CN102596564B - 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法 - Google Patents

含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN102596564B
CN102596564B CN201080049213.3A CN201080049213A CN102596564B CN 102596564 B CN102596564 B CN 102596564B CN 201080049213 A CN201080049213 A CN 201080049213A CN 102596564 B CN102596564 B CN 102596564B
Authority
CN
China
Prior art keywords
cnt
fibrous material
incorporated
composite
ceramic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080049213.3A
Other languages
English (en)
Other versions
CN102596564A (zh
Inventor
T·K·沙阿
H·C·马里基
M·卡森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanostructured Solutions LLC
Original Assignee
Applied Nanostructured Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Nanostructured Solutions LLC filed Critical Applied Nanostructured Solutions LLC
Publication of CN102596564A publication Critical patent/CN102596564A/zh
Application granted granted Critical
Publication of CN102596564B publication Critical patent/CN102596564B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/12Multiple coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58042Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on iron group metals nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62849Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62852Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5272Fibers of the same material with different length or diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249927Fiber embedded in a metal matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inorganic Fibers (AREA)

Abstract

在各个实施方式中,本文描述了含有陶瓷基体和碳纳米管并入的纤维材料的复合材料。示例性的陶瓷基体包括,例如二元、三元和四元金属或非金属硼化物、氧化物、氮化物和碳化物。陶瓷基体也可以是水泥。纤维材料可以是连续的或切短的纤维,包括例如,玻璃纤维、碳纤维、金属纤维、陶瓷纤维、有机纤维、碳化硅纤维、碳化硼纤维、氮化硅纤维和氧化铝纤维。复合材料还可包括至少涂覆碳纳米管并入的纤维材料和任选地多种碳纳米管的钝化层。纤维材料可以在陶瓷基体中均匀地分布、不均匀地分布或者以梯度方式分布。不均匀分布可用于形成不同的机械、电或热性能赋予陶瓷基体的不同区域。

