CN110681407A - Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法 - Google Patents

Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN110681407A
CN110681407A CN201910993356.2A CN201910993356A CN110681407A CN 110681407 A CN110681407 A CN 110681407A CN 201910993356 A CN201910993356 A CN 201910993356A CN 110681407 A CN110681407 A CN 110681407A
Authority
CN
China
Prior art keywords
doped
zif
precursor
ncntfs
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910993356.2A
Other languages
English (en)
Inventor
郝青丽
何斌
宋娟娟
雷武
夏锡锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910993356.2A priority Critical patent/CN110681407A/zh
Publication of CN110681407A publication Critical patent/CN110681407A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法。该方法是:在ZIF‑67前驱体中加入硝酸铁,以乙醇作为反应溶剂,室温搅拌下得到Fe掺杂的ZIF‑67前驱体;以碲粉作为碲源,将Fe掺杂的ZIF‑67前驱体在Ar/H2混合气氛下煅烧,得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料。本发明制备的Fe掺杂Co1.11Te2@NCNTFs纳米复合材料的方法具有工艺简单、可重复性高,作为双功能电催化剂可同时应用于电催化析氢反应(HER)和析氧反应(OER)。

Description

Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法
技术领域
本发明属于电催化剂的制备及应用领域,具体一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料的制备方法。
背景技术
电催化析氢反应(Hydrogen evolution reaction,HER)和析氧反应(oxygenevolution reaction,OER)在燃料电池、化学电池和电解水等能源转化应用中起了关键性的作用。目前最有效的电解水催化剂为Pt基、Ru基,其价格高昂、地球储存有限和选择性低大大限制了它们的广泛应用。因此,开发可代替贵金属的催化剂成为电催化研究的热点。
过渡金属硫族化合物由于其在光学、电学以及能源领域具有突出的性质引起科学家的广泛关注。过渡金属硫族化合物具备优异的催化活性、成本低、易于合成,被视为极有希望代替贵金属催化剂应用于电解水领域。碲化钴作为一个未被广泛开发的的过渡金属硫族化合物,是具有前景的非贵金属催化剂之一,然而如何制备具有高活性位点的碲化钴电催化剂仍然是一个挑战。文献(J.Mater.Chem.A,2018,6,3684-3691)公开了一种CoTe2@NCNTFs作为电催化全解水材料,在1M KOH碱性条件下,在10mA/cm2的电流密度下析氢和析氧的过电势分别为208和330mv,其性能较差并且全解水效果不佳。文献(Appl.Surf.Sci,2019,490,516-521)公开了一种Ni3Te2-CoTe2/CC复合材料在电催化析氧中的应用,其合成过于复杂且稳定性较差。专利(CN 107447231A)公开了一种二碲化钴析氧复合材料的制备和应用,但其电催化析氧性能和稳定性较差。
发明内容
本发明目的是提供了一种合成过程简单、低成本、易控制的Fe掺杂Co1.11Te2@NCNTFs复合电催化材料及其制备方法。
本发明提供了如下的技术方案:
一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,所述的纳米复合材料由Fe掺杂的Co1.11Te2和氮掺杂的碳纳米管(NCNTFs)组成。
上述纳米复合材料的制备方法,包括如下步骤:(1)在ZIF-67前驱体中加入硝酸铁,以乙醇作为反应溶剂,室温搅拌下得到Fe掺杂的ZIF-67前驱体;(2)以碲粉作为碲源,将Fe掺杂的ZIF-67前驱体在Ar/H2混合气氛下煅烧,得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料。
进一步的,步骤(1)中,将硝酸钴和2-甲基咪唑为反应原料,甲醇作为反应溶剂制备ZIF-67前驱体。
进一步的,步骤(1)中,ZIF-67前驱体与硝酸铁的质量比为2.5~5。
进一步的,步骤(2)中,Ar/H2混合气氛中H2体积含量为10%。
进一步的,步骤(2)中,碲粉与Fe掺杂的ZIF-67前驱体的质量比为2:1。
进一步的,步骤(2)中,煅烧温度为700℃,煅烧时间为2小时,升温速率为5℃/min。
