CN112138691A - 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 - Google Patents

一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 Download PDF

Info

Publication number
CN112138691A
CN112138691A CN202011089240.5A CN202011089240A CN112138691A CN 112138691 A CN112138691 A CN 112138691A CN 202011089240 A CN202011089240 A CN 202011089240A CN 112138691 A CN112138691 A CN 112138691A
Authority
CN
China
Prior art keywords
carrying
cop
methanol
graphite alkyne
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011089240.5A
Other languages
English (en)
Inventor
郭志岩
李明
王栋
李俊华
杜芳林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202011089240.5A priority Critical patent/CN112138691A/zh
Publication of CN112138691A publication Critical patent/CN112138691A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,包括以下步骤(1)称取0.82g 2‑甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀;(2)0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀;(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h;用甲醇,乙醇进行离心处理,干燥处理,生成Co‑MOF‑C纳米粒子;(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC‑2催化剂。本发明方法制得的含N,C,P层包裹的CoP纳米析氢电催化剂具有较高的电催化析氢活性和稳定性。

Description

一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的 制备方法
技术领域
本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法,所得到的石墨炔增强的含N,C,P层包裹的CoP纳米高性能析氢催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
背景技术
近年来,由于能源短缺和环境污染,氢能源由于其绿色,环保,来源广泛等优点被认为是最有前途的绿色燃料。电解水制氢是目前最环保无污染的制氢方法。高效的催化剂可以降低过电位,促进氢的释放反应。众所周知,铂(Pt)作为最有效的析氢催化剂,由于其成本高,含量少的缺点而不能被广泛应用于析氢反应中。因此,寻找低成本,高效催化的催化剂具有重要意义。
目前,文献中报道的低成本、高催化效用的催化剂主要是利用过渡金属材料铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、钼(Mo)、钨(W)等和给金属材料硼(B)、碳(C)、氮(N)、氧(O)、硫(S)、磷(P)、硅(Si)等制备合成。近年来,过渡金属磷化物(TMPs)由于其低成本,良好的化学稳定性和宽广的电催化剂HER催化活性的PH范围而备受关注。与其他过渡金属磷酸盐相比,例如铁,铜,镍和钨,CoP似乎更受人们的关注,因为具有更强电负性的磷原子与Co结合,可捕获金属原子中的电子并充当载体。特别是从金属有机骨架(MOF),例如ZIF-67等。MOF具有开放的晶体结构,出色的孔隙率,结构柔韧性和可调功能。
对于石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂而言,XC-72R和石墨炔的协同效应,这在设计电化学析氢反应方面具有明显优势。到目前为止,通过利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法未见报道。
发明内容
本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法,所得到的石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
本发明先通过ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂,其具体制备工艺为:
称取(1)0.82g 2-甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-2催化剂。
本发明所涉及产品工艺简单易实现,产品质量稳定,反应参数容易控制、安全可靠等优点;所制备的N,C,P层包裹的CoP纳米高性能析氢催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
附图说明
图1中a为实施例1制备的Co-MOF-XC-72R,b为实施例5制备的Co-MOF-GDY,c为实施例3制备的Co-MOF-C,d为实施例3制备的CoP@NPC-2催化剂的扫描电子显微镜图像。
图2为实施例3制备的电极材料的X射线衍射图谱。
图3为实施例1-6制备的电极材料和参比催化剂20%Pt/C的线性扫描伏安曲线,
具体实施方式
实施例1
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-XC-72R纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-0催化剂。
实施例2
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和1mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-1催化剂。
实施例3
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和2mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-2催化剂。
实施例4
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和3mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-3催化剂。
实施例5
(1)称取0.82g 2-甲基咪唑,2mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-GDY纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NP-2催化剂。
实施例6
(1)称取0.82g 2-甲基咪唑加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP催化剂。
从本发明制得的石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂测试结果来看,本发明所得到石墨炔增强的N,C,P层包裹的CoP纳米颗粒具有析氢活性高,导电性好,酸性条件下稳定性高等优点。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (3)

1.本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种合成ZIF-67过程中掺杂XC-72R和石墨炔再经过磷化处理得到石墨炔增强的N,C,P层包裹的CoP纳米颗粒高性能析氢催化剂的方法,合成方法为:称取(1)0.82g 2-甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀;(2)0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀;(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h;用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子;(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒催化剂。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中导电炭黑的质量为0,15mg,石墨炔的质量为0-3mg。
3.根据权利要求1所述的制备方法,所得到石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电析氢催化剂,电化学测试表明:其电流密度达到10mA·cm-2时,过电位仅有144mV,Tafel斜率较小为67mV·dec-1
CN202011089240.5A 2020-10-13 2020-10-13 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 Pending CN112138691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011089240.5A CN112138691A (zh) 2020-10-13 2020-10-13 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011089240.5A CN112138691A (zh) 2020-10-13 2020-10-13 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN112138691A true CN112138691A (zh) 2020-12-29