Description

含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法
相关申请的交叉参考
本申请按照35U.S.C.§119要求2009年11月23日提交的美国临时专利申请序列号61/263,804和2009年12月01日提交的美国临时专利申请序列号61/265,718的优先权权益,其中每一个均通过引用其整体被并入本文。本申请也与2009年11月02日提交的美国专利申请序列号12/611,073、12/611,101和12/611,103相关。
关于联邦政府资助的研究或开发的声明
不适用。
发明领域
本发明一般地涉及复合材料,更具体而言,涉及纤维-增强的陶瓷复合材料。
背景技术
在过去几年中,由于纳米级水平实现了有益性能的提高,含有纳米材料的复合材料已经被广泛地研究。尤其地,由于碳纳米管的极限强度和导电性,碳纳米管是被广泛研究用于复合材料中的纳米材料。尽管有益性能可以通过掺入的纳米材料传递(conveyed)到复合材料基体,但由于将纳米材料掺入到其中的复杂性,尚未广泛实现商业上可行的含有纳米材料,尤其是碳纳米管的复合材料的生产。在将碳纳米管掺入到复合材料基体中时常常遇到的问题可以包括,例如在载入碳纳米管后粘度增加、梯度控制问题和不确定的碳纳米管取向。
鉴于上述问题,容易生产的含有碳纳米管的复合材料在本领域中将具有实质性益处。本发明满足该需求,并且还提供相关的优势。
发明内容
在各个实施方式中,本文描述了含有陶瓷基体和碳纳米管并入的(carbonnanotube-infused)纤维材料的复合材料。
在一些实施方式中,复合材料包含陶瓷基体、第一部分碳纳米管并入的纤维材料和第二部分碳纳米管并入的纤维材料。第一部分碳纳米管并入的纤维材料和第二部分碳纳米管并入的纤维材料分别分布在陶瓷基体的第一区域和第二区域中。并入第一部分的碳纳米管的平均长度和并入第二部分的碳纳米管的平均长度被选择,以便陶瓷基体的第一区域和陶瓷基体的第二区域具有不同的机械、电学或热性能。
在一些实施方式中,本文描述了含有复合材料的制品,所述复合材料含有陶瓷基体和碳纳米管并入的纤维材料。
在其它各种实施方式中,本文描述了制备含有陶瓷基体和碳纳米管并入的纤维材料的复合材料的方法。在一些实施方式中,方法包括提供碳纳米管并入的纤维材料,将碳纳米管并入的纤维材料分布在生陶瓷前体中,和固化所述生陶瓷前体以形成含有陶瓷基体和碳纳米管并入的纤维材料的复合材料。
在其它实施方式中,本文描述了制备含有水泥陶瓷基体和碳纳米管并入的纤维材料的复合材料的方法。所述方法包括提供水泥(cement)陶瓷基体,提供碳纳米管并入的纤维材料,将碳纳米管并入的纤维材料分布在水泥中,和固化所述水泥以形成含有所述碳纳米管并入的纤维材料的混凝土(concrete)。
以上相当宽泛地概述了本公开内容的特征,以便可以更好地理解下面的详细描述。在下文中将描述本公开内容的另外的特征和优势,其形成权利要求的主题。
附图简介
为了更完整地理解本公开内容及其优势,现将参考以下说明结合描述本公开内容具体实施方式的附图,其中:
图1显示已经并入到碳纤维的碳纳米管的示例性TEM图;
图2显示已经并入有碳纳米管的碳纤维的示例性SEM图,其中,碳纳米管在40μm的目标长度的+20%之内;
图3显示碳纳米管并入的碳纤维的纤维织物的示例性SEM图;
图4和5显示分布在碳化硅陶瓷基体中的碳纳米管并入的碳纤维的示例性SEM图;和
图6显示柱状图,其图解与缺少碳纳米管的陶瓷基体复合材料相比,在以下实施例中描述的示例性碳纳米管并入的碳纤维陶瓷基体复合材料的导电性提高。
发明详述
本公开内容部分地涉及含有陶瓷基体和碳纳米管并入的纤维材料的复合材料。本公开内容也部分地涉及生产含有陶瓷基体和碳纳米管并入的纤维材料的复合材料以及含有这种复合材料的制品的方法。
在含有纤维材料和复合材料基体的复合材料中,纤维材料的提高的物理和/或化学性能被赋予复合材料基体(例如,陶瓷基体)。在本发明的复合材料中,这些提高的性能进一步被并入到纤维材料的碳纳米管提升。碳纳米管并入的纤维材料是用于将碳纳米管引入到复合材料基体的通用平台(versatile platform)。利用复合材料中的碳纳米管并入的纤维材料使在其中掺入碳纳米管有关的重要问题得以克服。另外,通过改变,例如并入到纤维材料的碳纳米管覆盖的长度和密度,可将不同的性能选择性地传递给复合材料。例如,较短的碳纳米管可用于传递结构支持给复合材料。较长的碳纳米管除了传递结构支持之外,可用于在通常导电差或不导电的复合材料中建立导电性逾渗通道。另外,碳纳米管并入的纤维材料在复合材料不同区域中的不均匀性或梯度布置(gradient placement)可用于选择性地传递期望的性能给不同的复合材料区域。
复合材料,尤其是含有水泥和其它陶瓷基体的复合材料的应用继续扩大。这些复合材料的现有应用和新应用继续突破当前纤维增强技术的限制。含并入有碳纳米管的纤维材料的复合材料是可以克服当前的技术障碍以提供同时具有提高的结构强度和另外的有益性能,如例如导电性和导热性的复合材料的一种方式。将导电性传递给复合材料的特别有益的结果是复合材料可以提供电磁干扰(EMI)屏蔽,这在含有常规纤维材料的非导电复合材料中是不可能的。具有EMI屏蔽性能的复合材料可用于隐身应用(stealth applications)和EMI屏蔽是重要的其它情形中。常规复合材料,尤其是陶瓷复合材料的EMI屏蔽应用以前尚未被研究过,因为它们通常是非导电的并且不可操作来提供EMI屏蔽效应。对于含有碳纳米管并入的纤维材料的复合材料存在许多其它的潜在应用,其中期望为复合材料基体提供结构增强。
如本文中所使用的,术语“陶瓷基体”是指二元系、三元系、四元系或更高级的陶瓷材料,其可用于将碳纳米管并入的纤维材料组织成特定的取向,包括随机取向。陶瓷基体包括但不限于氧化物、碳化物、硼化物和氮化物。陶瓷基体也可以包括含有陶瓷材料的水泥。在复合材料中,陶瓷基体通过,例如结构性能、电学性能和/或热性能的提高而得益于其中含有的碳纳米管并入的纤维材料。
如本文中所使用的,“并入的(infused)”指结合的,以及“并入(infusion)”指结合的过程。因此,碳纳米管并入的纤维材料是指与碳纳米管结合的纤维材料。碳纳米管与纤维材料的这种结合可以包括共价结合、离子结合、pi-pi相互作用和/或范德华力-介导的(mediated)物理吸附。在一些实施方式中,碳纳米管直接与纤维材料结合。在其它实施方式中,碳纳米管通过隔离涂层和/或用于介导碳纳米管生长的催化纳米颗粒与纤维材料间接结合。将碳纳米管并入到纤维材料的具体方式可以称为结合基序(bonding motif)。
如本文中所使用的,术语“纳米颗粒”指以当量球形直径计直径在大约0.1nm至大约100nm之间的颗粒,尽管纳米颗粒的形状不必是球形的。
如本文中所使用的,术语“钝化层”是指沉积在至少一部分碳纳米管并入的纤维材料上以防止或基本上抑制纤维材料和/或并入在其上的碳纳米管的反应的层。钝化层可以有益于,例如在可能遇到高温时防止或基本上抑制复合材料形成期间的反应。另外,钝化层可以在形成复合材料之前或之后防止或基本上抑制与大气成分的反应。钝化层的示例性材料可以包括,例如,电镀镍、铬、镁、钛、银、锡或二硼化钛。
如本文中所使用的,术语“上浆剂(sizing agent)”或“上浆”统指这样的材料:所述材料作为涂层用在纤维材料的制造中,以保护纤维材料的完整性、提供复合材料中纤维材料和陶瓷基体之间提高的界面相互作用、和/或改变和/或提高纤维材料的某些物理性能。
如本文中所使用的,术语“可缠绕维度”指这样的纤维材料:所述纤维材料具有至少一个长度不被限制的维度,在并入有碳纳米管之后允许纤维材料储存在卷轴或者心轴上。“可缠绕维度”的纤维材料具有至少一个这样的维度:所述维度指示使用分批或者连续处理,以将碳纳米管并入到纤维材料。
如本文中所使用的,术语“过渡金属”是指周期表(第3到12族)d区中的任何元素或者元素合金,术语“过渡金属盐”是指任何过渡金属化合物,如例如,过渡金属氧化物、碳化物、氮化物等等。示例性的过渡金属催化纳米颗粒包括,例如,Ni、Fe、Co、Mo、Cu、Pt、Au、Ag、其合金、其盐及其混合物。
如本文中所使用的,“长度一致”是指对于范围在约1μm至约500μm之间的碳纳米管长度,碳纳米管的长度的公差是碳纳米管总长度加或减约20%或更少的情形。在非常短的碳纳米管长度(例如,约1μm至约4μm)下,公差可以加或减约1μm,即,稍微多于碳纳米管总长度的约20%。
如本文中所使用的,“密度分布一致”是指纤维材料上的碳纳米管密度的公差是加或减被碳纳米管覆盖的纤维材料表面积的约10%覆盖率的情形。
在各个实施方式中,在本文中描述了含有陶瓷基体和碳纳米管并入的纤维材料的复合材料。
已并入有碳纳米管的纤维材料,包括碳纤维、陶瓷纤维、金属纤维和玻璃纤维描述在2009年11月02日提交的申请人的共同未决美国专利申请12/611,073、12/611,101和12/611,103中,其中每一个均通过引用其整体被并入本文。图1显示已经并入到碳纤维的碳纳米管的示例性TEM图。图2显示已经并入有碳纳米管的碳纤维的示例性SEM图,其中碳纳米管在40μm的目标长度的+20%内。在图1和2的图中,碳纳米管是多壁(multi-wall)碳纳米管,尽管任何碳纳米管,如单壁碳纳米管、双壁碳纳米管和具有两层以上的多壁碳纳米管可用于并入本发明复合材料的纤维材料。
以上纤维材料对于可以并入有碳纳米管并包含在复合材料中的各种纤维材料仅是说明性的。在本文所描述的各种实施方式任意之一中,可以并入有碳纳米管的纤维材料包括,例如玻璃纤维、碳纤维、金属纤维、陶瓷纤维和有机纤维(例如,芳族聚酰胺纤维)。在一些实施方式中,纤维材料包括,例如玻璃纤维、碳纤维、金属纤维、陶瓷纤维、有机纤维、碳化硅(SiC)纤维、碳化硼(B4C)纤维、氮化硅(Si3N4)纤维、氧化铝(Al2O3)纤维及其各种组合。在一些实施方式中,碳纳米管的期望性能被赋予它们并入的纤维材料,从而增强所得复合材料的陶瓷基体。本领域的普通技术人员将认识到任何类型的可以并入有碳纳米管的纤维材料也可用于本文所描述的实施方式中,以增强期望的目标性能。此外,通过改变纤维材料的一致性(identity)和/或比例(fraction)和/或其上并入的碳纳米管的数量,可在复合材料中解决不同的性能。不受理论或机理的限制,申请人相信纤维材料从结构上加强复合材料的陶瓷基体。
在一些实施方式中,碳纳米管并入的纤维材料可以包含在具有缺乏碳纳米管的纤维材料的复合材料中。示例性的组合无限制性地包括碳纳米管并入的玻璃纤维与缺乏碳纳米管并入的陶瓷纤维、碳纳米管并入的陶瓷纤维与缺乏碳纳米管并入的玻璃纤维、碳纳米管并入的碳纤维与缺乏碳纳米管并入的陶瓷纤维、以及碳纳米管并入的碳纤维与缺乏碳纳米管并入的玻璃纤维。另外,任何类型的碳纳米管并入的纤维均可以包含在具有缺乏碳纳米管并入的类似类型纤维材料的复合材料中。
基于用于产生纤维的前体进行分类,有三种类型的碳纤维:人造纤维、聚丙烯腈(PAN)和沥青,其中任何一种均可以用于本文所述的各种实施方式中。来自人造纤维前体的碳纤维是纤维素材料,具有大约20%的相对低的碳含量并且该纤维趋于具有低的强度和硬度。相比之下,聚丙烯腈(PAN)前体提供碳含量大约55%并由于由于表面缺陷最少而拉伸强度优良的碳纤维。基于石油沥青、煤焦油和聚氯乙烯的沥青前体也可用于生产碳纤维。尽管沥青成本相对低并且碳产率高,但在给定的所得碳纤维的批次中可能有不均匀的问题。
在各个实施方式中,本发明复合材料的纤维材料可以是丝、纺线、纤维丝束、带材、纤维-编织物、织造织物、非织造织物、纤维板片和其它三维织造或非织造结构的非限制性形式。例如,在纤维材料是碳纤维的实施方式中,纤维材料可以是包括碳丝、碳纤维纺线、碳纤维丝束、碳带材、碳纤维-编织物、织造碳织物、非织造碳纤维垫、碳纤维板片和其它三维织造或非织造结构的非限制性形式。图3显示碳纳米管并入的碳纤维的纤维织物的示例性SEM图。在各个实施方式中,均匀长度和分布的碳纳米管可以沿着丝、纤维丝束、带材、织物和其它三维织造结构的可缠绕长度产生。虽然各种丝、纤维丝束、纺线、垫、织造和非织造织物等等可以直接并入有碳纳米管,但从来自碳纳米管并入的纤维的母体纤维丝束、纺线或类似物产生这种更高度有序的结构也是可能的。例如,碳纳米管并入的纤维材料可以从碳纳米管并入的纤维丝束转换成织造织物。
丝包括直径大小范围通常在大约1μm至大约100μm微米之间的高纵横比纤维。
纤维丝束一般是紧密连接的碳丝的束,在一些实施方式中,其可以扭曲在一起以产生纺线。纺线包括严密连接的扭曲丝的束,其中,纺线中每一条丝的直径是相对均匀的。纺线具有由其‘特(tex)’(表示为每1000线性米的重量克数)或者‘旦(denier)’(表示为每10,000码的重量磅数)描述的不同重量。对于纺线,典型的特范围通常在大约200至大约2000之间。
纤维-编织物表示密集压紧的纤维的类似绳索的结构。例如,这种类似绳索的结构可由纺线组装。编织的结构可以包括中空的部分。可选地,可以绕另一核心材料组装编织的结构。
纤维丝束包括松散连接的未扭曲丝的束。如在纺线中一样,纤维丝束中的丝直径一般是均匀的。纤维丝束也具有不同的重量,并且特范围通常在200特和2000之间。另外,纤维丝束的特征通常在于纤维丝束中的数以千计的丝数目,诸如,举例来说,12K丝束、24K丝束、48K丝束等等。
带材是,例如可被组装为织物或被组装为非织造平压纤维丝束的纤维材料。带材的宽度可变化并且一般是类似于带的两面的结构。在本文所描述的各种实施方式中,碳纳米管可以在带材的一面或两面上被并入到带材的纤维材料。另外,不同类型、直径或长度的碳纳米管可以在带材的每一个面上生长。将不同类型、直径或长度的碳纳米管并入到纤维材料上的优势在下文中进行评价。如在申请人的共同未决美国专利申请中所描述的,将碳纳米管并入到带材的卷轴可以以连续的方式进行。
在一些实施方式中,纤维材料可被组织为织物或者类似薄片的结构。除上述的带材之外,这些包括例如织造织物、非织造纤维垫和纤维板片。由母体丝束、纺线、丝或者类似物可组装这种更高度有序的结构,其中碳纳米管已经并入到纤维材料上。如同带材一样,这样的结构也可以用作将碳纳米管连续并入到其上的基底。
如在申请人的共同未决申请中所描述的,改进纤维材料以在纤维材料上提供催化纳米颗粒的层(典型地只是单层),目的是使碳纳米管在其上生长。在各个实施方式中,用于介导碳纳米管生长的催化纳米颗粒是过渡金属及其各种盐。
在一些实施方式中,纤维材料还包括隔离涂层。示例性的隔离涂层可以包括,例如烷氧基硅烷、甲基硅氧烷、铝氧烷(alumoxane)、氧化铝纳米颗粒、旋涂玻璃(spinon glass)和玻璃纳米颗粒。例如,在一个实施方式中,隔离涂层是Accuglass T-11旋涂玻璃(Honeywell International Inc.,Morristown,NJ)。在一些实施方式中,用于碳纳米管合成的催化纳米颗粒可以与未固化的隔离涂层材料组合,然后一起施用到纤维材料。在其它实施方式中,可以在催化纳米颗粒沉积之前将隔离涂层材料加入到纤维材料中。通常,隔离涂层足够薄以允许催化纳米颗粒暴露于碳原料气体,用于碳纳米管生长。在一些实施方式中,隔离涂层的厚度小于或约等于催化纳米颗粒的有效直径。在一些实施方式中,隔离涂层的厚度范围在约10nm至约100nm之间。在其它实施方式中,隔离涂层的厚度范围在约10nm至约50nm之间,包括40nm。在一些实施方式中,隔离涂层的厚度小于约10nm,包括约1nm、约2nm、约3nm、约4nm、约5nm、约6nm、约7nm、约8nm、约9nm和约10nm——包括其间的所有值和亚范围。
不受理论限制,隔离涂层可用作纤维材料与碳纳米管之间的中间层,并将碳纳米管机械地并入纤维材料。这种机械并入仍提供坚固的系统,其中纤维材料用作组织碳纳米管的平台,同时允许碳纳米管的有益性能传递给纤维材料。而且,包括隔离涂层的益处包括保护纤维材料免受由于暴露于湿气引起的化学损害和/或在用于促进碳纳米管生长的高温度下的热损害。在一些实施方式中,在将碳纳米管并入的纤维材料结合到复合材料中之前去除隔离涂层。然而,在其它实施方式中,复合材料可以含有隔离涂层完整无损的碳纳米管并入的纤维材料。
在催化纳米颗粒沉积之后,在一些实施方式中使用基于化学气相沉积(CVD)的方法,以使碳纳米管在纤维材料上连续生长。所得碳纳米管并入的纤维材料本身是复合材料结构。更通常地,可以利用本领域的普通技术人员已知的任何技术将碳纳米管并入纤维材料。用于碳纳米管合成的示例性技术包括,例如微腔、热或者等离子体增强的CVD技术、激光烧蚀、弧光放电和高压一氧化碳(HiPCO)合成。在一些实施方式中,通过在生长过程期间提供电场,CVD生长可以是等离子体-增强的,以便碳纳米管遵循电场方向。
并入本发明复合材料的纤维材料的碳纳米管的类型通常可以变化而不受限制。在本文的各个实施方式中,并入到纤维材料上的碳纳米管可以是,例如,富勒烯族碳的许多圆柱形同素异形体的任一种,包括单壁碳纳米管(SWNT)、双壁碳纳米管(DWNT)、多壁碳纳米管(MWNT)及其任意组合。在一些实施方式中,碳纳米管可以被富勒烯类似结构封端。以另一种方式进行说明,碳纳米管在这样的实施方式中具有封闭端。然而,在其它实施方式中,碳纳米管保持开口。在一些实施方式中,碳纳米管包封其它材料。在一些实施方式中,在并入纤维材料之后,碳纳米管被共价官能化。官能化可用于提高碳纳米管与某些陶瓷基体的相容性。在一些实施方式中,等离子体方法被用于促进碳纳米管官能化。
在一些实施方式中,并入到纤维材料的碳纳米管基本上垂直于纤维材料的纵轴。以另一种方式进行说明,并入到纤维材料的碳纳米管切向地(circumferentially)垂直于纤维表面。在其它实施方式中,并入到纤维材料的碳纳米管基本上平行于纤维材料的纵轴。
在一些实施方式中,并入到纤维材料的碳纳米管未成束,从而有助于纤维材料与碳纳米管之间的强的结合。未成束的碳纳米管允许有益的碳纳米管性能表现在本发明复合材料中。在其它实施方式中,通过减小生长密度,在碳纳米管合成期间可以以高度均匀、缠结的碳纳米管垫的形式制备并入到纤维材料的碳纳米管。在这样的实施方式中,碳纳米管并不生长足够密集,以使碳纳米管基本上垂直于纤维材料的纵轴排列。
在一些实施方式中,选择并入到纤维材料的碳纳米管的量,以便复合材料的至少一种性能相对于单独的陶瓷基体或纤维材料得以增强。这样的性能可以包括,例如拉伸强度、杨氏模量、剪切强度、剪切模量、韧性、压缩强度、压缩模量、密度、电磁波吸收率/反射率、声音透射率(acoustic transmittance)、导电性和导热性。碳纳米管在复合材料中的存在也提供较轻的终端产品复合材料,其强度与重量的比高于缺乏碳纳米管的类似复合材料。
在一些实施方式中,纤维材料可以并入有特定类型的碳纳米管,以便可以获得期望的纤维材料性能,从而获得期望的复合材料性能。例如,可以通过将各种类型、手性、直径、长度和密度的碳纳米管并入到纤维材料来改变复合材料的电性能。
导电性或者比电导是材料传导电流的能力的量度。碳纳米管可以是金属的、半金属的或者半导体的,这取决于它们的手性。用于指定碳纳米管手性的公认的命名法系统被本领域的普通技术人员所公认,并且通过双指数(n,m)来区分,其中,n和m是描述形成管状结构时六边形石墨的相交(cut)和包封(wrapping)的整数。例如,当m=n时,碳纳米管管被认为是‘扶手椅’型。这样的扶手椅碳纳米管,特别是单壁碳纳米管是金属导体,并且具有极高的导电性和导热性。另外,这样的单壁碳纳米管具有极高的拉伸强度。
除了手性之外,碳纳米管的直径也影响其导电性和相关的导热性性能。在碳纳米管的合成中,碳纳米管的直径可通过利用给定尺寸的催化纳米颗粒进行控制。通常,碳纳米管的直径近似于催化其形成的催化纳米颗粒的直径。因此,碳纳米管的性能可另外通过,例如调整用于合成碳纳米管的催化纳米颗粒的尺寸进行控制。作为非限制性实例,直径为约1nm的催化纳米颗粒可用于将单壁碳纳米管并入纤维材料。较大的催化纳米颗粒可用于主要制备由于多个纳米管层而具有较大直径的多壁碳纳米管,或者单壁和多壁碳纳米管的混合物。由于可以不均匀地重新分布电流的各纳米管层之间的壁间反应(interwall reaction),多壁碳纳米管比单壁碳纳米管通常具有更复杂的传导特征(conductivity profile)。通过对比,在单壁碳纳米管的不同部分上电流没有变化。
由于复合材料中纤维材料的间隔通常大于或等于约一个纤维直径(例如,约5μm至约50μm),至少约一半该长度的碳纳米管被用于在复合材料中建立导电渗滤通道(percolation pathway)。这样的碳纳米管长度可以通过邻近纤维之间的碳纳米管与碳纳米管桥接来建立导电渗滤通道。根据复合材料中纤维材料的直径和其间的间隔,可以相应地调整碳纳米管长度,以建立导电渗滤通道。在不期望或没必要建立导电渗滤通道的应用中,长度短于纤维直径的碳纳米管可用于增强结构性能。在一些实施方式中,并入到纤维材料的碳纳米管的长度在碳纳米管合成期间可以通过调节含碳原料气体流速和压力、载体气体流速和压力、反应温度和暴露于碳纳米管生长条件的时间进行控制。
在本发明复合材料的一些实施方式中,可以使用沿相同连续纤维材料的不同部分长度变化的碳纳米管。在这种情况下,碳纳米管并入的纤维材料可以增强陶瓷基体的一种以上性能。例如,在给定的复合材料中可以期望具有并入有均匀较短的碳纳米管以增强剪切强度或其它结构性能的第一部分纤维材料和并入有均匀较长的碳纳米管以增强导电性和导热性性能的第二部分纤维材料。
在一些实施方式中,并入到纤维材料的碳纳米管通常长度一致。在一些实施方式中,并入的碳纳米管的平均长度在约1μm和约500μm之间,包括约1μm、约2μm、约3μm、约4μm、约5μm、约6μm、约7μm、约8μm、约9μm、约10μm、约15μm、约20μm、约25μm、约30μm、约35μm、约40μm、约45μm、约50μm、约60μm、约70μm、约80μm、约90μm、约100μm、约150μm、约200μm、约250μm、约300μm、约350μm、约400μm、约450μm、约500μm以及其间的所有值和亚范围。在一些实施方式中,并入的碳纳米管的平均长度小于约1μm,包括例如约0.5μm以及其间的所有值和亚范围。在一些实施方式中,并入的碳纳米管的平均长度在约1μm和约10μm之间,包括例如约1μm、约2μm、约3μm、约4μm、约5μm、约6μm、约7μm、约8μm、约9μm、约10μm以及其间的所有值和亚范围。在其它实施方式中,并入的碳纳米管的平均长度大于约500μm,包括例如约510μm、约520μm、约550μm、约600μm、约700μm以及其间的所有值和亚范围。在各个实施方式中,并入的碳纳米管的平均长度可以受以下影响,例如暴露于碳纳米管生长条件的时间、生长温度以及在碳纳米管合成期间使用的含碳原料气体(例如,乙炔、乙烯和/或乙醇)和载体气体(例如,氦、氩和/或氮)的流速和压力。通常,在碳纳米管合成期间,以总反应体积的约0.1%至约15%范围提供含碳原料气体。