本发明相对于现有技术,具有如下显著优点:1、本发明所提供的Fe掺杂Co1.11Te2@NCNTFs纳米复合材料具有合成过程简单,易控制,重复性高的优点;2、本发明所提供的Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,Fe的掺杂增加了Co1.11Te2的晶体缺陷,从而暴露了更多的活性位点,降低了电荷的转移内阻,起到了提高催化剂催化性能的作用;3、本发明拓展了碲化物在电解水领域的开发以及应用。
附图说明
图1为实施例1-3中所制备的产物的XRD图谱(a对应着实施例1-3所得不同铁掺杂量样品的XRD图谱,b为不同铁掺杂量的Co1.11Te2@NCNTFs的XRD图)。
图2为实施例2中所制备的产物的SEM图谱(a为Fe-ZIF-67-15的SEM图,b为Fe-Co1.11Te2@NCNTFs-15的SEM图)。
图3实施例1-3中制备的样品在1M KOH溶液中对比的HER和OER曲线图。
具体实施方式
下面通过实施例对本发明的一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料制备方法上做进一步详细说明,但不限于这些实施例。
该方法包括以下具体步骤:
(1)ZIF-67前驱体的制备
采用硝酸钴(Co(NO3)2)和2-甲基咪唑为反应原料,甲醇做为反应溶剂制备ZIF-67前驱体,再将两种溶液混合后于室温静置反应18~36h,待反应结束后,用甲醇洗涤样品,干燥沉淀物,即得到ZIF-67前驱体;
(2)Fe掺杂ZIF-67前驱体的制备
将硝酸铁(Fe(NO3)3)作为反应原料,乙醇作为反应溶剂,在溶剂中分散超声;将ZIF-67前驱体溶解在乙醇反应溶剂中分散超声,将硝酸铁溶液滴加到ZIF-67前驱体溶液中,室温搅拌反应1~3h,待反应结束后,用乙醇洗涤样品,干燥沉淀物,即得到Fe掺杂ZIF-67前驱体;
(3)Fe掺杂CoTe2@NCNTFs纳米复合材料的制备
以碲粉作为碲源,将Fe掺杂ZIF-67前驱体在管式炉中在Ar/H2(10%)中煅烧,得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料。
实施例1
(1)称取1.164g硝酸钴(Co(NO3)2·6H2O),1.313g 2-甲基咪唑(C4H6N2)分别溶解在100ml甲醇中,经超声分散形成均一的溶液,再将两种溶液混合后于室温静置反应24h,待反应结束后,用甲醇洗涤样品,干燥沉淀物,即得到ZIF-67前驱体。
(2)取50mg的ZIF-67前驱体溶解于20ml的乙醇中分散超声,再取10mg的硝酸铁(Fe(NO3)3·9H2O)溶于5ml乙醇,经超声分散后将含硝酸铁溶液滴入ZIF-67前驱体中。在室温下,反应1小时,用无水乙醇洗涤样品,干燥沉淀物,即得到Fe掺杂的ZIF-67前驱体,命名为Fe-ZIF-67-10。
(3)取碲粉(Te)40mg置于管式炉的上游侧,将20mg步骤(1)所述的ZIF-67前驱体(未掺杂Fe)置于管式炉的下游,通入Ar/H2(10%),反应温度为700℃,升温速率为5℃/min,反应温度为2小时,即得到CoTe2@NCNTFs。
(4)取碲粉(Te)40mg置于管式炉的上游侧,将20mg步骤(2)所述的Fe-ZIF-67-10置于管式炉的下游,通入Ar/H2(10%),反应温度为700℃,升温速率为5℃/min,反应温度为2小时,即得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,命名为Fe-Co1.11Te2@NCNTFs-10。
对于本实例中XRD测试结果表明:如图1所示,图1a中即得到ZIF-67和Fe-ZIF-67-10产品的XRD衍射图,与模拟得到ZIF-67的XRD图谱相一致。图1b中即得到CoTe2@NCNTFs和Fe-Co1.11Te2@NCNTFs-10的XRD衍射图,与国际标准粉末XRD衍射片中的JCPDS:89-4061相一致。
对于本实施例中所制备的产物进行电解水性能的测试,图3是所制备样品的电解水性能曲线(a为电催化析氢,b为电催化析氧),从图中可以看出,CoTe2@NCNTFs在1M KOH中10mA cm-2的析氢析氧过电势分别为165和365mV。Fe-Co1.11Te2@NCNTFs-10在1M KOH中10mAcm-2的析氢、析氧过电势分别为135和335mV。商业化的RuO2在1M KOH中10mA cm-2的过电势为263mV,商业化的Pt/C在1M KOH中10mA cm-2的过电势为32mV。
实施例2
(1)取50mg的ZIF-67前驱体溶解于20ml的乙醇中分散超声,再取15mg的硝酸铁(Fe(NO3)3·9H2O)溶于5ml乙醇,经超声分散后将含硝酸铁溶液滴入ZIF-67前驱体中。在室温下,反应1小时,用无水乙醇洗涤样品,干燥沉淀物,即得到Fe掺杂的ZIF-67前驱体,命名为Fe-ZIF-67-15。
(2)取碲粉(Te)40mg置于管式炉的上游侧,将Fe-ZIF-67-15(20mg)置于管式炉的下游,通入Ar/H2(10%),反应温度为700℃,升温速率为5℃/min,反应温度为2小时,即得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,命名为Fe-Co1.11Te2@NCNTFs-15。
对于本实例中XRD测试结果表明:如图1所示,图1a中即得到Fe-ZIF-67-15产品的XRD衍射图,与模拟得到ZIF-67的XRD图谱相一致。图1b中即得到Fe-Co1.11Te2@NCNTFs-15的XRD衍射图,与国际标准粉末XRD衍射片中的JCPDS:89-4061相一致。
对于本实施例中制备的产品作场发射扫描电镜分析。从图2a可以看出,制备的Fe-ZIF-67-15大小约为600nm,并且表面比较粗糙。从图2b可以看出,制备的Fe-Co1.11Te2@NCNTFs-15大小约为600nm,并且表面产生大量的碳管。
