CN102686277A - 采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗 - Google Patents

采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗 Download PDF

Info

Publication number
CN102686277A
CN102686277A CN2011800053910A CN201180005391A CN102686277A CN 102686277 A CN102686277 A CN 102686277A CN 2011800053910 A CN2011800053910 A CN 2011800053910A CN 201180005391 A CN201180005391 A CN 201180005391A CN 102686277 A CN102686277 A CN 102686277A
Authority
CN
China
Prior art keywords
radiation
image
imaging
forming information
workbench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800053910A
Other languages
English (en)
Other versions
CN102686277B (zh
Inventor
D·杨
A·A·马丁尼兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
William Beaumont Hospital
Original Assignee
William Beaumont Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Beaumont Hospital filed Critical William Beaumont Hospital
Publication of CN102686277A publication Critical patent/CN102686277A/zh
Application granted granted Critical
Publication of CN102686277B publication Critical patent/CN102686277B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support
    • A61N5/107Target adjustment, e.g. moving the patient support in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0487Motor-assisted positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1054Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a portal imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1057Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam monitoring flexing of the patient support or the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放射线治疗系统,该系统包括在物体周围移动并且朝向所述物体引导治疗放射线射束的放射线源、以及在所述物体周围移动并且朝向所述物体引导成像放射线射束的成像源。该系统进一步包括放置物体的工作台,该工作台能够平动和转动。该系统也包括1)第一成像器,该第一成像器用于接收由所述治疗放射线源产生的穿过所述物体的放射线,并且用于由该放射线形成第一成像信息,以及2)第二成像器,该第二成像器用于接收由所述成像源产生的穿过所述物体的放射线,并且用于由该放射线形成第二成像信息,其中所述第一成像信息和所述的第二成像信息同时形成。