在一些实施方式中,并入的碳纳米管的平均长度在约1μm和约10μm之间。具有这种长度的碳纳米管在,例如提高剪切强度的应用中是有用的。在其它实施方式中,并入的碳纳米管的平均长度在约5μm和约70μm之间。具有这种长度的碳纳米管在包括,例如提高拉伸强度的应用中是有用的,尤其在碳纳米管以纤维方向排列的情况下。在其它实施方式中,碳纳米管的平均长度在约10μm和约100μm之间。除机械性能以外,具有这种长度的碳纳米管对于,例如提高导电性和导热性性能也是有用的。在一些实施方式中,碳纳米管的平均长度在约100μm和约500μm之间。具有这种长度的碳纳米管尤其有益于提高,例如导电性和导热性性能。
在一些实施方式中,相对于缺乏碳纳米管的复合材料,碳纳米管的平均长度足以使复合材料的热膨胀系数降低约4倍或更多。在一些实施方式中,相对于缺乏碳纳米管的复合材料,碳纳米管的平均长度足以使复合材料的硬度和耐磨性提高约3倍或更多。在一些实施方式中,碳纳米管的平均长度足以在复合材料中建立导电通道。在一些实施方式中,碳纳米管的平均长度足以在复合材料中建立导热通道。
在一些实施方式中,提及纤维材料上的碳纳米管密度的均匀性,并入到纤维材料的碳纳米管通常密度分布一致。如上所限定,均匀密度分布的公差为在并入有碳纳米管的纤维材料表面积上加或减约10%。作为非限制性实例,对于具有5个壁和直径为8nm的碳纳米管,该公差相当于约±1500个碳纳米管/μm2。这样的数据假设碳纳米管内部的空间是可填充的。在一些实施方式中,以纤维材料的覆盖百分率(即,被碳纳米管覆盖的纤维材料表面积的百分比)表示的最大碳纳米管密度可以高达约55%——再次假定碳纳米管直径为8nm,具有5个壁和可填充的内部空间。55%表面积覆盖率对于具有参考尺寸的碳纳米管相当于约15,000个碳纳米管/μm2。在一些实施方式中,覆盖密度多达约15,000个碳纳米管/μm2。本领域的普通技术人员将认识到可以通过改变催化纳米颗粒在纤维材料表面上的沉积、暴露于碳纳米管生长条件的时间以及用于将碳纳米管并入纤维材料的实际生长条件本身来获得宽范围的碳纳米管密度。如上所述,分布密度较高的较短碳纳米管对于提高机械性能(例如,拉伸强度)通常更有用,而分布密度较低的较长碳纳米管对于提高热和电性能通常更有用。然而,甚至当存在较长碳纳米管时提高分布密度也仍然是有利的。
拉伸强度可以包括三种不同的测量方法:1)屈服强度,其评价材料应变从弹性变形变化为塑性变形,导致永久变形的应力;2)极限强度,其评价当材料遭受拉伸、压缩或者剪切时可经受的最大应力;和3)断裂强度,其评价应力-应变曲线上在断裂点的应力坐标。剪切强度评价当垂直于纤维方向施加负载时材料受损的应力。压缩强度评价当施加压缩负荷(即,平行于纤维方向施加负载)时材料受损的应力。
尤其地,多壁碳纳米管具有目前测量的任何材料的最高拉伸强度,已达到约63GPa的拉伸强度。而且,理论计算已表明某些碳纳米管的可能的拉伸强度多达约300GPa。如上所述,本发明复合材料中拉伸强度的提高取决于碳纳米管的精确属性,以及并入到纤维材料上时其密度和分布。例如,相对于母体纤维材料,碳纳米管并入的纤维材料可以表现拉伸强度二至三倍或更多的增加。同样地,示例性的碳纳米管并入的纤维材料可以具有多达母体纤维材料的三倍或更多的剪切强度和多达2.5倍或更多的压缩强度。纤维材料强度的这种增加被传递给其中分布碳纳米管并入的纤维材料的复合材料。
在一些实施方式中,含有并入的碳纳米管的纤维材料均匀地分布在陶瓷基体中。以另一种方式进行说明,碳纳米管并入的纤维材料均质地分布在陶瓷基体中。在一些实施方式中,纤维材料在陶瓷基体中被随机定向。在这种情况下,复合材料的性能被各向同性地增强。在其它实施方式中,纤维材料在陶瓷基体中排列或以其它方式定向。在这种情况下,复合材料的性能被各向异性地增强。在一些实施方式中,纤维材料在陶瓷基体中同时均匀分布和排列。在其它实施方式中,纤维材料以随机方式均匀分布在陶瓷基体中。
在一些实施方式中,纤维材料具有两种或更多种长度的碳纳米管并入到其上。在这样的实施方式中,纤维材料的分布可以再次是随机的、排列的或以一些方式另外定向的。如上所述,不同长度的碳纳米管可以并入到相同纤维材料的不同部分,并用于将不同的性能增强传递给复合材料。
在可选实施方式中,具有不同长度的碳纳米管可并入到两种或更多种不同的纤维材料中,然后,其中每一种纤维材料均均匀地分布在复合材料中。这样的纤维材料可以再次将不同的性能增强传递给复合材料。因此,具有第一长度的碳纳米管可以并入到第一纤维材料,具有第二长度的碳纳米管可以并入到第二纤维材料,以将不同的性能增强传递给复合材料。当使用两种或更多种不同的纤维材料时,分布也可以是随机的、排列的或以一些方式另外定向的。如本文以下所论述的,对于一种或两种或多种含有并入其上的碳纳米管的纤维材料,分布也可以是非均匀方式。
在其它实施方式中,纤维材料不均匀地(non-uniformly)分布在陶瓷基体中。以另一种方式进行说明,碳纳米管并入的纤维材料可以非均匀地(heterogeneously)分布在陶瓷基体中。在一些实施方式中,不均匀分布是在陶瓷基体中的梯度分布。在一些实施方式中,陶瓷基体的第一部分含有碳纳米管并入的纤维材料,陶瓷基体的第二部分不含碳纳米管并入的纤维材料。作为后面实施方式的非限制性实例,本公开的陶瓷基体复合材料的最外面区域可以通过在陶瓷基体表面附近仅包括纤维材料而选择性地增强。
在含有不均匀分布的碳纳米管并入的纤维材料的实施方式中,碳纳米管并入的纤维材料可用于选择性地将增强的性能仅传递给复合材料的某些部分。作为非限制性实例,仅在其表面附近具有碳纳米管并入的纤维材料的复合材料可用于增强表面热传递性能,或用于传递表面抗冲击性。在可选实施方式中,具有不同长度的碳纳米管可并入到两种或更多种不同的纤维材料,所述材料然后不均匀地分布在复合材料中。例如,具有不同长度的碳纳米管并入到其上的纤维材料可以分布在复合材料的不同部分中。在这样的实施方式中,具有不同长度的碳纳米管有区别地增强它们所分布的复合材料的部分。作为非限制性实例,长度足以提高抗冲击性的碳纳米管可以并入到纤维材料并分布在复合材料表面附近,而长度足以建立导电渗滤通道的碳纳米管可并入到纤维材料并分布在复合材料的另一区域。根据本公开,性能增强的其它组合可以被本领域的普通技术人员预想到。如同在碳纳米管并入的纤维材料均匀地分布在复合材料中的情况,在不均匀分布的情况下,纤维材料的沉积可以再次是随机的、排列的或以一些方式另外定向的。
在一些实施方式中,复合材料包含陶瓷基体,碳纳米管并入的纤维材料的第一部分和碳纳米管并入的纤维材料的第二部分。碳纳米管并入的纤维材料的第一部分和碳纳米管并入的纤维材料的第二部分分别分布在陶瓷基体的第一区域和第二区域中。并入第一部分的碳纳米管的平均长度和并入第二部分的碳纳米管的平均长度被选择,以便陶瓷基体的第一区域和陶瓷基体的第二区域具有不同的机械、电或热性能。
在一些实施方式中,碳纳米管并入的纤维材料的第一部分和碳纳米管并入的纤维材料的第二部分是相同的纤维材料。例如,在一些实施方式中,纤维材料的第一部分和纤维材料的第二部分均是碳纤维或本文所述的任何其它纤维材料。在其它实施方式中,碳纳米管并入的纤维材料的第一部分和碳纳米管并入的纤维材料的第二部分是不同的纤维材料。在一些实施方式中,碳纳米管并入的纤维材料的第一部分和碳纳米管并入的纤维材料的第二部分的至少一个也包括至少涂覆碳纳米管并入的纤维材料的钝化层。这种钝化层的进一步的细节在下文中更详细地考虑。
各种陶瓷基体可以用于形成本文所述的复合材料。在一些实施方式中,陶瓷基体是二元、三元或四元陶瓷材料。在一些实施方式中,陶瓷基体是碳化物、氮化物、硼化物或氧化物。在一些实施方式中,陶瓷基体包括至少一种化合物,如例如碳化硅、碳化钨、碳化铬(Cr3C2)、碳化钛(TiC)、氮化钛(TiN)、硼化钛(TiB2)、氧化铝和氮化硅(Si3N4)。在另外的实施方式中,其它合适的陶瓷基体可以包括,例如SiCN、Fe2N和BaTiO3。仍在另外的实施方式中,陶瓷基体可以包括硅铝酸锂或富铝红柱石(具有两种化学计量形式的硅酸盐矿物:3Al2O3·2SiO2或2Al2O3·SiO2)。
在形成碳纳米管并入的纤维材料之后,可以利用本领域普通技术人员已知的任何方法形成含有陶瓷基体和碳纳米管并入的纤维材料的复合材料,所述方法包括,例如化学气相渗透法、反应熔体渗透法、电泳沉积法、聚合物浸渍法和热解、烧结、胶态沉积、溶胶-凝胶沉积和粉末加工。
本发明者考虑陶瓷基体和碳纳米管并入的纤维材料的某些组合在本领域中具有特别的效用。在一些实施方式中,纤维材料是碳化硅纤维,陶瓷基体是氧化铝。在其它实施方式中,纤维材料是碳化硅纤维,陶瓷基体是氮化硅。在其它实施方式中,纤维材料是碳化硅纤维,陶瓷基体是碳化硅。在其它实施方式中,纤维材料是碳纤维,陶瓷基体是碳化硅。图4和5显示分布在碳化硅陶瓷基体中的碳纳米管并入的碳纤维的示例性SEM图。图4的碳化硅颗粒被全部烧结,而图5的碳化硅颗粒仅部分被烧结。
在一些实施方式中,陶瓷基体是水泥。本领域的普通技术人员已知示例性的水泥,包括例如,卜特兰(Portland)水泥、火山灰(Pozzolan)-石灰(lime)水泥、矿渣(slag)-石灰水泥、富硫酸盐水泥、铝酸钙水泥、硫铝酸钙水泥及其组合。在一些实施方式中,用作陶瓷基体的水泥包括碳化物基水泥(例如,碳化钨、碳化铬和碳化钛水泥)、耐火水泥(例如,钨-氧化钍和钡-碳酸盐-镍(barium-carbonate-nickel)水泥)、铬-氧化铝水泥和镍-氧化镁铁-碳化锆水泥及其组合。
在更具体的实施方式中,陶瓷基体是卜特兰水泥。卜特兰水泥特征在于五类:I型、II型、III型、IV型和V型。卜特兰水泥的具体机械性能和固化行为限定了所指定水泥的分类。在一些实施方式中,卜特兰水泥是I型、II型、III型、IV型或V型卜特兰水泥。各种类型卜特兰水泥中的任何一种均可用作本文所述各个实施方式中的陶瓷基体。
本领域的普通技术人员将认识到复合材料通常应用约60%的纤维材料和约40%的基体材料。随着第三成分如并入的碳纳米管的引入,这些比例可以改变。例如,随着加入按重量计多达约25%的碳纳米管,纤维材料可以在按重量计约5%和约75%之间变化,陶瓷基体材料可以在按重量计约25%和约95%之间变化。如上所述,碳纳米管载荷量百分比可以变化,以便实现期望类型的性能增强。例如通过改变并入到纤维材料的碳纳米管的密度、改变纤维材料的量和/或改变并入到纤维材料的碳纳米管的长度,碳纳米管载荷量百分比可以变化。
在一些实施方式中,纤维材料的碳纳米管的重量百分比由碳纳米管的平均长度决定。在一些或其它实施方式中,纤维材料的碳纳米管的重量百分比进一步由并入到纤维材料的碳纳米管的覆盖密度决定。在示例性实施方式中,小于按重量计约5%的碳纳米管载荷量对于机械性能增强是足够的,然而,对于导电性和导热性增强,更期望大于按重量计约5%的碳纳米管载荷量。在一些实施方式中,本文所述的复合材料含有多达按重量计约10%的碳纳米管。在一些实施方式中,碳纳米管按重量计在复合材料的约0.1和约10%之间。在一些实施方式中,纤维材料含有按重量计多达约40%的碳纳米管。在一些实施方式中,碳纳米管按重量计在碳纳米管并入的纤维材料的约0.5和约40%之间。考虑到以上所述,本发明复合材料的组成可以广泛地变化,同时仍属于本文所阐述的本公开的精神和范围内。
根据应用,可以利用连续纤维、切短纤维或其组合形式的纤维材料形成本发明复合材料。在一些实施方式中,纤维材料是连续纤维或切短纤维的形式。在一些实施方式中,纤维材料是切短纤维的形式。在切短纤维的情况下,连续纤维可并入有碳纳米管,如本文和申请人的共同未决专利申请中所述,然后根据本领域普通技术人员已知的方法切割成较小的区段。在一些实施方式中,连续纤维可单独地或者以上文所提及的织造或非织造纤维的任何排列直接分布在复合材料中。在一些实施方式中,纤维材料具有可缠绕维度。
在一些实施方式中,本发明复合材料也包括至少涂覆碳纳米管并入的纤维材料的钝化层。在一些实施方式中,钝化层也涂覆并入到纤维材料上的碳纳米管上。在用于形成复合材料的情况下,纤维材料和/或并入到其上的碳纳米管可以变得与陶瓷基体或用于形成陶瓷基体的前体(一种或多种)有反应性。例如,在形成具有陶瓷基体和碳纳米管并入的纤维材料的复合材料的过程中,一些纤维材料和/或并入到其上的碳纳米管可以起反应,在陶瓷基体中形成不期望的副产物,可以在结构上消弱或以另外方式降低复合材料的性能。将钝化层结合到碳纳米管并入的纤维材料上消除或基本上减少纤维材料或碳纳米管的不期望的反应。
许多不同的钝化层及其沉积方法适于涂覆本文所述的碳纳米管并入的纤维材料。通常,任何传统的隔离涂层可用作钝化层,以防止碳纳米管的不期望的化学反应。传统的隔离涂层可以包括上述上浆剂,或者,更通常地,包括用于纤维材料的二氧化硅和氧化铝基涂层。在一些实施方式中,示例性钝化层可以包括,例如镍和二硼化钛。同样适用的可选钝化层包括例如,铬、镁、钛、银和锡。在一些实施方式中,钝化层通过诸如电镀或化学气相沉积的技术沉积在碳纳米管并入的纤维材料上。例如,钝化层可以是由电镀技术沉积的无电镍(electroless nickel)或镍合金。在一些实施方式中,钝化层的厚度为约1nm至约10μm。
尽管碳纳米管并入的纤维材料在形成复合材料期间可以变得与陶瓷基体有反应性,并且这样的反应通常被认为是不期望的,但在一些实施方式中,这样的反应可用于有益地增强复合材料的性能。在这样的实施方式中,纤维材料或并入到其上的碳纳米管中的至少一种至少部分地与陶瓷前体材料反应,形成至少部分陶瓷基体。当不期望在复合材料中形成空隙时,纤维材料或碳纳米管与陶瓷前体材料的反应可以是期望的。作为非限制性实例,含有碳化硅陶瓷基体和分布在其中的碳纤维的的复合材料可通过将液态硅施用到碳纳米管并入的碳纤维而形成,这导致利用碳纤维或并入到其上的碳纳米管作为碳源在原位形成碳化硅。原位形成陶瓷基体的其它实例可以被本领域的普通技术人员预想到。
在一些实施方式中,将碳纳米管并入到纤维材料可用于进一步的目的,包括,例如作为上浆剂以保护纤维材料免受湿气、氧化、磨损和/或压缩。基于碳纳米管的上浆剂也可用作复合材料中纤维材料和陶瓷基体之间的界面。替代常规上浆剂或除常规上浆剂外,这种基于碳纳米管的上浆剂可以施用于纤维材料。常规上浆剂的类型和功能变化很大,并且包括例如,表面活性剂、抗静电剂、润滑剂、硅氧烷、烷氧基硅烷、氨基硅烷、硅烷、硅烷醇、聚乙烯醇、淀粉、及其混合物。当存在时,这样的常规上浆剂可保护碳纳米管本身和/或提供碳纳米管单独无法传递的进一步的性能增强给纤维材料。在一些实施方式中,常规上浆剂可以在并入碳纳米管之前从纤维材料去除。如上所述,并入到纤维材料的碳纳米管可直接与纤维材料结合或通过在一些实施方式中可以是常规上浆剂的催化纳米颗粒或隔离涂层间接结合。
含有陶瓷基体和碳纳米管并入的纤维材料的复合材料具有许多潜在的用途。在一些实施方式中,本文描述了含有复合材料的制品,所述复合材料含有陶瓷基体和碳纳米管并入的纤维材料。
另外,碳纳米管并入的传导性碳纤维可用于制备电极,用于超导体。在超导纤维的生产中,实现超导层与纤维材料的足够粘附是有挑战性的,这至少部分地由于纤维材料和超导层不同的热膨胀系数。本领域中另一困难出现在通过CVD方法涂覆纤维材料期间。例如,反应性气体(例如,氢气或氨气)可侵蚀纤维表面和/或在纤维表面上形成不期望的烃化合物,并使超导层的良好粘附更加困难。碳纳米管并入的碳纤维材料可克服本领域中这些上述挑战。
如上所述,具有碳纳米管并入的纤维材料的复合材料由于存在碳纳米管而可显示提高的耐磨性。可得益于含有金属基体和碳纳米管并入的纤维材料的复合材料的存在的制品包括但不限于制动盘、汽车驱动轴、橡胶O形环和密封垫片、工具、承轴、航空器部件和自行车车架。
碳纳米管的大的有效表面积使得本发明复合材料适于滤水应用和其它提炼过程,如例如将有机油从水中分离。含有碳纳米管并入的纤维材料的复合材料也可用于从泻水台(water table)、储水设备或家用和办公室用在线滤器去除有机毒素。
在油田技术中,本发明复合材料在钻井设备的制造中是有用的,所述钻井设备包括,例如管承轴(pipe bearing)、管系加强物(piping reinforcement)和橡胶O形圈。此外,如上所述,碳纳米管并入的纤维可用于同样适用于油田的提炼过程,以从地质层组获得有价值的石油沉积物。例如,本发明复合材料可用于从存在充足的水和/或沙子的地层提取油或者提取更重的油,所述更重的油由于它们的高沸点而以其它方式难以分离。结合穿孔管道系统,例如,涂覆在穿孔管系上的本发明复合材料对这种重油的芯吸(wicking)可以可操作地与真空系统或类似物连接,以从重油和油页岩地层中连续去除高沸馏分。而且,这样的方法可以与本领域中已知的常规热或催化裂解方法结合使用,或者替代其使用。
本发明复合材料也可以增强航空航天和弹道应用中的结构元件。例如,包括导弹前锥体,航空器机翼前缘,主要航空器结构部件(例如,襟翼、翼面、推进器和空气制动器、小飞机机身、直升机壳体和旋转机翼)、次要航空器结构部件(例如,地板、门、座位、空调以及副油箱)和航空器发动机部件在内的结构可以受益于含有碳纳米管并入的纤维材料的本发明复合材料提供的结构增强。许多其它应用中的结构增强可以包括,例如扫雷器外壳、头盔、罩、火箭喷嘴、救援担架和发动机元件。在建筑物和建筑中,外部特征的结构增强包括,例如柱、三角形檐饰、拱顶、上楣柱和框架。同样地,内部建筑增强包括如例如遮帘、卫生器具、窗户轮廓、以及类似物的结构。
在海洋工业中,结构增强可包括船壳体、纵梁、桅、推进器、舵和甲板。本发明复合材料也可在重型运输工业中用于大的面板中,例如用于拖车壁、有轨车的底板面板、卡车驾驶室、外部主体成型、公共汽车车体壳和货柜。在汽车应用中,复合材料可用于内部部件(例如,装饰物、座位和仪表板)、外部结构(例如,车身板、开口、车身底部以及前和后模件)和汽车发动机舱和燃料机械区域部件(例如,轴和悬架、燃料和排气系统,以及电和电子元件)。
本发明复合材料的其它应用包括,例如,桥梁建筑、钢筋混凝土产品(例如,销钉、钢筋、后张和预压钢筋束)、永久框架、电力传输和分布结构(例如,多用柱、传送柱、和十字臂)、公路安全和路旁特征(例如,标识支柱、护栏、柱和支柱)、噪声屏障、城市管道和储存罐。
本发明复合材料也可用于各种休闲设备,如滑水橇和滑雪橇、自行车、皮艇、独木船和划桨、滑雪板、高尔夫俱乐部杆、高尔夫球车、钓鱼竿和游泳池。其它生活消费品和商业设备包括齿轮、锅、住宅、气体压力瓶、家用电器(例如,洗涤器、洗衣机筒、干衣机、废物处理装置、空调和加湿器)的零件。
碳纳米管并入的纤维材料的电性能也可影响各种能量和电应用。例如,本发明复合材料被用于风力涡轮机叶片、太阳能结构、电子封装件(例如,便携式电脑、手机、计算机柜,其中并入的碳纳米管可用于提供EMI屏蔽)。其它应用包括电力线(powerlines)、冷却装置、灯杆、电路板、电联接盒、梯栏杆、光纤、建造在结构中的电力(power)诸如数据线、计算机终端机座、和商业设备(例如,复印机、收银机和邮政设备)。
在其它各种实施方式中,在本文描述了制造含有陶瓷基体和碳纳米管并入的纤维材料的复合材料的方法。在一些实施方式中,方法包括提供碳纳米管并入的纤维材料,将碳纳米管并入的纤维材料分布在生陶瓷前体中和固化生陶瓷前体以形成含有陶瓷基体和碳纳米管并入的纤维材料的复合材料。
在一些实施方式中,方法进一步包括使复合材料致密化。示例性致密化方法对本领域的普通技术人员来说是已知的,并且包括,例如压缩、烧结和电流激活压力辅助(current-activiated pressure assisted)致密化。致密化特别有益于本发明复合材料的装甲应用,以提高其抗冲击性。在一些实施方式中,至少部分纤维材料和/或碳纳米管与生陶瓷前体进行反应,形成陶瓷基体。在这样的实施方式中,有益的致密化可以在不原位形成陶瓷基体而制成的复合材料上实现。
在方法的一些实施方式中,碳纳米管并入的纤维材料均匀地分布在陶瓷基体中。在其它实施方式中,碳纳米管并入的纤维材料不均匀分布在陶瓷基体中。在一些实施方式中,不均匀分布可以是梯度分布。
在方法的一些实施方式中,陶瓷基体包括至少一种选自下列的陶瓷化合物:碳化硅、碳化钨、碳化铬、碳化钛、氮化钛、硼化钛、氧化铝、氮化硅、富铝红柱石、SiCN、Fe2N和BaTiO3。在一些实施方式中,纤维材料包括,例如玻璃纤维、碳纤维、金属纤维、陶瓷纤维、有机纤维、碳化硅纤维、碳化硼纤维、氮化硅纤维、氧化铝纤维及其组合。在一些实施方式中,纤维材料是切短纤维。在一些实施方式中,纤维材料是连续纤维材料。
在一些实施方式中,方法进一步包括用钝化层涂覆至少部分的碳纳米管并入的纤维材料。在一些实施方式中,也用钝化层涂覆碳纳米管。在一些实施方式中,钝化层可以通过如例如,电镀或化学气相沉积的技术被沉积。示例性钝化层包括,例如镍、二硼化钛、铬、镁、钛、银和锡。通常,任何传统的隔离涂层可被用作钝化层,包括上浆剂,如例如二氧化硅-和氧化铝基涂层。
在其它实施方式中,本文描述了制造含有水泥陶瓷基体和碳纳米管并入的纤维材料的复合材料的方法。方法包括提供水泥陶瓷基体,提供碳纳米管并入的纤维材料,将碳纳米管并入的纤维材料分布在水泥中,和固化水泥以形成含有碳纳米管并入的纤维材料的混凝土。在一些实施方式中,碳纳米管并入的纤维材料是切短的纤维材料。在一些实施方式中,方法包括将水加入到水泥中,然后,在固化过程中使水泥脱水,以形成混凝土。
在一些实施方式中,含有碳纳米管并入的纤维材料的混凝土可进一步包括任何其它通常用于混凝土的成分。示例性的额外成分包括,例如细碎集料(例如,碎石、沙、壳体和天然砂砾)、用于支撑拉伸负荷的增强材料(例如,钢增强杆、玻璃纤维、钢纤维和塑料纤维)和化学混合物(例如,加速剂、缓凝剂、增塑剂、掺气剂(air entrainment)、颜料和抗腐蚀剂)。
本文所公开的实施方式提供碳纳米管并入的纤维,其容易通过美国专利申请12/611,073、12/611,101和12/611,103中描述的方法进行制备,每一个所述专利申请通过引用其整体被并入本文。
为了将碳纳米管并入到纤维材料,在纤维材料上直接合成碳纳米管。在一些实施方式中,这通过首先将碳纳米管形成催化剂布置在纤维材料上来完成。在该催化剂沉积之前,可以进行一些预制过程。
在一些实施方式中,纤维材料可以任选地用等离子体处理,以制备接受催化剂的表面。例如,等离子体处理的玻璃纤维材料可以提供粗糙的玻璃纤维表面,其中可以沉积碳纳米管形成催化剂。在一些实施方式中,等离子体也用于“清洁”纤维表面。用于使纤维表面“粗糙化”的等离子体方法因此促进催化剂沉积。粗糙度典型地是在纳米级别。在等离子体处理方法中,形成纳米深度和纳米直径的凹坑(craters)或者凹陷(depressions)。使用各种不同气体的任何一种或者多种的等离子体,包括但不限于氩气、氦气、氧气、氨气、氮气和氢气,可实现这种表面改性。
在一些实施方式中,在采用的纤维材料具有与其结合的上浆材料的情况下,这种上浆可以任选地在催化剂沉积之前被去除。任选地,上浆材料可以在催化剂沉积之后被去除。在一些实施方式中,可以在碳纳米管合成期间完成上浆材料的去除,或者就在预热步骤中碳纳米管合成之前完成上浆材料的去除。在其它实施方式中,一些上浆剂可以保留在整个碳纳米管合成过程中。