对于本实施例中所制备的产物进行电解水性能的测试,图3是所制备样品的电解水性能曲线(a为电催化析氢,b为电催化析氧),从图中可以看出,Fe-Co1.11Te2@NCNTFs-15在1M KOH中10mA cm-2的析氢、析氧过电势分别为107和297mV,在所制备的样品中性能最好。
实施例3
(1)取50mg的ZIF-67前驱体溶解于20ml的乙醇中分散超声,再取20mg的硝酸铁(Fe(NO3)3·9H2O)溶于5ml乙醇,经超声分散后将含硝酸铁溶液滴入ZIF-67前驱体中。在室温下,反应1小时,用无水乙醇洗涤样品,干燥沉淀物,即得到Fe掺杂的ZIF-67前驱体,命名为Fe-ZIF-67-20。
(2)取碲粉(Te)40mg置于管式炉的上游侧,将Fe-ZIF-67-20(20mg)置于管式炉的下游,通入Ar/H2(10%),反应温度为700℃,升温速率为5℃/min,反应温度为2小时,即得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,命名为Fe-Co1.11Te2@NCNTFs-20。
对于本实例中XRD测试结果表明:如图1所示,图1a中即得到Fe-ZIF-67-20产品的XRD衍射图,与模拟得到ZIF-67的XRD图谱相一致。图1b中即得到Fe-Co1.11Te2@NCNTFs-20的XRD衍射图,与国际标准粉末XRD衍射片中的JCPDS:89-4061相一致。
对于本实施例中所制备的产物进行电解水性能的测试,图3是所制备样品的电解水性能曲线(a为电催化析氢,b为电催化析氧),从图中可以看出,Fe-Co1.11Te2@NCNTFs-20在1M KOH中10mA cm-2的析氢、析氧过电势分别为120和320mV。
上述结果表明,采用本发明方法所制备铁掺杂Co1.11Te2@NCNTFs与单纯的Co1.11Te2@NCNTFs相比具备更高的电催化析氢和析氧性能,对于碲化钴在电解水的开发领域及研究方向起到了一定的指导和推动作用。对于本领域的技术人员来说,可以根据以上的技术方案和构思,作出各种相应的改变和修改,而所有的这些改变和修改都应该包括在本发明权利要求的保护范围之内。

Claims (10)

1.一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料,其特征在于,所述的纳米复合材料由Fe掺杂的Co1.11Te2和氮掺杂的碳纳米管组成。
2.如权利要求1所述的复合材料,其特征在于,由如下步骤制备:
(1)在ZIF-67前驱体中加入硝酸铁,以乙醇作为反应溶剂,室温搅拌下得到Fe掺杂的ZIF-67前驱体;
(2)以碲粉作为碲源,将Fe掺杂的ZIF-67前驱体在Ar/H2混合气氛下煅烧,得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料。
3.如权利要求2所述的复合材料,其特征在于,步骤(1)中,ZIF-67前驱体与硝酸铁的质量比为2.5~5。
4.如权利要求2所述的复合材料,其特征在于,步骤(2)中,Ar/H2混合气氛中H2体积含量为10%。
5.如权利要求2所述的复合材料,其特征在于,步骤(2)中,碲粉与Fe掺杂的ZIF-67前驱体的质量比为2:1。
6.如权利要求2所述的复合材料,其特征在于,步骤(2)中,煅烧温度为700℃,煅烧时间为2小时,升温速率为5℃/min。
7.一种Fe掺杂Co1.11Te2@NCNTFs纳米复合材料的制备方法,其特征在于,包括如下步骤:
(1)在ZIF-67前驱体中加入硝酸铁,以乙醇作为反应溶剂,室温搅拌下得到Fe掺杂的ZIF-67前驱体;
(2)以碲粉作为碲源,将Fe掺杂的ZIF-67前驱体在Ar/H2混合气氛下煅烧,得到Fe掺杂Co1.11Te2@NCNTFs纳米复合材料。
8.如权利要求7所述的方法,其特征在于,步骤(1)中,ZIF-67前驱体与硝酸铁的质量比为2.5~5。
9.如权利要求7所述的方法,其特征在于,步骤(2)中,Ar/H2混合气氛中H2体积含量为10%;碲粉与Fe掺杂的ZIF-67前驱体的质量比为2:1;煅烧温度为700℃,煅烧时间为2小时,升温速率为5℃/min。
10.如权利要求1所述的纳米复合材料在电催化析氧或析氢中的应用。
CN201910993356.2A 2019-10-18 2019-10-18 Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法 Pending CN110681407A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910993356.2A CN110681407A (zh) 2019-10-18 2019-10-18 Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910993356.2A CN110681407A (zh) 2019-10-18 2019-10-18 Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110681407A true CN110681407A (zh) 2020-01-14

Family

ID=69113131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910993356.2A Pending CN110681407A (zh) 2019-10-18 2019-10-18 Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110681407A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111012A (zh) * 2018-11-09 2019-01-01 济南大学 一种便携式净水器