Description

采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗
在35U.S.C.§119(e)下,申请人要求申请日为2010年1月5日并在上述日期提交的美国临时申请系列号61/335,314的优先权利益,该优先权文件的公开内容通过引用而整体并入本文中。
技术领域
本发明总体上涉及治疗放射线的治疗和传输的系统和方法,并且特别地涉及在治疗放射线的体积调强电弧治疗(VMAT)传输中,用于附加的连续电弧旋转/移位躺椅(C-ARC)的系统和方法,还涉及同时进行kV锥形射束成像以用于实时治疗验证和治疗适应。
背景技术
有多种已知的治疗放射线治疗和传输的系统和方法。其中之一被称为三维适形放射线治疗(3D-CRT)。3D-CRT涉及三维成像、准确的放射线剂量计算、计算机最优化治疗计划,以及计算机控制的治疗传输。特别地,3D-CRT使用计算机和专用的成像技术,例如CT、MR或PET扫描,以显示肿瘤以及周围器官的尺寸、形状和位置。然后治疗放射线射束采用多叶准直仪或定制的场成形挡铅块来精准地裁定肿瘤的尺寸和形状。精确应用治疗放射线射束造成附近的正常组织接收到更少的放射线,从而正常组织能够在治疗放射线治疗期之后更加迅速地痊愈。将更多的正常组织隔离以避免接收治疗放射线,其允许增加实际传输到肿瘤的放射线的量,因此增加了成功治疗肿瘤的机会。在Takahashi,S.所著的出版物“Conformation radiotherapy:rotation techniques as applied to radiographyand radiotherapy of cancer”(Acta Radiol 1965,Suppl.242)中描述了3D-CRT的例子。
另一个治疗放射线的治疗计划和传输的系统和方法被称为调强放射线治疗,或IMRT。IMRT是3D-CRT的特殊形式,该特殊形式允许放射线被调整,因此更加精确地成形以适配于肿瘤。特别地,IMRT涉及将治疗放射线射束分解成许多“细射束(beamlets)”。然后单独地调整每个细射束的强度。当与3D-CRT相比较时,该强度的调整使得靠近肿瘤的健康组织所接收的放射线进一步减少。在Brahme,A.等人所著的出版物“Solution of an integral equation encountered in rotation therapy”(PhysMed Biol Vol.27,No.10,1982,pp.1221-29)中描述了IMRT的例子。
治疗放射线的治疗和传输的第三个系统被称为调强电弧治疗(IMAT)以及后来的体积调强电弧治疗,也被称为VMAT。VMAT解决了IMRT的几个缺点,即,需要更大量的射束引导而增加治疗时间以及使用增加的监测器单元(MU)。通过允许连续的桶架/准直仪旋转、叶运动,以及剂量速率调整以用于治疗计划的最优化,从而使得VMAT解决了这些缺点,其中剂量是在单一桶架弧度高达到360度期间而被传输。VMAT技术与螺旋断层放疗(tomotherapy)的相似之处在于全360度范围内的射束引导可以用于进行优化,但是VMAT技术与IMRT的根本不同之处在于整个剂量体积是以单源旋转方式传输的。在1)Yu,C.X.所著的“Intensity-modulated arc therapy with dynamic multileaf collimation:analternative to tomotherapy”(Phys Med Biol Vol.40,1995,pp.1435-1449)、2)Yu,C.X.,等人所著的“Clinical implementation of intensity-modulated arctherapy”(Int J Radiat Oncol Biol Phys Vol.53,2002,pp.453-463)以及3)Otto,K.所著的“Volumetric modulated arc therapy:IMRT in a single gantryarc”(Med Phys Vol.35,2008,pp.310-317)中描述了VMAT的例子。
VMAT部分地涉及使用多叶准直仪(MLC)的叶运动以及剂量速率调整以调节射束输出强度。另外,通过旋转线性加速器的桶架和准直仪使其穿过一个或多个完整或部分的电弧(持续在其上面进行治疗放射线),VMAT传输已调整的射束强度输出,从而减少治疗时间。在桶架旋转期间,可以动态地改变大量的参数,例如:i)MLC孔隙形状,ii)注量输出速率(“剂量速率”),iii)桶架旋转速度以及iv)MLC的定向。能够改变参数i)-iv)使得VMAT减少大量电弧的使用需求,在更短时间内传输了更少的监测器单元(MU),同时提供了与IMRT相当的剂量测定。虽然VMAT能够利用上述四个有效的可变的参数的优势,但是其必须同时考虑线性加速器和MLC的物理限制——例如最大的桶架速度、最大的叶的速度、MLC的导向限制和注量输出速率的有效的细分。
在治疗传输期间,在无需动态地控制所有的机器参数,特别是机器和患者之间的定向的条件下,目前的VMAT技术受限于某些治疗位置。在治疗乳房癌的情况下,相比于改良的宽切线,已经显示出应用于治疗左侧乳房癌的VMAT(采用内部乳核放射)造成肺的体积增大,心脏和对侧乳房接收到低剂量(5Gy)的放射。通过定义,由于VMAT的配置的原因,用于乳房放射的VMAT含有朝向心脏、肺和对侧乳房引导的射束。
VMAT系统的另一个劣势在于其不与kV成像同时整合。因此,这种VMAT系统不能够实时的治疗验证。
发明内容
本发明一个方面涉及放射线治疗系统,该放射线治疗系统包括放射线源和成像源,该放射线源在物体周围移动并且朝向该物体引导治疗放射线射束,该成像源在物体周围移动并且朝向物体引导成像放射线射束。该系统进一步包括工作台,物体放置在该工作台上,该工作台能够平动和转动。该系统还包括1)第一成像器,该第一成像器用于接收由治疗放射线源产生的穿过物体的放射线,并且用于由所述放射线形成第一成像信息,和2)第二成像器,该第二成像器用于接收由成像源产生的穿过物体的放射线,并且用于由该放射线形成第二成像信息,其中第一成像信息和第二成像信息同时形成。该系统附加地包括与放射线源、工作台、第一成像器和第二成像器相通信的计算机,其中该计算机基于第一成像信息和第二成像信息,以实时方式控制手术台的运动和放射线源的以下参数中的一个或多个:放射线源运动和注量输出速率。
本发明第二个方面涉及提供放射线的方法,该方法包括:朝向物体引导治疗放射线射束并且朝向该物体引导成像放射线射束。该方法包括:将物体放置在在工作台上,该工作台能够平动和转动。该方法还包括:基于穿过物体的治疗放射线射束形成第一成像信息,并且基于穿过物体的成像放射线射束形成第二成像信息,其中第一成像信息和第二成像信息同时形成。该方法进一步包括:基于第一成像信息和第二成像信息,以实时方式同时控制工作台的移动和治疗放射线射束的以下参数中的一个或多个:治疗放射线射束运动和注量输出速率。
本发明的一个或多个方面提供了指定更少的监测器单元以及使用更少的控制点的优势。
本发明的一个或多个方面减少了毒性和次发性恶性肿瘤的风险。
附图说明
图1示出了根据本发明的放射线治疗系统的实施方式,该放射线治疗系统能够进行C-ARC治疗。
图2示出了可行过程的流程图,该可行过程的流程图用于操作根据本发明的图1的放射线治疗系统。
图3示意性地示出了用于根据本发明的kV/MV同时成像的系统。
图4A-4D分别示出了在桶架90°、135°、180°和270°的位置上,采用射束方向观视(BEV)成像的数字重建放射成像术(DRR)的参考图,其用于立体定位放射手术(SRS)的治疗;
图5A-5D分别示出了在桶架90°、135°、180°和270°的位置上,用于立体定位放射手术治疗的kV和MV射野图像;
图6A示出了用于根据本发明的乳房肿瘤治疗的可行射束布置的外部视图;
图6B-6C示出了用于已知的乳房肿瘤治疗计划的射束布置的外部视图;
图7A示出了用于图6A乳房肿瘤治疗的射束布置的内部视图;
图7B-7C分别示出了用于图6B-6C的乳房肿瘤治疗的射束布置的内部视图;
图8A示出了当与根据本发明的治疗计划相比时,各种已知治疗计划的同侧乳房体积/剂量%的曲线图;
图8B示出了当与根据本发明的治疗计划相比时,各种已知治疗计划的同侧肺体积/剂量%的曲线图;
图9A示出了用于根据本发明的乳房肿瘤治疗计划的典型轴向剂量分布;并且
图9B示出了用于VMAT治疗计划的典型轴向剂量分布。
具体实施方式
如图1所示出,此处示出了可包括成像系统(例如锥形射束计算机层析成像系统102)和治疗放射线源(例如医用线性源或医用线性加速器104)的放射线治疗系统100。计算机层析成像系统102包括x射线源106以及安装在桶架110上的平板成像器108。计算机层析成像系统102的细节在美国专利号6,842,502和7,471,765中有所描述,其全部公开内容通过引用而并入本文中。当然,可以在不脱离本发明的精神下使用其他类型的成像系统,例如C型臂支撑锥形射束系统以及质子成像系统。
将系统102改造到现有的或者新的放射线治疗系统112上,该放射线治疗系统112包括独立的放射线治疗源,例如医用线性源104,其在一定的功率级下运行从而允许治疗物体(例如人类患者)中的目标体积。医用线性源104产生x射线或者粒子(例如光子、质子或电子)的射束,所述的x射线或粒子具有的能量在4MeV至25MeV的范围内。事实上,可以在不脱离本发明精神下将医用线性源104替换为用于患者医疗的其他放射线源。放射线治疗系统112进一步包括多叶准直仪(MLC)113,该多叶准直仪113可作为一个单元移动,并且包括多个叶,这些叶是能够移动的以便限定孔隙,治疗射束穿过该孔隙而到患者身上。放射线治疗系统112还可以包括成像器(未示出),该成像器与医用线性源104对准,而患者介于成像器与医用线性源之间。