在碳纳米管形成催化剂沉积之前或沉积的同时,另一任选步骤是将隔离涂层施用到纤维材料。隔离涂层是被设计来保护灵敏纤维材料,如碳纤维、有机纤维、金属纤维等等的完整性的材料。这样的隔离涂层可以包括,例如烷氧基硅烷、铝氧烷、氧化铝纳米颗粒、旋涂玻璃和玻璃纳米颗粒。在一个实施方式中,碳纳米管形成催化剂可以加入到未固化隔离涂层材料中,然后一起施用到纤维材料。在其它实施方式中,可以在碳纳米管形成催化剂沉积之前将隔离涂层材料加入到纤维材料中。在这样的实施方式中,隔离涂层可以在催化剂沉积之前部分地固化。隔离涂层材料可以具有足够薄的厚度,以允许碳纳米管形成催化剂暴露于碳原料气,用于随后的CVD生长。在一些实施方式中,隔离涂层厚度小于或约等于碳纳米管形成催化剂的有效直径。一旦碳纳米管形成催化剂和隔离涂层在适当的位置,隔离涂层可以被充分固化。在一些实施方式中,隔离涂层的厚度可以大于碳纳米管形成催化剂的有效直径,只要它仍允许碳纳米管原料气接近催化剂位置。这样的隔离涂层可以是足够多孔的,以允许碳原料气接近碳纳米管形成催化剂。
不受理论限制,隔离涂层可用作纤维材料和碳纳米管之间的中间层,并且也有助于机械地将碳纳米管并入到纤维材料。这样的机械并入提供坚固的系统,其中纤维材料仍充当组织碳纳米管的平台,并且用隔离涂层进行机械并入的益处类似于上文描述的间接型并入。而且,包含隔离涂层的益处是直接保护,它使纤维材料免受由于暴露于湿气而造成的化学损害和/或由于在用于提高碳纳米管生长的温度下加热纤维材料而造成的任何热损害。
如以下进一步描述的,碳纳米管形成催化剂可以被制备为液体溶液,所述液体溶液含有作为过渡金属纳米颗粒的碳纳米管形成催化剂。合成的碳纳米管的直径与上述过渡金属纳米颗粒的尺寸有关。
碳纳米管合成可以基于在高温度下发生的化学气相沉积(CVD)方法。具体温度是催化剂选择的函数,但是典型地在大约500至1000℃的范围内。因此,碳纳米管合成包括将纤维材料加热到上述范围内的温度,以支持碳纳米管生长。
然后进行负载催化剂的纤维材料上的CVD-促进的碳纳米管生长。CVD方法可被例如含碳原料气体,如乙炔、乙烯和/或乙醇促进。碳纳米管合成方法一般使用惰性气体(氮气、氩气和/或氦气)作为主要的载体气体。通常,提供的含碳原料气体的范围为全部混合物的大约0%至大约15%之间。通过从生长室中清除湿气和氧气,可以制备CVD生长的基本惰性环境。
在碳纳米管合成过程中,碳纳米管在针对碳纳米管生长可操作的过渡金属催化纳米颗粒的位置生长。强的等离子体产生电场的存在可被任选地用于影响碳纳米管生长。即,生长趋于沿电场的方向。通过适当地调整等离子体喷射和电场的几何形状,垂直排列的碳纳米管(即,垂直于纤维材料的纵轴)可被合成。在某些条件下,甚至在等离子体不存在的情况下,紧密间隔的纳米管也能保持基本垂直的生长方向,导致类似于地毯或者森林的碳纳米管密集排列。
通过喷射或者浸涂溶液或者通过例如等离子体方法的气相沉积,可完成在纤维材料上布置催化纳米颗粒的操作。因此,在一些实施方式中,在溶剂中形成催化剂溶液之后,通过用该溶液喷涂或者浸涂纤维材料或者喷涂和浸涂的组合,可以施用催化剂。单独或者组合使用的任一技术可被使用一次、两次、三次、四次、多达很多次,以提供用催化纳米颗粒充分均匀地涂布的纤维材料,所述催化纳米颗粒针对碳纳米管的形成是可操作的。当应用浸涂时,例如纤维材料可置于第一浸渍浴中,在第一浸渍浴中持续第一停留时间。当应用第二浸渍浴时,纤维材料可置于第二浸渍浴中,持续第二停留时间。例如,碳纤维材料可经历碳纳米管形成催化剂的溶液大约3秒至大约90秒,这取决于浸渍配置和线速度。使用喷涂或者浸涂方法,可以获得具有低于大约5%表面覆盖率至高达大约80%覆盖率的催化剂表面密度的纤维材料。在较高表面密度(例如约80%)下,碳纳米管形成催化剂纳米颗粒几乎是单层。在一些实施方式中,在纤维材料上涂布碳纳米管形成催化剂的方法只是产生单层。例如,在碳纳米管形成催化剂堆上的碳纳米管生长可以损害碳纳米管并入至纤维材料的程度。在其它实施方式中,使用蒸发技术、电解沉积技术和本领域技术人员已知的其它方法,如将过渡金属催化剂作为金属有机物、金属盐或者其它促进气相运输的组分加入等离子体原料气,可以将过渡金属催化纳米颗粒沉积在纤维材料上。
因为制造碳纳米管并入的纤维的方法被设计为连续的,所以可以在一系列的浴中浸涂可缠绕纤维材料,其中浸涂浴在空间上是分开的。在从头产生初始纤维——如从炉中新形成的玻璃纤维——的连续方法中,浸渍浴或者碳纳米管形成催化的喷涂可以是充分冷却新形成的纤维材料之后的第一个步骤。在一些实施方式中,可以用其中分布碳纳米管形成催化剂颗粒的水喷流冷却来完成玻璃纤维的冷却。
在一些实施方式中,当在连续方法中生产纤维并将其并入有碳纳米管时,可以代替上浆进行碳纳米管形成催化剂的施用。在其它实施方式中,在其它上浆剂存在的情况下,碳纳米管形成催化剂可施用于新形成的纤维。碳纳米管形成催化剂和其它上浆剂的这种同时施用可使碳纳米管形成催化剂与纤维材料表面接触,以保证碳纳米管的并入。在再进一步的实施方式中,碳纳米管形成催化剂可以通过喷涂或浸涂施用到初始纤维,同时,纤维材料处于充分软化的状态,例如,接近或低于退火温度,以便碳纳米管形成催化剂稍微嵌入纤维材料表面。例如,当将碳纳米管形成催化剂沉积在热玻璃纤维材料上时,应该注意,不要超过碳纳米管形成催化剂的熔点,从而引起纳米颗粒熔融并失去对碳纳米管特征(例如,直径)的控制。
碳纳米管形成催化剂溶液可以是任意d-区过渡金属的过渡金属纳米颗粒溶液。另外,纳米颗粒可以包括元素形式、盐形式及其混合形式的d-区金属的合金和非合金混合物。这样的盐形式包括但不限于氧化物、碳化物和氮化物、醋酸盐、硝酸盐等等。非限制性的示例性过渡金属纳米颗粒包括,例如,Ni、Fe、Co、Mo、Cu、Pt、Au和Ag及其盐以及其混合物。在一些实施方式中,通过将碳纳米管形成催化剂直接施用或并入到纤维材料,将这样的碳纳米管形成催化剂布置在纤维材料上。可容易地从各个供应商,包括例如Ferrotec Corporation(Bedford,NH),商业购得多种纳米颗粒过渡金属催化剂。
用于将碳纳米管形成催化剂施用到纤维材料的催化剂溶液可以在任何普通的溶剂中,该溶剂允许碳纳米管形成催化剂均匀地到处分散。这种溶剂可包括但不限于,水、丙酮、己烷、异丙醇、甲苯、乙醇、甲醇、四氢呋喃(THF)、环己烷或者任何其他溶剂,该其他溶剂具有控制的极性以产生碳纳米管形成催化纳米颗粒的适当分散体。碳纳米管形成催化剂在催化剂溶液中的浓度可在大约1∶1至1∶10000的催化剂比溶剂的范围内。
在一些实施方式中,将碳纳米管形成催化剂施用到纤维材料之后,纤维材料可以任选地被加热到软化温度。该步骤可有助于将碳纳米管形成催化剂嵌入纤维材料的表面,以促进接种生长并防止催化剂使生长中的碳纳米管漂浮在前沿顶端的顶端生长。在一些实施方式中,将碳纳米管形成催化剂布置在纤维材料上之后纤维材料的加热可以在约500℃和约1000℃之间的温度。加热到可用于碳纳米管生长的这样的温度可用来去除纤维材料上任何预先存在的上浆剂,允许碳纳米管形成催化剂直接沉积在纤维材料上。在一些实施方式中,也可以在加热之前将碳纳米管形成催化剂置于上浆涂层的表面。加热步骤可用于去除上浆材料,同时使碳纳米管形成催化剂布置在纤维材料的表面。可以在引入用于碳纳米管生长的含碳原料气体之前或基本上同时,在这些温度下进行加热。
在一些实施方式中,将碳纳米管并入纤维材料的方法包括从纤维材料中去除上浆剂,去除上浆后将碳纳米管形成催化剂施用到纤维材料,将纤维材料加热到至少约500℃和在纤维材料上合成碳纳米管。在一些实施方式中,碳纳米管并入方法的操作包括从纤维材料中去除上浆,将碳纳米管形成催化剂施用到纤维材料,将纤维材料加热到适于碳纳米管合成的温度和将碳等离子体喷涂到负载催化剂的纤维材料上。因此,在商业纤维材料被应用的情况下,构造碳纳米管并入的纤维的方法可以包括在纤维材料上布置催化剂之前从纤维材料去除上浆的独立步骤。一些商业上浆材料——如果存在——可以防止碳纳米管形成催化剂与纤维材料的表面接触,并抑制碳纳米管并入到纤维材料。在一些实施方式中,在碳纳米管合成条件下确保上浆去除的情况下,可以在碳纳米管形成催化剂沉积之后,但刚好在提供含碳原料气体之前或期间进行上浆的去除。
合成碳纳米管的步骤可以包括形成碳纳米管的各种技术,包括但不限于微腔、热或者等离子体增强的CVD技术、激光烧蚀、弧光放电和高压一氧化碳(HiPCO)。尤其地,在CVD期间,可以直接使用上面布置碳纳米管形成催化剂的上浆的纤维材料。在一些实施方式中,任何常规上浆剂均可在碳纳米管合成期间被去除。在一些实施方式中,其它上浆剂未被去除,但由于含碳原料气体通过上浆的扩散而并不阻碍碳纳米管合成和并入到纤维材料。在一些实施方式中,乙炔气体被电离以产生碳纳米管合成用冷碳等离子体喷流。该等离子体被引导向负载催化剂的纤维材料。因此,在一些实施方式中,在纤维材料上合成碳纳米管包括(a)形成碳等离子体;和(b)引导碳等离子体至布置在纤维材料上的催化剂上。生长的碳纳米管的直径由碳纳米管形成催化剂的尺寸控制。在一些实施方式中,上浆的纤维材料被加热至大约550℃至大约800℃之间以促进碳纳米管合成。为引发碳纳米管的生长,两种或多种气体被释放入反应器:惰性载体气体(例如,氩气、氦气或者氮气)和含碳原料气体(例如,乙炔、乙烯、乙醇或者甲烷)。碳纳米管在碳纳米管形成催化剂的位置生长。
在一些实施方式中,CVD生长可以是等离子体增强的。通过在生长过程期间提供电场,可产生等离子体。在这些条件下生长的碳纳米管可以沿电场的方向。因此,通过调整反应器的几何形状,垂直排列的碳纳米管可以在碳纳米管垂直于纤维材料的纵轴的地方生长(即,放射状生长)。在一些实施方式中,并不需要等离子体绕纤维材料的放射状生长。对于具有明显的侧面的纤维材料,如例如带材、垫、织物、板片以及类似物,碳纳米管形成催化剂可被布置在纤维材料的一个或者两个侧面上。相应地,在这样的条件下,碳纳米管也可在纤维材料的一个或者两个侧面上生长。
如上所述,以足以提供连续过程使碳纳米管并入可缠绕纤维材料的速度进行碳纳米管合成。许多设备构造有利于这种连续的合成,如以下所示例的。
在一些实施方式中,可以在“全等离子体(all-plasma)”方法中制备碳纳米管并入的纤维材料。在这样的实施方式中,纤维材料经过许多等离子体介导的步骤,以形成最终的碳纳米管并入的纤维材料。等离子体方法首先可以包括纤维表面改性的步骤。这是纤维材料的表面“粗糙化”以促进催化剂沉积的等离子体方法——如上所述。同样如上所述,使用各种不同气体的任何一种或者更多种的等离子体,包括但不限于氩气、氦气、氧气、氨气、氢气和氮气,可以实现表面改性。
在表面改性之后,纤维材料进行催化剂施用。在本发明的全等离子体方法中,该步骤是用于在纤维材料上沉积碳纳米管形成催化剂的等离子体方法。碳纳米管形成催化剂通常是上述过渡金属。过渡金属催化剂可被加入等离子体原料气体作为非限制性形式的前体,包括例如,铁磁流体、金属有机物、金属盐、其混合物或适于促进气相运输的任何其它组分。可在室温下周围环境中施用碳纳米管形成催化剂,既不需要真空也不需要惰性气氛。在一些实施方式中,纤维材料在催化剂施用之前被冷却。
继续全等离子体方法,碳纳米管合成发生在碳纳米管生长反应器中。通过使用等离子体增强的化学气相沉积,可以实现碳纳米管生长,其中碳等离子体被喷涂至负载催化剂的纤维上。因为碳纳米管生长发生在高温(取决于催化剂,典型地在大约500℃至约1000℃的范围)下,因此在暴露于碳等离子体之前,负载催化剂的纤维可被加热。对于碳纳米管并入方法,纤维材料可任选地被加热直到发生软化。在加热之后,纤维材料易于接收碳等离子体。例如,通过使含碳原料气体,如例如,乙炔、乙烯、乙醇等等经过能够使气体电离的电场,产生碳等离子体。经过喷嘴,该冷碳等离子体被引导至纤维材料。纤维材料可以非常接近于喷嘴,诸如在喷嘴的大约1厘米之内,以接收等离子体。在一些实施方式中,加热器被布置于等离子体喷涂器处的纤维材料上,以保持纤维材料的高温。
连续碳纳米管合成的另外的构造包括直接在纤维材料上合成和生长碳纳米管的特定矩形反应器。该反应器可被设计用于产生碳纳米管并入的纤维材料的连续流线(in-line)方法中。在一些实施方式中,通过CVD方法在大气压下以及在约550℃和约800℃范围的高温下在多区域反应器中生长碳纳米管。碳纳米管合成发生在大气压下的事实是有利于将反应器结合入用于碳纳米管并入纤维材料的连续处理生产线的一个因素。与使用这种区域反应器的流线连续处理相符的另外的优势是碳纳米管生长在几秒钟内发生,与在本领域典型的其他程序和设备构造中的几分钟(或者更长)不同。
根据各个实施方式的碳纳米管合成反应器包括以下特征:
矩形构造的合成反应器:本领域已知的典型碳纳米管合成反应器的横截面是圆形的。对此有许多原因,包括例如历史的原因(例如,在实验室中经常使用圆柱形反应器)和方便(例如,在圆柱形反应器中容易模拟流体动力学,加热器系统容易接受圆形的管(例如,石英,等等),并且易于制造。背离圆柱形的惯例,本公开内容提供具有矩形横截面的碳纳米管合成反应器。背离的原因至少包括如下:
1)反应器体积的低效利用。因为可由反应器处理的许多纤维材料是相对平的(例如,平的带材、类似薄片的形式或伸展的丝束或粗纱),因此圆形横截面是反应器体积的低效利用。这种低效导致圆柱形碳纳米管合成反应器的若干缺点,包括例如,a)保持充分的系统净化;增加的反应器体积需要增加的气流速以保持相同水平的气体净化,这导致在开放的环境中大量生产碳纳米管的低效率;b)增加的含碳原料气体流速;按照上述的a),用于系统净化的惰性气体流的相对增加需要增加的含碳原料气体流速。考虑示例性12K玻璃纤维粗纱的体积比具有矩形横截面的合成反应器的总体积小2000倍。在相等的圆柱形反应器(即,其宽度容纳与矩形横截面反应器相同的平面玻璃纤维材料的圆柱形反应器)中,玻璃纤维材料的体积比反应器的体积小17,500倍。尽管气相沉积过程,如CVD典型地仅由压力和温度控制,但体积对沉积的效率具有显著影响。用矩形反应器,仍有过量的体积。并且该过量的体积促进不需要的反应。然而,圆柱形反应器的体积是可用于促进不需要的反应的体积的大约8倍。由于这种更多的发生竞争反应的机会,在圆柱形反应器室中,期望的反应更慢地有效地发生。对于连续生长方法的进行,碳纳米管生长的这种减慢是有问题的。矩形反应器构造的另外的益处是还可以通过针对矩形室使用小高度进一步减小反应器体积,使得该体积比更好以及反应更加有效。在本文所公开的一些实施方式中,矩形合成反应器的总体积大于经过合成反应器的纤维材料总体积不超过约3000倍。在一些进一步的实施方式中,矩形合成反应器的总体积大于经过合成反应器的纤维材料总体积不超过约4000倍。在一些仍进一步的实施方式中,矩形合成反应器的总体积大于经过合成反应器的纤维材料总体积大不超过约10,000倍。另外,明显的是,当使用圆柱形反应器时,与具有矩形横截面的反应器相比,需要更多的含碳原料气体,以提供相同的流量百分数。应当理解,在一些其他实施方式中,合成反应器具有由这样的多边形形式描述的横截面,该多边形形式不是矩形但与其比较类似,并且相对于具有圆形横截面的反应器其提供反应器体积的相似减小;和c)有问题的温度分布;当使用相对小直径的反应器时,从室的中心至其壁的温度梯度是最小的,但对于增大的反应器尺寸,如可用于商业规模生产,这样的温度梯度增加。温度梯度导致纤维材料上产品质量变化(即,产品质量作为径向位置的函数变化)。当使用具有矩形横截面的反应器时,该问题基本被避免。尤其地,当使用平的基底时,反应器高度可随基底的尺寸按比例增大而保持不变。反应器的顶部和底部之间的温度梯度基本上可被忽略,并且因此,避免了发生的热问题和产品质量变化。
2)气体引入。因为在本领域中通常使用管式炉,典型的碳纳米管合成反应器在一端引入气体并且将其经过反应器吸至另一端。在本文公开的一些实施方式中,气体可被对称地引入反应器的中心或者目标生长区域之内,这或者通过侧面或者通过反应器的顶部和底部板。这提高了总的碳纳米管生长速度,因为在系统的最热部分——碳纳米管生长最活跃的位置,引入的原料气体连续地补充。
分区。供相对冷的净化区域的室从矩形合成反应器的两端延伸。申请人已确定,如果热的气体与外部环境(即,矩形反应器的外部)混合,纤维材料的降解会增加。冷的净化区域提供内部系统和外部环境之间的缓冲。本领域已知的碳纳米管合成反应器构造通常需要基底被小心地(并且缓慢地)冷却。在本发明的矩形碳纳米管生长反应器的出口处的冷的净化区域在短的时间段内达到冷却——如连续的流线处理所要求的。
非接触、热壁的、金属性反应器。在一些实施方式中,应用金属性热壁反应器(例如,不锈钢)。该类型反应器的使用可能似乎有悖常理,因为金属,尤其是不锈钢,更容易发生碳沉积(即,形成烟灰和副产物)。因此,大部分碳纳米管合成反应器由石英制成,因为碳沉积较少,石英容易清洁,并且石英有利于样品观察。然而,申请人已观察到,不锈钢上增加的烟灰和碳沉积导致更加一致的、更有效的、更快的和更稳定的碳纳米管生长。不被理论束缚,已指出,结合常压操作,发生在反应器中的CVD方法是扩散有限的。即,碳纳米管形成催化剂是“过量供给的”,由于其相对更高的分压(比起假设在部分真空下操作反应器),在反应器系统中太多的碳可利用。因此,在开放的系统中——尤其在清洁的系统中——太多的碳可粘附至碳纳米管形成催化剂颗粒上,减弱其合成碳纳米管的能力。在一些实施方式中,当反应器是“脏的”时,即在金属性反应器壁上具有沉积的烟灰时,有意地运转矩形反应器。一旦碳沉积到反应器壁上的单层上,碳将易于在其本身上沉积。因为由于该机制一些可用的碳被“收回”,以基团形式剩余的碳原料以不使催化剂中毒的速度与碳纳米管形成催化剂进行反应。现有系统“干净地”运转,如果将其打开用于连续的处理,其会以减小的生长速度产生低得多的碳纳米管的产率。
尽管进行如上所述的“脏的”碳纳米管合成一般是有益的,但设备的某些部分(例如,气体集合管和入口)在烟灰形成阻塞时可消极地影响碳纳米管生长过程。为了解决该问题,可用抑制烟灰的涂料如例如,二氧化硅、氧化铝或者MgO保护碳纳米管生长反应室的这些区域。实践中,设备的这些部分可被浸涂在这些抑制烟灰的涂料中。金属,如可与这些涂料一起使用,因为INVAR具有相似的CTE(热膨胀系数),这在更高的温度保证涂层的适当粘附力,防止烟灰显著地聚集在关键区域。
结合的催化剂还原和碳纳米管合成。在本文公开的碳纳米管合成反应器中,催化剂还原和碳纳米管生长都发生在反应器内。这是重要的,因为如果作为单独的操作进行,还原步骤不能足够及时完成用于连续的方法。在本领域已知的典型的方法中,还原步骤通常需要1-12小时来进行。根据本本公开,两种操作都发生在反应器中,这至少部分地是由于碳原料气体被引入反应器的中心而不是末端的事实,碳原料气体被引入末端在使用圆柱形反应器的技术中是典型的。当纤维材料进入加热的区域时发生还原过程。在此时,气体已有时间与壁进行反应,并且在还原催化剂(通过氢基团相互作用)之前冷却。正是在该过渡区域发生还原。在系统中最热的等温区域,发生碳纳米管生长,最大生长速度出现在接近反应器中心附近的气体入口。
在一些实施方式中,当应用松散连接的纤维材料——包括例如丝束或粗纱(例如,作为玻璃粗纱)时,连续的方法可以包括展开丝束或粗纱的线股和/或丝的步骤。因此,当丝束或粗纱被打开时,例如,使用基于真空的纤维伸展系统,其可被伸展。当使用例如可能相对硬的上浆的玻璃纤维粗纱时,可应用额外的加热以使粗纱“软化”,促进纤维伸展。包括单独的丝的伸展纤维可被充分地伸展开,以暴露丝的全部表面积,从而允许粗纱在随后的方法步骤中更加有效地反应。例如,伸展的丝束或粗纱可以经过表面处理步骤,该步骤由如上所述的等离子体系统组成。然后,粗糙化的伸展纤维可以经过碳纳米管形成催化剂浸渍浴。结果是玻璃粗纱的纤维,其具有放射状地分布在其表面上的催化剂颗粒。然后,粗纱的负载催化剂的纤维进入适当的碳纳米管生长室,如上述矩形室,其中经过大气压CVD或者等离子体增强的CVD方法的流被用于以高达每秒钟数微米的速度合成碳纳米管。现在具有放射状地排列的碳纳米管的粗纱纤维退出碳纳米管生长反应器。
应该理解,基本不影响本发明各种实施方式的活性的改进也被包括在本文提供的本发明定义范围内。因此,下列实施例意欲阐明而并非限制本发明。
实施例1:碳纳米管并入的碳纤维陶瓷基体复合材料的形成。碳化硅基体复合材料通过胶态处理(colloidal processing)切短的碳纳米管并入的碳纤维而被制备。切短的碳纤维为Grafil,Inc.(Sacramento,CA)34-700,12k丝,其并入有通过上述连续并入方法制备的平均长度为55μm的碳纳米管。纤维被切短至3mm长。通过将碳化硅纳米颗粒和粘合剂的胶态混合物(SiC纳米颗粒+粘合剂=50%,按重量计)与切短的碳纳米管并入的碳纤维(50%,按重量计)混合,制备碳化硅基体复合材料。所得碳化硅纳米颗粒、粘合剂和碳纳米管并入的碳纤维的混合物被置于测试压砖机模型中。为了固化粘合剂并产生生陶瓷砖,在2500psi的压力下将含有混合物的模型加热到175℃持续30分钟。固化生陶瓷砖之后,将生瓷砖放入烘箱中,以进行最终的碳化硅颗粒烧结。应用1950℃的温度2小时,以形成3”×3.0”×0.25”的测试瓷砖。如图4所示,所得碳纳米管并入的碳纤维碳化硅陶瓷基体复合材料被充分烧结,其导电率为100.04S/m。
实施例2:碳纳米管并入的碳纤维陶瓷基体复合材料的形成。通过胶态处理切短的碳纳米管并入的碳纤维制备碳化硅基体复合材料。切短的碳纤维为Grafil,Inc.(Sacramento,CA)34-700,12k丝,其并入有通过上述连续并入方法制备的平均长度为55μm的碳纳米管。纤维被切短至3mm长。通过将碳化硅纳米颗粒和粘合剂的胶态混合物与切短的碳纳米管并入的碳纤维混合,制备碳化硅基体复合材料。通过混合碳化硅纳米颗粒和粘合剂的胶态混合物(SiC纳米颗粒+粘合剂=90%,按重量计)与切短的碳纳米管并入的碳纤维(10%,按重量计),制备碳化硅基体复合材料。所得碳化硅纳米颗粒、粘合剂和碳纳米管并入的碳纤维的混合物被置于测试压砖机模型中。为了固化粘合剂并产生生陶瓷砖,在2500psi的压力下将含有该混合物的模型加热到175℃持续30分钟。固化生陶瓷砖之后,将生瓷砖放入烘箱中,以进行最终的碳化硅颗粒烧结。应用1950℃的温度1小时,以形成3”×3.0”×0.25”的测试瓷砖。如图5所示,所得碳纳米管并入的碳纤维碳化硅陶瓷基体复合材料被部分烧结,其导电率为5.45S/m。
实施例3:碳纳米管并入的碳纤维陶瓷基体复合材料的形成。通过胶态处理切短的碳纳米管并入的碳纤维制备碳化硅基体复合材料。切短的碳纤维为Grafil,Inc.(Sacramento,CA)34-700,12k丝,其并入有通过上述连续并入方法制备的平均长度为55μm的碳纳米管。纤维被切短至3mm长。通过混合碳化硅纳米颗粒和粘合剂的胶态混合物(SiC纳米颗粒+粘合剂=75%,按重量计)与切短的碳纳米管并入的碳纤维(25%,按重量计)制备碳化硅基体复合材料。所得碳化硅纳米颗粒、粘合剂和碳纳米管并入的碳纤维的混合物被置于测试压砖机模型中。为了固化粘合剂并产生生陶瓷砖,在2500psi的压力下将含有该混合物的模型加热到175℃持续30分钟。固化生陶瓷砖之后,将生瓷砖放入烘箱中,以进行最终的碳化硅颗粒烧结。应用1950℃的温度2小时,以形成3”×3.0”×0.25”的测试瓷砖。所得碳纳米管并入的碳纤维碳化硅陶瓷基体复合材料被充分烧结,其导电率为263.97S/m。图6显示柱状图,其显示在实施例1-3中所述的碳纳米管并入的碳纤维陶瓷基体复合材料中的导电率相比于缺乏碳纳米管的陶瓷基体复合材料提高。
尽管通过参考公开的实施方式已描述了本发明,但是本领域技术人员将容易理解,这些对于本发明仅是说明性的。应当理解,可以进行各种改进而不背离本发明的精神。

