):将超声后的(4)溶液置于高速离心机中(20000r/m)进行离心分离,然后将沉淀物在高纯N2气氛中100℃烘干,得到Co5 Sn1 /RGO负载型合金纳米粒子,XRD物相分析其产物粒子为CoSn2中间合金纳米粒子,无固溶效应。
图6为上述实施例制备的RGO负载型合金纳米粒子的XRD图,本发明实施例(1~5)中合成的粒子均为纳米粒子,当Co浓度一定,Sn可以部分替代Pd,并且和Co原子一起进入到Pd晶格内部,形成单一Pd基固溶体,当改变Sn浓度、Pd浓度时,Pd金属固溶度下降,且出现CoSn2中间合金。本发明实施例5进一步说明Co和Sn之间只能形成中间合金,无固溶效应。这一现象说明,单相合金的形成受到各组分离子比例、制备参数的影响,进而决定晶格畸变大小、影响氧还原催化剂性能。本发明可促使溶液中多种金属离子同时被还原,在构建晶体结构时,其他金属原子容易进入钯组成的晶格中形成固溶体(单相合金),固溶体(单相合金)因为内部结构原子尺寸差异会发生晶格畸变,形成晶格诱导效应,从而产生氧还原催化性能。
实施例6
将制备的合金纳米粒子加入无水乙醇,配置成4mg/mL的悬浮液,用移液枪取6微升于直径3毫米的玻碳电极上,用5wt%萘酚溶液均匀覆盖电极表面形成保护膜,晾干,得到氧还原工作电极。
使用标准三电极体系测试电化学性能:饱和甘汞(SCE)为参比电极,Pt丝为对电极,工作电极为负载纳米粒子的玻碳电极;采用LSV法测量不同合金纳米粒子在0.1M KOH电解液中的氧还原起峰电位,扫描速度5Mv/s;使用旋转圆盘环盘装置(RRDE-3A)研究不同合金粒子中间产物H2O2生成量,转速1600rpm。
为比较实验结果,所有测试点位校准成RHE,即E(RHE)=E(SCE)+0.242V+0.0591pH;所有测试为本领域常规测试。
本发明实施例中因为制备参数、尺寸差异造成Pd晶格压缩程度不同,影响活化中心的数量,从而影响其氧化还原催化效率。氧还原催化效率主要评价指标是氧还原过电位η(η=E理论-E实际,其中E理论=1.23V vs RHE)。图7、图8给出了合成纳米粒子氧还原性能测试图,图中Pd基固溶体氧还原起峰电位均小于Pt/C催化剂(氧还原反应催化剂参比样),说明固溶体的氧还原性能均优于单一金属Pt催化剂,对于无晶格畸变的Co-Sn合金,从图7中可以看出,其氧还原起峰电位较负,说明其电极上反应过电位较大,因而氧还原反应催化性能较差,同时给出焙烧还原石墨烯做对比。
从中间产物H2O2生成量可以看出,实施例3合成的Co5Sn0.5Pd0.5/RGO纳米粒子在氧还原过程中,H2O2生成量在5.5%~6%,说明其具有优异的催化活性,主导氧还原四电子反应路径,相对而言,实施例1、实施例2、实施例4、实施例5得到的纳米粒子在氧还原过程中,H2O2生成量分别为29%、13%、21%、41%,整个过程有微小浮动。
此外,如图8所示,实施例3获得的CoSn0.5Pd0.5/RGO除了拥有良好的氧还原催化性能,同时拥有良好的氧析出催化能力,其氧析出催化性能与RuO2参比样相媲美,因此本发明设计的CoSn0.5Pd0.5/RGO可充当双功能氧电极催化剂,应用范围可进一步扩大。
本发明采用超声辐射产生瞬时高温高压效应,促使溶液中多种金属离子同步被还原,形成固溶体(单相合金);固溶体(单相合金)因为原子尺寸差异会发生晶格畸变,形成晶格诱导效应,从而产生氧还原催化性能;同时,纳米金属粒子因为分散在在石墨烯表面,具有较强的结合力和分散力,从而持续保持其大的比表面积、较多的活性位点,这些对于加快氧还原反应催化活性至关重要。

Claims (5)