设置了计算机控制的治疗工作台114以用于支撑患者并且用于帮助治疗放射线射束的应用。工作台114被计算机控制,例如图1中示意性地示出的计算机116。工作台114允许患者在x、y和z方向上平动以及绕着在x、y和z轴旋转。此外,优选由射线透过材料建造治疗工作台114从而不会明显干扰计算机层析成像的结果。工作台114可以具有许多形式,例如在美国专利号6,842,502和7,471,765以及美国专利申请公开号US2010-0119032A1中公开的形式,其全部公开内容通过引用而并入本文中。
图1的系统100由计算机116控制,从而执行根据本发明的C-ARC治疗放射线治疗的计划。特别地,C-ARC(类似VMAT)涉及将已调整的射束孔隙与剂量速率和旋转传输相结合。与VMAT不同,C-ARC引入传输旋转的可替换形式。特别地,工作台或者躺椅114通过平动和/或转动来控制向感兴趣的区域传输的治疗放射线。注意到工作台114可以在图1中示出的x、y和z中的一个或多个方向上平动。另外,工作台114可以绕x、y和z中的一个或多个方向旋转。在工作台114旋转期间,对于特定的治疗位置(例如脑),桶架10的环118也可以同时旋转。
当工作台114正在移动的时候,MLC113的孔隙形状和定向能够发生动态变化。另外,可以改变注量输出速率(“剂量速率”)和桶架旋转速度以及随后的放射线源104的旋转速度。通过计算机116进行对工作台运动、桶架运动、注量输出速率、MLC定向和MLC的形状的控制。用于控制计算机116的软件可以类似于VMAT中使用的软件,其中C-ARC的软件使得产生临床可接受的剂量测定同时避免工作台114、桶架110和其附属物与患者之间的任何碰撞。考虑到上述的系统100,相对于图2的流程图在此描述了系统100的可行操作过程。特别地,示意性地显示了过程200,其涉及首先形成患者某区域的计算机层析成像或者其他三维计划成像,已知该患者某区域包括感兴趣的物体(例如肿瘤),以用于按照过程210进行治疗。可以现场外执行计划成像或者就地通过使用计算机层析成像系统102进行计划成像。然后,将肿瘤一般区域图像的三维信息输入到计算机116或者其他计算机中,以按照过程220计算虚拟的三维放射线治疗计划,以用于改变工作台运动、桶架运动、注量输出速率、MLC定向和MLC的形状,从而将所需的治疗剂量应用于肿瘤上同时减少健康组织的剂量。
在计算了虚拟计划之后,现在可以根据计划用放射线来治疗患者。尽管这么说,但是应该记住当肿瘤按照过程210成像时,虚拟计划假定肿瘤会位于相同的空间位置。当按照过程230将患者置于工作台114时,肿瘤的空间位置可以按照过程240进行微调,从而当按照过程210以两个方式中的一个对肿瘤成像时使得该空间位置相同。对空间位置进行微调的一个方法是使得技术员对患者进行复位直到其视觉观察到在患者身上的皮肤标记与按照过程210采集的图像处于相同位置。微调的第二个方法是使用计算机层析成像系统102采集肿瘤的三维图像并且调整患者的位置,从而在微调图像中示出的肿瘤将会被复位而与按照过程210所测定的肿瘤的位置相一致。一旦患者已经按照过程240复位,然后过程220的虚拟计划可以应用于按照过程250的肿瘤。
注意到,除了之前提到的微调方法,使用C-ARC的计划的治疗可以如美国专利号6,842,502和7,471,765中描述的那样以实时方式进行,其中在放射线治疗期间进行肿瘤的实时成像并且通过计算机116来使用肿瘤的实时图像,以控制工作台运动、桶架运动、注量输出速率、MLC定向和MLC的形状。
在图3中示意性地示出上述实时C-ARC治疗的例子。特别地,将kV锥形射束引导穿过工作台114上的患者,并且在平板成像器108上产生三维实时图像。此外,基于源104(未示出)发射的治疗放射线,也同时使用MV射野成像器120以产生患者的实时二维图像,该源104设置为与成像器120相反。在治疗放射线的传输期间,通过kV锥形射束投影成像以及MV射野成像两者的该同时实时成像可以通过采用射束患者定向中的VMAT及C-ARC的旋转特征的优势来进行。MV射野成像和kV锥形射束投影成像的投影图像能够分别对于2D和3D验证图像进行,以在治疗放射线治疗期间实时地监测患者/身体的位置运动/改变。
图5A-5D中示出了在不同的桶架旋转位置处的由上述kV锥形射束和MV成像器形成的kV和MV射野图像的例子,其中正在治疗脊椎区域。采用射束方向观视的相应的参考数字重建放射成像术在图4A-4D中示出。(其代表着射束方向和孔隙内的物体)
与其它的已知的治疗计划进行比较,采用上述的C-ARC治疗计划显示了本发明的优势。在通过加速部分乳房放射(APBI)在治疗乳房中的肿瘤的情况下,桶架110保持固定在一定切线角度,同时工作台114旋转穿过一个中间电弧和一个侧面电弧,其中相对于患者乳房的定向而限定中间电弧和侧面电弧。
当之前已经通过3D-CRT计划治疗了讨论中的乳房时,3D-CRT计划的射束布置可以用于引导C-ARC的计划,因为该射束布置被认为是已经提供了临床可接受的剂量测定,同时避免了工作台、桶架和患者之间的任何碰撞。来自3D-CRT计划中的工作台位置被取做采用作为工作台电弧的界限。类似地,每个电弧的桶架位置被选择为与3D-CRT计划中的桶架位置一样。通过沿着电弧的10°间隔而定位的控制点来完成最优化和剂量计算。该乳房治疗保留了采用3D-CRT治疗的APBI的标准切线射束布置的益处。C-ARC是VMAT在乳房放射治疗领域中的创新的自然延伸,其中标准切线射束的几何构型使得目标之外的剂量最小化。这在图6A和7A中进行了显示,其中使用C-ARC的放射线射束绝大部分被导引到乳房并且极少的放射线影响到了健康器官,例如心脏和肺。相对照而言,如图6B-6C和7B-7C所示,当利用IMRT和VMAT来应用APBI时,APBI能导致射束被导引到健康组织。
在以下的比较中,其涉及之前通过3D-CRT采用APBI治疗的患者,并且为每个患者生成三个附加且连续的计划:1)C-ARC计划;2)IMRT计划,以及3)VMAT计划。用于评估的DVH参数大部分都取自用于乳房治疗的NSABP-B39/RTOG 0413协议的正常组织限制,并且这些DVH参数列在下表1中:
表1.NSABP B-39/RTOG 0413协议的正常组织剂量限制以及用于3D-CRT、IMRT、C-ARC和VMAT计划的计划比较参数、平均值和范围
Figure BDA00001849963500081
上述表1列出了C-ARC、IMRT和VMAT计划的正常组织剂量的平均值,所有的平均值与初始3D-CRT计划相比较。所有的三个治疗计划形式明显地减少了同侧乳房组织V50%的体积,该值平均减少了7.8%(见图8A)。如所示的那样,所有的三个计划明显地减少了同侧肺V30%,但仅有C-ARC和IMRT计划对于V5Gy而进行了减少(见图8B)。在对侧肺V5%中没有明显的减少。4个VMAT计划在对侧乳房内不可避免地产生很高的Dmax,其超过NSABP B-39/RTOG 0413协议(表1)中规划的3D-CRT计划和正常组织剂量限制。IMRT和C-ARC的计划均未产生这种违反现象。与3D-CRT相比,C-ARC、IMRT和VMAT计划都明显地减少了监测器单元的数量,其中C-ARC计划规定了MU的最低平均数量(平均减少:IMRT 136MU,p=0.013,VMAT 281MU,p<0.001,C-ARC339MU,p<0.001)。
还比较了C-ARC和VMAT计划。这两个计划形式产生的接收了50%和100%规定剂量的同侧乳房以及接收了30%的规定剂量的同侧肺的体积减少是相当的。但是VMAT计划造成明显增大的接收5Gy的同侧肺体积(10.4%与7.8%,p=.008)以及明显增大的接收192.5cGy的心脏体积(7.7%与5.5%,p=.021)。图9A-9B分别显示了C-ARC和VMAT典型的轴向剂量的分布。同样地,与VMAT计划相比,C-ARC的计划规定了明显更少的监测器单元的数量(p=.011)。出现了更低的Dmax传输至对侧乳房的C-ARC计划的不显著趋势(p=0.05)。
除了减少同侧乳房的剂量,C-ARC的计划还降低了至肺和心脏的剂量。由于C-ARC和IMRT缺乏面向患者(en face)的几何构型,C-ARC和IMRT最大地减少了V5Gy测定的同侧肺放射。C-ARC和IMRT的计划也明显降低了心脏的低剂量放射。
由于缺少楔形物,与3D-CRT的计划相比,C-ARC、IMRT和VMAT的计划都减少了所规定的监测器单元的数量,其中C-ARC的计划减少的最大。C-ARC的计划也使用最少数量的控制点,因此使得放射线的泄漏最小化。
如图1所示出,C-ARC的计划明显地减少了同侧乳房的放射而没有增加肺、心脏和对侧乳房的剂量。VMAT的计划也能够减少同侧乳房的放射线剂量,但是其通常的代价是增加了其他地方的剂量。
VMAT、C-ARC的自然延伸将会允许采用改良的正形性(conformality)、减少监测器单元传输以及期望的更短的治疗时间来进行治疗。从治疗计划者和操作员的角度上看,C-ARC的复杂性并没有明显高于现有电弧治疗的复杂性。为了采用该创新,必须将躺椅旋转控制与剂量速率和多叶准直仪的运动相联接。还需要小幅修改VMAT的计划软件从而并入躺椅电弧。
在APBI C-ARC治疗的情况中,桶架110固定而工作台114移动。存在C-ARC治疗能够涉及工作台114和桶架110同时移动的例子。采用局部脑放射线治疗的情形是这样一个例子。工作台114和桶架110的移动允许应用于健康区域的治疗放射线的量,该健康区域涉及视交叉神经、视神经和脑干。确实,当与IMRT相比,C-ARC治疗减少了应用于视交叉神经、视神经和脑干的平均剂量和最大剂量(当于IMRT相比)。
从上述描述中,本领域技术人员能够轻易地确定本发明的基本特征,并且在不脱离从本发明的精神和范围内的情况下,本领域技术人员也能对本发明进行各种改变和/或修改,从而使得本发明适应不同的用途和环境。