Claims (42)

1.复合材料,包含:
陶瓷基体;和
在所述陶瓷基体中的碳纳米管并入的纤维材料,所述碳纳米管并入的纤维材料包括纤维材料、并入到所述纤维材料的碳纳米管、和涂覆所述碳纳米管的钝化层。
2.权利要求1所述的复合材料,其中所述陶瓷基体包含至少一种选自以下的化合物:碳化硅、碳化钨、碳化铬、碳化钛、氮化钛、硼化钛、氧化铝、氮化硅、富铝红柱石、SiCN、Fe2N和BaTiO3
3.权利要求1所述的复合材料,其中所述陶瓷基体包括水泥。
4.权利要求3所述的复合材料,其中所述水泥选自:卜特兰水泥、火山灰-石灰水泥、矿渣-石灰水泥、富硫酸盐水泥、铝酸钙水泥、硫铝酸钙水泥、碳化物基水泥、耐火水泥、铬-氧化铝水泥和镍-氧化镁铁-碳化锆水泥及其组合。
5.权利要求4所述的复合材料,其中所述卜特兰水泥是选自以下的类型:I型卜特兰水泥、II型卜特兰水泥、III型卜特兰水泥、IV型卜特兰水泥和V型卜特兰水泥。
6.权利要求1所述的复合材料,其中所述纤维材料选自以下的至少一种纤维类型:玻璃纤维、碳纤维、金属纤维、陶瓷纤维、有机纤维、碳化硅纤维、碳化硼纤维、氮化硅纤维、氧化铝纤维及其组合。
7.权利要求1所述的复合材料,其中所述钝化层包含镍、铬、镁、钛、银、锡或二硼化钛。
8.权利要求1所述的复合材料,其中所述纤维材料选自切短纤维和连续纤维。
9.权利要求1所述的复合材料,其中所述碳纳米管按重量计占所述复合材料的约0.1至约10%。
10.权利要求1所述的复合材料,其中碳纳米管按重量计占所述碳纳米管并入的纤维材料的约0.5至约40%。
11.权利要求1所述的复合材料,其中所述纤维材料均匀地分布在所述陶瓷基体中。
12.权利要求1所述的复合材料,其中所述纤维材料不均匀分布在所述陶瓷基体中。
13.权利要求12所述的复合材料,其中所述不均匀分布包括在所述陶瓷基体中的梯度分布。
14.权利要求1所述的复合材料,其中构成所述碳纳米管并入的纤维材料的所述碳纳米管基本上垂直于所述纤维材料的纵轴。
15.权利要求1所述的复合材料,其中构成所述碳纳米管并入的纤维材料的所述碳纳米管基本上平行于所述纤维材料的纵轴。
16.权利要求1所述的复合材料,其中所述碳纳米管并入的纤维材料包含碳化硅纤维,并且所述陶瓷基体选自氧化铝和氮化硅。
17.权利要求1所述的复合材料,其中所述碳纳米管并入的纤维材料选自碳纤维和碳化硅纤维,并且所述陶瓷基体包含碳化硅。
18.权利要求1所述的复合材料,其中所述碳纳米管占所述纤维材料的重量百分比由所述碳纳米管的平均长度确定。
19.权利要求18所述的复合材料,其中所述碳纳米管占所述纤维材料的重量百分比进一步由并入到所述纤维材料的所述碳纳米管的覆盖密度确定。
20.权利要求19所述的复合材料,其中所述覆盖密度多达约15,000个碳纳米管/μm2
21.权利要求1所述的复合材料,其中所述碳纳米管的平均长度在约1μm和约500μm之间。
22.权利要求1所述的复合材料,其中所述碳纳米管的平均长度在约1μm和约10μm之间。
23.权利要求1所述的复合材料,其中所述碳纳米管的平均长度在约10μm和约100μm之间。
24.权利要求1所述的复合材料,其中所述碳纳米管的平均长度在约100μm和约500μm之间。
25.权利要求1所述的复合材料,其中所述碳纳米管的平均长度足以使所述复合材料的热膨胀系数相对于缺乏碳纳米管的复合材料降低约4倍或更多。
26.权利要求1所述的复合材料,其中所述碳纳米管的平均长度足以使所述复合材料的硬度和耐磨性相对于缺乏碳纳米管的复合材料提高约3倍或更多。
27.权利要求1所述的复合材料,其中所述碳纳米管的平均长度足以在所述复合材料中建立导电通道。
28.复合材料,包含:
陶瓷基体;和
在所述陶瓷基体的第一区域的碳纳米管并入的纤维材料的第一部分和在所述陶瓷基体的第二区域的碳纳米管并入的纤维材料的第二部分,所述碳纳米管并入的纤维材料包括纤维材料、并入到所述纤维材料的碳纳米管、和涂覆所述碳纳米管的钝化层;
其中并入到所述第一部分的所述碳纳米管的平均长度和并入到所述第二部分的所述碳纳米管的平均长度被选择,以便所述陶瓷基体的所述第一区域和所述陶瓷基体的所述第二区域具有不同的机械、电或热性能。
29.权利要求28所述的复合材料,其中所述碳纳米管并入的纤维材料的第一部分和所述碳纳米管并入的纤维材料的第二部分包含相同的纤维材料。
30.权利要求28所述的复合材料,其中所述碳纳米管并入的纤维材料的第一部分和所述碳纳米管并入的纤维材料的第二部分包含不同的纤维材料。
31.方法,包括:
提供碳纳米管并入的纤维材料,所述碳纳米管并入的纤维材料包括纤维材料、并入到所述纤维材料的碳纳米管、和涂覆所述碳纳米管的钝化层;
使所述碳纳米管并入的纤维材料分布在生陶瓷前体中;和
固化所述生陶瓷前体,以形成包含陶瓷基体和所述碳纳米管并入的纤维材料的复合材料。
32.权利要求31所述的方法,其中所述陶瓷基体包含至少一种选自以下的陶瓷化合物:水泥、碳化硅、碳化钨、碳化铬、碳化钛、氮化钛、硼化钛、氧化铝、氮化硅、富铝红柱石、SiCN、Fe2N和BaTiO3
33.权利要求31所述的方法,其中所述纤维材料包含至少一种选自以下的纤维类型:玻璃纤维、碳纤维、金属纤维、陶瓷纤维、有机纤维、碳化硅纤维、碳化硼纤维、氮化硅纤维、氧化铝纤维及其组合。
34.权利要求31所述的方法,其中所述碳纳米管并入的纤维材料均匀地分布在所述陶瓷基体中。
35.权利要求31所述的方法,其中所述碳纳米管并入的纤维材料不均匀分布在所述陶瓷基体中。
36.权利要求35所述的方法,其中所述不均匀分布包含梯度分布。
37.权利要求31所述的方法,其中所述钝化层通过选自电镀和化学气相沉积的技术沉积在所述碳纳米管上。
38.权利要求31所述的方法,其中所述钝化层包含镍或二硼化钛。
39.权利要求31所述的方法,进一步包括:
致密化所述复合材料。
40.方法,包括:
提供包含水泥的陶瓷基体;
提供碳纳米管并入的纤维材料,所述碳纳米管并入的纤维材料包括纤维材料、并入到所述纤维材料的碳纳米管、和涂覆所述碳纳米管的钝化层;
将所述碳纳米管并入的纤维材料分布在所述水泥中;和
固化所述水泥,以形成包含所述碳纳米管并入的纤维材料的混凝土。
41.权利要求40所述的方法,其中所述纤维材料包含切短纤维。
42.制品,包含:
复合材料,所述复合材料包含:
陶瓷基体,和
在所述陶瓷基体中的碳纳米管并入的纤维材料,所述碳纳米管并入的纤维材料包括纤维材料、并入到所述纤维材料的碳纳米管、和涂覆所述碳纳米管的钝化层。
CN201080049213.3A 2009-11-23 2010-11-23 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法 Expired - Fee Related CN102596564B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26380409P 2009-11-23 2009-11-23
US61/263,804 2009-11-23
US26571809P 2009-12-01 2009-12-01
US61/265,718 2009-12-01
PCT/US2010/057916 WO2011063422A1 (en) 2009-11-23 2010-11-23 Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof

Publications (2)

Publication Number Publication Date
CN102596564A CN102596564A (zh) 2012-07-18
CN102596564B true CN102596564B (zh) 2014-11-12

Family

ID=44060088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080049213.3A Expired - Fee Related CN102596564B (zh) 2009-11-23 2010-11-23 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法

Country Status (9)

Country Link
US (1) US8168291B2 (zh)
EP (1) EP2504164A4 (zh)
JP (1) JP2013511467A (zh)
KR (1) KR20120117978A (zh)
CN (1) CN102596564B (zh)
AU (1) AU2010321534B2 (zh)
BR (1) BR112012010907A2 (zh)
CA (1) CA2775619A1 (zh)
WO (1) WO2011063422A1 (zh)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951631B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
CN102317200B (zh) 2009-02-17 2014-04-09 应用纳米结构方案公司 包括纤维上的碳纳米管的复合材料
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
US20100260998A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Fiber sizing comprising nanoparticles
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
JP5465779B2 (ja) 2009-04-24 2014-04-09 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー カーボンナノチューブベースの性質制御材料
AU2010245098B2 (en) 2009-04-27 2014-11-13 Applied Nanostructured Solutions, Llc. CNT-based resistive heating for deicing composite structures
JP5823393B2 (ja) 2009-08-03 2015-11-25 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニーApplied Nanostructuredsolutions, Llc 複合繊維へのナノ粒子の組み込み
KR20120094055A (ko) 2009-11-23 2012-08-23 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. Cnt 맞춤형 복합재 우주 기반의 구조체
US8168291B2 (en) * 2009-11-23 2012-05-01 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
CN103079805B (zh) 2009-12-14 2015-02-11 应用纳米结构方案公司 含有碳纳米管并入的纤维材料的防火复合材料和制品
US8274756B2 (en) * 2009-12-15 2012-09-25 HGST Netherlands B.V. Use of carbon nanotubes to form conductive gaskets deployed in sensitive environments
MX2009013931A (es) * 2009-12-17 2011-06-16 Urbanizaciones Inmobiliarias Del Ct S A De C V Concreto reforzado con nanomateriales hibridos.
CN102084064B (zh) * 2009-12-31 2012-09-05 中交第一公路勘察设计研究院有限公司 一种冻土区公路路基保护方法及路面结构
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US8225704B2 (en) 2010-01-16 2012-07-24 Nanoridge Materials, Inc. Armor with transformed nanotube material
KR101906262B1 (ko) 2010-02-02 2018-10-10 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 평행하게-정렬된 카본 나노튜브를 포함하는 섬유
CA2790205A1 (en) 2010-03-02 2011-09-09 Applied Nanostructured Solutions, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
EP2616189B1 (en) 2010-09-14 2020-04-01 Applied NanoStructured Solutions, LLC Glass substrates having carbon nanotubes grown thereon and methods for production thereof
WO2012040004A1 (en) * 2010-09-22 2012-03-29 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
WO2012040038A2 (en) 2010-09-23 2012-03-29 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
WO2012092590A2 (en) 2010-12-31 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2012125592A1 (en) * 2011-03-15 2012-09-20 California Institute Of Technology Localized deposition of polymer film on nanocantilever chemical vapor sensors by surface-initiated atom transfer radical polymerization
CN108262695A (zh) 2011-06-30 2018-07-10 圣戈本陶瓷及塑料股份有限公司 包括氮化硅磨粒的磨料制品
WO2013003831A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US8986845B2 (en) * 2011-07-22 2015-03-24 United Technologies Corporation Ceramic composite article having laminar ceramic matrix
CN102390998B (zh) * 2011-08-05 2013-07-24 华南理工大学 含氧化铝颗粒与氮化硅晶须的碳化钨复合材料及制备方法
TWI558657B (zh) * 2011-09-08 2016-11-21 淡水河谷公司 奈米碳管應用於粉礦聚集物以增加其機械強度
JP5802336B2 (ja) 2011-09-26 2015-10-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨粒子材料を含む研磨製品、研磨粒子材料を使用する研磨布紙および形成方法
BR112014008139A2 (pt) * 2011-10-07 2017-04-11 Applied Nanostructured Sols capacitor híbrido à bateria e supercapacitor com o eletrólito bifuncional ativo
JP5900879B2 (ja) * 2011-10-13 2016-04-06 清水建設株式会社 セメント硬化体の製造方法
US9893363B2 (en) 2011-10-17 2018-02-13 Lockheed Martin Corporation High surface area flow battery electrodes
US8822057B2 (en) 2011-10-17 2014-09-02 Lockheed Martin Corporation High surface area flow battery electrodes
CN102557641B (zh) * 2011-12-23 2013-07-03 宁波伏尔肯机械密封件制造有限公司 碳纳米管增强增韧碳化硅陶瓷及其制备方法
CN104114664B (zh) 2011-12-30 2016-06-15 圣戈本陶瓷及塑料股份有限公司 形成成型研磨颗粒
EP2797715A4 (en) 2011-12-30 2016-04-20 Saint Gobain Ceramics SHAPED ABRASIVE PARTICLE AND METHOD OF FORMING THE SAME
KR101736755B1 (ko) 2011-12-30 2017-05-17 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 복합 형상화 연마입자들 및 이의 형성방법
US9957379B2 (en) 2012-01-03 2018-05-01 Lockheed Martin Corporation Structural composite materials with high strain capability
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
EP3705177A1 (en) 2012-01-10 2020-09-09 Saint-Gobain Ceramics & Plastics Inc. Abrasive particles having complex shapes and methods of forming same
WO2013180764A1 (en) 2012-01-20 2013-12-05 Free Form Fibers Llc High strength ceramic fibers and methods of fabrication
US9488027B2 (en) 2012-02-10 2016-11-08 Baker Hughes Incorporated Fiber reinforced polymer matrix nanocomposite downhole member
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
EP2830829B1 (en) 2012-03-30 2018-01-10 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
KR20150020199A (ko) 2012-05-23 2015-02-25 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자들 및 이의 형성방법
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
JP5583718B2 (ja) * 2012-07-10 2014-09-03 株式会社リケン 電波吸収体
US9365426B2 (en) 2012-07-30 2016-06-14 Scnte, Llc Process for the production of nanostructured carbon materials
CN104718170A (zh) 2012-09-04 2015-06-17 Ocv智识资本有限责任公司 碳强化的增强纤维在含水或非水介质内的分散
WO2014052883A2 (en) 2012-09-28 2014-04-03 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
US9133031B2 (en) 2012-10-04 2015-09-15 Applied Nanostructured Solutions, Llc Carbon nanostructure layers and methods for making the same
US9327969B2 (en) * 2012-10-04 2016-05-03 Applied Nanostructured Solutions, Llc Microwave transmission assemblies fabricated from carbon nanostructure polymer composites
KR101334736B1 (ko) * 2012-10-09 2013-12-05 한국에너지기술연구원 탄소 섬유 강화 탄화규소 복합소재 및 이의 제조 방법
CN108015685B (zh) 2012-10-15 2020-07-14 圣戈班磨料磨具有限公司 具有特定形状的磨粒
CN103022434B (zh) * 2012-11-23 2016-05-11 中国科学院宁波材料技术与工程研究所 一种前驱体陶瓷与碳纳米管复合材料及其制备方法
US9107292B2 (en) 2012-12-04 2015-08-11 Applied Nanostructured Solutions, Llc Carbon nanostructure-coated fibers of low areal weight and methods for producing the same
CN103896616B (zh) * 2012-12-25 2016-05-18 北京有色金属研究总院 一种陶瓷纤维增强陶瓷粉末复合陶瓷及其涂层制备方法
JP2016503731A (ja) 2012-12-31 2016-02-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 粒子材料およびその形成方法
CN103924536A (zh) * 2013-01-16 2014-07-16 王晓东 太阳能道路清扫车
US9567255B2 (en) 2013-01-31 2017-02-14 Empire Technology Development Llc Light weight structural materials
JP2014169521A (ja) * 2013-02-05 2014-09-18 Honda Motor Co Ltd カーボンナノチューブ繊維及びその製造方法
JP2014187134A (ja) * 2013-03-22 2014-10-02 Riken Corp 電波吸収体
CA2984232C (en) 2013-03-29 2021-07-20 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
US20150004392A1 (en) * 2013-06-28 2015-01-01 The Boeing Company Whisker-reinforced hybrid fiber by method of base material infusion into whisker yarn
EP2849463B1 (en) * 2013-09-16 2018-04-04 Sonion Nederland B.V. A transducer comprising moisture transporting element
CN110591645A (zh) 2013-09-30 2019-12-20 圣戈本陶瓷及塑料股份有限公司 成形磨粒及其形成方法
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
DE102013112267A1 (de) * 2013-11-07 2015-05-07 Heraeus Deutschland GmbH & Co. KG Halbleitermodul mit einer einen Halbleiterbaustein bedeckenden Umhüllungsmasse
KR101870617B1 (ko) 2013-12-31 2018-06-26 생-고뱅 어브레이시브즈, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
CA2945493C (en) 2014-04-14 2020-08-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
EP3131706B8 (en) 2014-04-14 2024-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US10399322B2 (en) 2014-06-11 2019-09-03 Applied Nanostructured Solutions, Llc Three-dimensional printing using carbon nanostructures
US9802373B2 (en) 2014-06-11 2017-10-31 Applied Nanostructured Solutions, Llc Methods for processing three-dimensional printed objects using microwave radiation
EP2958139B1 (de) 2014-06-18 2020-08-05 Heraeus Deutschland GmbH & Co. KG Verfahren zur Herstellung eines Halbleitermoduls
CN104150939B (zh) * 2014-07-24 2015-12-30 西北工业大学 一种电泳沉积CNTs增强陶瓷基复合材料的制备方法
US9908820B2 (en) * 2014-09-05 2018-03-06 United Technologies Corporation Systems and methods for ceramic matrix composites
US10059595B1 (en) * 2014-09-17 2018-08-28 Neil Farbstein Ultra high strength nanomaterials and methods of manufacture
CN104387102B (zh) * 2014-10-30 2016-08-31 青岛玉兰祥商务服务有限公司 一种碳纳米管陶瓷复合材料及其制备方法
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US10023795B2 (en) 2015-01-21 2018-07-17 Arizona Board Of Regents On Behalf Of Arizona State University Ceramic composite systems and method
JP2018505972A (ja) 2015-01-23 2018-03-01 フリー フォーム ファイバーズ リミテッド ライアビリティ カンパニー 強度およびクリープ抵抗性を改良するための半径方向に勾配を有する完全に稠密な無機フィラメント
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
EP3277459B1 (en) 2015-03-31 2023-08-16 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN104944957A (zh) * 2015-06-02 2015-09-30 安徽省含山瓷业股份有限公司 一种耐磨损陶瓷碗及其制备方法
CN107864637B (zh) 2015-06-11 2022-11-22 圣戈本陶瓷及塑料股份有限公司 包括经成形研磨颗粒的研磨制品
US10281043B2 (en) 2015-07-10 2019-05-07 Lockheed Martin Corporation Carbon nanotube based thermal gasket for space vehicles
CN108083773B (zh) * 2015-12-24 2021-06-25 安溪钟泰专利技术转移有限公司 一种连续无机纤维增强陶瓷的制备方法
US10837130B2 (en) * 2016-04-27 2020-11-17 Board Of Regents, The University Of Texas System Incandescent tension annealing processes for strong, twist-stable carbon nanotube yarns and muscles
KR102422875B1 (ko) 2016-05-10 2022-07-21 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연마 입자들 및 그 형성 방법
PL3455321T3 (pl) 2016-05-10 2022-12-12 Saint-Gobain Ceramics&Plastics, Inc. Sposób formowania cząstek ściernych
US12133465B2 (en) 2016-05-11 2024-10-29 Free Form Fibers, Llc Multilayer functional fiber and method of making
US10091916B2 (en) 2016-09-29 2018-10-02 The Boeing Company Fabrication of ceramic matrix composites with carbon nanotubes and graphene
WO2018064642A1 (en) 2016-09-29 2018-04-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN106518120B (zh) * 2016-10-27 2019-06-11 哈尔滨工业大学 一种碳纤维-碳纳米管复合强韧化ZrC陶瓷复合材料的制备方法及应用
WO2018098459A1 (en) * 2016-11-28 2018-05-31 Massachusetts Institute Of Technology Optical devices for efficient emission and/or absorption of electromagnetic radiation, and associated systems and methods
US10821681B2 (en) * 2017-01-20 2020-11-03 General Electric Company Liquid infusion molded ceramic matrix composites and methods of forming the same
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2018236989A1 (en) 2017-06-21 2018-12-27 Saint-Gobain Ceramics & Plastics, Inc. PARTICULATE MATERIALS AND METHODS OF FORMATION THEREOF
CN107249291B (zh) * 2017-06-22 2019-02-05 朱勇 电力调度自动化系统用电磁屏蔽材料
US10676391B2 (en) 2017-06-26 2020-06-09 Free Form Fibers, Llc High temperature glass-ceramic matrix with embedded reinforcement fibers
EP3645279A4 (en) 2017-06-27 2021-05-26 Free Form Fibers, LLC FUNCTIONAL HIGH PERFORMANCE FIBER STRUCTURE
CN107553686A (zh) * 2017-08-11 2018-01-09 武汉理工大学 一种基于3d打印的纤维增强梯度多孔陶瓷的制造方法
CN108178636B (zh) * 2018-02-11 2020-12-25 济南大学 一种Si3N4/SiC复合吸波陶瓷及其制备方法
US10427985B1 (en) 2018-03-06 2019-10-01 Lockheed Martin Corporation Engineered micro-voids for toughening ceramic composites
FR3079829B1 (fr) * 2018-04-10 2021-07-16 Saint Gobain Ct Recherches Piece a nez isolee
CN108727050B (zh) * 2018-05-28 2020-12-15 绿业中试低碳科技(镇江)有限公司 炭材料3d增韧碳化硅复合材料及其制备方法和应用
US10926002B2 (en) * 2018-12-21 2021-02-23 Toyota Motor Engineering & Manufacturing North America, Inc. Metal matrix composite orthopedic replacements
WO2021034665A1 (en) 2019-08-16 2021-02-25 Saudi Arabian Oil Company Cement slurries, cured cement and methods of making and use thereof
US11643587B2 (en) * 2019-08-16 2023-05-09 Saudi Arabian Oil Company Methods of making cement slurries and cured cement and use thereof
US12006605B2 (en) 2019-09-25 2024-06-11 Free Form Fibers, Llc Non-woven micro-trellis fabrics and composite or hybrid-composite materials reinforced therewith
TWI716155B (zh) * 2019-10-17 2021-01-11 國立清華大學 電容式匿蹤複合結構
CN110981490A (zh) * 2019-11-28 2020-04-10 赛福纳米科技(徐州)有限公司 CNT增韧B4C-SiC层状复合陶瓷及其制备方法
EP4081609A4 (en) 2019-12-27 2024-06-05 Saint-Gobain Ceramics & Plastics Inc. ABRASIVE ARTICLES AND THEIR FORMATION PROCESSES
WO2021133901A1 (en) 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
WO2021193817A1 (ja) * 2020-03-27 2021-09-30 東ソ-株式会社 セラミックスマトリックス複合材料及びその製造方法
US11761085B2 (en) 2020-08-31 2023-09-19 Free Form Fibers, Llc Composite tape with LCVD-formed additive material in constituent layer(s)
CN112341230B (zh) * 2020-11-10 2022-02-15 大连理工大学 一种受树叶启发的分级增韧超高温陶瓷基复合材料及其制备方法
EP4006316A1 (en) * 2020-11-27 2022-06-01 Rolls-Royce Deutschland Ltd & Co KG Shaft breakage protection system
CN112608163B (zh) * 2020-12-17 2022-02-18 中南大学 一种钛酸钡掺杂改性碳基复合材料及其制备方法
CN112876257B (zh) * 2021-01-27 2022-05-17 中国核动力研究设计院 一种SiCf/SiC复合材料两层复合包壳管及其制备方法
US11930565B1 (en) * 2021-02-05 2024-03-12 Mainstream Engineering Corporation Carbon nanotube heater composite tooling apparatus and method of use
US11725524B2 (en) * 2021-03-26 2023-08-15 General Electric Company Engine airfoil metal edge
CN113248258B (zh) * 2021-05-17 2022-09-06 中国科学院上海硅酸盐研究所 一种具有高光谱选择性的碳化硅基复相陶瓷材料及其制备方法和应用
US11901619B2 (en) * 2021-12-16 2024-02-13 The Boeing Company Radome with ceramic matrix composite
CN114956842B (zh) * 2022-05-05 2023-03-17 武汉工程大学 一种碳化硼纤维/碳化硼陶瓷复合材料及其制备方法
KR102644576B1 (ko) * 2022-12-30 2024-03-08 건양대학교산학협력단 다기능성 시멘트 모르타르 조성물 및 탄소섬유와 복합화된 시멘트 복합체의 제조방법
CN116462525B (zh) * 2023-06-19 2023-09-05 中国人民解放军国防科技大学 一种连续碳纤维增强超高温陶瓷基复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764628B2 (en) * 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same

