CN102753610B - 高内相乳液泡沫中未聚合的单体的减少 - Google Patents

高内相乳液泡沫中未聚合的单体的减少 Download PDF

Info

Publication number
CN102753610B
CN102753610B CN201080060324.4A CN201080060324A CN102753610B CN 102753610 B CN102753610 B CN 102753610B CN 201080060324 A CN201080060324 A CN 201080060324A CN 102753610 B CN102753610 B CN 102753610B
Authority
CN
China
Prior art keywords
hipe
foam
water
monomer
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080060324.4A
Other languages
English (en)
Other versions
CN102753610A (zh
Inventor
S.R.梅里甘
T.A.戴马雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Ltd
Procter and Gamble Co
Original Assignee
Procter and Gamble Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Ltd filed Critical Procter and Gamble Ltd
Publication of CN102753610A publication Critical patent/CN102753610A/zh
Application granted granted Critical
Publication of CN102753610B publication Critical patent/CN102753610B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/28Expanding the moulding material on continuous moving surfaces without restricting the upwards growth of the foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/269Extrusion in non-steady condition, e.g. start-up or shut-down
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/9298Start-up, shut-down or parameter setting phase; Emergency shut-down; Material change; Test or laboratory equipment or studies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/028Foaming by preparing of a high internal phase emulsion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Colloid Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明公开了一种使用紫外光来减少高内相乳液(HIPE)泡沫中未聚合的单体含量的方法。