Claims (12)

1.一种放射线治疗系统,其包括:
放射线源,该放射线源在物体周围移动并且朝向所述物体引导治疗放射线射束;
成像源,该成像源在所述物体周围移动并且朝向所述物体引导成像放射线射束;
工作台,所述物体放置于所述工作台上,所述工作台能够平动和转动;
第一成像器,该第一成像器用于接收由所述治疗放射线源产生的穿过所述物体的放射线,并且用于由该放射线形成第一成像信息;
第二成像器,该第二成像器用于接收由所述成像源产生的穿过所述物体的放射线,并且用于由该放射线形成第二成像信息,其中所述第一成像信息和所述第二成像信息同时形成;以及
计算机,该计算机与所述放射线源、所述工作台、所述第一成像器和所述第二成像器相通信,其中所述计算机基于所述第一成像信息和所述第二成像信息以实时方式同时控制所述工作台的运动和所述放射线源的以下参数中的一个或多个:放射线源运动以及注量输出速率。
2.根据权利要求1所述的系统,其进一步包括多叶准直仪,该多叶准直仪包括多个可移动的叶,所述可移动的叶限定了孔隙,所述射束从所述放射线源穿过该孔隙而被引导到所述物体;并且其中所述计算机基于所述第一成像信息和所述第二成像信息以实时方式来控制多叶准直仪的导向和所述孔隙的形状。
3.根据权利要求2所述的系统,其中所述治疗放射线射束包括光子,并且所述成像放射线射束包括kV x-射线。
4.根据权利要求2所述的系统,其中所述治疗放射线射束包括粒子,并且所述成像放射线射束包括kV x-射线。
5.根据权利要求4所述的系统,其中所述粒子选自电子和质子。
6.根据权利要求1所述的系统,其中所述物体是肿瘤。
7.一种提供放射线的方法,该方法包括:
朝向物体引导治疗放射线射束;
朝向所述物体引导成像放射线射束;
将物体放置于工作台之上,该工作台能够平动和转动;
基于穿过所述物体的所述治疗放射线射束,形成所述物体的第一成像信息;
基于穿过所述物体的所述成像放射线射束,形成所述物体的第二成像信息,其中所述第一成像信息和所述第二成像信息同时形成;并且
基于所述第一成像信息和所述第二成像信息,以实时方式同时控制所述工作台的移动和所述治疗放射线射束的以下参数中的一个或多个:治疗放射线射束运动以及注量输出速率。
8.根据权利要求7所述的方法,其中所述的同时控制进一步包括:控制所述治疗放射线射束的参数形态。
9.根据权利要求7所述的方法,其中所述治疗放射线射束包括光子,所述成像放射线射束包括kV x-射线。
10.根据权利要求7所述的系统,其中所述治疗放射线射束包括粒子,并且所述成像放射线射束包括kV x-射线。
11.根据权利要求10所述的系统,其中所述粒子选自电子和质子。
12.根据权利要求7所述的系统,其中所述物体是肿瘤。
CN201180005391.0A 2010-01-05 2011-01-04 采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗 Expired - Fee Related CN102686277B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33531410P 2010-01-05 2010-01-05
US61/335,314 2010-01-05
PCT/US2011/000006 WO2011084878A1 (en) 2010-01-05 2011-01-04 Intensity modulated arc therapy with continuous couch rotation/shift and simultaneous cone beam imaging

Publications (2)

Publication Number Publication Date
CN102686277A true CN102686277A (zh) 2012-09-19
CN102686277B CN102686277B (zh) 2016-10-12

Family

ID=44305755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180005391.0A Expired - Fee Related CN102686277B (zh) 2010-01-05 2011-01-04 采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗

Country Status (7)

Country Link
US (2) US8670523B2 (zh)
EP (1) EP2521592A4 (zh)
JP (1) JP2013516278A (zh)
CN (1) CN102686277B (zh)
BR (1) BR112012016558A2 (zh)
CA (1) CA2785995A1 (zh)
WO (1) WO2011084878A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404789A (zh) * 2015-12-28 2016-03-16 上海联影医疗科技有限公司 剂量控制点的选取方法及选取系统、放疗计划系统
CN111821583A (zh) * 2019-04-22 2020-10-27 苏州雷泰医疗科技有限公司 加速器治疗装置及治疗方法
WO2020215664A1 (zh) * 2019-04-22 2020-10-29 苏州雷泰医疗科技有限公司 放射治疗装置及放射治疗方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029122B2 (en) * 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
JP2014166245A (ja) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd 治療計画装置、計画治療システム、治療計画生成方法およびプログラム
US9616251B2 (en) * 2014-07-25 2017-04-11 Varian Medical Systems, Inc. Imaging based calibration systems, devices, and methods
WO2016191622A1 (en) * 2015-05-28 2016-12-01 The Regents Of The University Of California Unconstrained radiosurgery with greatly improved dosage fall-off
CN109195663B (zh) * 2016-03-10 2022-01-25 威廉.博蒙特医院 粒子弧线疗法
WO2017214902A1 (zh) * 2016-06-15 2017-12-21 深圳市奥沃医学新技术发展有限公司 肿瘤位置的追踪方法及放射治疗设备
US11623107B2 (en) 2016-10-20 2023-04-11 William Beaumont Hospital Particle arc therapy
CN110248604B (zh) 2016-11-15 2023-07-21 反射医疗公司 放射治疗患者平台
US11179129B2 (en) * 2016-12-14 2021-11-23 Varian Medical Systems, Inc. Systems and methods for planning and executing automated multi-axis motion in treatment
EP3684468B1 (en) 2017-09-22 2024-03-20 RefleXion Medical, Inc. Systems for shuttle mode radiation delivery
US11358008B2 (en) 2018-02-13 2022-06-14 Reflexion Medical, Inc. Beam station treatment planning and radiation delivery methods
EP3546021A1 (en) * 2018-03-29 2019-10-02 Koninklijke Philips N.V. Planning system for planning a radiation therapy procedure
WO2019210455A1 (en) * 2018-05-02 2019-11-07 Shanghai United Imaging Healthcare Co., Ltd. Radiation systems for radition treatment and imaging
US11147989B2 (en) * 2018-06-20 2021-10-19 Accuray Incorporated Compensating for target rotation with a collimation system
US11366239B2 (en) * 2018-08-01 2022-06-21 Varex Imaging Corporation Hybrid dosimetry and imaging system
US10751550B2 (en) * 2018-08-06 2020-08-25 Accuray Incorporated Fast sliding window delivery via a high-speed multileaf collimator
EP3639893A1 (en) 2018-10-17 2020-04-22 Ion Beam Applications Particle therapy system with rotating beam delivery
US10946220B2 (en) 2019-03-01 2021-03-16 Elekta, Inc. Method of providing rotational radiation therapy using particles
WO2020219071A1 (en) 2019-04-26 2020-10-29 Elekta, Inc. A method of providing proton radiation therapy utilizing periodic motion
US11684804B2 (en) * 2020-04-01 2023-06-27 Siemens Healthineers International Ag Patient supports for medical treatments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217913A (zh) * 2005-05-13 2008-07-09 艾可瑞公司 用于患者定位组件的机器人手臂
CN101267857A (zh) * 2005-07-22 2008-09-17 断层放疗公司 对移动的关注区实施放射疗法的系统和方法
CN100448499C (zh) * 2000-02-18 2009-01-07 威廉博蒙特医院 带有平板成像器的锥面束计算机x线断层扫描