Family Cites Families (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412707A (en) 1943-06-07 1946-12-17 Harold M Barnett Process for carotene extraction
US3304855A (en) * 1963-05-15 1967-02-21 H G Molenaar & Company Proprie Extractor means for extracting liquid from a liquids containing mass
US3584758A (en) 1968-10-01 1971-06-15 Robert D Moore Battery tray
JPS52129295A (en) 1976-04-23 1977-10-29 Agency Of Ind Science & Technol Solar battery device and its production
US4530750A (en) 1981-03-20 1985-07-23 A. S. Laboratories, Inc. Apparatus for coating optical fibers
US4566969A (en) * 1981-09-29 1986-01-28 Crane & Co., Inc. Rolling filter apparatus
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
US5221605A (en) 1984-10-31 1993-06-22 Igen, Inc. Luminescent metal chelate labels and means for detection
US5238808A (en) 1984-10-31 1993-08-24 Igen, Inc. Luminescent metal chelate labels and means for detection
US5310687A (en) 1984-10-31 1994-05-10 Igen, Inc. Luminescent metal chelate labels and means for detection
US4707349A (en) 1986-02-28 1987-11-17 Hjersted Norman B Process of preparing a preferred ferric sulfate solution, and product
US4920917A (en) * 1987-03-18 1990-05-01 Teijin Limited Reactor for depositing a layer on a moving substrate
US5130194A (en) 1988-02-22 1992-07-14 The Boeing Company Coated ceramic fiber
US5227238A (en) 1988-11-10 1993-07-13 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
CA2004076A1 (en) * 1988-11-29 1990-05-29 Makoto Miyazaki Sulfone compounds, process for surface-treating reinforcing fibers using same and surface-treated reinforcing fibers obtained thereby
US5156225A (en) 1990-07-30 1992-10-20 Murrin Craig M Electric battery as structural component of vehicle
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
US5173367A (en) 1991-01-15 1992-12-22 Ethyl Corporation Ceramic composites
US5246794A (en) 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
US20020085974A1 (en) 1992-01-15 2002-07-04 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US5946587A (en) 1992-08-06 1999-08-31 Canon Kabushiki Kaisha Continuous forming method for functional deposited films
US5547525A (en) 1993-09-29 1996-08-20 Thiokol Corporation Electrostatic discharge reduction in energetic compositions
US5470408A (en) 1993-10-22 1995-11-28 Thiokol Corporation Use of carbon fibrils to enhance burn rate of pyrotechnics and gas generants
JP3571785B2 (ja) 1993-12-28 2004-09-29 キヤノン株式会社 堆積膜形成方法及び堆積膜形成装置
WO1996029564A2 (en) 1995-03-14 1996-09-26 Thiokol Corporation Infrared tracer compositions
JP3119172B2 (ja) * 1995-09-13 2000-12-18 日新電機株式会社 プラズマcvd法及び装置
JPH09115334A (ja) 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
JPH09111135A (ja) * 1995-10-23 1997-04-28 Mitsubishi Materials Corp 導電性ポリマー組成物
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
DE19721348A1 (de) 1997-05-22 1998-11-26 Varta Batterie Mehrzelliger Akkumulator
US6205016B1 (en) 1997-06-04 2001-03-20 Hyperion Catalysis International, Inc. Fibril composite electrode for electrochemical capacitors
US6479030B1 (en) 1997-09-16 2002-11-12 Inorganic Specialists, Inc. Carbon electrode material
JP3740295B2 (ja) 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
DE69908990T2 (de) 1998-01-29 2004-05-19 Coi Ceramics, Inc., San Diego Verfahren zur Herstellung von geschlichteten beschichteten keramischen Fasern
JP2002518280A (ja) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク 整列した自立炭素ナノチューブおよびその合成
US6455021B1 (en) 1998-07-21 2002-09-24 Showa Denko K.K. Method for producing carbon nanotubes
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US7150864B1 (en) 1998-09-18 2006-12-19 William Marsh Rice University Ropes comprised of single-walled and double-walled carbon nanotubes
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6221154B1 (en) * 1999-02-18 2001-04-24 City University Of Hong Kong Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
JP3484441B2 (ja) 1999-04-21 2004-01-06 震 張 炭素ナノチューブの製造方法
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US20030091496A1 (en) * 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6913075B1 (en) 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
JP2003512286A (ja) 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブの巨視的に配置された集成体
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
US20060047052A1 (en) * 1999-12-07 2006-03-02 Barrera Enrique V Oriented nanofibers embedded in polymer matrix
FR2805179B1 (fr) 2000-02-23 2002-09-27 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
EP1263867B1 (en) 2000-03-07 2004-11-10 DSM IP Assets B.V. Thermosetting resin composition of a radically curable resin mixture and carbon fibre
EP1269797A4 (en) 2000-03-07 2006-06-21 Robert P H Chang CARBON NANOSTRUCTURES AND PROCESSES FOR PREPARING THE SAME
KR100360470B1 (ko) * 2000-03-15 2002-11-09 삼성에스디아이 주식회사 저압-dc-열화학증착법을 이용한 탄소나노튜브 수직배향증착 방법
US6479028B1 (en) 2000-04-03 2002-11-12 The Regents Of The University Of California Rapid synthesis of carbon nanotubes and carbon encapsulated metal nanoparticles by a displacement reaction
US6653005B1 (en) * 2000-05-10 2003-11-25 University Of Central Florida Portable hydrogen generator-fuel cell apparatus
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6908572B1 (en) 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
EP1182272A1 (fr) * 2000-08-23 2002-02-27 Cold Plasma Applications C.P.A. Procédé et dispositif permettant le dépôt de couches métalliques en continu par plasma froid
US6420293B1 (en) 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
JP3614377B2 (ja) * 2000-08-25 2005-01-26 日本電気株式会社 電界電子放出装置の製造方法、及びそれにより作製される電界電子放出装置
US6653619B2 (en) 2000-09-15 2003-11-25 Agilent Technologies, Inc. Optical motion encoder with a reflective member allowing the light source and sensor to be on the same side
US6495258B1 (en) 2000-09-20 2002-12-17 Auburn University Structures with high number density of carbon nanotubes and 3-dimensional distribution
JP3912583B2 (ja) 2001-03-14 2007-05-09 三菱瓦斯化学株式会社 配向性カーボンナノチューブ膜の製造方法
JP3981566B2 (ja) * 2001-03-21 2007-09-26 守信 遠藤 膨張炭素繊維体の製造方法
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
CA2442273A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Carbon nanotubes in structures and repair compositions
RU2184086C1 (ru) * 2001-04-02 2002-06-27 Петрик Виктор Иванович Способ удаления нефти, нефтепродуктов и/или химических загрязнителей из жидкости, и/или газа и/или с поверхности
AUPR421701A0 (en) * 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes
US6699525B2 (en) * 2001-04-16 2004-03-02 The Board Of Trustees Of Western Michigan University Method of forming carbon nanotubes and apparatus therefor
US7160531B1 (en) * 2001-05-08 2007-01-09 University Of Kentucky Research Foundation Process for the continuous production of aligned carbon nanotubes
US7033485B2 (en) * 2001-05-11 2006-04-25 Koppers Industries Of Delaware, Inc. Coal tar and hydrocarbon mixture pitch production using a high efficiency evaporative distillation process
WO2002095097A1 (en) * 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
EP1401943A1 (en) 2001-06-01 2004-03-31 The Lubrizol Corporation Substrates with modified carbon surfaces in composites
US7341498B2 (en) * 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US7125502B2 (en) 2001-07-06 2006-10-24 William Marsh Rice University Fibers of aligned single-wall carbon nanotubes and process for making the same
US6783702B2 (en) 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
EP1414744A1 (en) 2001-07-27 2004-05-06 University Of Surrey Production of carbon nanotubes
AU2002332422C1 (en) 2001-07-27 2008-03-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
CN1195793C (zh) * 2001-08-06 2005-04-06 昭和电工株式会社 导电的可固化树脂组合物和燃料电池用的隔板
US20030044678A1 (en) * 2001-08-25 2003-03-06 Esq. Tyson Winarski Polymer battery that also serves as a durable housing for portable electronic devices and microchips
JP2005501935A (ja) * 2001-08-29 2005-01-20 ジョージア テク リサーチ コーポレイション 剛性ロッドポリマーとカーボンナノチューブを含む組成物及びその製造方法
US6656339B2 (en) * 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
US7070472B2 (en) * 2001-08-29 2006-07-04 Motorola, Inc. Field emission display and methods of forming a field emission display
US6837928B1 (en) * 2001-08-30 2005-01-04 The Board Of Trustees Of The Leland Stanford Junior University Electric field orientation of carbon nanotubes
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
EP1436196A4 (en) 2001-09-18 2008-08-27 Eikos Inc ELECTROSTATIC DISSIPATING COATINGS FOR USE ON SPACE MACHINERY
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US6935594B1 (en) 2001-11-09 2005-08-30 Advanced Ceramics Research, Inc. Composite components with integral protective casings
AU2002357037A1 (en) 2001-11-30 2003-06-17 The Trustees Of Boston College Coated carbon nanotube array electrodes
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
EP1465836A2 (en) * 2001-12-21 2004-10-13 Battelle Memorial Institute Structures containing carbon nanotubes and a porous support, methods of making the same, and related uses
JP4404961B2 (ja) * 2002-01-08 2010-01-27 双葉電子工業株式会社 カーボンナノ繊維の製造方法。
TWI236505B (en) 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
JP3922039B2 (ja) 2002-02-15 2007-05-30 株式会社日立製作所 電磁波吸収材料及びそれを用いた各種製品
JP4168676B2 (ja) 2002-02-15 2008-10-22 コニカミノルタホールディングス株式会社 製膜方法
CN1176014C (zh) 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
EP1370489B1 (en) 2002-03-14 2014-03-12 Samsung Electronics Co., Ltd. Composite materials comprising polycarbonate and single-wall carbon nanotubes
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US7405854B2 (en) * 2002-03-21 2008-07-29 Cornell Research Foundation, Inc. Fibrous micro-composite material
US6887451B2 (en) * 2002-04-30 2005-05-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Process for preparing carbon nanotubes
US20040034177A1 (en) 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US7445817B2 (en) 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
WO2003096771A1 (en) 2002-05-08 2003-11-20 Dana Corporation Plasma generation and processing with multiple radiation sources
FR2841233B1 (fr) 2002-06-24 2004-07-30 Commissariat Energie Atomique Procede et dispositif de depot par pyrolyse de nanotubes de carbone
US6852410B2 (en) * 2002-07-01 2005-02-08 Georgia Tech Research Corporation Macroscopic fiber comprising single-wall carbon nanotubes and acrylonitrile-based polymer and process for making the same
US6979947B2 (en) * 2002-07-09 2005-12-27 Si Diamond Technology, Inc. Nanotriode utilizing carbon nanotubes and fibers
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
FR2844510B1 (fr) * 2002-09-12 2006-06-16 Snecma Propulsion Solide Structure fibreuse tridimensionnelle en fibres refractaires, procede pour sa realisation et application aux materiaux composites thermostructuraux
US7153452B2 (en) 2002-09-12 2006-12-26 Clemson University Mesophase pitch-based carbon fibers with carbon nanotube reinforcements
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
US7448441B2 (en) 2002-09-17 2008-11-11 Alliance For Sustainable Energy, Llc Carbon nanotube heat-exchange systems
JP3735651B2 (ja) 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 カーボンナノファイバー分散樹脂繊維強化複合材料
JP2004143019A (ja) * 2002-10-28 2004-05-20 Shimizu Corp セメント硬化材、セメント硬化体、コンクリート打込み型枠およびコンクリート構造物
KR100704795B1 (ko) * 2002-11-01 2007-04-09 미츠비시 레이온 가부시키가이샤 탄소 나노튜브 함유 조성물, 이를 포함하는 도막을 갖는복합체, 및 이들의 제조 방법
US7431965B2 (en) 2002-11-01 2008-10-07 Honda Motor Co., Ltd. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
JP3969650B2 (ja) 2002-11-19 2007-09-05 日精樹脂工業株式会社 複合樹脂成形品におけるスキン層の層厚制御方法
CA2507831C (en) 2002-11-27 2010-06-01 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
CN1290763C (zh) 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
US7372880B2 (en) 2002-12-20 2008-05-13 Alnair Labs Corporation Optical pulse lasers
TWI304321B (en) * 2002-12-27 2008-12-11 Toray Industries Layered products, electromagnetic wave shielding molded articles and method for production thereof
US7419601B2 (en) 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
CN1867392B (zh) * 2003-03-07 2010-06-09 塞尔顿技术公司 使用纳米材料纯化流体
CN1286716C (zh) * 2003-03-19 2006-11-29 清华大学 一种生长碳纳米管的方法
US7285591B2 (en) 2003-03-20 2007-10-23 The Trustees Of The University Of Pennsylvania Polymer-nanotube composites, fibers, and processes
US7074294B2 (en) 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
FR2854409B1 (fr) 2003-04-30 2005-06-17 Centre Nat Rech Scient Procede d'obtention de fibres a haute teneur en particules colloidales et fibres composites obtenues
WO2004106420A2 (en) 2003-05-22 2004-12-09 Zyvex Corporation Nanocomposites and method for production
US7261779B2 (en) * 2003-06-05 2007-08-28 Lockheed Martin Corporation System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US7601421B2 (en) 2003-06-16 2009-10-13 William Marsh Rice University Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes
US8187703B2 (en) 2003-06-16 2012-05-29 William Marsh Rice University Fiber-reinforced polymer composites containing functionalized carbon nanotubes
US7318302B2 (en) * 2003-07-10 2008-01-15 Opperman Investments, Ltd. Equipment support for a metal building
US7786736B2 (en) 2003-08-06 2010-08-31 University Of Delaware Method and system for detecting damage in aligned carbon nanotube fiber composites using networks
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
EP1506975A1 (en) 2003-08-13 2005-02-16 Vantico GmbH Nanocomposites based on polyurethane or polyurethane-epoxy hybrid resins prepared avoiding isocyanates
US20050042163A1 (en) * 2003-08-20 2005-02-24 Conocophillips Company Metal loaded carbon filaments
US7411019B1 (en) 2003-08-25 2008-08-12 Eltron Research, Inc. Polymer composites containing nanotubes
US7235421B2 (en) * 2003-09-16 2007-06-26 Nasreen Chopra System and method for developing production nano-material
US7235159B2 (en) * 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
WO2005047370A2 (en) 2003-10-15 2005-05-26 Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
KR100570634B1 (ko) 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
US20090068461A1 (en) * 2003-10-16 2009-03-12 The University Of Akron Carbon nanotubes on carbon nanofiber substrate
US7265175B2 (en) 2003-10-30 2007-09-04 The Trustees Of The University Of Pennsylvania Flame retardant nanocomposite
ES2291957T3 (es) 2003-11-07 2008-03-01 Bae Systems Plc Formacion de nanohilos metalicos.
AU2005230961B2 (en) * 2004-01-15 2010-11-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
US20070189953A1 (en) * 2004-01-30 2007-08-16 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same
JP2005219950A (ja) * 2004-02-04 2005-08-18 Nikon Corp 炭素材料、炭素材料の製造方法、ガス吸着装置及び複合材料
US7338684B1 (en) * 2004-02-12 2008-03-04 Performance Polymer Solutions, Inc. Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US7628041B2 (en) 2004-02-27 2009-12-08 Alcatel-Lucent Usa Inc. Carbon particle fiber assembly technique
US7507472B2 (en) * 2004-03-09 2009-03-24 The United States Of America As Represented By The Administator Of National Aeronatics And Space Adminstration Multilayer electroactive polymer composite material comprising carbon nanotubes
EP1737905B1 (en) 2004-03-20 2007-10-24 Teijin Twaron B.V. Composite materials comprising ppta and nanotubes
CN100383213C (zh) 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US7144563B2 (en) 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
US7399794B2 (en) 2004-04-28 2008-07-15 University Of South Florida Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof
US20050260412A1 (en) 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes
CN1705059B (zh) 2004-05-26 2012-08-29 清华大学 碳纳米管场发射装置及其制备方法
KR20050121426A (ko) * 2004-06-22 2005-12-27 삼성에스디아이 주식회사 탄소나노튜브 제조용 촉매의 제조 방법
FR2872826B1 (fr) 2004-07-07 2006-09-15 Commissariat Energie Atomique Croissance a basse temperature de nanotubes de carbone orientes
JP5173418B2 (ja) * 2004-07-22 2013-04-03 ウィリアム・マーシュ・ライス・ユニバーシティ ポリマー/カーボンナノチューブ相互貫入網目構造及びその製造プロセス
US8080487B2 (en) * 2004-09-20 2011-12-20 Lockheed Martin Corporation Ballistic fabrics with improved antiballistic properties
FR2877262B1 (fr) * 2004-10-29 2007-04-27 Centre Nat Rech Scient Cnrse Fibres composites et fibres dissymetriques a partir de nanotubes de carbonne et de particules colloidales
TW200631111A (en) 2004-11-04 2006-09-01 Koninkl Philips Electronics Nv Nanotube-based circuit connection approach
WO2007015710A2 (en) 2004-11-09 2007-02-08 Board Of Regents, The University Of Texas System The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
AU2005307779A1 (en) * 2004-11-16 2006-05-26 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
US7407901B2 (en) 2005-01-12 2008-08-05 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
KR101425654B1 (ko) 2005-01-20 2014-07-31 오티콘 에이/에스 충전 배터리를 구비한 보청기 및 충전 배터리
US7811632B2 (en) 2005-01-21 2010-10-12 Ut-Battelle Llc Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays
US20060198956A1 (en) 2005-03-04 2006-09-07 Gyula Eres Chemical vapor deposition of long vertically aligned dense carbon nanotube arrays by external control of catalyst composition
US7537825B1 (en) 2005-03-25 2009-05-26 Massachusetts Institute Of Technology Nano-engineered material architectures: ultra-tough hybrid nanocomposite system
CN100500555C (zh) 2005-04-15 2009-06-17 清华大学 碳纳米管阵列结构及其制备方法
CN100376478C (zh) 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
EP1885647A1 (en) 2005-04-22 2008-02-13 Seldon Technologies, LLC Article comprising carbon nanotubes and method of using the same for purifying fluids
US7278324B2 (en) 2005-06-15 2007-10-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for detection of crack growth in a structure
US7867616B2 (en) * 2005-06-17 2011-01-11 Honda Motor Co., Ltd. Carbon single-walled nanotubes as electrodes for electrochromic glasses
WO2007055744A2 (en) * 2005-06-28 2007-05-18 The Board Of Regents Of The University Of Oklahoma Methods for growing and harvesting carbon nanotubes
EP1907202B1 (en) * 2005-07-01 2016-01-20 Carolyn M. Dry Multiple function, self-repairing composites with special adhesives
US8313723B2 (en) * 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US20070110977A1 (en) * 2005-08-29 2007-05-17 Al-Haik Marwan S Methods for processing multifunctional, radiation tolerant nanotube-polymer structure composites
SG165338A1 (en) 2005-09-01 2010-10-28 Seldon Technologies Inc Large scale manufacturing of nanostructured material
CN1927988A (zh) * 2005-09-05 2007-03-14 鸿富锦精密工业(深圳)有限公司 热界面材料及其制备方法
CN100482580C (zh) 2005-10-13 2009-04-29 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制备装置及方法
US8372470B2 (en) 2005-10-25 2013-02-12 Massachusetts Institute Of Technology Apparatus and methods for controlled growth and assembly of nanostructures
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US8148276B2 (en) * 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
FR2893939B1 (fr) 2005-11-29 2008-02-22 Snecma Propulsion Solide Sa Protection contre l'oxydation de materiaux composites contenant du carbone
DE602006018188D1 (de) 2005-11-30 2010-12-23 Shimane Prefectural Government Auf metall basierender verbundwerkstoff, enthaltend sowohl mikroskalige kohlefaser als auch nanoskalige kohlefaser
US7592248B2 (en) 2005-12-09 2009-09-22 Freescale Semiconductor, Inc. Method of forming semiconductor device having nanotube structures
KR100745735B1 (ko) * 2005-12-13 2007-08-02 삼성에스디아이 주식회사 탄소나노튜브의 형성방법 및 이를 이용한 전계방출소자의제조방법
US7465605B2 (en) 2005-12-14 2008-12-16 Intel Corporation In-situ functionalization of carbon nanotubes
WO2008045109A2 (en) * 2005-12-19 2008-04-17 University Of Virginia Patent Foundation Conducting nanotubes or nanostructures based composites, method of making them and applications
EP1973845A4 (en) * 2005-12-19 2009-08-19 Nantero Inc PREPARATION OF CARBON NANOTUBES
US20090176100A1 (en) 2005-12-22 2009-07-09 Showa Denko K.K. Vapor-grown carbon fiber and production process thereof
FR2895397B1 (fr) * 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre et structures de fils de verre pourvus d'un revetement renfermant des nanoparticules.
FR2895398B1 (fr) * 2005-12-23 2008-03-28 Saint Gobain Vetrotex Fils de verre revetus d'un ensimage renfermant des nanoparticules.
US20080279753A1 (en) 2006-01-30 2008-11-13 Harutyunyan Avetik R Method and Apparatus for Growth of High Quality Carbon Single-Walled Nanotubes
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
US8124503B2 (en) 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
EP2022886B1 (en) 2006-05-02 2013-10-16 Goodrich Corporation Methods of making nanoreinforced carbon fiber and aircraft components comprising nanoreinforced carbon fiber
US7687981B2 (en) 2006-05-05 2010-03-30 Brother International Corporation Method for controlled density growth of carbon nanotubes
WO2007136613A2 (en) 2006-05-17 2007-11-29 University Of Dayton Method of growing carbon nanomaterials on various substrates
EP2441729B1 (en) 2006-05-19 2017-04-05 Massachusetts Institute Of Technology Method of forming a composite article
US8337979B2 (en) * 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US7534648B2 (en) 2006-06-29 2009-05-19 Intel Corporation Aligned nanotube bearing composite material
US9095639B2 (en) 2006-06-30 2015-08-04 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US20080020193A1 (en) * 2006-07-24 2008-01-24 Jang Bor Z Hybrid fiber tows containning both nano-fillers and continuous fibers, hybrid composites, and their production processes
US8389119B2 (en) * 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
US20080053922A1 (en) * 2006-09-01 2008-03-06 Honsinger Charles P Jr Nanostructured materials comprising support fibers coated with metal containing compounds and methods of using the same
JP2008056546A (ja) 2006-09-01 2008-03-13 Ihi Corp 炭素構造体の製造装置及び製造方法
WO2008041183A2 (en) 2006-10-05 2008-04-10 Technion Research & Development Foundation Ltd. Microtubes and methods of producing same
WO2008060571A2 (en) 2006-11-13 2008-05-22 Aurora Biofuels, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
KR100829001B1 (ko) 2006-12-07 2008-05-14 한국에너지기술연구원 유리섬유 또는 탄소섬유 위에 탄소나노와이어를 직접합성하는 방법 및 이를 이용한 강화복합체 제조 방법
US20080160302A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process
US20080160286A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified discontinuous glass fibers for use in the formation of thermoplastic fiber-reinforced composite articles
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US20100279569A1 (en) 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US20080176987A1 (en) 2007-01-22 2008-07-24 Trevet Fred W System and methods for modified resin and composite material
US20100112322A1 (en) * 2007-01-30 2010-05-06 Georgia Tech Research Corporation Carbon fibers and films and methods of making same
TW200833861A (en) 2007-02-05 2008-08-16 Nat Univ Tsing Hua Method for growing carbon nanotubes directly on the carbon fiber
US20080247938A1 (en) 2007-04-05 2008-10-09 Ming-Chi Tsai Process of growing carbon nanotubes directly on carbon fiber
US9233850B2 (en) 2007-04-09 2016-01-12 Nanotek Instruments, Inc. Nano-scaled graphene plate films and articles
CN101286384B (zh) 2007-04-11 2010-12-29 清华大学 电磁屏蔽线缆
US8388795B2 (en) 2007-05-17 2013-03-05 The Boeing Company Nanotube-enhanced interlayers for composite structures
US7718220B2 (en) 2007-06-05 2010-05-18 Johns Manville Method and system for forming reinforcing fibers and reinforcing fibers having particulate protuberances directly attached to the surfaces
GB0712820D0 (en) 2007-07-03 2007-08-08 Dunlop Aerospace Ltd Carbon-carbon composite
EP2011572B1 (en) * 2007-07-06 2012-12-05 Imec Method for forming catalyst nanoparticles for growing elongated nanostructures
US7785498B2 (en) * 2007-07-19 2010-08-31 Nanotek Instruments, Inc. Method of producing conducting polymer-transition metal electro-catalyst composition and electrodes for fuel cells
CN101821448A (zh) 2007-07-27 2010-09-01 道康宁公司 纤维结构和制备该纤维结构的方法
EP2176348B1 (en) 2007-08-02 2017-01-18 Dow Global Technologies LLC Amphiphilic block copolymers and inorganic nanofillers to enhance performance of thermosetting polymers
WO2009023644A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced smart panel
US20090047502A1 (en) * 2007-08-13 2009-02-19 Smart Nanomaterials, Llc Nano-enhanced modularly constructed composite panel
US8159235B2 (en) 2007-09-14 2012-04-17 The Regents Of The University Of Michigan Electrical impedance tomography of nanoengineered thin films
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
US7815820B2 (en) 2007-10-18 2010-10-19 General Electric Company Electromagnetic interference shielding polymer composites and methods of manufacture
WO2009054415A1 (ja) 2007-10-23 2009-04-30 Tokushu Paper Mfg. Co., Ltd. シート状物及びその製造方法
KR20090041765A (ko) 2007-10-24 2009-04-29 삼성모바일디스플레이주식회사 탄소나노튜브 및 그 형성 방법, 하이브리드 구조 및 그형성 방법 및 발광 디바이스
US20090126783A1 (en) 2007-11-15 2009-05-21 Rensselaer Polytechnic Institute Use of vertical aligned carbon nanotube as a super dark absorber for pv, tpv, radar and infrared absorber application
US8146861B2 (en) 2007-11-29 2012-04-03 Airbus Deutschland Gmbh Component with carbon nanotubes
KR100878751B1 (ko) 2008-01-03 2009-01-14 한국에너지기술연구원 셀룰로스 섬유를 이용한 촉매지지체, 이의 제조방법,촉매지지체 표면에 직접성장된 탄소나노튜브 및탄소나노튜브 표면에 나노금속 촉매가 담지된 담지촉매 및이의 제조방법
US20090191352A1 (en) 2008-01-24 2009-07-30 Nanodynamics, Inc. Combustion-Assisted Substrate Deposition Method For Producing Carbon Nanosubstances
JP2009184892A (ja) 2008-02-08 2009-08-20 Dainippon Screen Mfg Co Ltd カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法
FR2927619B1 (fr) * 2008-02-20 2011-01-14 Commissariat Energie Atomique Croissance de nanotubes de carbone sur substrats de carbone ou metalliques.
US7867468B1 (en) * 2008-02-28 2011-01-11 Carbon Solutions, Inc. Multiscale carbon nanotube-fiber reinforcements for composites
US9725314B2 (en) 2008-03-03 2017-08-08 Performancy Polymer Solutions, Inc. Continuous process for the production of carbon nanofiber reinforced continuous fiber preforms and composites made therefrom
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US7837905B2 (en) 2008-05-16 2010-11-23 Raytheon Company Method of making reinforced filament with doubly-embedded nanotubes
US20110159270A9 (en) * 2008-06-02 2011-06-30 Texas A & M University System Carbon nanotube fiber-reinforced polymer composites having improved fatigue durability and methods for production thereof
US20100059243A1 (en) * 2008-09-09 2010-03-11 Jin-Hong Chang Anti-electromagnetic interference material arrangement
KR101420680B1 (ko) * 2008-09-22 2014-07-17 삼성전자주식회사 저항가열을 이용한 탄소섬유의 표면처리 장치 및 표면처리 방법
US7879681B2 (en) * 2008-10-06 2011-02-01 Samsung Electronics Co., Ltd. Methods of fabricating three-dimensional capacitor structures having planar metal-insulator-metal and vertical capacitors therein
US8351220B2 (en) 2009-01-28 2013-01-08 Florida State University Research Foundation Electromagnetic interference shielding structure including carbon nanotube or nanofiber films and methods
EP2401416B1 (en) 2009-02-27 2021-03-17 Applied NanoStructured Solutions, LLC Low temperature carbon nanotube growth using gas-preheat method
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
US8052951B2 (en) 2009-04-03 2011-11-08 Ut-Battelle, Llc Carbon nanotubes grown on bulk materials and methods for fabrication
US20100272891A1 (en) 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
AU2010245098B2 (en) * 2009-04-27 2014-11-13 Applied Nanostructured Solutions, Llc. CNT-based resistive heating for deicing composite structures
US20100311866A1 (en) 2009-06-05 2010-12-09 University Of Massachusetts Heirarchial polymer-based nanocomposites for emi shielding
CN101698975B (zh) 2009-09-23 2011-12-28 北京航空航天大学 炭纳米管对炭化后的预氧丝预制体界面的改性方法
US8168291B2 (en) * 2009-11-23 2012-05-01 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764628B2 (en) * 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same