Description

高内相乳液泡沫中未聚合的单体的减少
发明领域
本专利申请涉及用于减少高内相乳液(HIPE)泡沫中未聚合的单体的方法。
发明背景
乳液是一种液体在另一种液体中的分散体并且一般采取油包水混合物的形式,其中含水相或水相分散在基本上不能相混的连续油相内。具有高比率的水相分散到连续油相的油包水(或水包油)乳液在本领域已知为高内相乳液,也被称为“HIPE”。当水相分散到连续油相的比率较高时,连续油相基本上变成薄膜,从而分开并涂覆内部的分散的水相的小滴样结构。在一个实施方案中,油包水HIPE的连续油相包含一种或更多种可聚合单体。这些单体能够聚合,从而形成多孔结构例如泡沫,所述多孔结构具有由分散的水相小滴的尺寸分布限定的泡孔尺寸分布。
单体的聚合在添加引发剂时开始,在固化过程中继续。固化过程通常发生在泡沫形成过程终止时或接近泡沫形成过程的终点;之后制备HIPE泡沫以用于将来使用。然而,在添加引发剂和固化过程之后,并非所有单体都被聚合。这些残余的未聚合的单体会在HIPE泡沫和用来制备HIPE泡沫的方法中引起问题。如果未反应的单体存在于HIPE泡沫中,那么它们在达到某一含量时会引起安全性问题,从而不利地影响期望的HIPE泡沫特性或干扰下一步的HIPE泡沫工序,例如切割或向HIPE泡沫应用其它组分。此外,单体也具有粘附至表面的趋向,这导致分批方法和连续方法中的加工问题。在分批方法中单体粘附至需要清洁模具的模具腔体,或在连续方法中单体粘附至需要清洁表面的模具腔体,HIPE沉积到所述表面上。
因此,需要具有低含量未聚合的单体的HIPE泡沫,以及减少HIPE泡沫中未聚合的单体量的方法。
发明概述
本发明提供了一种用于产生高内相乳液泡沫的方法,所述方法包括以下步骤:由包含单体、交联剂、乳化剂的油相;光引发剂;和水相形成高内相乳液;将高内相乳液沉积在带上;使用在约25℃至约150℃进行的聚合反应并持续足以形成高内相乳液泡沫的时间来使高内相乳液油相中的单体组分聚合;并且通过使高内相乳液泡沫暴露于来自紫外光源的紫外光而将高内相乳液泡沫中未聚合的单体的量减少至小于400ppm。
本发明提供了一种用于产生高内相乳液泡沫的方法,所述方法包括以下步骤:由包含单体、交联剂、乳化剂的油相;光引发剂;和水相形成第一高内相乳液;由包含单体、交联剂、乳化剂的油相;光引发剂;和水相形成第二高内相乳液;将第一高内相乳液沉积在带上;将第二高内相乳液沉积在第一高内相乳液上;并且使用在约25℃至约150℃进行的聚合反应并持续足以形成高内相乳液泡沫的时间来使第一和第二高内相乳液油相中的单体组分聚合;并且通过使高内相乳液泡沫暴露于来自紫外光源的紫外光而将高内相乳液泡沫中未聚合的单体的量减少至小于400ppm。
附图简述
图1是本发明的工艺流程图。
图2是本发明的工艺流程图。
图3是显示单体减少的图。
发明详述
本发明涉及一种用于产生具有减少含量的未聚合的单体的HIPE泡沫的方法。可以使用连续方法来产生HIPE泡沫。产生包含分散的水相和连续油相的HIPE,然后将其沉积在带(例如环形带)上。在带上时,可以使HIPE移动到加热区,其中所述单体聚合形成HIPE泡沫。然后使HIPE泡沫经受紫外(UV)光照以使仍保持未聚合的单体聚合。
高内相乳液(HIPE)包含两个相。一个相是包含单体和乳化剂的连续油相,所述单体被聚合以形成HIPE泡沫,并且乳化剂帮助使HIPE稳定。油相也可包含一种或更多种光引发剂。单体组分可按所述油相的重量计以约80%至约99%并且在某些实施方案中约85%至约95%的量存在。可溶于油相并且适于形成稳定的油包水乳液的乳化剂组分可按所述油相的重量计以约1%至约20%的量存在于油相中。乳液可在约10℃至约130℃并且在某些实施方案中约50℃至约100℃的乳化温度下形成。
一般来讲,单体将包含按所述油相的重量计约20%至约97%的至少一种基本上水不溶性的一官能丙烯酸烷基酯或甲基丙烯酸烷基酯。例如,这种类型的单体可包括C4-C18丙烯酸烷基酯和C2-C18甲基丙烯酸烷基酯,例如丙烯酸乙基己酯、丙烯酸丁酯、丙烯酸己酯、丙烯酸辛酯、丙烯酸壬酯、丙烯酸癸酯、丙烯酸异癸酯、丙烯酸十四烷基酯、丙烯酸苄基酯、丙烯酸壬基苯酯、甲基丙烯酸己酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸辛酯、甲基丙烯酸壬酯、甲基丙烯酸癸酯、甲基丙烯酸异癸酯、甲基丙烯酸十二烷基酯、甲基丙烯酸十四烷基酯和甲基丙烯酸十八烷基酯。
油相也可包含按所述油相的重量计约2%至约40%并且在某些实施方案中约10%至约30%的基本上水不溶性的多官能交联丙烯酸烷基酯或甲基丙烯酸烷基酯。加入这种交联共聚单体或交联剂以向所得HIPE泡沫赋予强度和弹性。这种类型交联单体的实例包括含有两种或更多种活化丙烯酸酯、甲基丙烯酸酯基团、或它们的组合的单体。这个组的非限制性实例包括1,6-己二醇二丙烯酸酯、1,4-丁二醇二甲基丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三(甲基丙烯酸酯)、1,12-十二烷基二(甲基丙烯酸酯)、1,14-十四烷二醇二(甲基丙烯酸酯)、乙二醇二(甲基丙烯酸酯)、新戊二醇二丙烯酸酯(2,2-二甲基丙二醇二丙烯酸酯)、己二醇丙烯酸酯甲基丙烯酸酯、葡萄糖五丙烯酸酯、脱水山梨糖醇五丙烯酸酯等。交联剂的其它实例包含丙烯酸酯和甲基丙烯酸酯部分的混合物,例如乙二醇丙烯酸酯-甲基丙烯酸酯和新戊二醇丙烯酸酯-甲基丙烯酸酯。在混合的交联剂中甲基丙烯酸酯:丙烯酸酯基团的比率可按需从50∶50变化至任何其它比率。
可将按所述油相的重量计重量百分比为约0%至约15%,在某些实施方案中约2%至约8%的任何第三基本上水不溶性的共聚单体加入油相以改变HIPE泡沫的特性。在某些情况下,可能期望“韧化的”单体,其向所得HIPE泡沫赋予韧性。这些包括例如苯乙烯、氯乙烯、偏二氯乙烯、异戊二烯和氯丁二烯的单体。不受理论的约束,据信此类单体有助于使HIPE在聚合过程中保持稳定(也已知为“固化”)以提供更均质和更佳成形的HIPE泡沫,这导致更好的韧性、拉伸强度、耐磨性等。也可加入单体以赋予阻燃性,如2000年12月12日公布的美国专利6,160,028(Dyer)中所公开的那样。可加入单体以赋予颜色(例如聚乙烯树脂二茂铁)、荧光特性、抗辐射性、对辐射不透明性(例如四丙烯酸铅)、分散电荷、反射入射红外线、吸收无线电波、在HIPE泡沫支柱上形成可润湿表面、或用于HIPE泡沫中的任何其它期望特性。在一些情况下,这些附加单体会减慢HIPE转变成HIPE泡沫的总进程,如果要赋予期望特性那么折衷就是必要的。因此,此类单体可用来减缓HIPE的聚合速率。此类单体的实例包括苯乙烯和氯乙烯。
油相还可包含用于使HIPE稳定的乳化剂。用于HIPE中的乳化剂可包含:(a)支链的C16-C24脂肪酸的脱水山梨糖醇单酯;直链的不饱和C16-C22脂肪酸;和直链的饱和C12-C14脂肪酸,例如脱水山梨糖醇单油酸酯、脱水山梨糖醇一肉豆蔻酸酯和脱水山梨糖醇单酯、脱水山梨糖醇一月桂酸酯、双甘油一油酸酯(DGMO)、聚甘油一异硬脂酸酯(PGMIS)和聚甘油一肉豆蔻酸酯(PGMM);(b)支链的C16-C24脂肪酸的聚甘油单酯、直链的不饱和C16-C22脂肪酸、或直链的饱和C12-C14脂肪酸,如双甘油一油酸酯(例如C18:1脂肪酸的双甘油单酯)、双甘油一肉豆蔻酸酯、双甘油一异硬脂酸酯和双甘油单酯;(c)支链的C16-C24醇的双甘油一脂族醚、直链的不饱和C16-C22醇和直链的饱和C12-C14醇、以及这些乳化剂的混合物。参见1995年2月7日公布的美国专利5,287,207(Dyer等人)和1996年3月19日公布的美国专利5,500,451(Goldman等人)。可用的另一种乳化剂是聚甘油琥珀酸酯(PGS),它由烷基琥珀酸酯、甘油和三甘油形成。
此类乳化剂以及它们的组合可以加入油相以便它们的含量按所述油相的重量计介于约1%和约20%之间,在某些实施方案中为约2%至约15%,并且在某些其它实施方案中为约3%至约12%。在某些实施方案中,共乳化剂也可以用来提供对泡孔尺寸、泡孔尺寸分布和乳液稳定性的额外控制,尤其是在较高的温度下,例如高于约65℃。共乳化剂的实例包括磷脂酰基胆碱和含磷脂酰基胆碱的组合物、脂族甜菜碱、长链C12-C22二脂族季铵盐、短链C1-C4二脂族季铵盐、长链C12-C22二烷酰基(烯酰基)-2-羟乙基、短链C1-C4二脂族季铵盐、长链C12-C22二脂族季铵咪唑啉季铵盐、短链C1-C4二脂族季铵咪唑啉季铵盐、长链C12-C22一脂族苄基季铵盐、长链C12-C22二烷酰基(烯酰基)-2-氨基乙基、短链C1-C4一脂族苄基季铵盐、短链C1-C4一羟基脂族季铵盐。在某些实施方案中,二牛油基二甲基铵甲基硫酸盐(DTDMAMS)可用作共乳化剂。
光引发剂的含量按所述油相的重量计可介于约0.05%和约10%之间,并且在某些实施方案中介于约0.2%和约10%之间。较低浓度的光引发剂使光能够更好地穿透HIPE泡沫,这可以使聚合更深入HIPE泡沫。然而,如果聚合在含氧环境中进行,那么应有足够的光引发剂来引发聚合并且克服氧的抑制。光引发剂可对光源作出迅速有效的反应,从而产生自由基、阳离子和能够引发聚合反应的其它物质。用于本发明中的光引发剂可吸收约200纳米(nm)至约800nm,在某些实施方案中约200nm至约450nm波长的紫外光。如果光引发剂在油相中,那么合适类型的油溶性的光引发剂包含苄基缩酮、α-羟烷基苯酮、α-氨基烷基苯酮和酰基膦氧化物。光引发剂的实例包括2,4,6-[三甲基苯甲酰基二膦]氧化物与2-羟基-2-甲基-1-苯基丙-1-酮的组合(两者的50∶50共混物以商品名4265由Ciba Speciality Chemicals(Ludwigshafen,Germany)出售);苄基二甲基缩酮(以商品名IRGACURE 651由Ciba Geigy出售);α-,α-二甲氧基-α-羟基苯乙酮(以商品名1173由CibaSpeciality Chemicals出售);2-甲基-1-[4-(甲基硫代)苯基]-2-吗啉代-丙-1-酮(以商品名907由Ciba Speciality Chemicals出售);1-羟基环己基苯基甲酮(以商品名184由Ciba Speciality Chemicals出售);双(2,4,6-三甲基苯甲酰基)-苯基氧化膦(以商品名IRGACURE 819由CibaSpeciality Chemicals出售);二乙氧基苯乙酮和4-(2-羟基乙氧基)苯基-(2-羟基-2-甲基丙基)酮(以商品名2959由Ciba Speciality Chemicals出售);和Oligo[2-羟基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮](以商品名KIP EM由Lamberti spa(Gallarate,Italy)出售)。
HIPE的分散水相包含水,并且也可包含一种或更多种组分,例如引发剂或电解质,其中在某些实施方案中,所述一种或更多种组分至少部分地溶于水。
水相的一个组分可为水溶性电解质。水相可包含按所述水相的重量计约0.2%至约40%,某些实施方案中约2%至约20%的水溶性电解质。电解质使主要油溶的单体、共聚单体和交联剂也溶于水相的趋向最小化。电解质的实例包括碱土金属(例如钙或镁)的氯化物或硫酸盐,以及碱金属(例如钠)的氯化物或硫酸盐。此类电解质可包含缓冲剂以用于控制聚合过程中的pH,所述缓冲剂包括例如磷酸盐、硼酸盐和碳酸盐、以及它们的混合物的无机抗衡离子。水溶性单体也可用于水相中,实例为丙烯酸和乙酸乙烯酯。
可存在于水相的另一种组分是水溶性自由基引发剂。基于存在于油相的可聚合单体的总摩尔数计,引发剂能够以至多约20摩尔%的量存在。在某些实施方案中,基于存在于油相的可聚合单体的总摩尔数计,引发剂以约0.001至约10摩尔%的量存在。合适的引发剂包括过硫酸铵、过硫酸钠、过硫酸钾、2,2′-偶氮双(N,N′-二亚甲基异丁基脒)二盐酸盐和其它合适的偶氮引发剂。在某些实施方案中,为了减弱提前聚合(可能妨碍乳化体系)的可能,可在乳化作用的终点刚过或接近乳化作用的终点时加入引发剂。
存在于水相中的光引发剂可为至少部分水溶性的,并且可按所述油相的重量计以介于约0.05%和约10%之间,并且在某些实施方案中介于约0.2%和约10%之间的量存在。较低量的光引发剂使光能够更好地穿透HIPE泡沫,这能够使聚合更深入HIPE泡沫。然而,如果聚合在含氧环境中进行,那么应有足够的光引发剂来引发聚合并且克服氧的抑制。光引发剂可对光源作出迅速有效的反应,从而产生自由基、阳离子和能够引发聚合反应的其它物质。用于本发明中的光引发剂可吸收波长约200纳米(nm)至约800nm,在某些实施方案中约200nm至约350nm,并且在某些实施方案中约350nm至约450nm的紫外光。如果光引发剂在水相中,那么合适类型的水溶性光引发剂包括二苯甲酮、苯偶酰和噻吨酮。光引发剂的实例包括2,2′-偶氮双[2-(2-咪唑啉-2-基)丙烷]二盐酸盐;脱水2,2′-偶氮双[2-(2-咪唑啉-2-基)丙烷]二硫酸盐;2,2′-偶氮双(1-亚氨基-1-吡咯烷-2-乙基丙烷)二盐酸盐;2,2′-偶氮双[2-甲基-N-(2-羟乙基)丙酰胺];2,2′-偶氮双(2-甲基丙脒)二盐酸盐;2,2′-二羧基甲氧基二亚苄基丙酮、4,4′-二羧基甲氧基二亚苄基丙酮、4,4′-二羧基甲氧基二苯亚甲基环己酮、4-二甲基氨基-4′-羧基甲氧基二亚苄基丙酮;和4,4′-二sulphoxy甲氧基二亚苄基丙酮。可用于本发明的其它合适光引发剂列于1989年4月25日公布的美国专利4,824,765(Sperry等人)。
除了前述组分之外,其它组分也可被包含在HIPE的水相或油相中。实例包括抗氧化剂,例如受阻酚醛树脂、受阻胺光稳定剂;增塑剂,例如二辛基邻苯二甲酸、二壬基癸二酸酯;阻燃剂,例如卤化烃、磷酸盐、硼酸盐、无机盐如三氧化锑或磷酸铵或氢氧化镁;染料和颜料;荧光剂;填料颗粒,例如淀粉、二氧化钛、炭黑或碳酸钙;纤维;链转移剂;气味吸收剂,例如活性炭微粒;溶解的聚合物;溶解的低聚物等。
HIPE泡沫由包含HIPE的连续油相的单体聚合产生。在某些实施方案中,HIPE泡沫可具有一层或多层,并且可为均质或异质聚合开孔泡沫。同质和异质涉及同一HIPE泡沫内的不同层,在均质HIPE泡沫的情况下它们是相似的,而在异质HIPE泡沫的情况下它们是不同的。异质HIPE泡沫可包括至少两个不同的层,它们在化学组成、物理特性或这两方面不同;例如各层可在泡沫密度、聚合物组合物、比表面积或孔径(也称为泡孔尺寸)中的一个或更多个方面不同。例如,对于HIPE泡沫,如果不同涉及孔径,那么各层中的平均孔径可相差至少约20%,在某些实施方案中至少约35%,并且在其它实施方案中至少约50%。在另一个实施例中,如果HIPE泡沫各层中的不同涉及密度,那么各层的密度不同可相差至少约20%,在某些实施方案中至少约35%,并且在其它实施方案中至少约50%。例如,如果HIPE泡沫的一层具有0.020g/cc的密度,那么另一层可具有至少约0.024g/cc或小于约0.016g/cc的密度,在某些实施方案中至少约0.027g/cc或小于约0.013g/cc,并且在其它实施方案中至少约0.030g/cc或小于约0.010g/cc。如果各层之间的不同涉及HIPE或HIPE泡沫的化学组成,那么该不同可以反映至少一种单体组分例如至少约20%的相对量的差异,在某些实施方案中至少约35%,并且在其它实施方案中至少约50%。例如,如果HIPE或HIPE泡沫的一层在其制剂中包含约10%的苯乙烯,那么HIPE或HIPE泡沫的另一层应该包含至少约12%,并且在某些实施方案中包含至少约15%。
具有由不同HIPE形成的不同层的HIPE泡沫,如下文所详细解释,为HIPE泡沫提供一系列期望的性能特性。例如,包括第一和第二泡沫层的HIPE泡沫,其中第一泡沫层具有比第二层相对更大的孔径或泡孔尺寸,当用于吸收制品中时会比第二层更快吸收进入的流体。以举例的方式,当用于吸收制品中时第一泡沫层可放在比第一泡沫层具有相对较小孔径的第二泡沫层上,这施加更多毛细管压力并且从第一泡沫层排出所采集的流体,使第一泡沫层恢复采集更多流体的能力。HIPE泡沫孔径可在1-200μm的范围内,并且在某些实施方案中可小于100μm。具有两个主要平行表面的本发明的HIPE泡沫可为0.5-10mm厚,并且在某些实施方案中为2mm或更厚。HIPE的期望厚度将取决于用来形成HIPE的材料、HIPE沉积在带上的速度和所得HIPE泡沫的预期用途。
本发明的HIPE泡沫基本上是相对开孔的。这是指HIPE泡沫的单个泡孔或孔与邻近的泡孔基本上是无阻挡连通的。在此类基本上开孔的HIPE泡沫结构中的泡孔具有泡孔间的开口或窗口,它们足够大,使得流体容易在HIPE泡沫结构内从一个泡孔转移到另一个泡孔。为了本发明的目的,如果HIPE泡沫中至少约80%的、尺寸为至少1μm的泡孔与至少一个邻近泡孔流体连通,那么该HIPE泡沫就被认为是“开孔的”。