Family Cites Families (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE716771A (zh) 1967-06-24 1968-12-02
GB1283915A (en) 1968-08-23 1972-08-02 Emi Ltd A method of and apparatus for examination of a body by radiation such as x or gamma radiation
US3780291A (en) 1971-07-07 1973-12-18 American Science & Eng Inc Radiant energy imaging with scanning pencil beam
US4132895A (en) 1976-08-28 1979-01-02 Emi Limited Radiography
US4547892A (en) 1977-04-01 1985-10-15 Technicare Corporation Cardiac imaging with CT scanner
NL7706038A (nl) 1977-06-02 1978-12-05 Philips Nv Aftastende roentgenonderzoekinrichting.
US4145613A (en) 1977-10-25 1979-03-20 Cgr Medical Corporation Motorized X-ray tube assembly
US4304999A (en) 1979-01-02 1981-12-08 Technicare Corporation Eccentric source collimator assembly for rotating source CT scanner
JPS5686400A (en) 1979-12-14 1981-07-14 Shimadzu Corp Collimater for radial tomogram device
JPS56101579A (en) 1980-01-18 1981-08-14 Shimadzu Corp Radiation type tomography device
US4315157A (en) 1980-05-01 1982-02-09 The University Of Alabama In Birmingham Multiple beam computed tomography (CT) scanner
JPS56168578A (en) 1980-05-30 1981-12-24 Shimadzu Corp Radiation type tomography apparatus
DE3023401A1 (de) 1980-06-23 1982-01-07 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikanlage mit einer aufnahmeeinheit mit einer roentgenroehre, die ein faecherfoermiges strahlenbuendel aussendet
US4414682A (en) 1980-11-17 1983-11-08 American Science And Engineering, Inc. Penetrating radiant energy imaging system with multiple resolution
JPS58163341A (ja) 1982-03-24 1983-09-28 株式会社東芝 X線診断装置
US4405745A (en) 1982-09-24 1983-09-20 Phillips Petroleum Company Polymer stabilization
US4534051A (en) 1982-12-27 1985-08-06 John K. Grady Masked scanning X-ray apparatus
DE3532822A1 (de) 1985-09-13 1987-03-26 Siemens Ag Stereoroentgenroehre
DE3844716C2 (de) 1987-08-24 2001-02-22 Mitsubishi Electric Corp Partikelstrahlmonitorvorrichtung
GB2211709B (en) 1987-10-28 1991-03-20 Philips Electronic Associated Multileaf collimator and related apparatus
NL8800738A (nl) 1988-03-24 1989-10-16 Philips Nv Roentgenonderzoekapparaat met een instelbaar spleetvormig diafragma.
SE463187B (sv) 1989-02-20 1990-10-22 Ao Medical Products Ab Saett vid och kassetthaallaranordning foer roentgen- eller liknande undersoekning
EP0466956A1 (de) 1990-07-18 1992-01-22 Siemens Aktiengesellschaft Computertomograph
JPH04307035A (ja) 1991-04-05 1992-10-29 Toshiba Corp X線撮影装置
US5214686A (en) 1991-12-13 1993-05-25 Wake Forest University Three-dimensional panoramic dental radiography method and apparatus which avoids the subject's spine
DE4202302C2 (de) 1992-01-28 1999-06-10 Dietrich H W Prof Groenemeyer Computer-Tomograph
US5351280A (en) 1992-03-19 1994-09-27 Wisconsin Alumni Research Foundation Multi-leaf radiation attenuator for radiation therapy
US5661773A (en) 1992-03-19 1997-08-26 Wisconsin Alumni Research Foundation Interface for radiation therapy machine
US5335255A (en) 1992-03-24 1994-08-02 Seppi Edward J X-ray scanner with a source emitting plurality of fan beams
JP2620467B2 (ja) 1992-07-16 1997-06-11 株式会社島津製作所 X線ct装置
US5966422A (en) 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
JPH06277205A (ja) 1993-03-26 1994-10-04 Hamamatsu Photonics Kk X線診断装置
DE69426036T2 (de) * 1993-06-09 2001-05-17 Wisconsin Alumni Res Found System zur Strahlungstherapie
US5411026A (en) 1993-10-08 1995-05-02 Nomos Corporation Method and apparatus for lesion position verification
US5438991A (en) 1993-10-18 1995-08-08 William Beaumont Hospital Method and apparatus for controlling a radiation treatment field
US5379333A (en) 1993-11-19 1995-01-03 General Electric Company Variable dose application by modulation of x-ray tube current during CT scanning
US5748696A (en) 1993-11-26 1998-05-05 Kabushiki Kaisha Toshiba Radiation computed tomography apparatus
US5521957A (en) 1994-03-15 1996-05-28 Hansen; Steven J. X-ray imaging system
JP3432268B2 (ja) 1994-03-25 2003-08-04 株式会社東芝 放射線治療システム
JP3168824B2 (ja) 1994-04-30 2001-05-21 株式会社島津製作所 X線ct装置
US5537452A (en) 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
DE4421316A1 (de) 1994-06-17 1995-12-21 Laser Applikationan Gmbh Vorrichtung zur Positionierung und Markierung eines Patienten an Diagnosegeräten, z.B. vor und nach der Durchleuchtung in einem Computertomographen
US5485494A (en) 1994-08-03 1996-01-16 General Electric Company Modulation of X-ray tube current during CT scanning
JP3638973B2 (ja) 1994-10-24 2005-04-13 株式会社東芝 Tct・spect同時収集システム
US6345114B1 (en) 1995-06-14 2002-02-05 Wisconsin Alumni Research Foundation Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
US5754622A (en) 1995-07-20 1998-05-19 Siemens Medical Systems, Inc. System and method for verifying the amount of radiation delivered to an object
WO1997005505A1 (en) 1995-07-31 1997-02-13 Litton Systems Canada Limited Flat panel detector for radiation imaging with reduced electronic noise
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
US5719914A (en) 1995-11-13 1998-02-17 Imatron, Inc. Method for correcting spherical aberration of the electron beam in a scanning electron beam computed tomography system
US5657364A (en) 1995-12-14 1997-08-12 General Electric Company Methods and apparatus for detecting beam motion in computed tomography imaging systems
JPH09218939A (ja) 1996-02-09 1997-08-19 Toshiba Corp 画像処理装置
US5602892A (en) 1996-03-21 1997-02-11 Llacer; Jorge Method for optimization of radiation therapy planning
JP3732568B2 (ja) 1996-04-03 2006-01-05 株式会社東芝 X線コンピュータ断層撮影装置
US5663995A (en) 1996-06-06 1997-09-02 General Electric Company Systems and methods for reconstructing an image in a CT system performing a cone beam helical scan
JP3548339B2 (ja) 1996-06-12 2004-07-28 株式会社日立メディコ X線撮影装置
US5699805A (en) 1996-06-20 1997-12-23 Mayo Foundation For Medical Education And Research Longitudinal multiplane ultrasound transducer underfluid catheter system
DE19627657C2 (de) 1996-07-09 2003-01-30 Siemens Ag Röntgenaufnahmegerät
JP3583554B2 (ja) 1996-07-23 2004-11-04 株式会社日立メディコ コーンビームx線断層撮影装置
US5949811A (en) 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
JPH10113400A (ja) 1996-10-11 1998-05-06 Hitachi Medical Corp 放射線治療システム
US5877501A (en) 1996-11-26 1999-03-02 Picker International, Inc. Digital panel for x-ray image acquisition
JPH10295683A (ja) 1997-04-28 1998-11-10 Toshiba Corp 電子ビームx線ct装置
AU7586698A (en) 1997-05-23 1998-12-11 William Beaumont Hospital Method and apparatus for delivering radiation therapy during suspended ventilation
JPH10328318A (ja) 1997-05-29 1998-12-15 Hitachi Medical Corp 放射線治療システム
JP3664462B2 (ja) 1997-06-04 2005-06-29 株式会社東芝 X線診断装置
US5999587A (en) 1997-07-03 1999-12-07 University Of Rochester Method of and system for cone-beam tomography reconstruction
WO1999003397A1 (en) 1997-07-17 1999-01-28 Medlennium Technologies, Inc. Method and apparatus for radiation and hyperthermia therapy of tumors
JPH1147290A (ja) 1997-08-07 1999-02-23 Hitachi Medical Corp 被治療体の病巣部の位置決め装置及びこれを用いた放射線治療装置