CN112751046A (zh) * 2020-12-31 2021-05-04 华中科技大学 一种金属单原子负载型碳基电催化剂及其制备方法和应用
CN113648967A (zh) * 2021-08-27 2021-11-16 浙江理工大学 Co3O4-xTex@C@SnTe复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241532A1 (en) * 2003-06-02 2004-12-02 Kim Young Nam Carbon nanotube or carbon nanofiber electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
CN107051568A (zh) * 2017-05-08 2017-08-18 中南大学 一种析氧Fe掺杂二硒化钴@N‑CT复合催化剂及其制备方法和应用
CN107321372A (zh) * 2017-06-06 2017-11-07 江苏大学 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN107447231A (zh) * 2017-08-02 2017-12-08 中国石油大学(华东) 一种二碲化钴电催化析氧复合材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241532A1 (en) * 2003-06-02 2004-12-02 Kim Young Nam Carbon nanotube or carbon nanofiber electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
CN107051568A (zh) * 2017-05-08 2017-08-18 中南大学 一种析氧Fe掺杂二硒化钴@N‑CT复合催化剂及其制备方法和应用
CN107321372A (zh) * 2017-06-06 2017-11-07 江苏大学 CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN107447231A (zh) * 2017-08-02 2017-12-08 中国石油大学(华东) 一种二碲化钴电催化析氧复合材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEI ZHONG ET AL.: "Fe-doping effect on CoTe catalyst with greatly boosted intrinsic activity for electrochemical oxygen evolution reaction", 《ELECTROCHIMICA ACTA》 *
XIANG WANG ET AL.: "Metal–organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: a high-efficiency bifunctional electrocatalyst for overall water splitting", 《J. MATER. CHEM. A》 *
XIAOLIN WU ET AL.: "Metal Organic Framework Derived Fe-Doped CoSe2 Incorporated in Nitrogen-Doped Carbon Hybrid for Efficient Hydrogen Evolution", 《ACS SUSTAINABLE CHEM. ENG.》 *
YONG XU ET AL.: "MOF-derived Co1.11Te2 with half-metallic character for efficient photochemical conversion of CO2 under visible-light irradiation", 《CHEM. COMMUN.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111012A (zh) * 2018-11-09 2019-01-01 济南大学 一种便携式净水器
CN112751046A (zh) * 2020-12-31 2021-05-04 华中科技大学 一种金属单原子负载型碳基电催化剂及其制备方法和应用
CN113648967A (zh) * 2021-08-27 2021-11-16 浙江理工大学 Co3O4-xTex@C@SnTe复合材料及其制备方法
CN113648967B (zh) * 2021-08-27 2023-09-05 浙江理工大学 Co3O4-xTex@C@SnTe复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Nan et al. Engineering the electronic and strained interface for high activity of PdMcore@ Ptmonolayer electrocatalysts for oxygen reduction reaction