除了是开孔的之外,在某些实施方案中HIPE泡沫还是充分亲水性的以使得HIPE泡沫吸收含水流体,例如可通过在聚合以后残余的亲水表面活性剂或盐留在HIPE泡沫中,通过精选的后聚合HIPE泡沫处理程序(如下文所述),或两者的组合,使HIPE泡沫的内部表面为亲水的。
在某些实施方案中,例如当用于某些吸收制品中时,HIPE泡沫可为柔性的并且表现出适当的玻璃化转变温度(Tg)。Tg代表聚合物的玻璃态和橡胶态之间转变的中点。一般来讲,具有比使用温度高的Tg的HIPE泡沫可为非常强硬的,但是也将非常刚性的并且潜在地易于断裂。在某些实施方案中,表现出较高Tg或过度脆性的本发明的HIPE泡沫的区域将为不连续的。由于这些不连续区域一般也将表现出高强度,因此它们能够以较低的密度制备,而不危及HIPE泡沫的总强度。
旨在用于需要柔韧性的应用的HIPE泡沫应该包含至少一个具有尽可能低的Tg的连续区域,只要总体HIPE泡沫在应用温度具有可接受的强度。在某些实施方案中,对于用于约环境温度条件下的泡沫该区域的Tg将低于约30℃,在其它某些实施方案中低于约20℃。对于用于其中使用温度比环境温度更高或更低的应用中的HIPE泡沫,连续区域的Tg可高于使用温度不超过10℃,在某些实施方案中与使用温度相同,并且在其中期望柔韧性的另一些实施方案中比使用温度低约10℃。因此,尽可能多选择提供相应的具有较低Tg的聚合物的单体。
本发明的HIPE泡沫可被用作例如女性卫生制品,例如垫、卫生护垫和棉塞;一次性尿布;失禁制品,例如垫、成人尿布;家庭护理制品,例如擦拭物、垫、毛巾;以及美容护理制品,例如垫、擦拭物和皮肤护理制品(例如用于毛孔清洁)的吸收制品中的吸收芯材料。
为了使用上述产生HIPE(显示于图1),将水相10和油相20以介于约8∶1和140∶1之间的比率混合。在某些实施方案中,水相与油相的比率介于约10∶1和约75∶1之间,并且在某些其它实施方案中,水相与油相的比率介于约13∶1和约65∶1之间。该术语为“水比油”或W∶O比率并且可用于测定所得HIPE泡沫的密度。如上所论述,油相可包含单体、共聚单体、光引发剂、交联剂和乳化剂、以及任选组分中的一种或更多种。水相将包含水并且在某些实施方案中一种或更多种组分,例如电解质、引发剂或任选组分。
可通过将混合的水相10和油相20提交到混合室或混合区30中的剪切搅拌来由这些混合的相形成HIPE。将混合的水相10和油相20提交到剪切搅拌产生具有期望尺寸的含水小滴的稳定HIPE。乳液制备程序产生其中水相小滴分散至如此程度以至于所得HIPE泡沫将具有期望结构特性的HIPE。混合区30中水相10和油相20组合的乳化作用会涉及使用混合或搅拌装置(例如叶轮),通过使混合的水相和油相以赋予必要的剪切所需的速率经过一系列静态搅拌器,或两者的组合。一旦形成,然后就能够将HIPE从混合区30撤出或泵出。一种使用连续方法来形成HIPE的方法描述于1992年9月22日公布的美国专利5,149,720(DesMarais等人)和1998年10月27日公布的美国专利5,827,909(DesMarais)。
在用于连续方法的某些实施方案中,可将HIPE从混合区撤出或泵出并且通过沉积到以大致水平方向移动的带40上来运输到加热区50(例如固化炉)。引发剂可存在于水相中,或如图1所示可在HIPE制备过程中引入引发剂60,并且在某些实施方案中,在HIPE形成之后但在将HIPE沉积到带40上之前引入。可通过一个或更多个沉积装置70(例如模头、喷涂器或铸造器)将HIPE沉积到带上。如图2所示,在本发明中可产生两种或更多种不同的HIPE,它们在聚合之后将形成HIPE泡沫中的两个或更多个不同的层,例如第一HIPE和第二HIPE,其中每种HIPE可具有区别于其它HIPE的独特组成(水相和油相)或独有的特性组合,例如孔尺寸、机械特性等。单独的HIPE可由一个或更多个单独的油相和一个或更多个单独的水相、以及它们的组合组成。例如,单独的HIPE可由单个油相混合2个或更多个不同的水相形成,或如图2所示单个水相11混合2个或更多个单独的油相21、22。
单独的水相11和油相21、22进入分开的混合区31和32,然后以与沉积单独的HIPE相同的方式沉积。例如,在本发明的连续方法中,第一模头71可以将一个HIPE层沉积到带40上,然后同一个模头或第二模头72,如图2所示,可将第二HIPE沉积在第一HIPE的顶部上。在某些实施方案中,与底部第一HIPE相比,顶部第二HIPE可具有较低浓度的光引发剂,使得在两个HIPE层中形成相似量的自由基。在另一个使用之前描述的连续方法的实施方案中,模头可将几个HIPE邻近沉积到带(或从混合区移动一个或更多个HIPE的任何其它装置)上,其中单独的HIPE可互相重叠或可不互相重叠以产生HIPE泡沫。
带的实例可包括由一种或更多种金属、树脂、或它们的组合制成的环形带;或片材料,例如可放置到带上并随其移动的膜。HIPE的平均厚度,如从接触带的HIPE表面到相对的HIPE表面所测,可通过带的移动速度、沉积在带上的HIPE流、或用来将HIPE沉积在带上的一个或更多个沉积装置的构型来调整。
带可为适于产生HIPE泡沫的任何厚度或形状。此外,HIPE将沉积在其上的带表面可为大致光滑的或可包括凹陷、隆起、或它们的组合。隆起或凹陷可被布置成任何排列或顺序,并且可用于为HIPE泡沫提供图案、设计、标记等。带可包含适于聚合条件(多种特性,例如热阻性、耐候性、表面能、耐磨性、回收利用特性、拉伸强度和其它机械强度)的一种或更多种材料,并且可包含至少一种来自包括以下的组的材料:膜、非织造材料、织造材料、以及它们的组合。可使用的膜的实例包括氟树脂,如聚四氟乙烯、四氟乙烯-全氟烷基乙烯基醚共聚物、四氟乙烯-六氟丙烯共聚物和四氟乙烯-乙烯共聚物;有机硅树脂,如二甲基聚硅氧烷和二甲基硅氧烷-二苯基硅氧烷共聚物;热阻树脂,如聚酰亚胺、聚苯硫醚、聚砜、聚醚砜、聚醚酰亚胺、聚醚醚酮和对位型芳族聚酰胺树脂;热塑性聚酯树脂,如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚萘二甲酸丁二醇酯、以及聚环己烷对苯二甲酸酯;热塑性聚酯型弹性体树脂,如由聚对苯二甲酸丁二醇酯和聚四氢呋喃二醇形成的嵌段共聚物(聚醚型)和由聚对苯二甲酸丁二醇酯和聚己内酯形成的嵌段共聚物(聚酯型)。这些材料可单独使用或以两种或更多种材料的混合形式使用。此外,带可为包含两种或更多种不同材料或两种或更多种相同组成的材料(但是它们的一种或更多种物理特性不同,如质量或厚度)的层压板。在某些实施方案中,带或放置在带上并随其移动的膜可为对紫外光透明的;使来自放置在带、膜或两者下面的紫外光源的紫外光能够聚合HIPE泡沫中的单体。
在某些实施方案中,带40将HIPE移动到加热区50中,存在于HIPE中的单体在此聚合。不受理论的约束,据信HIPE泡沫的形成包括两个交迭的过程。它们是单体的聚合和邻近聚合物主链上活性位点之间交联的形成。如本文所用,术语“聚合”是指聚合单体以形成HIPE泡沫,既包括单体的聚合也包括邻近聚合物主链上活性位点之间交联的形成。交联为HIPE泡沫提供强度和完整性,这有助于它们的进一步处理和使用。本发明涉及提高聚合和交联的总水平,从而减少HIPE泡沫中未聚合的单体的量。通过例如在足以开始聚合的温度下制备HIPE可以在到达加热区之前引发聚合。然而,在加热区中HIPE在超过随模成形性或可塑性的温度点聚合。用于加热区的热可来源于位于HIPE的上方和下方或围绕HIPE的烘箱。热可来自强力烘箱、红外热灯、微波、蒸汽或其它合适源。作为使用蒸汽的一个实例,加热区可为蒸汽烘箱,其中HIPE暴露于蒸汽,从而当水冷凝在HIPE上时实现高效热转移。
在某些实施方案中,温度可以逐步升高,以增大聚合、开始干燥的速率或两者,因为HIPE变得更彻底地聚合。此外,通过使纤维网穿过由足以引发单体固化的温度的任何热液体组成的热液体浴来完成HIPE的固化。聚合温度将随着被固化乳液的类型、所用的引发剂、所用的热源和加热区是否密封而变化,但是通常将高于25℃,常常高于50℃。在某些实施方案中,加热区内的聚合温度可达到约25℃和150℃之间。使HIPE保持在加热区中足以聚合至少75%,优选至少90%的HIPE油相中的单体的时间。HIPE的充分聚合可由所用的引发剂、加热区的温度、加热区中热传递的效率、HIPE穿过加热区的速率和加热区的长度的组合来控制。
在加热区50之后,带40将几乎全部聚合的HIPE泡沫移动到包含一个或更多个紫外光源的紫外(UV)光照区80。包含未聚合的单体的HIPE泡沫的暴露,并且在某些实施方案中,加入紫外光照区80的一种或更多种光引发剂引发HIPE泡沫油相中未聚合的单体的聚合(遵循热辅助聚合)。紫外光源的一个实例是紫外灯。可使用一个或更多个紫外光源来聚合HIPE单体。紫外光源可放置在带的上方或下方。几个源可为相同的或不同的。例如几个源可在它们产生的紫外光的波长方面或HIPE暴露于紫外光源的时间量方面不同。紫外光波长在约200至约800nm的范围内,并且在某些实施方案中约250nm至450nm,与光引发剂的紫外光吸收带重叠至少某些程度,并且具有足够的强度和暴露持续时间以基本上完成未聚合的单体的聚合。不受理论的限制,据信由于乳液(例如HIPE)对散射光的趋向,在某些实施方案中,应该使用该范围内的长波长,因为它们能更好地穿透乳液。在应用紫外光之后,在小于约10分钟,小于约1分钟,小于约30秒,小于约10秒,或小于约1秒的时间内,HIPE泡沫包含小于400ppm,在某些实施方案中小于100ppm,并且在某些其它实施方案中小于检测限的未聚合的单体。连续方法中HIPE泡沫暴露于紫外光的时间通过以下测定:当1cm长的HIPE泡沫部分(如在纵向测量)进入然后离开紫外光照区时。在某些实施方案中,整个乳液制备、聚合和单体减少过程将耗费小于20分钟,在其它实施方案中小于15分钟,并且在其它实施方案中小于5分钟。
在聚合之后,所得HIPE泡沫用水相饱和,所述水相需要除去以获得大体上干燥的HIPE泡沫。在某些实施方案中,通过使用压缩,例如通过使HIPE泡沫经过一对或更多对交咬滚轴90,可挤压HIPE泡沫释放大部分的水相。交咬滚轴90可如此放置使得它们挤出HIPE泡沫的水相。交咬滚轴90可为多孔的并具有由内部应用的真空,使得它们有助于将水相从HIPE泡沫脱出。在某些实施方案中,交咬滚轴90可成对放置,使得第一交咬滚轴90位于液体可透过的带40(例如具有孔或由似啮合材料组成的带40)的上方,并且第二相对的交咬滚轴91面对第一交咬滚轴90并且位于液体可透过的带40的下方。一对中的一个例如第一交咬滚轴90可被加压,而另一个例如第二交咬滚轴91可被排空,以至于两者都吹气并将水相拖出HIPE泡沫。也可加热交咬滚轴以帮助除去水相。在某些实施方案中,只将交咬滚轴应用到非刚性HIPE泡沫上,即通过压紧HIPE泡沫将不会破坏它们的壁的HIPE泡沫。在另一个实施方案中,交咬滚轴的表面可包含隆起、凹陷或两种形式的不规则,使得当HIPE泡沫穿过交咬滚轴移动时它可被压花。当HIPE具有期望的干燥度时,它可被切或割成适用于预期应用的形式。
在某些实施方案中,取代或结合交咬滚轴,可通过运送HIPE泡沫穿过干燥区100来除去水相,在此它被加热、暴露于真空或加热和真空暴露的组合。可通过使泡沫穿过强制热空气箱、红外烘箱、微波烘箱或无线电波烘箱来加热。HIPE泡沫干燥的程度取决于应用。在某些实施方案中,超过50%的水相被除去。在某些其它实施方案中超过90%,并且在其它实施方案中超过95%的水相在干燥过程中被除去。
实施例
高内相乳液(HIPE)的制备及其随后聚合成吸收剂泡沫示于以下实施例中。HIPE样本包括两层:底层和顶层,其中底层具有30微米的较小平均孔径,并且顶层具有约80微米的较大平均孔径。
A.小泡孔层HIPE的形成
小泡孔层组分
为了制备HIPE的底部小泡孔层,水相、油相和引发剂包含如下表1所示的以下组分。
表1
装置
在包括静态搅拌器和再循环泵的设备中制备较小泡孔的HIPE。静态搅拌器由Sulzer (Sulzer Ltd.(Zürcherstrasse 14,8401Winterthur,Switzerland))制造。大小适合安装在标准的1.5″直径管内的SMX式搅拌器的四十八个元件用作初级混合环路元件。四套每套十二个元件焊接以便每个连续管段旋转90°安装在管子的独立部分中,管子装有2″tri-clover快拆管道法兰。
通过具有2″tri-clover快拆管道法兰的改进的1 7/8″管材90°弯管将水相引入再循环环路,其中将1/2″管焊接入弯管以形成环,使得水相进入弯管的排出物端,与再循环流一致,两者都垂直向下前进。环形1/2″管的末端内部有螺纹,具有17/64″孔的紧定螺钉钻进去以引导来临的含水流朝向静态搅拌器。
垂直取向的包含SMX管的三个部分,接着引入含水流的弯管。然后该流被两个弯管引导,都是装有tri-clover配件的17/8″管材弯管,首先90°然后45°。以方便的角度向上连接SMX搅拌器的最后部分以使其排出物与再循环泵的入口配件在约同一高度。
来自最后SMX搅拌器管段的排出物穿过同心异径管到达7/8″三通管(Tee)(三通管A)。三通管的一侧连接至装有温度探针的同径弯管,然后其连接至另一个7/8″三通管(三通管B)。三通管B的一侧连接至直径1 1/4″长48″的特氟隆衬里软管。该软管连接至7/8″三通管(三通管C)的主管侧。三通管C的十字管头的一侧向上连接至再循环泵,其为Waukesha 030 U2型凸轮泵(Waukesha Cherry-Burrell Company(Delavan,Wisconsin))的入口。三通管C的十字管头的另一侧向下连接至7/8″至5/8″同心异径管。同心异径管的小端使用3/4″tri-clover连接至3/8″不锈钢管材的定制管段,通过首先在3/4″tri-clover端盖中钻匹配直径的孔将3/4″tri-clover配件焊接到管上。这使得管子能够伸入并经过三通管C主管侧的交点到达三通管C的十字管头。朝向沃克沙泵向内突出的管子的端部内部有螺纹并且装有已钻了7/64″孔的紧定螺钉。管子的另一端装有3/4″tri-clover配件,如上面所提到的相同方式面向下装配。
来自沃克沙泵的排出物转移到直径1 3/8″长6″的短管,短管上有小口用于安装温度探针和tri-clover卫生配件,接着是1 1/4Kenics螺旋状静态搅拌器(Chemineer Inc.(Dayton,Ohio))的六个元件在长度刚好足够包含它们的管段中,管子端部装有tri-clover配件。接着是装有tri-clover配件的1 3/8″90°管材弯管、直径1 3/8″长6″的短管、装有部件以从此处排空气体的第二个直径1 3/8″长6″的短管、总的第一阶段混合组合件的高点,然后1 3/8至1 7/8″交换短管连接至上文提到的水相注入器弯管。这就完成了小泡孔HIPE的混合阶段的描述。
已发现,供给泵或再循环泵可导致流的周期性震动。为了缓和那种运转状况,上述三通管A的自由端可连接至包含压力传感器和室的减震器组合件。压力传感器用来监测压力,室可被排气以使得不同体积的空气能够保持在室中以便抑制压力波动。
来自混合阶段的排出物穿过特氟隆衬里的1 1/4″编织钢软管从三通管B流出到达装有与上述水相注入器弯管类似配置(但是用3/8″管材代替1/2″,并且装有带3/32″钻孔的紧定螺钉)的注入器管的1″管道弯管。通过该配置将引发剂溶液引入。HIPE的排出物和在中心引入的共轴引发剂物流被引导至大小适合装入具有tri-clover配件的1″管段的一系列三段的SMX搅拌器的十二个元件。该流然后穿过同心异径管前进入定制的衣架式模头。然后模头将HIPE沉积到以每分钟10米的速度移动的环形带上。
HIPE的形成
为了启动该设备,将水相加热至约80℃并且以约2升/分钟的流速递送至上述水相注入器点以方便地填充该设备,并且将设备预热至环路的温度指示装置所指示的温度约65℃。当观察到水相要从模头出来时,以2升每分钟的理论速率启动沃克沙泵;模头比泵高,以便泵不会无润滑运行。
当达到设备温度时,然后以0.5千克/分钟的速率将油相递送至油相注入器。(以每分钟的升数来测量水相,而油相以每分钟的千克数来参考,以便描述聚合的HIPE泡沫的理论密度。这也指可以改变水相中的盐浓度或盐类型,并且在不重新计算以千克表示的流速以完成所需产物的情况下仍然制造相同密度的产品)。在此启动阶段水油比率为4∶1。在第一次引入油相约5分钟的时间之后,可观察到从模头流出低粘度的HIPE。在那个点水相的温度设定值被调整至约72℃,并且在3分钟的时间内将流量从2升每分钟均匀地增加至8.107升每分钟。只有水相温度被控制,因为水相占HIPE总质量的>92%。与水相流量的开始增加同时启动的再循环泵的速率均匀增加以在2分钟的时间内达到28升每分钟的泵送速率。油相流,也与水相流量的增加同时开始,在5分钟的时间内均匀减少至0.313kg/分钟的流速。0.031升/分钟的丙烯酸钠流在引入混合环路之前与水相流混合,并且一般在水相流量增加期间开始。在平衡时,来自再循环环路的排出物的水油比率为26∶1。在流量增加结束时从模头流出的HIPE非常厚并且非常白。在所有的流量增加结束约2分钟之后,以0.313升每分钟的流速将引发剂引入,使总的水油比率为27∶1。当沉积在将HIPE传送到固化室的带(以10米每分钟的速率运转)上时,所得HIPE层大约为2.5mm厚。