US6152598A (en) 1997-09-02 2000-11-28 Kabushiki Kaisha Toshiba R/F and chest radiography compatible X-ray imaging table
US6325758B1 (en) 1997-10-27 2001-12-04 Nomos Corporation Method and apparatus for target position verification
US6031888A (en) 1997-11-26 2000-02-29 Picker International, Inc. Fluoro-assist feature for a diagnostic imaging device
US5912943A (en) 1997-11-26 1999-06-15 Picker International, Inc. Cooling system for a sealed housing positioned in a sterile environment
JP3839941B2 (ja) 1997-11-28 2006-11-01 キヤノン株式会社 放射線検出装置及び放射線検出方法
JP2001513202A (ja) 1997-12-10 2001-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線検査装置
WO1999030616A1 (en) 1997-12-16 1999-06-24 Koninklijke Philips Electronics N.V. Computer tomography device
JP3053389B1 (ja) 1998-12-03 2000-06-19 三菱電機株式会社 動体追跡照射装置
JP4044205B2 (ja) 1998-03-26 2008-02-06 株式会社日立メディコ X線透視撮影装置
US6041097A (en) 1998-04-06 2000-03-21 Picker International, Inc. Method and apparatus for acquiring volumetric image data using flat panel matrix image receptor
US6393096B1 (en) 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
KR20010072304A (ko) 1998-08-06 2001-07-31 리차드 에이취 리저 방사선 치료 계획의 준비 방법
DE69931164T2 (de) 1998-08-06 2007-02-01 Wisconsin Alumni Research Foundation, Madison System zur anpassung der strahlenabgabe für strahlentherapie
JP4354550B2 (ja) 1998-08-31 2009-10-28 株式会社島津製作所 放射線治療計画装置
JP2000116631A (ja) 1998-10-16 2000-04-25 Toshiba Corp X線診断装置
US6148058A (en) 1998-10-23 2000-11-14 Analogic Corporation System and method for real time measurement of detector offset in rotating-patient CT scanner
JP2000126164A (ja) 1998-10-28 2000-05-09 Hitachi Medical Corp X線装置
US6229870B1 (en) 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
US6200024B1 (en) 1998-11-27 2001-03-13 Picker International, Inc. Virtual C-arm robotic positioning system for use in radiographic imaging equipment
DE19855213C2 (de) 1998-11-30 2001-03-15 Siemens Ag Röntgenaufnahmeeinrichtung
JP2000176029A (ja) 1998-12-18 2000-06-27 Mitsubishi Electric Corp ビーム照射装置
US6285739B1 (en) 1999-02-19 2001-09-04 The Research Foundation Of State University Of New York Radiographic imaging apparatus and method for vascular interventions
US6256370B1 (en) 2000-01-24 2001-07-03 General Electric Company Method and apparatus for performing tomosynthesis
JP2000308634A (ja) 1999-04-28 2000-11-07 Toshiba Iyo System Engineering Kk X線ct装置
US7046762B2 (en) 1999-11-05 2006-05-16 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US6546073B1 (en) 1999-11-05 2003-04-08 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US6750037B2 (en) 1999-12-27 2004-06-15 Edwin L. Adair Method of cancer screening primarily utilizing non-invasive cell collection, fluorescence detection techniques, and radio tracing detection techniques
US6298115B1 (en) 2000-01-13 2001-10-02 Scanditronix Medical Ab Method for calibrating a detector means
US6389104B1 (en) 2000-06-30 2002-05-14 Siemens Corporate Research, Inc. Fluoroscopy based 3-D neural navigation based on 3-D angiography reconstruction data
US6628745B1 (en) 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
US6463122B1 (en) 2000-08-21 2002-10-08 Bio-Imaging Resource, Inc. Mammography of computer tomography for imaging and therapy
JP2002102217A (ja) 2000-09-28 2002-04-09 Ge Medical Systems Global Technology Co Llc X線ctシステム、ガントリ装置、コンソール端末及びその制御方法及び記憶媒体
US7082182B2 (en) 2000-10-06 2006-07-25 The University Of North Carolina At Chapel Hill Computed tomography system for imaging of human and small animal
US6980627B2 (en) 2000-10-06 2005-12-27 Xintek, Inc. Devices and methods for producing multiple x-ray beams from multiple locations
JP2002210029A (ja) 2001-01-19 2002-07-30 Mitsubishi Electric Corp 放射線治療装置
JP2002210028A (ja) 2001-01-23 2002-07-30 Mitsubishi Electric Corp 放射線照射システム及び放射線照射方法
JPWO2002067779A1 (ja) 2001-02-28 2004-06-24 三菱重工業株式会社 多線源型x線ct装置
EP1238684B1 (de) 2001-03-05 2004-03-17 BrainLAB AG Verfahren zur Erstellung bzw. Aktualisierung eines Bestrahlungsplans
US7046831B2 (en) 2001-03-09 2006-05-16 Tomotherapy Incorporated System and method for fusion-aligned reprojection of incomplete data
US6661870B2 (en) 2001-03-09 2003-12-09 Tomotherapy Incorporated Fluence adjustment for improving delivery to voxels without reoptimization
JP3847101B2 (ja) 2001-05-22 2006-11-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置及び方法
US7145981B2 (en) 2001-08-24 2006-12-05 The Board Of Trustees Of The Leland Stanford Junior University Volumetric computed tomography (VCT)
US7072436B2 (en) 2001-08-24 2006-07-04 The Board Of Trustees Of The Leland Stanford Junior University Volumetric computed tomography (VCT)
CA2455663C (en) 2001-08-24 2008-02-26 Mitsubishi Heavy Industries, Ltd. Radiotherapy apparatus
EP1432005A4 (en) 2001-08-29 2006-06-21 Toshiba Kk ROTARY X-RAY TUBE WITH POSITIVE POLE
JP4088058B2 (ja) 2001-10-18 2008-05-21 株式会社東芝 X線コンピュータ断層撮影装置
JP4282302B2 (ja) 2001-10-25 2009-06-17 株式会社東芝 X線ct装置
US6810107B2 (en) 2001-11-02 2004-10-26 Siemens Medical Solutions Usa, Inc. System and method for measuring beam quality and dosimetry using electronic portal imaging
US6888919B2 (en) 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
US6582121B2 (en) 2001-11-15 2003-06-24 Ge Medical Systems Global Technology X-ray positioner with side-mounted, independently articulated arms
US6614877B2 (en) 2001-11-21 2003-09-02 Ge Medical Systems Global Technology Company Llc Method and apparatus for enhancing the contrast of a medical diagnostic image acquired using collimation
DE10202732A1 (de) 2002-01-24 2003-08-07 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum Erstellen einer Korrekturkennlinie für eine Reduktion von Artefakten bei einer Tomographie
US6618466B1 (en) 2002-02-21 2003-09-09 University Of Rochester Apparatus and method for x-ray scatter reduction and correction for fan beam CT and cone beam volume CT
ATE385834T1 (de) 2002-03-12 2008-03-15 Deutsches Krebsforsch Vorrichtung zur durchführung und verifikation einer therapeutischen behandlung sowie zugehöriges computerprogramm
US7066930B2 (en) 2002-04-08 2006-06-27 Cynosure, Inc. Arrangement for the treatment of barrett's esophagus
US6792077B2 (en) 2002-06-19 2004-09-14 Ge Medical Systems Global Technology Company, Llc Collimation system for dual slice EBT scanner
US20040002641A1 (en) 2002-06-24 2004-01-01 Bo Sjogren Patient representation in medical machines
US6865254B2 (en) 2002-07-02 2005-03-08 Pencilbeam Technologies Ab Radiation system with inner and outer gantry parts
DE10231630A1 (de) 2002-07-12 2004-01-29 Brainlab Ag System zur Patientenpositionierung für die Strahlentherapie/Radiochirurgie basierend auf einer stereoskopischen Röntgenanlage
US7314446B2 (en) 2002-07-22 2008-01-01 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US6760402B2 (en) 2002-08-01 2004-07-06 Siemens Medical Solutions Usa, Inc. Verification of mlc leaf position and of radiation and light field congruence
DE10242920B4 (de) 2002-09-16 2013-08-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Computertomographiegerätes und eine Vorrichtung zur Durchführung des Verfahrens