Family

ID=73953171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011089240.5A Pending CN112138691A (zh) 2020-10-13 2020-10-13 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112138691A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023709A (zh) * 2021-03-11 2021-06-25 广西大学 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法
CN113046020A (zh) * 2021-03-29 2021-06-29 浙江元通线缆制造有限公司 一种防水胶及其制备方法与在水密电缆上的应用
CN113265674A (zh) * 2021-05-28 2021-08-17 青岛科技大学 一种MOF衍生CoP析氢催化剂的制备方法
CN114045526A (zh) * 2021-12-06 2022-02-15 北京理工大学 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途
CN114570390A (zh) * 2022-04-13 2022-06-03 新疆大学 一种薄层含氧石墨炔包覆金属复合催化剂的制备方法
CN115025786A (zh) * 2022-06-27 2022-09-09 齐鲁工业大学 一种硫掺杂的石墨炔原位生长zif-67材料及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014005598A1 (en) * 2012-07-06 2014-01-09 Teknologisk Institut Method of preparing a catalytic structure
CN105107536A (zh) * 2015-10-09 2015-12-02 清华大学 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN105688958A (zh) * 2016-01-15 2016-06-22 复旦大学 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用
CN109411736A (zh) * 2018-12-04 2019-03-01 重庆文理学院 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN110433843A (zh) * 2019-08-06 2019-11-12 华南理工大学 一种三维多孔电催化剂CoP@NPC及其制备方法与应用
CN111689486A (zh) * 2020-06-15 2020-09-22 上海工程技术大学 一种含n石墨炔材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014005598A1 (en) * 2012-07-06 2014-01-09 Teknologisk Institut Method of preparing a catalytic structure
CN105107536A (zh) * 2015-10-09 2015-12-02 清华大学 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN105688958A (zh) * 2016-01-15 2016-06-22 复旦大学 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用
CN109411736A (zh) * 2018-12-04 2019-03-01 重庆文理学院 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
CN110433843A (zh) * 2019-08-06 2019-11-12 华南理工大学 一种三维多孔电催化剂CoP@NPC及其制备方法与应用
CN111689486A (zh) * 2020-06-15 2020-09-22 上海工程技术大学 一种含n石墨炔材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIPING HU ET AL.: ""Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions"", 《J. MATER. CHEM. A》 *
YURUI XUE ET AL.: ""Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of pH"", 《ACS APPL. MATER. INTERFACES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113023709A (zh) * 2021-03-11 2021-06-25 广西大学 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法
CN113023709B (zh) * 2021-03-11 2022-09-09 广西大学 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法
CN113046020A (zh) * 2021-03-29 2021-06-29 浙江元通线缆制造有限公司 一种防水胶及其制备方法与在水密电缆上的应用
CN113046020B (zh) * 2021-03-29 2022-12-09 浙江元通线缆制造有限公司 一种防水胶及其制备方法与在水密电缆上的应用
CN113265674A (zh) * 2021-05-28 2021-08-17 青岛科技大学 一种MOF衍生CoP析氢催化剂的制备方法
CN114045526A (zh) * 2021-12-06 2022-02-15 北京理工大学 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途
CN114045526B (zh) * 2021-12-06 2023-02-03 北京理工大学 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途
CN114570390A (zh) * 2022-04-13 2022-06-03 新疆大学 一种薄层含氧石墨炔包覆金属复合催化剂的制备方法
CN115025786A (zh) * 2022-06-27 2022-09-09 齐鲁工业大学 一种硫掺杂的石墨炔原位生长zif-67材料及其制备方法、应用

Similar Documents

Publication Publication Date Title
Hu et al. Urea Electrooxidation: Current Development and Understanding of Ni‐Based Catalysts
Pei et al. Recent developments of transition metal phosphides as catalysts in the energy conversion field
Wang et al. Mo-doped Ni 2 P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting
CN112138691A (zh) 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法
Zheng et al. In Situ Formed Bimetallic Carbide Ni6Mo6C Nanodots and NiMoO x Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution
Liu et al. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd 3 Fe/C as electrocatalyst for formic acid oxidation
Amorim et al. Dual-phase CoP− CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting
CN108855184B (zh) 一种高性能析氧CoO@Co-NC/C复合催化剂及其制备方法和应用
Wang et al. A highly efficient Fe-doped Ni 3 S 2 electrocatalyst for overall water splitting
Liu et al. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
Xie et al. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays
Fan et al. PtCuFe alloy nanochains: Synthesis and composition-performance relationship in methanol oxidation and hydrogen evolution reactions
Qu et al. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution
Liu et al. Synergistic coupling of nickel boride with Ru cluster as a highly active multifunctional electrocatalyst for overall water splitting and glucose electrolysis
CN114108004B (zh) 一种钌基合金催化剂及其制备方法和应用
CN113842936B (zh) 一种铂基单原子电催化材料及其制备方法和用途
Dong et al. Underpotential deposition promoting low Pt loading on MoO2/MoS2 heterostructure towards wide pH green hydrogen evolution
Du et al. (Ni, Co) Se@ Ni (OH) 2 heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction
Lu et al. Employing dual-ligand co-coordination compound to construct nanorod-like Bi-metallic (Fe, Co) P decorated with nitrogen-doped graphene for electrocatalytic overall water splitting
Zhao et al. Cation-tunable flower-like (Ni x Fe 1− x) 2 P@ graphitized carbon films as ultra-stable electrocatalysts for overall water splitting in alkaline media
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: Electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE
Wang et al. Amorphous high-valence Mo-doped NiFeP nanospheres as efficient electrocatalysts for overall water-splitting under large-current density
Cai et al. Zn‐Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting
Liu et al. Platinum-decorated three dimensional titanium copper nitride architectures with durable methanol oxidation reaction activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229

RJ01 Rejection of invention patent application after publication