1.高分散合金纳米粒子,其特征在于,所述高分散合金纳米粒子的制备方法包括以下步骤,将氧化石墨烯在惰性气氛中焙烧制备还原石墨烯;将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子;所述酸为柠檬酸,醇为乙二醇;金属盐为钯盐、锡盐、钴盐,还原石墨烯浓度为0.1~0.3g/L;钯盐浓度为0.005~0.01mol/L;钴盐浓度为0.04~0.06mol/L;锡盐浓度为0.005~0.007mol/L;钯盐的浓度大于锡盐的浓度,钯盐与锡盐的浓度和为钴盐浓度的15%~25%;混合液中,以水为溶剂,柠檬酸的浓度为0.04~0.1mol/L;乙二醇的用量为混合液体积的30~35%;混合液在冰水浴条件下超声处理;所述超声处理的时间为2~4h,频率为15KHz;离心处理的转速为20000 r/min;烘干为在高纯N2气氛中100℃烘干。
2.权利要求1所述高分散合金纳米粒子在制备氧还原或者氧析出催化剂中的应用;或者权利要求1所述高分散合金纳米粒子作为氧还原或者氧析出催化剂的应用。
3.权利要求1所述高分散合金纳米粒子的制备方法,其特征在于,包括以下步骤,将酸、醇加入到混有金属盐的还原石墨烯溶液中,得到混合液;然后将混合液超声处理后离心分离,再将沉淀烘干,得到高分散合金纳米粒子。
4.一种工作电极,其特征在于,所述工作电极的制备方法包括以下步骤,将权利要求1所述高分散合金纳米粒子加入无水乙醇,配置成悬浮液,用移液枪取悬浮液于玻碳电极上,用萘酚溶液均匀覆盖后晾干,得到工作电极。
5.权利要求4所述的工作电极作为氧还原或者氧析出电极的应用。
CN202010177973.8A 2020-03-13 2020-03-13 高分散合金纳米粒子制备方法及应用 Active CN111346645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010177973.8A CN111346645B (zh) 2020-03-13 2020-03-13 高分散合金纳米粒子制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010177973.8A CN111346645B (zh) 2020-03-13 2020-03-13 高分散合金纳米粒子制备方法及应用

Publications (2)

Publication Number Publication Date
CN111346645A CN111346645A (zh) 2020-06-30
CN111346645B true CN111346645B (zh) 2023-11-28

Family

ID=71194515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010177973.8A Active CN111346645B (zh) 2020-03-13 2020-03-13 高分散合金纳米粒子制备方法及应用

Country Status (1)