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7289599B2 (en) 2002-10-04 2007-10-30 Varian Medical Systems Technologies, Inc. Radiation process and apparatus
US7657304B2 (en) 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
CA2501058A1 (en) 2002-10-07 2004-04-15 Sunnybrook And Women's College Health Sciences Centre High quantum efficiency x-ray detector for portal imaging
US7042975B2 (en) 2002-10-25 2006-05-09 Koninklijke Philips Electronics N.V. Four-dimensional helical tomographic scanner
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US20040122787A1 (en) 2002-12-18 2004-06-24 Avinash Gopal B. Enhanced computer-assisted medical data processing system and method
EP2271189B1 (en) 2003-01-06 2012-03-14 Koninklijke Philips Electronics N.V. High speed modulation of switched-focus X-ray tube
EP1603461A2 (en) 2003-03-10 2005-12-14 Philips Intellectual Property & Standards GmbH Device and method for adapting the recording parameters of a radiograph
US20060259282A1 (en) 2003-03-14 2006-11-16 Failla Gregory A Deterministic computation of radiation transport for radiotherapy dose calculations and scatter correction for image reconstruction
JP2004275636A (ja) 2003-03-19 2004-10-07 Nakano Syst:Kk 放射線治療計画装置
US20040254448A1 (en) 2003-03-24 2004-12-16 Amies Christopher Jude Active therapy redefinition
DE602004020628D1 (de) 2003-07-18 2009-05-28 Koninkl Philips Electronics Nv Zylindrische röntgenröhre für die computertomographieabbildung
JP4535697B2 (ja) 2003-07-23 2010-09-01 オリンパス株式会社 生体組織の光散乱観測内視鏡装置
DE602004027634D1 (de) 2003-07-30 2010-07-22 Koninkl Philips Electronics Nv Röntgenröhre mit geformter anode
US20050027196A1 (en) 2003-07-30 2005-02-03 Fitzgerald Loretta A. System for processing patient radiation treatment data
JP3909048B2 (ja) 2003-09-05 2007-04-25 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置およびx線管
US6999555B2 (en) 2003-09-15 2006-02-14 Varian Medical Systems Imaging Laboratory Gmbh Systems and methods for processing data
JP2007509644A (ja) 2003-10-07 2007-04-19 ノモス・コーポレーシヨン 等角放射線治療のための計画システム、方法及び装置
WO2005036147A1 (en) 2003-10-14 2005-04-21 Philips Intellectual Property & Standards Gmbh Fan-beam coherent-scatter computed tomography
US7154991B2 (en) * 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
US6980624B2 (en) 2003-11-26 2005-12-27 Ge Medical Systems Global Technology Company, Llc Non-uniform view weighting tomosynthesis method and apparatus
US7280631B2 (en) 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
US7394923B2 (en) 2004-02-10 2008-07-01 The University Of Chicago Imaging system for generating a substantially exact reconstruction of a region of interest
ATE503419T1 (de) 2004-02-20 2011-04-15 Univ Florida System zur verabreichung von konformer strahlungstherapie unter gleichzeitiger abbildung von weichem gewebe
US7860550B2 (en) * 2004-04-06 2010-12-28 Accuray, Inc. Patient positioning assembly
US20050251029A1 (en) 2004-04-21 2005-11-10 Ali Khamene Radiation therapy treatment plan
US7399977B2 (en) 2004-07-23 2008-07-15 University Health Network Apparatus and method for determining radiation dose
US8306185B2 (en) 2004-08-13 2012-11-06 Koninklijke Philips Electronics N.V. Radiotherapeutic treatment plan adaptation
DE102004062473B4 (de) 2004-09-30 2006-11-30 Siemens Ag Medizinische Strahlentherapieanordnung
DE102004048212B4 (de) 2004-09-30 2007-02-01 Siemens Ag Strahlentherapieanlage mit Bildgebungsvorrichtung
US7062006B1 (en) 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view
US7193227B2 (en) * 2005-01-24 2007-03-20 Hitachi, Ltd. Ion beam therapy system and its couch positioning method
US7227923B2 (en) 2005-04-18 2007-06-05 General Electric Company Method and system for CT imaging using a distributed X-ray source and interpolation based reconstruction
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
US20060269049A1 (en) 2005-05-26 2006-11-30 Fang-Fang Yin Dual-detector, simulation CT, and real time function imaging
US8077936B2 (en) 2005-06-02 2011-12-13 Accuray Incorporated Treatment planning software and corresponding user interface
US20070016014A1 (en) 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
US7613501B2 (en) 2005-06-16 2009-11-03 Best Medical International, Inc. System, tracker, and program product to facilitate and verify proper target alignment for radiation delivery, and related methods
WO2006138513A1 (en) 2005-06-16 2006-12-28 Nomos Corporation Variance reduction simulation system, program product, and related methods
US7831073B2 (en) 2005-06-29 2010-11-09 Accuray Incorporated Precision registration of X-ray images to cone-beam CT scan for image-guided radiation treatment
JP4386288B2 (ja) 2005-08-31 2009-12-16 株式会社日立製作所 放射線治療装置の位置決めシステム及び位置決め方法
US7496181B2 (en) 2005-11-28 2009-02-24 The Board Of Trustees Of The Leland Stanford Junior University X-ray collimator for imaging with multiple sources and detectors
CN101466313B (zh) 2006-04-14 2012-11-14 威廉博蒙特医院 扫描狭槽锥形束计算机断层摄影以及扫描聚焦光斑锥形束计算机断层摄影
US8073104B2 (en) 2006-05-25 2011-12-06 William Beaumont Hospital Portal and real time imaging for treatment verification
US9192786B2 (en) * 2006-05-25 2015-11-24 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
US7496174B2 (en) 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7428292B2 (en) 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
US7388940B1 (en) 2006-11-24 2008-06-17 General Electric Company Architectures for cardiac CT based on area x-ray sources
US8537965B2 (en) 2007-04-10 2013-09-17 Arineta Ltd. Cone-beam CT
US8655429B2 (en) * 2007-06-29 2014-02-18 Accuray Incorporated Robotic arm for a radiation treatment system
DE102007054324B4 (de) * 2007-11-14 2009-10-22 Siemens Ag Einrichtung zur Strahlentherapie unter Bildüberwachung
US8189738B2 (en) 2008-06-02 2012-05-29 Elekta Ltd. Methods and systems for guiding clinical radiotherapy setups
US7835494B2 (en) 2008-08-28 2010-11-16 Varian Medical Systems International Ag Trajectory optimization method
WO2010030270A1 (en) 2008-09-10 2010-03-18 Analogic Corporation Ct scanning systems and methods using multi-pixel x-ray sources
US8139709B2 (en) 2008-09-15 2012-03-20 University Of Utah Research Foundation Staggered circular scans for CT imaging
JP5894835B2 (ja) 2012-03-30 2016-03-30 Kyb株式会社 無限軌道駆動装置のシール構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448499C (zh) * 2000-02-18 2009-01-07 威廉博蒙特医院 带有平板成像器的锥面束计算机x线断层扫描
CN101217913A (zh) * 2005-05-13 2008-07-09 艾可瑞公司 用于患者定位组件的机器人手臂
CN101267857A (zh) * 2005-07-22 2008-09-17 断层放疗公司 对移动的关注区实施放射疗法的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L.KIM,S.SMITH,D.YAN: "Volumetric Modulated Arc Therapy using a Rotating Couch:An Accelerated Partial Breast Irradiation Planning Study", 《INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404789A (zh) * 2015-12-28 2016-03-16 上海联影医疗科技有限公司 剂量控制点的选取方法及选取系统、放疗计划系统
CN105404789B (zh) * 2015-12-28 2018-11-09 上海联影医疗科技有限公司 计算机可读存储介质及选取系统、放疗计划系统
CN111821583A (zh) * 2019-04-22 2020-10-27 苏州雷泰医疗科技有限公司 加速器治疗装置及治疗方法
WO2020215664A1 (zh) * 2019-04-22 2020-10-29 苏州雷泰医疗科技有限公司 放射治疗装置及放射治疗方法