B.大泡孔层HIPE的形成
大泡孔层的组分
为了制备HIPE的顶部大泡孔层,水相、油相和引发剂包含如下表2所示的以下组分。
表2
装置
在以两个环路配置的包括两套静态搅拌器和两台再循环泵的设备中制备较大泡孔的HIPE。静态搅拌器由Sulzer(Sulzer Ltd.(Zürcherstrasse 14,8401Winterthur,Switzerland))制造。大小适合安装在标准的2″直径管内的SMX式搅拌器的四十八个元件用作初级混合环路元件。对四套(每套十二个)元件进行焊接以便每个连续管段旋转90°安装在管子的独立部分中,管子装有2.5″tri-clover快拆管道法兰。
经由具有3″tri-clover快拆管道法兰的改进的2 3/8″管材90°弯管将水相引入再循环环路,其中将1/2″管焊接入弯管以形成环,使得水相进入弯管的排出物端,与再循环流一致,两者都以与水平成约10°的角度垂直向上前进。
环形1/2″管的末端内部有螺纹,具有3/8″孔的紧定螺钉钻进去以引导来临的含水流朝向静态搅拌器。具有3″tri-clover配件的2 3/8″管材,长6″的短管,将注入器弯管连接至包含SMX管子的两个管段,以与水平成10°的角度向上取向。然后通过两个弯管(都是具有tri-clover配件的90°2 3/8″管材弯管)使流转向反向。将SMX搅拌器的最后两个管段连接至交换接管(在2 3/8″开始并增大至2 7/8″)。交换接管连接至2 7/8″管材三通管(三通管A)的主管端,在三通管的主管与十字管头间交点的中部装有压力传感器。三通管A的一侧连接到2 7/8″至1 3/8″交换接管,然后连接到1 3/8″,90°弯管,然后连接到两个1 3/8″45°弯管。使用多个弯管方便将大量管段装配在一起。从45°弯管起,流继续到达1 3/8″直径,2″长的短管,接着是1 5/16″直径,261/4″的短管进入1 3/8″管材三通管(三通管B)的主管侧。三通管B的上部交叉开口连接至油相注入器组合件,包括1 3/8″至5/8″交换短管连接至与上面提到的用于较小泡孔HIPE油相注入器类似的注入器。三通管B的下部交叉开口连结至Waukeshaw 30 U2型凸轮泵。来自Waukeshaw泵的排出物连接至1 3/8″,90°弯管,然后连接至1 1/4″管中的Kenics螺旋状静态搅拌器的六个元件。一个13/8″,90°弯管,然后接下来是1 3/8″,45°弯管,然后是1 1/4″管中的Kenics螺旋状静态搅拌器的另一套六个元件管段。那之后,具有温度探针配件的13/8″短管和一个1 3/8″,90°弯管,最后一个1 3/8″至2 3/8″短管连接至配有23/8″管材90°弯管的水相注入器。
三通管A的另一个交叉出口连接至次要的水相注入器三通管(三通管C)(2 7/8″)的十字管头。5/8″的水相注入器管子,进入三通管的顶部,定向为对于三通管的主管侧为环形的,并且装有钻了5/16″孔的紧定螺钉。三通管C的主管侧连接至SMX静态搅拌器的十二个元件的两个2 1/2″标准管段,然后连接至两个2 7/8″90°管材弯管,引导所述流向后朝向三通管C流动但超过它,因为向外突出和向内突出的管段具有相对于水平大约10°的向上倾斜。选择该配置以使搅拌器中产生的空气最小化,避免排空的需要,如在较小泡孔HIPE设备中所用。2 1/2″SMX搅拌器的最后两个管段将它们的流排入另一个配有压力传感器的2 7/8″管材三通管,再次在三通管(三通管D)的十字管头和主管头的交点处。三通管D十字管头的一侧连接至2 7/8″90°管材弯管,然后进入Waukeshaw 130 U2型凸轮泵。泵的下部排出物连接至具有温度探针配件的2 7/8″90°管材弯管并且连接至2 7/8″管材三通管(三通管E)的十字管头端。三通管E的另一个十字管头端连接至三通管C的十字管头端,从而第二混合阶段环路。
三通管E的主管侧连接至2 7/8″到1 3/8″同心异径管,然后连接至1 3/8″90°管材弯管,然后连接至与前述小泡孔HIPE设备中所述的那个类似的减震器组合件。三通管D的剩余端类似地去往2 7/8″90°管材弯管,然后连接至27/8″到1 3/8″同心异径管,然后去往13/8″管材三通管(三通管G)的十字管头侧。三通管G的另一个十字管头端去往另一个减震器,而三通管G的主管侧去往1 3/8″×33″特氟隆衬里的挠曲软管。
挠曲软管通过配有3/8″注入器管(配有带1/8″孔的1/4″紧定螺钉)的1 3/8″90°管材弯管连接至引发剂搅拌器组合件。然后引发剂和HIPE在大小适合安装在1.75″直径管内的SMX静态搅拌器的四十八个元件中混合。再次,四套管段每套都是将十二个元件焊接在一起。然后HIPE经过同心异径管到达衣架式模头,HIPE像瀑布一样流到模头下面经过的较小泡孔尺寸HIPE上。
HIPE的形成
为了启动体系,在约80℃的温度下以2升每分钟的速度将水相递送至第一阶段注入器,并且在相同的温度下以1升每分钟的速度递送至第二注入器。当观察到水相从模头(比任何一个泵都高)出来时,启动泵。当由温度探针指示的内部温度全都超过65℃时,将油相以0.50kg/分钟的速率引入油相注入器。几分钟之后,当观察到HIPE从模头流出时,将第一水相温度靶转变到75℃,并且在3分钟的时间内将流量均匀地改变至每分钟2.828升。同时在5分钟的时间内将油相流量降低至0.202kg/分钟,在3分钟内将第一再循环泵均匀地增加至每分钟8升,并且丙烯酸钠溶液进料以每分钟0.02升的流量开始,在引入混合环路之前与水相混合。在完成流量改变之后,在两分钟的时间内将第二水相流从每分钟1升增加至每分钟1.596升。
在完成第二水相流的流量增加后,以每分钟0.404升的流量将引发剂溶液引入引发剂注入器。然后提供至0.33米宽模头的HIPE为24∶1的内相比率,并且当提供到以每分钟10米经过的较小泡孔HIPE的顶部时层厚度为1.5mm。
然后通过带将HIPE传送到固化炉进行单体的聚合。炉子的内部温度保持在约100℃。HIPE驻留在固化炉中约8分钟。
在固化炉之后,使HIPE在配有4″长300W/英寸Fusion H+电灯泡结合LC-6B台式传送装置(Fusion紫外Systems,Inc.)的紫外灯(I300MB辐照器,使用P300MT电源;Fusion紫外Systems,Inc.(Gaithersburg,Maryland))下经过(以5米每分钟的速度)。
在紫外灯下单次经过的定量光照测量显示于表3。用Power Puck(10瓦特,EIT,Sterling,Va.)进行测量。为了模拟在紫外灯下多次经过;一旦样本从紫外灯下经过,就将其从带上取下,然后再放回带上,使得该样本将再次在紫外灯下经过。然后根据需要重复该过程。
表3
C.测试方法
使用具有毛细管柱和火焰离子化检测器(FID)的气相色谱仪(GC)来测量由上述方法产生的四个HIPE泡沫样本(包括顶层和底层)以测定残余的(未聚合的)单体的浓度。过高含量的未聚合的单体表示用来产生HIPE泡沫的方法存在问题。以该方法测量的单体包含丙烯酸乙基己酯(EHA)、甲基丙烯酸乙基己酯(EHMA)和乙二醇二(甲基丙烯酸酯)(EGDMA)。
装置
气相色谱仪................Agilent G2630B-6850系列,其具有火焰离子化检测器(Agilent
                          Technologies(Wilmington,DE)),或等同物。
自动取样机.............Agilent G2880B-6850系列(Agilent Technologies),或等同物。
GC控制站..................Agilent  G1875BA  ChemStation PC Bundle (Agilent
                          Technologies),或等同物。
毛细管柱...................J&W Scientific DB-5,30m×0.32mm I.D.具有0.25um膜(Agilent
                           Technologies-部件号123-5032),或等同物。
注入器......................1uL无分流注入器。
天平.........................分析天平,分辨率0.1mg
移液管,可变的..........能够递送0.25、0.50和1.0mL等分试样(如VWR目录号
                        83009-170可变容量100-1000uL移液管)。
小瓶,40mL...............CS200透明玻璃小瓶(VWR目录号80076-562),其具有特氟
                         隆衬里的塑料盖(VWR目录号16161-213),或等同物。
小瓶,2mL.................透明玻璃小瓶(VWR目录号66030-002),其具有隔膜盖(VWR
                          目录号69400-043),或等同物。
环己烷......................HPLC级,99.9+%纯度(Sigma-Aldrich目录号270628)。
EHA标准物................(Sigma-Aldrich目录号290815)。
EHMA标准物.............(Sigma-Aldrich目录号290807)。
EGDMA标准物...........(Sigma-Aldrich目录号335681)。
分配器                EMD Optifix Solvent-50瓶口移液器用于环己烷(EMD
                      Chemicals,Inc.(Gibbstown,NJ)-部件号10108148-1),或等同
                      物。
氦气..........................GC级(超高纯度)。
氢气..........................GC等级(超高纯度)。
氮气..........................GC等级(超高纯度)。
空气..........................GC等级(超高纯度)。
转移吸移管.................一次性的塑性吸移管,如Samco目录号232(Samco Scientific
                           Corp.(San Fernando,CA)),或等同物。
试验过程
GC操作条件
入口温度....................280℃
注射体积....................1uL
吹扫时间....................30s
吹扫气流....................30mL/min氦气
柱子气流....................1.5-3.0mL/min氦气
初始温度....................90℃
初始时间....................17-18min
检测器温度................300℃
检测器气流.................20mL/min氮气(补充);30mL/min氢气;400mL/min空气
EHA保留时间.............9.5-11.5分钟
EHMA保留时间..........11.8-15.3分钟
EGDMA保留时间........12.0-15.8分钟
校准
1.称量50+/-5mgEHA标准物(记录实际重量精确到0.1mg)放入50mL容量瓶,用环己烷稀释至容积,塞好并充分混合。
2.称量大约50+/-5mgEHMA标准物(记录实际重量精确到0.1mg)放入单独的50mL容量瓶中,用环己烷稀释至容积,塞好并充分混合。
3.称量大约50+/-5mgEGDMA标准物(记录实际重量精确到0.1mg)放入单独的50mL容量瓶中,用环己烷稀释至容积,塞好并充分混合。
4.用移液管从上面制备的三个容量瓶中各移取1.0mL放入一个25mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的含40+/-4ug/mL的EHA、EHM和EGDMA的标准物)。
5.用移液管从步骤4制备的溶液中移取0.25mL放入50mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的0.2ug/mL标准物)。
6.用移液管从步骤4制备的溶液中移取0.25mL放入25mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的0.4ug/mL标准物)。
7.用移液管从步骤4制备的溶液中移取0.25mL放入10mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的1.0ug/mL标准物)。
8.用移液管从步骤4制备的溶液中移取0.50mL放入10mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的2.0ug/mL标准物)。
9.用移液管从步骤4制备的溶液中移取1.0mL放入10mL容量瓶中,用环己烷稀释至容积,塞好并充分混合(得到混合的4.0ug/mL标准物)。
10.用以下试剂来装满六个单独的2mL小瓶:(1)=只有环己烷(空白);(2)=0.2ug/mL标准物;(3)=0.4ug/mL标准物;(4)=1.0ug/mL标准物;(5)=2.0ug/mL标准物;(6)=2.0ug/mL标准物。
11.用隔膜盖盖紧每个小瓶,并且将小瓶装载到自动取样机中(确保保持(1)到(6)的顺序)。
12.开始GC分析程序。
13.基于在上面步骤1-3中所记录的EHA、EHM和EGDMA的实际重量,合并来自步骤12的6个标准物小瓶的分析结果,利用GC的线性回归校准程序对每个单体生成峰面积——浓度标准曲线。
样本测试
1.使用剃刀获得重0.20-0.40g的HIPE泡沫样本条。
2.在分析天平上称条的重量,并且记录该重量(以克为单位)精确到0.1mg。
3.使用剪刀将条剪成小块(大约1cm×1cm)并且将这些块转移到40mL小瓶中。
4.使用瓶口移液器将30mL环己烷加入小瓶。
5.盖紧小瓶并翻转3次,确保所有样本块完全润湿,开始将残余的单体萃取入环己烷。
6.安静地保存小瓶至少16小时,使萃取能够继续进行。
7.再翻转小瓶3次以完成萃取阶段。
8.使用新的(未用过的)一次性吸移管将来自40mL小瓶的环己烷提取物移入2mL小瓶中来装满2mL小瓶。
9.盖紧2mL小瓶并将小瓶装载到GC取样机中。
10.开始GC分析程序。
报告
编制GC的程序以便所述输出以ug/mL为单位。将该输出乘以30mL,然后乘积除以来自上面步骤2的样本重量(g),给出以ug/g为单位的结果。报告EHA、EHMA和EGDMA浓度至最接近的整数ug/g。
D.结果
对如上所述制备并测试的四个HIPE样本进行了未聚合的丙烯酸乙基己酯(EHA)单体含量的测试,其结果示于图3中。对四个样本的未聚合EHA单体的含量进行了测量并取平均值,并且描绘在图3中。该图显示,在固化炉中聚合之后样本含有的未聚合EHA单体的平均含量为约1400ppm。在HIPE样本暴露于紫外光之后,接着继续暴露于紫外光,未聚合EHA单体的量减少至几乎检测不到的量;说明本发明的方法在HIPE聚合为HIPE泡沫之后减少了未聚合的单体的量。
本文所公开的量纲和值不旨在被理解为严格地限于所述的精确值。相反,除非另外指明,每个这样的量纲是指所引用的数值和围绕该数值的功能上等同的范围。例如,所公开的量纲“40mm”旨在表示“约40mm”。
除非明确排除或换句话讲有所限制,本文中引用的每一个文件,包括任何交叉引用或相关专利或专利申请,均据此以引用方式全文并入本文。对任何文献的引用均不是承认其为本文公开的或受权利要求书保护的任何发明的现有技术、或承认其独立地或以与任何其它一个或更多个参考文献的任何组合的方式提出、建议或公开任何此类发明。此外,如果此文献中术语的任何含义或定义与任何以引用方式并入本文的文献中相同术语的任何含义或定义相冲突,将以此文献中赋予那个术语的含义或定义为准。
尽管已用具体实施方案来说明和描述了本发明,但对于本领域的技术人员显而易见的是,在不背离本发明的精神和保护范围的情况下可作出许多其它的改变和变型。因此,随附权利要求书中旨在涵盖本发明范围内的所有这些改变和变型。