Country Link
CN (1) CN111346645B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563519B (zh) * 2020-07-23 2022-04-12 中国科学院苏州纳米技术与纳米仿生研究所 金属间化合物-碳纳米管复合材料及其制法与应用
CN114525542B (zh) * 2022-03-16 2024-05-14 苏州大学 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050715A (zh) * 2013-01-14 2013-04-17 太原理工大学 一种钯铜锡三元合金纳米催化剂及其制备方法
CN104538648A (zh) * 2014-12-10 2015-04-22 北京化工大学 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
CN106099125A (zh) * 2016-08-16 2016-11-09 深圳大学 一种钯锡钴三元合金纳米催化剂及其制备方法与应用
CN106910899A (zh) * 2017-02-27 2017-06-30 广西大学 一种氮掺杂双壳层结构纳米催化剂的制备方法
CN107785591A (zh) * 2017-09-28 2018-03-09 东华大学 具有高电催化甲醇氧化活性的钯‑铜合金/还原氧化石墨烯复合材料及其制备方法和应用
CN107887618A (zh) * 2017-09-27 2018-04-06 姚乃元 一种碳基铂银钯三元合金催化剂及其制备方法
CN108232210A (zh) * 2018-01-18 2018-06-29 兰州交通大学 一种高稳定性、低负载量的超分散贵金属电催化剂的制备方法
CN108470920A (zh) * 2018-04-08 2018-08-31 北京化工大学 一种用于酸性介质的石墨烯负载铂钴钨合金纳米粒子复合催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050715A (zh) * 2013-01-14 2013-04-17 太原理工大学 一种钯铜锡三元合金纳米催化剂及其制备方法
CN104538648A (zh) * 2014-12-10 2015-04-22 北京化工大学 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
CN106099125A (zh) * 2016-08-16 2016-11-09 深圳大学 一种钯锡钴三元合金纳米催化剂及其制备方法与应用
CN106910899A (zh) * 2017-02-27 2017-06-30 广西大学 一种氮掺杂双壳层结构纳米催化剂的制备方法
CN107887618A (zh) * 2017-09-27 2018-04-06 姚乃元 一种碳基铂银钯三元合金催化剂及其制备方法
CN107785591A (zh) * 2017-09-28 2018-03-09 东华大学 具有高电催化甲醇氧化活性的钯‑铜合金/还原氧化石墨烯复合材料及其制备方法和应用
CN108232210A (zh) * 2018-01-18 2018-06-29 兰州交通大学 一种高稳定性、低负载量的超分散贵金属电催化剂的制备方法
CN108470920A (zh) * 2018-04-08 2018-08-31 北京化工大学 一种用于酸性介质的石墨烯负载铂钴钨合金纳米粒子复合催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Co-Fe-Pd 纳米粒子的可控制备及其氧还原催化性能";王婵娜等;《化工学报》;20191231;第70卷(第1期);第320页 *
"PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction:Ni stability study";Luanna Silveira Parreira et al.;《Electrochimica Acta》;20130216;第96卷;第243-252页 *
"Synthesis of Pd-Sn Nanoparticles by Using Ultrasonic Irradiation and their Electrocatalytic Activity for Oxygen Reduction";J. Kim et al.;《ECS Transactions》;20081231;第11卷(第31期);第51-60页 *
付长璟.《石墨烯的制备、结构及应用》.哈尔滨工业大学出版社,2017,第33-34页. *

Also Published As

Publication number Publication date
CN111346645A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
Hu et al. In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation
CN112103520B (zh) 一种醇类燃料电池的阳极催化剂
CN110581281B (zh) 一种应用于燃料电池领域的PdCu合金纳米催化剂及制备方法
CN111346645B (zh) 高分散合金纳米粒子制备方法及应用
CN110854392A (zh) 一种基于金属有机骨架的谷穗状碳材料及制备和应用
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
Fan et al. Facile synthesis of Pt5La nanoalloys as the enhanced electrocatalysts for oxygen reduction reaction and methanol oxidation reaction
CN114164452B (zh) 一种制备超薄钒酸钴纳米片负载金属单原子催化剂的方法
Cui et al. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction
CN114525542A (zh) 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用
Li et al. Structural construction of Bi-anchored honeycomb N-doped porous carbon catalyst for efficient CO2 conversion
CN113621988A (zh) 一种高效氧析出高熵非晶氧化物纳米催化剂及其制备方法和应用
CN107369839B (zh) 氧化钌-硅藻土复合负载燃料电池催化剂的制备方法
CN113134361A (zh) 一种Ag/α-Co(OH)2析氧催化剂的制备方法
CN110743568B (zh) 一种花状多孔Co3O4负载Pt粒子纳米材料及其制备方法和应用
Chen et al. Electrochemically-induced highly reactive PdO* interface on modulated mesoporous MOF-derived Co3O4 support for selective ethanol electro-oxidation
CN115557469B (zh) 一种非晶态贵金属氧化物材料及其制备方法与应用
CN116799229A (zh) 一种高熵合金催化剂的制备方法、高熵合金催化剂及应用
Sridharan et al. Enhanced oxygen reduction activity of bimetallic Pd–Ag alloy-supported on mesoporous cerium oxide electrocatalysts in alkaline media
CN114082972B (zh) 一种绿色制备Rh超薄纳米片及低结晶度纳米粒子的方法
CN111211334A (zh) 一种PtNi/C合金催化剂及其制备方法与应用
Li et al. Carbothermal shock synthesis of CoO/N/C nanoparticles with superior durability for oxygen reduction reaction
CN109280800B (zh) 一种系列PdxSny合金纳米晶及制备方法及应用
CN110676475A (zh) 一种分层骨架结构的Pt-Ni合金电催化剂及其制备方法
CN112054217A (zh) 一种CoSe2/C复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant