CN112138691A - 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 - Google Patents
一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 Download PDFInfo
- Publication number
- CN112138691A CN112138691A CN202011089240.5A CN202011089240A CN112138691A CN 112138691 A CN112138691 A CN 112138691A CN 202011089240 A CN202011089240 A CN 202011089240A CN 112138691 A CN112138691 A CN 112138691A
- Authority
- CN
- China
- Prior art keywords
- carrying
- cop
- methanol
- graphite alkyne
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 21
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 19
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 19
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 15
- 239000010439 graphite Substances 0.000 title claims abstract description 15
- -1 graphite alkyne Chemical class 0.000 title claims abstract description 15
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 10
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000003054 catalyst Substances 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims abstract description 9
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract 4
- 238000005303 weighing Methods 0.000 claims abstract 2
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000000840 electrochemical analysis Methods 0.000 claims 1
- 238000001308 synthesis method Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012921 cobalt-based metal-organic framework Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 1
- 238000001075 voltammogram Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1853—Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/086—Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,包括以下步骤(1)称取0.82g 2‑甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀;(2)0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀;(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h;用甲醇,乙醇进行离心处理,干燥处理,生成Co‑MOF‑C纳米粒子;(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC‑2催化剂。本发明方法制得的含N,C,P层包裹的CoP纳米析氢电催化剂具有较高的电催化析氢活性和稳定性。
Description
技术领域
本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法,所得到的石墨炔增强的含N,C,P层包裹的CoP纳米高性能析氢催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
背景技术
近年来,由于能源短缺和环境污染,氢能源由于其绿色,环保,来源广泛等优点被认为是最有前途的绿色燃料。电解水制氢是目前最环保无污染的制氢方法。高效的催化剂可以降低过电位,促进氢的释放反应。众所周知,铂(Pt)作为最有效的析氢催化剂,由于其成本高,含量少的缺点而不能被广泛应用于析氢反应中。因此,寻找低成本,高效催化的催化剂具有重要意义。
目前,文献中报道的低成本、高催化效用的催化剂主要是利用过渡金属材料铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、钼(Mo)、钨(W)等和给金属材料硼(B)、碳(C)、氮(N)、氧(O)、硫(S)、磷(P)、硅(Si)等制备合成。近年来,过渡金属磷化物(TMPs)由于其低成本,良好的化学稳定性和宽广的电催化剂HER催化活性的PH范围而备受关注。与其他过渡金属磷酸盐相比,例如铁,铜,镍和钨,CoP似乎更受人们的关注,因为具有更强电负性的磷原子与Co结合,可捕获金属原子中的电子并充当载体。特别是从金属有机骨架(MOF),例如ZIF-67等。MOF具有开放的晶体结构,出色的孔隙率,结构柔韧性和可调功能。
对于石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂而言,XC-72R和石墨炔的协同效应,这在设计电化学析氢反应方面具有明显优势。到目前为止,通过利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法未见报道。
发明内容
本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种利用ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂的方法,所得到的石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
本发明先通过ZIF-67合成过程中XC-72R和石墨炔的协同效应经磷化合成N,C,P层包裹的CoP纳米高性能析氢催化剂,其具体制备工艺为:
称取(1)0.82g 2-甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-2催化剂。
本发明所涉及产品工艺简单易实现,产品质量稳定,反应参数容易控制、安全可靠等优点;所制备的N,C,P层包裹的CoP纳米高性能析氢催化剂具有析氢催化活性高,导电性好,酸性条件下稳定性高等优点。
附图说明
图1中a为实施例1制备的Co-MOF-XC-72R,b为实施例5制备的Co-MOF-GDY,c为实施例3制备的Co-MOF-C,d为实施例3制备的CoP@NPC-2催化剂的扫描电子显微镜图像。
图2为实施例3制备的电极材料的X射线衍射图谱。
图3为实施例1-6制备的电极材料和参比催化剂20%Pt/C的线性扫描伏安曲线,
具体实施方式
实施例1
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-XC-72R纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-0催化剂。
实施例2
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和1mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-1催化剂。
实施例3
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和2mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-2催化剂。
实施例4
(1)称取0.82g 2-甲基咪唑,15mg导电炭黑XC-72R和3mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NPC-3催化剂。
实施例5
(1)称取0.82g 2-甲基咪唑,2mg石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-GDY纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP@NP-2催化剂。
实施例6
(1)称取0.82g 2-甲基咪唑加入到20mL甲醇溶液中,超声处理直至混合均匀。(2)称取0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀。(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h。用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF纳米粒子。(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到CoP催化剂。
从本发明制得的石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂测试结果来看,本发明所得到石墨炔增强的N,C,P层包裹的CoP纳米颗粒具有析氢活性高,导电性好,酸性条件下稳定性高等优点。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (3)
1.本发明涉及一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法,具体涉及一种合成ZIF-67过程中掺杂XC-72R和石墨炔再经过磷化处理得到石墨炔增强的N,C,P层包裹的CoP纳米颗粒高性能析氢催化剂的方法,合成方法为:称取(1)0.82g 2-甲基咪唑,一定量导电炭黑和一定量石墨炔(GDY)加入到20mL甲醇溶液中,超声处理直至混合均匀;(2)0.291g六水合硝酸钴加入到20mL甲醇中,超声至混合均匀;(3)将两种甲醇溶液混合,60℃水浴剧烈搅拌5min,静置20h;用甲醇,乙醇进行离心处理,干燥处理,生成Co-MOF-C纳米粒子;(4)在管式炉中进行磷化处理,升温速率为2℃/min,于350℃保温2h,得到一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒催化剂。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中导电炭黑的质量为0,15mg,石墨炔的质量为0-3mg。
3.根据权利要求1所述的制备方法,所得到石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电析氢催化剂,电化学测试表明:其电流密度达到10mA·cm-2时,过电位仅有144mV,Tafel斜率较小为67mV·dec-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011089240.5A CN112138691A (zh) | 2020-10-13 | 2020-10-13 | 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011089240.5A CN112138691A (zh) | 2020-10-13 | 2020-10-13 | 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112138691A true CN112138691A (zh) | 2020-12-29 |
Family
ID=73953171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011089240.5A Pending CN112138691A (zh) | 2020-10-13 | 2020-10-13 | 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112138691A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113023709A (zh) * | 2021-03-11 | 2021-06-25 | 广西大学 | 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法 |
CN113046020A (zh) * | 2021-03-29 | 2021-06-29 | 浙江元通线缆制造有限公司 | 一种防水胶及其制备方法与在水密电缆上的应用 |
CN113265674A (zh) * | 2021-05-28 | 2021-08-17 | 青岛科技大学 | 一种MOF衍生CoP析氢催化剂的制备方法 |
CN114045526A (zh) * | 2021-12-06 | 2022-02-15 | 北京理工大学 | 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途 |
CN114570390A (zh) * | 2022-04-13 | 2022-06-03 | 新疆大学 | 一种薄层含氧石墨炔包覆金属复合催化剂的制备方法 |
CN115025786A (zh) * | 2022-06-27 | 2022-09-09 | 齐鲁工业大学 | 一种硫掺杂的石墨炔原位生长zif-67材料及其制备方法、应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014005598A1 (en) * | 2012-07-06 | 2014-01-09 | Teknologisk Institut | Method of preparing a catalytic structure |
CN105107536A (zh) * | 2015-10-09 | 2015-12-02 | 清华大学 | 一种多面体形磷化钴电解水制氢催化剂的制备方法 |
CN105688958A (zh) * | 2016-01-15 | 2016-06-22 | 复旦大学 | 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用 |
CN109411736A (zh) * | 2018-12-04 | 2019-03-01 | 重庆文理学院 | 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法 |
CN110433843A (zh) * | 2019-08-06 | 2019-11-12 | 华南理工大学 | 一种三维多孔电催化剂CoP@NPC及其制备方法与应用 |
CN111689486A (zh) * | 2020-06-15 | 2020-09-22 | 上海工程技术大学 | 一种含n石墨炔材料的制备方法 |
-
2020
- 2020-10-13 CN CN202011089240.5A patent/CN112138691A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014005598A1 (en) * | 2012-07-06 | 2014-01-09 | Teknologisk Institut | Method of preparing a catalytic structure |
CN105107536A (zh) * | 2015-10-09 | 2015-12-02 | 清华大学 | 一种多面体形磷化钴电解水制氢催化剂的制备方法 |
CN105688958A (zh) * | 2016-01-15 | 2016-06-22 | 复旦大学 | 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用 |
CN109411736A (zh) * | 2018-12-04 | 2019-03-01 | 重庆文理学院 | 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法 |
CN110433843A (zh) * | 2019-08-06 | 2019-11-12 | 华南理工大学 | 一种三维多孔电催化剂CoP@NPC及其制备方法与应用 |
CN111689486A (zh) * | 2020-06-15 | 2020-09-22 | 上海工程技术大学 | 一种含n石墨炔材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
YIPING HU ET AL.: ""Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions"", 《J. MATER. CHEM. A》 * |
YURUI XUE ET AL.: ""Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of pH"", 《ACS APPL. MATER. INTERFACES》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113023709A (zh) * | 2021-03-11 | 2021-06-25 | 广西大学 | 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法 |
CN113023709B (zh) * | 2021-03-11 | 2022-09-09 | 广西大学 | 基于金属有机骨架MOFs孔内寡层石墨炔的制备方法 |
CN113046020A (zh) * | 2021-03-29 | 2021-06-29 | 浙江元通线缆制造有限公司 | 一种防水胶及其制备方法与在水密电缆上的应用 |
CN113046020B (zh) * | 2021-03-29 | 2022-12-09 | 浙江元通线缆制造有限公司 | 一种防水胶及其制备方法与在水密电缆上的应用 |
CN113265674A (zh) * | 2021-05-28 | 2021-08-17 | 青岛科技大学 | 一种MOF衍生CoP析氢催化剂的制备方法 |
CN114045526A (zh) * | 2021-12-06 | 2022-02-15 | 北京理工大学 | 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途 |
CN114045526B (zh) * | 2021-12-06 | 2023-02-03 | 北京理工大学 | 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途 |
CN114570390A (zh) * | 2022-04-13 | 2022-06-03 | 新疆大学 | 一种薄层含氧石墨炔包覆金属复合催化剂的制备方法 |
CN115025786A (zh) * | 2022-06-27 | 2022-09-09 | 齐鲁工业大学 | 一种硫掺杂的石墨炔原位生长zif-67材料及其制备方法、应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Urea Electrooxidation: Current Development and Understanding of Ni‐Based Catalysts | |
Pei et al. | Recent developments of transition metal phosphides as catalysts in the energy conversion field | |
Wang et al. | Mo-doped Ni 2 P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting | |
Zheng et al. | In Situ Formed Bimetallic Carbide Ni6Mo6C Nanodots and NiMoO x Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution | |
CN112138691A (zh) | 一种石墨炔增强的含N,C,P层包裹的CoP纳米颗粒电催化剂的制备方法 | |
Amorim et al. | Dual-phase CoP− CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting | |
Wang et al. | A highly efficient Fe-doped Ni 3 S 2 electrocatalyst for overall water splitting | |
CN108855184B (zh) | 一种高性能析氧CoO@Co-NC/C复合催化剂及其制备方法和应用 | |
Liu et al. | Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd 3 Fe/C as electrocatalyst for formic acid oxidation | |
Liu et al. | Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting | |
Cao et al. | Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays | |
Fan et al. | PtCuFe alloy nanochains: Synthesis and composition-performance relationship in methanol oxidation and hydrogen evolution reactions | |
Xie et al. | Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays | |
Yin et al. | Enhancing hydrogen evolution activity of triangular PtPdCu nanodarts by phosphorus incorporation | |
Qu et al. | Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution | |
Liu et al. | Synergistic coupling of nickel boride with Ru cluster as a highly active multifunctional electrocatalyst for overall water splitting and glucose electrolysis | |
Wang et al. | Amorphous high-valence Mo-doped NiFeP nanospheres as efficient electrocatalysts for overall water-splitting under large-current density | |
CN114108004B (zh) | 一种钌基合金催化剂及其制备方法和应用 | |
CN113842936B (zh) | 一种铂基单原子电催化材料及其制备方法和用途 | |
Zhao et al. | Cation-tunable flower-like (Ni x Fe 1− x) 2 P@ graphitized carbon films as ultra-stable electrocatalysts for overall water splitting in alkaline media | |
Du et al. | (Ni, Co) Se@ Ni (OH) 2 heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction | |
Cai et al. | Zn‐Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting | |
Liu et al. | Platinum-decorated three dimensional titanium copper nitride architectures with durable methanol oxidation reaction activity | |
Huang et al. | P-doped Co3S4/NiS2 heterostructures embedded in N-doped carbon nanoboxes: Synergistical electronic structure regulation for overall water splitting | |
Liu et al. | In-situ fabrication of NixSey/MoSe2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201229 |
|
RJ01 | Rejection of invention patent application after publication |