Zheng et al. In Situ Formed Bimetallic Carbide Ni6Mo6C Nanodots and NiMoO x Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution
Wang et al. Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting
Zhou et al. An effective Pt–CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation
Jiang et al. Highly efficient B-Site exsolution assisted by Co doping in lanthanum ferrite toward high-performance electrocatalysts for oxygen evolution and oxygen reduction
CN112517011B (zh) 一种碳基镍铁双金属析氧催化剂及其制备方法
Xu et al. A facile strategy for the synthesis of NiSe@ CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction
Mondal et al. Pdδ+-mediated surface engineering of AgMnO4 nanorods as advanced bifunctional electrocatalysts for highly efficient water electrolysis
CN110681407A (zh) Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法
CN106784900B (zh) 铂基纳米颗粒包覆二氧化锡覆盖的碳纳米管及其制备方法
CN112138691A (zh) 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法
Pillai et al. Continuous flow synthesis of nanostructured bimetallic Pt-Mo/C catalysts in milli-channel reactor for PEM fuel cell application
CN110302799B (zh) 电化学还原二氧化碳为一氧化碳的催化剂及其制备方法
Saha et al. Ni 3 Co/G alloy as an earth-abundant robust and stable electrocatalyst for the hydrogen evolution reaction
CN111755705A (zh) 三原子级分散的金属团簇负载氮掺杂纳米碳燃料电池催化剂
CN111313042B (zh) 一种双功能氧化电催化剂及其制备方法
Zhang et al. Flower-like MOF-74 nanocomposites directed by selenylation towards high-efficient oxygen evolution
Xing et al. Engineering interfacial coupling between 3D net-like Ni3 (VO4) 2 ultrathin nanosheets and MoS2 on carbon fiber cloth for boostinghydrogen evolution reaction
Zhang et al. Amorphous mixed Ir–Mn oxide catalysts for the oxygen evolution reaction in PEM water electrolysis for H2 production
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Zhang et al. Facile construction of CoNi-MOF nanosheet arrays and exploration of the active sites for oxygen evolution reaction with ultralow overpotential
CN113394413B (zh) 一种基于二维石墨相氮化碳钴掺杂多孔碳材料阴极氧还原反应催化剂的制备方法
Lakhan et al. Transition Metals-Based Electrocatalysts for Alkaline Overall Water Splitting: Advancements, Challenges, and Perspectives
Fu et al. Core-shell structure Co–Ni@ Fe–Cu doped MOF–GR composites for water splitting
Majumdar et al. Recent Developments of Methanol Electrooxidation Using Nickel‐based Nanocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200114

RJ01 Rejection of invention patent application after publication