Also Published As

Publication number Publication date
BR112012016558A2 (pt) 2016-04-26
WO2011084878A1 (en) 2011-07-14
EP2521592A1 (en) 2012-11-14
US20140100408A1 (en) 2014-04-10
JP2013516278A (ja) 2013-05-13
EP2521592A4 (en) 2013-12-18
US20120020449A1 (en) 2012-01-26
US9320917B2 (en) 2016-04-26
US8670523B2 (en) 2014-03-11
CN102686277B (zh) 2016-10-12
CA2785995A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
CN102686277B (zh) 采用连续的躺椅旋转/移位和同时进行的锥形射束成像的调强电弧治疗
EP1907057B1 (en) Radiation therapy delivery device utilizing coordinated motion of gantry and couch
EP2539020B1 (en) Gantry image guided radiotherapy system
Victoria et al. A prospective 4π radiation therapy clinical study in recurrent high-grade glioma patients
CN115068843B (zh) 递送放射治疗的系统和方法
WO2013060220A1 (zh) 4d立体定位放射治疗装置
US11697030B2 (en) Delivering independent 2D sub-beam intensity patterns from moving radiation source
US20200234840A1 (en) Binary multileaf collimator delivery with per-leaf field width
US10471280B2 (en) Radiosurgery of cancers in the breast and the head using a single multi-source gamma-ray device
Jäkel Heavy ion radiotherapy
Raina et al. Volumetric modulated arc therapy: a dosimetric comparison with dynamic IMRT and step-and-shoot IMRT
Shepard et al. Treatment planning for stereotactic radiosurgery
WO2016191622A1 (en) Unconstrained radiosurgery with greatly improved dosage fall-off
Ouzidane et al. Dedicated linear accelerators for stereotactic radiation therapy
Omotayo Constrained marker-based VMAT plan optimization towards real-time tumour tracking
Hoffman et al. L-shaped linacs
Sneed 190 The Future of Radiosurgery and Radiotherapy
Armstrong Advances in radiation technology can improve survival and quality of life for cancer patients: 25th St Luke’s lecture, Royal Academy of Medicine of Ireland 7th December 1999
Gillin Special Procedures
Morales Advances in radiotherapy with external beam X-rays: from 3D to 4D
Blach et al. The treatment of brain metastases in the past was “3,000 in 10”(3,000 cGy in 10 fractions) to the whole brain. It was, but no longer is, a “no brainer”(1). Today, with the development of radiosur-gical techniques, this is not the case. Radiosurgery (RS) has been shown to be an effective, minimally invasive outpatient treatment option for brain metas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161012

Termination date: 20180104