Claims (4)

1.一种用于产生高内相乳液泡沫的方法,所述方法包括以下步骤:
由以下组分来形成高内相乳液:
包含单体、交联剂、乳化剂的油相;
水相;
光引发剂;
将所述高内相乳液沉积在带上;
使用在25℃至150℃进行的聚合反应并持续足以形成高内相乳液泡沫的时间来使所述高内相乳液油相中的单体组分聚合;以及
通过使所述高内相乳液泡沫暴露于来自紫外光源的紫外光小于1分钟而将所述高内相乳液泡沫中未聚合的单体的量减少至小于400ppm。
2.如权利要求1所述的方法,其中所述紫外光在200nm至800nm的波长范围内。
3.如权利要求1或2所述的方法,其中在蒸汽烘箱中进行使所述单体组分聚合的步骤。
4.如权利要求1或2所述的方法,其中所述带是环形带。
CN201080060324.4A 2009-12-30 2010-12-21 高内相乳液泡沫中未聚合的单体的减少 Expired - Fee Related CN102753610B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29094709P 2009-12-30 2009-12-30
US61/290,947 2009-12-30
US12/794,977 US20110160321A1 (en) 2009-12-30 2010-06-07 Reduction of unpolymerized monomers in high internal phase emulsion foam
US12/794,977 2010-06-07
PCT/US2010/061506 WO2011082028A1 (en) 2009-12-30 2010-12-21 Reduction of unpolymerized monomers in high internal phase emulsion foam

Publications (2)

Publication Number Publication Date
CN102753610A CN102753610A (zh) 2012-10-24
CN102753610B true CN102753610B (zh) 2014-09-17

Family

ID=44187861

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010800602275A Pending CN102686655A (zh) 2009-12-30 2010-12-17 具有低含量未聚合的单体的高内相乳液泡沫
CN201080060324.4A Expired - Fee Related CN102753610B (zh) 2009-12-30 2010-12-21 高内相乳液泡沫中未聚合的单体的减少

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010800602275A Pending CN102686655A (zh) 2009-12-30 2010-12-17 具有低含量未聚合的单体的高内相乳液泡沫

Country Status (10)

Country Link
US (9) US9056412B2 (zh)
EP (6) EP2519570A1 (zh)
JP (2) JP2012516789A (zh)
KR (1) KR20120096009A (zh)
CN (2) CN102686655A (zh)
BR (2) BR112012016280A2 (zh)
CA (1) CA2782971A1 (zh)
MX (1) MX2012006818A (zh)
RU (1) RU2509090C2 (zh)
WO (7) WO2011081802A1 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056412B2 (en) * 2009-12-30 2015-06-16 The Procter & Gamble Company Process for the production of high internal phase emulsion foams
US20120296297A1 (en) * 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
MX336976B (es) 2011-11-22 2016-02-09 Cryovac Inc Metodo para hacer una espuma.
US9481777B2 (en) * 2012-03-30 2016-11-01 The Procter & Gamble Company Method of dewatering in a continuous high internal phase emulsion foam forming process
EP2999739A1 (en) 2013-05-22 2016-03-30 Sealed Air Corporation (US) Method of making a foam from a polymerizable condensation polymer
US20160243277A1 (en) * 2013-09-23 2016-08-25 The Texas A & M University System Fast curing porous materials and control thereof
US10363215B2 (en) 2013-11-08 2019-07-30 The Texas A&M University System Porous microparticles with high loading efficiencies
CN105899173B (zh) 2013-12-20 2020-02-18 宝洁公司 包括吸收容量不同的区域的吸收垫
CN105828763A (zh) 2013-12-20 2016-08-03 宝洁公司 包括吸收容量不同的区域的吸收垫
WO2015094734A1 (en) 2013-12-20 2015-06-25 The Procter & Gamble Company Absorbent pads comprising zones of differential absorbent capacity
US9574058B2 (en) 2014-06-06 2017-02-21 The Procter & Gamble Company Method for the production of high internal phase emulsion foams
KR20170118852A (ko) * 2015-03-20 2017-10-25 사빅 글로벌 테크놀러지스 비.브이. 마이크로-셀 구조를 포함하고 개선된 반사율을 갖는 반사 물품
KR20170115621A (ko) * 2015-03-20 2017-10-17 사빅 글로벌 테크놀러지스 비.브이. 마이크로-셀 구조를 포함하고 개선된 반사율을 가지는 반사 물품
US10729600B2 (en) 2015-06-30 2020-08-04 The Procter & Gamble Company Absorbent structure
US11173078B2 (en) 2015-11-04 2021-11-16 The Procter & Gamble Company Absorbent structure
JP6768797B2 (ja) 2015-11-04 2020-10-14 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 吸収性構造体
CN109312091B (zh) 2016-03-21 2022-06-10 宝洁公司 具有纤维素纳米颗粒的高内相乳液泡沫
CN107552019A (zh) * 2017-09-15 2018-01-09 北京化工大学 一种用于吸附co2的胺基功能化大孔聚合物球的制备方法
KR20190041308A (ko) * 2017-10-12 2019-04-22 주식회사 엘지화학 슈트 타입 모노머 디스펜서
EP3713995A1 (en) 2017-11-20 2020-09-30 Cryovac, LLC Method and formulation for an isocyanate-free foam using unsaturated polyesters
CN117001995A (zh) * 2018-04-06 2023-11-07 聚合-医药有限公司 用于光致聚合增材制造的方法和组合物
CA3097530A1 (en) 2018-04-19 2019-10-24 Poly-Med, Inc. Macromers and compositions for photocuring processes
GB2573995A (en) 2018-05-15 2019-11-27 Glatfelter Falkenhagen Gmbh Absorbent cores for disposable absorbent articles
EP3569210B1 (en) 2018-05-15 2022-04-27 The Procter & Gamble Company Disposable absorbent articles
CN112243370A (zh) 2018-06-19 2021-01-19 宝洁公司 具有功能成形的顶片的吸收制品及制造方法
CN109880016B (zh) * 2019-01-03 2020-11-10 华东理工大学 连续制备油包水型高内相乳液以及聚合物多孔材料的方法
WO2020154482A1 (en) 2019-01-23 2020-07-30 The Procter & Gamble Company Packaged feminine hygiene pad product adapted for discreet carry and access, and manufacturing process
WO2020167883A1 (en) 2019-02-13 2020-08-20 The Procter & Gamble Company Feminine hygiene pad with hydrophilic nonwoven topsheet having enhanced skin feel and obscuring performance
EP3923881B1 (en) 2019-02-13 2024-10-23 The Procter & Gamble Company Feminine hygiene pad with nonwoven topsheet having enhanced skin feel
CA3137929A1 (en) 2019-05-31 2020-12-03 The Procter & Gamble Company Methods of making a deflection member
JP2022535303A (ja) 2019-06-19 2022-08-05 ザ プロクター アンド ギャンブル カンパニー 機能形成されたトップシートを有する吸収性物品、及び製造方法
WO2020256715A1 (en) 2019-06-19 2020-12-24 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
WO2021022547A1 (en) 2019-08-08 2021-02-11 The Procter & Gamble Company Feminine hygiene pad and method for isolating microorganisms from a wearer's skin
CN115803067B (zh) 2020-06-26 2024-09-13 宝洁公司 包括用粘土纳米片增强的hipe泡沫的吸收制品和制造方法
US20210039066A1 (en) * 2020-10-29 2021-02-11 Chin-San Hsieh Process of making substrate with activated carbon
CN116600759A (zh) 2020-12-18 2023-08-15 宝洁公司 具有视觉上可辨别的图案和图案化表面活性剂的非织造纤维网
EP4059694B1 (de) * 2021-03-17 2023-06-21 Akzenta Paneele + Profile GmbH Verfahren zum einfachen anfahren einer produktionsanlage zur herstellung extrudierter platten
CN113289049B (zh) * 2021-05-28 2021-11-30 广州安洁芯材科技有限公司 一种丙烯酸酯类泡沫材料吸收芯体的制备方法
CN113576764B (zh) * 2021-08-30 2022-07-05 福建恒安家庭生活用品有限公司 卫生用品吸收芯体的制备方法
CN114230713B (zh) * 2021-12-31 2022-12-30 苏州星日化学有限公司 一种降低高内相乳液在聚合过程中表面融合与表面粘附的方法
CN114395165B (zh) * 2021-12-31 2023-09-08 苏州星日化学有限公司 一种连续法生产高内相乳液泡沫含电解质废水的循环利用方法
CN114955424B (zh) * 2022-06-06 2024-04-19 徐州徐工矿业机械有限公司 一种简易移动式履带牵引装置
US20240115436A1 (en) 2022-10-10 2024-04-11 The Procter & Gamble Company Feminine hygiene pad with foam absorbent and reservoir spacer layer
US20240156647A1 (en) 2022-11-14 2024-05-16 The Procter & Gamble Company Body-conformable absorbent article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750261B1 (en) * 2003-04-08 2004-06-15 3M Innovative Properties Company High internal phase emulsion foams containing polyelectrolytes

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182168A (en) * 1936-06-03 1939-12-05 Boston Woven Hose & Rubber Com Vulcanizing machine
US2191658A (en) * 1938-01-22 1940-02-27 Pittsburgh Plate Glass Co Method of preparing cellular materials
US2434541A (en) * 1944-03-04 1948-01-13 Boston Woven Hose & Rubber Co Manufacture of thermoplastic materials
GB1044321A (en) * 1961-09-13 1966-09-28 Singer Cobble Ltd Improvements in or relating to machines for producing sheet or block of plastic, rubber or like material
US3604053A (en) * 1969-04-03 1971-09-14 Usm Corp Shape-forming devices
US3700365A (en) * 1970-09-21 1972-10-24 Goodrich Co B F Apparatus for continuously vulcanizing endless belts
US3973894A (en) * 1970-11-02 1976-08-10 Continental Gummi-Werke Aktiengesellschaft Device for the production of toothed belts
DE2100132A1 (de) * 1971-01-04 1972-07-13 Bison-Werke Bahre & Greten GmbH & Co KG, 3257 Springe Einrichtung zum kontinuierlichen Herstellen von Platten, insbesondere Spanplatten
US4180539A (en) * 1971-04-14 1979-12-25 Automatik Apparate-Maschinenbau H. Hench Gmbh Extrusion process for automatically threading laces
US3775221A (en) * 1971-12-06 1973-11-27 Goodrich Co B F Belt covering apparatus
US3807124A (en) * 1972-05-17 1974-04-30 Dake Corp Packaging apparatus
US4060579A (en) * 1972-06-24 1977-11-29 Maschinenfabrik Hennecke Gmbh Method for the continuous forming of foam blocks
DE2249146C3 (de) * 1972-10-06 1980-09-18 Bison-Werke Baehre & Greten Gmbh & Co Kg, 3257 Springe Vorrichtung zur kontinuierlichen Herstellung von Spanplatten o.dgl
US3837771A (en) * 1972-11-17 1974-09-24 Upjohn Co Apparatus for producing foamed resin-care web-faced laminates in continuous lengths
DE2308696C3 (de) * 1973-02-22 1979-04-05 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Einrichtung zur kontinuierlichen Herstellung von Spanplatten, Faserplatten u.dgl
US3988508A (en) 1973-03-08 1976-10-26 Petrolite Corporation High internal phase ratio emulsion polymers
DE2311909C3 (de) * 1973-03-09 1979-06-28 Kuesters, Eduard, 4150 Krefeld Vorrichtung zur kontinuierlichen Druckbehandlung von Bahnen
JPS5536038B2 (zh) * 1973-04-04 1980-09-18
US3854864A (en) * 1973-06-26 1974-12-17 F Mendoza Oven arrangement
US4005958A (en) * 1973-07-23 1977-02-01 The Upjohn Company Apparatus for continuous production of rectangular cross-sectioned foamed plastic bunstock
DE2354006B2 (de) 1973-10-27 1979-08-16 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung stabiler Wasser-in-Öl-Emulsionen von wasserlöslichen Polymerisaten
US4078961A (en) * 1973-11-01 1978-03-14 Taiyo Shokai Co., Ltd. Apparatus for continuously supplying plastics film strip from extruded head
DE2451713A1 (de) * 1973-11-01 1975-05-07 Taiyo Shokai Co Ltd Verfahren und vorrichtung fuer die kontinuierliche zufuehrung eines aus einem spritzwerkzeug gespritzten filmstreifens
US3917439A (en) * 1974-03-28 1975-11-04 Joseph T Yovanovich Apparatus for producing stock of synthetic thermoplastic material by continuous molding
DE2419764B2 (de) 1974-04-24 1979-12-06 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Dispersionen wasserlöslicher Polymerisate und deren Verwendung
DE2420029C3 (de) * 1974-04-25 1978-11-23 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Preßeinrichtung zum kontinuierlichen Herstellen von Spanplatten, Faserplatten o.dgl
DE2421955A1 (de) * 1974-05-07 1975-12-04 Sandco Ltd Bandpresse, insbesondere hydraulische doppelbandpresse, fuer fortlaufend zu behandelndes material
US3954544A (en) * 1974-06-20 1976-05-04 Thomas Hooker Foam applying apparatus
DE7524843U (de) * 1974-08-27 1975-12-18 Konstruktiewerkhuizen De Mets Nv Kontinuierlich arbeitende vor- oder fertigpresse zum herstellen von platten wie span- faser-platten o.dgl.
DE2523670B2 (de) * 1975-05-28 1978-11-02 Feldmuehle Ag, 4000 Duesseldorf Verfahren zum kontinuierlichen Herstellen und gleichzeitigem Beschichten von Spanplatten, die mit mindestens einer Decklage aus kunstharzgetränktem Papier belegt sind
US4128369A (en) * 1975-12-10 1978-12-05 Hazelett Strip-Casting Corporation Continuous apparatus for forming products from thermoplastic polymeric material having three-dimensional patterns and surface textures
IT1116103B (it) * 1976-09-13 1986-02-10 Mets Konstrukt Pressa a funzionamento continuo in particolare per pannelli di masonite e simili
DE2716086B2 (de) * 1977-04-12 1980-06-04 Babcock-Bsh Ag Vormals Buettner- Schilde-Haas Ag, 4150 Krefeld Durchlauftrockner für bahn- oder blattförmiges Gut
FR2401393A1 (fr) * 1977-08-24 1979-03-23 Aquitaine Union Tech Appareil de sechage
US4154562A (en) * 1977-08-31 1979-05-15 Kornylak Corporation Adjustable width molding apparatus for a flat-top bun
DE2845476A1 (de) * 1978-10-19 1980-04-24 Berstorff Gmbh Masch Hermann Verfahren und vorrichtung zum kontinuierlichen herstellen eines foerdergurtes
US4316755A (en) * 1979-03-20 1982-02-23 S&S Corrugated Paper Machinery Co., Inc. Adhesive metering device for corrugating processes
DE2924183A1 (de) * 1979-06-15 1980-12-18 Bayer Ag Einrichtung zum kontinuierlichen herstellen von schaumstoffbloecken oder schaumstoffbahnen
US4316411A (en) * 1979-12-17 1982-02-23 Keaton Clyde D Hydraulic continuous press
US4247269A (en) * 1980-01-21 1981-01-27 Bezhanov Tigran V Concrete placing apparatus
IT1131714B (it) * 1980-07-18 1986-06-25 Pirelli Procedimento e dispositivo per la vulcanizzazione di cinghie di trasmissione
US4378278A (en) * 1981-09-28 1983-03-29 S. C. Johnson & Son, Inc. Polymer foams produced by electron beam radiation
US4373892A (en) * 1982-01-11 1983-02-15 Joseph Nordmann Apparatus for preparing bread dough
US4454082A (en) * 1982-09-24 1984-06-12 U.C. Industries Method and apparatus for monitoring the thickness of a foamed extrudate in an environmental control chamber downstream of an extrusion die
US4528157A (en) * 1983-02-15 1985-07-09 Automatik Apprate-Maschinenbau H. Hench Gmbh Feeding of molten strands to a discharge trough
US4622894A (en) * 1984-12-11 1986-11-18 Rexnord Inc. Belt press load bearing measuring means
US4681033A (en) * 1984-12-11 1987-07-21 Rexnord Inc. Drive system for belt press
SE447081B (sv) * 1985-03-13 1986-10-27 Kmw Ab Varmpress for behandling av en kontinuerlig materialbana
DE3541286A1 (de) * 1985-03-22 1986-09-25 Wilhelm Mende GmbH & Co, 3363 Gittelde Einrichtung zur kontinuierlichen herstellung einer endlosen, duennen spanplattenbahn
JPS6236136A (ja) * 1985-08-07 1987-02-17 レオン自動機株式会社 菓子生地等の延展装置
GB8525027D0 (en) 1985-10-10 1985-11-13 Autotype Int Ltd Water soluble photoinitiators
US4877487A (en) * 1986-04-08 1989-10-31 Miller Ray R Belt and drum-type press with supplemental nip loading means
JPS62251120A (ja) * 1986-04-24 1987-10-31 Mitsubishi Heavy Ind Ltd 溶融ポリマ−の回収方法及び装置
US4768645A (en) 1987-02-20 1988-09-06 Farris Sammy D Conveyor belt scraping apparatus
DE3725383C1 (de) * 1987-07-31 1988-12-01 Siempelkamp Gmbh & Co Anlage fuer das Heisspressen von Pressgutmatten bei der Herstellung von Spanplatten,Faserplatten u.dgl.
DE3726606A1 (de) * 1987-08-11 1989-03-02 Guenter Hartig Vorrichtung zum zufuehren und abkuehlen von straengen aus thermoplastischen kunststoffen
DE3800994A1 (de) * 1988-01-15 1989-08-17 Berstorff Gmbh Masch Hermann Presse zum kontinuierlichen herstellen von span- und faserplatten oder dergleichen
JPH0683627B2 (ja) * 1988-01-27 1994-10-26 レオン自動機株式会社 パン又はペストリーの製造方法
GB8822328D0 (en) * 1988-09-22 1988-10-26 Stoddard Sekers Int Pressure roller assembly
US5223071A (en) * 1989-02-02 1993-06-29 Hermann Berstorff Maschinenbau Gmbh Apparatus for producing chip and fiberboard webs of uniform thickness
US5029387A (en) 1989-03-14 1991-07-09 Dayco Products, Inc. Method of making a belt tensioning system
EP0436033B1 (en) * 1989-07-21 1996-10-09 Nitto Denko Corporation Composite tubular article and its production method
US5295805A (en) * 1990-03-02 1994-03-22 Ryoka Techno Engineering & Construction Co. Rotating cylindrical treatment apparatus
US5124188A (en) * 1990-04-02 1992-06-23 The Procter & Gamble Company Porous, absorbent, polymeric macrostructures and methods of making the same
US5387207A (en) * 1991-08-12 1995-02-07 The Procter & Gamble Company Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same
US5149720A (en) * 1991-08-12 1992-09-22 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials
TW200604B (zh) 1991-09-17 1993-02-21 Philips Nv
JP2558196B2 (ja) * 1991-12-05 1996-11-27 レオン自動機株式会社 パン生地等の均一な連続生地の供給方法および装置
US5252619A (en) * 1992-05-29 1993-10-12 Shell Oil Company Process for preparing low density porous crosslinked polymeric materials
US5189070A (en) * 1992-05-29 1993-02-23 Shell Oil Company Process for preparing low density porous crosslinked polymeric materials
US5270843A (en) * 1992-08-31 1993-12-14 Jiansheng Wang Directly formed polymer dispersed liquid crystal light shutter displays
US5210104A (en) * 1992-10-15 1993-05-11 Shell Oil Company Process for preparing low density porous crosslinked polymeric materials
US5306831A (en) 1992-10-15 1994-04-26 Shell Oil Company Sorbitan ester purification process
US5290820A (en) * 1993-07-29 1994-03-01 Shell Oil Company Process for preparing low density porous crosslinked polymeric materials
US5306733A (en) * 1993-08-30 1994-04-26 Shell Oil Company Low density porous crosslinked polymeric materials
US5306734A (en) * 1993-09-08 1994-04-26 Shell Oil Company Use of viscosity as an in-line diagnostic for high internal phase emulsion generation
US5334621A (en) * 1993-11-04 1994-08-02 Shell Oil Company Process to prepare low density porous crosslinked polymeric materials
DE4340982B4 (de) * 1993-12-01 2005-04-21 Dieffenbacher Gmbh + Co. Kg Kontinuierlich arbeitende Presse
DE4340983B4 (de) * 1993-12-01 2005-04-21 Dieffenbacher Gmbh + Co. Kg Kontinuierlich arbeitende Presse
DE4344400B4 (de) * 1993-12-24 2009-04-23 Dieffenbacher Gmbh + Co. Kg Kontinuierlich arbeitende Presse
DE4405342B4 (de) * 1994-02-19 2004-05-27 Maschinenfabrik J. Dieffenbacher Gmbh & Co Kontinuierlich arbeitende Presse
US5531846A (en) * 1994-03-24 1996-07-02 Recycling Concepts, Ltd. Apparatus and method for resealing toner cartridges
US5500451A (en) 1995-01-10 1996-03-19 The Procter & Gamble Company Use of polyglycerol aliphatic ether emulsifiers in making high internal phase emulsions that can be polymerized to provide absorbent foams
IL116709A (en) * 1995-01-10 2000-02-29 Procter & Gamble Continuous process for the preparation of high internal phase emulsion
US5531849A (en) * 1995-02-07 1996-07-02 Collins; Burley B. Method of manufacturing carped pads
US5634281A (en) * 1995-05-15 1997-06-03 Universal Drying Systems, Inc. Multi pass, continuous drying apparatus
US5646193A (en) * 1995-11-17 1997-07-08 Shell Oil Company Process to prepare two phase foam compositions and two phase foam compositions
US5670101A (en) * 1996-01-26 1997-09-23 Shell Oil Company Process to prepare foams from high internal phase emulsions
US5817704A (en) * 1996-03-08 1998-10-06 The Procter & Gamble Company Heterogeneous foam materials
US6103645A (en) * 1996-04-08 2000-08-15 Shell Oil Company Foam filter material and process to prepare foam filter material
AU3144697A (en) * 1996-05-30 1998-01-05 Shell Oil Company Process to prepare low density porous cross-linked polymeric materials
WO1997045479A1 (en) 1996-05-30 1997-12-04 Shell Oil Company Process to prepare low density porous crosslinked polymeric materials
US6116882A (en) * 1996-08-14 2000-09-12 Owens Corning Fiberglas Technology, Inc. Sealable chamber extrusion apparatus with seal controls
US5969031A (en) * 1996-09-20 1999-10-19 The Research Foundation Of State University Of New York Methods for preparing polymer blends
US5792306A (en) * 1996-10-18 1998-08-11 Fmc Corporation Sealing apparatus useful in bag-making machine
US5899321A (en) 1996-10-24 1999-05-04 Reliance Electric Industrial Company Take-up frame assembly for placing a conveyor under constant tension
US6356642B1 (en) * 1996-12-04 2002-03-12 Murata Manufacturing Co., Ltd Multi-speaker system
DE69823083T2 (de) * 1997-02-28 2004-08-26 Chiba Machine Industry Corp., Nagareyama Verfahren und Vorrichtung zum Formen von Folienprodukten
US6229808B1 (en) * 1997-03-07 2001-05-08 Advanced Micro Devices, Inc. Method of communication for a computer using packet switches for internal data transfer
US5810965A (en) * 1997-04-07 1998-09-22 Fwu; Jason Thermal embossing/laminating system of printing machine
TW457183B (en) * 1997-07-09 2001-10-01 Toray Ind Co Ltd Method of producing thermoplastic resin films and apparatus for producing the same
JP2897006B1 (ja) * 1998-03-19 1999-05-31 株式会社コバード 横臥棒状食品切断方法とその装置
US6160028A (en) 1998-07-17 2000-12-12 The Procter & Gamble Company Flame retardant microporous polymeric foams
US6525106B1 (en) * 1999-02-22 2003-02-25 The Procter & Gamble Company Method for continuous curing of hipe into hipe foams
US6204298B1 (en) * 1999-02-22 2001-03-20 The Procter & Gamble Company Processes for the rapid preparation of foam materials from high internal phase emulsions at high temperatures and pressures
AU3003000A (en) * 1999-02-22 2000-09-14 Procter & Gamble Company, The Method for degassification of high internal phase emulsion components
JP4406144B2 (ja) 1999-04-14 2010-01-27 株式会社日本触媒 多孔質材料の製造方法
WO2001018065A1 (fr) 1999-09-08 2001-03-15 Nippon Shokubai Co., Ltd. Procede de production d'un polymere reticule poreux
DE19943754C1 (de) * 1999-09-13 2001-03-15 Rieter Automatik Gmbh Vorrichtung zum Zuleiten von aus Düsen austretenden, schmelzflüssigen Kunststoffsträngen zu einer Ablaufrinne
US6573305B1 (en) * 1999-09-17 2003-06-03 3M Innovative Properties Company Foams made by photopolymerization of emulsions
WO2001027165A1 (en) * 1999-10-08 2001-04-19 The Procter & Gamble Company APPARATUS AND PROCESS FOR IN-LINE PREPARATION OF HIPEs
US6395792B1 (en) * 1999-10-12 2002-05-28 Nippon Shokubai Co., Ltd. Method for production of porous cross-linked poymer
US6323250B1 (en) * 1999-11-18 2001-11-27 Nippon Shokubai Co. Ltd Method for production of porous material
US6395793B1 (en) * 1999-11-18 2002-05-28 Nippon Shokubai Co., Ltd. Method for production of porous material
US6274638B1 (en) * 1999-11-19 2001-08-14 Nippon Shokubai Co., Ltd. Method for production of porous cross-linked polymer material
DE60033561T2 (de) * 1999-12-13 2007-10-25 Nippon Shokubai Co. Ltd. Verfahren zur herstellung eines porösen, vernetzten polymers
US6299808B1 (en) * 2000-06-05 2001-10-09 The Dow Chemical Company Continuous process for polymerizing, curing and drying high internal phase emulsions
JP4749531B2 (ja) * 2000-07-05 2011-08-17 株式会社日本触媒 多孔質重合体の製造方法
US6353037B1 (en) * 2000-07-12 2002-03-05 3M Innovative Properties Company Foams containing functionalized metal oxide nanoparticles and methods of making same
US6365642B1 (en) * 2000-10-10 2002-04-02 The Procter & Gamble Company Rapid preparation of foam materials from high internal phase emulsions
JP4925504B2 (ja) * 2000-10-13 2012-04-25 株式会社日本触媒 多孔質重合体の製造方法
JP4688273B2 (ja) 2000-10-24 2011-05-25 株式会社日本触媒 多孔質架橋重合体シートの製造方法
JP4908674B2 (ja) 2000-10-24 2012-04-04 株式会社日本触媒 多孔質架橋ポリマー材料の製法
JP4330265B2 (ja) * 2000-10-24 2009-09-16 株式会社日本触媒 多孔質架橋重合体の製造方法
WO2002034503A1 (fr) * 2000-10-25 2002-05-02 Nippon Shokubai Co., Ltd. Procede de fabrication de feuille de polymere reticule poreux
JP4318396B2 (ja) * 2000-11-15 2009-08-19 株式会社日本触媒 多孔質架橋ポリマー材料の製造方法
AT411004B (de) * 2001-04-04 2003-09-25 Koenig Maschinen Gmbh Vorrichtung zur bildung eines teigstranges
US6822010B2 (en) 2001-04-17 2004-11-23 Nippon Shokubai Co., Ltd. Method for production of porous material
JP4657494B2 (ja) * 2001-05-29 2011-03-23 株式会社日本触媒 多孔質製品の製造方法
WO2003039214A1 (en) * 2001-10-26 2003-05-08 Michigan State University Improved microwave stripline applicators
DE10214322B4 (de) * 2002-03-28 2016-07-14 Siempelkamp Maschinen- Und Anlagenbau Gmbh Kontinuierliche Presse zum Verpressen von Pressgutmatten zu Pressgutplatten
EP1519965A1 (en) 2002-07-01 2005-04-06 Basf Aktiengesellschaft Polymerizing hydrogels including modifying compounds to comprise low amount of residual monomers and by-products and to optimize material properties
US6989963B2 (en) * 2002-09-13 2006-01-24 Seagate Technology Llc Writer core structures having improved thermal dissipation properties
JP4441803B2 (ja) * 2002-12-12 2010-03-31 株式会社シーティーイー 熱可塑性合成樹脂製シート又はフイルムの製造方法およびその装置
KR101036793B1 (ko) * 2003-07-18 2011-05-25 오지 세이시 가부시키가이샤 시트상 발포체 및 그 제조 방법
US6920822B2 (en) * 2003-09-03 2005-07-26 Stolle Machinery Company, Llc Digital can decorating apparatus
CA2556983C (en) 2004-03-02 2012-05-15 The Procter & Gamble Company A method for curing high internal phase emulsions
EP2264090A3 (en) * 2004-03-02 2012-04-18 The Procter & Gamble Company Preparation of foam materials from high internal phase emulsions
DE102004038055B4 (de) * 2004-08-05 2006-10-12 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Transportanlage für im Zuge der Herstellung von Holzwerkstoffplatten eine Pressenanlage durchlaufende Transportsiebe
KR101237766B1 (ko) * 2004-09-13 2013-02-28 다우 코닝 코포레이션 실리콘 주형을 사용하는 리소그래피 기술
US8297481B2 (en) * 2005-08-01 2012-10-30 Rich Products Corporation Dispensing device
US7304312B2 (en) * 2005-09-07 2007-12-04 Access Business Group International Llc Ultraviolet reflecting compositions
JP5076349B2 (ja) * 2006-04-18 2012-11-21 ウシオ電機株式会社 極端紫外光集光鏡および極端紫外光光源装置
US9056412B2 (en) * 2009-12-30 2015-06-16 The Procter & Gamble Company Process for the production of high internal phase emulsion foams

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750261B1 (en) * 2003-04-08 2004-06-15 3M Innovative Properties Company High internal phase emulsion foams containing polyelectrolytes

Also Published As

Publication number Publication date
RU2012120041A (ru) 2014-02-10
WO2011084767A1 (en) 2011-07-14
EP2519571B1 (en) 2014-04-02
CA2782971A1 (en) 2011-07-07
EP2519570A1 (en) 2012-11-07
US8257787B2 (en) 2012-09-04
US20110159135A1 (en) 2011-06-30
WO2011081819A1 (en) 2011-07-07
CN102686655A (zh) 2012-09-19
EP2519574A1 (en) 2012-11-07
WO2011082014A1 (en) 2011-07-07
EP2373470A1 (en) 2011-10-12
US8770956B2 (en) 2014-07-08
US9056412B2 (en) 2015-06-16
BR112012016280A2 (pt) 2017-03-07
JP2012516789A (ja) 2012-07-26
US8629192B2 (en) 2014-01-14
US20110159206A1 (en) 2011-06-30
RU2509090C2 (ru) 2014-03-10
EP2519571A1 (en) 2012-11-07
JP2013515820A (ja) 2013-05-09
WO2011082013A1 (en) 2011-07-07
US20110159194A1 (en) 2011-06-30
BR112012016275A2 (pt) 2016-05-31
US20150246987A1 (en) 2015-09-03
EP2519573B1 (en) 2014-02-26
MX2012006818A (es) 2012-07-17
US20110160321A1 (en) 2011-06-30
CN102753610A (zh) 2012-10-24
WO2011082028A1 (en) 2011-07-07
EP2519572A1 (en) 2012-11-07
WO2011081802A1 (en) 2011-07-07
US10131724B2 (en) 2018-11-20
KR20120096009A (ko) 2012-08-29
WO2011081987A1 (en) 2011-07-07
EP2519573A1 (en) 2012-11-07
US20110160689A1 (en) 2011-06-30
US20190048111A1 (en) 2019-02-14
US10752710B2 (en) 2020-08-25
US20110160326A1 (en) 2011-06-30
US20110160320A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
CN102753610B (zh) 高内相乳液泡沫中未聚合的单体的减少
CN103068567B (zh) 复合片材
CN109312091A (zh) 具有纤维素纳米颗粒的高内相乳液泡沫
EP1926551B1 (de) Verfahren und reaktor zur herstellung von polymerpartikeln durch vertropfen von flüssigkeiten
US20100009128A1 (en) Gel mat and method for manufacturing the same
KR101866588B1 (ko) (메트)아크릴로일 감압 폼 접착제
CN101319055A (zh) 一种环氧树脂微胶囊及其制备方法
CN107438627A (zh) 用于生产高内相乳液泡沫的方法
CN101046273A (zh) 用于隔热的导管的外壳
CN104220240B (zh) 在连续高内相乳液泡沫形成工艺中脱水的方法
US6362243B1 (en) Method for production of porous cross-linked polymer
CN100482464C (zh) 由乙烯-丙烯酸甲酯共聚物和聚酯制造的层压材料
JPH02227211A (ja) 熱可塑性フォームの製造方法と装置
EP2735585B1 (en) Method of making foam
CN105561378A (zh) 能释放氧气的氰基丙烯酸酯材料
US20170274343A1 (en) Quad-centric nozzle and system for hydrocapsule encapsulation
ITMI951622A1 (it) Composizione resinosa per compounds quali prepregs schiume sintattiche masse da stampaggio marmi sintetici
Li et al. MODELING OF FLOW RATE, PORE SIZE AND POROSITY FOR

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140917

Termination date: 20161221