Also Published As

Publication number Publication date
AU2010321534B2 (en) 2015-03-26
CN102596564A (zh) 2012-07-18
WO2011063422A1 (en) 2011-05-26
JP2013511467A (ja) 2013-04-04
US20110124483A1 (en) 2011-05-26
AU2010321534A1 (en) 2012-04-05
BR112012010907A2 (pt) 2019-09-24
CA2775619A1 (en) 2011-05-26
KR20120117978A (ko) 2012-10-25
EP2504164A1 (en) 2012-10-03
EP2504164A4 (en) 2013-07-17
US8168291B2 (en) 2012-05-01

Similar Documents

Publication Publication Date Title
CN102596564B (zh) 含有碳纳米管并入的纤维材料的陶瓷复合材料及其制备方法
CN102639321A (zh) 含有碳纳米管并入的纤维材料的金属基体复合材料及其制造方法
CN102741465A (zh) 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料
Fu et al. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples
CN103079805B (zh) 含有碳纳米管并入的纤维材料的防火复合材料和制品
KR101770196B1 (ko) Cnt 주입된 탄소 섬유 물질 및 그 제조방법
JP5577356B2 (ja) カーボン・ナノチューブを繊維上に含んで構成された複合材料
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN102333645A (zh) 并入cnt的玻璃纤维材料及其方法
JP2013518791A5 (zh)
JP2013509503A5 (zh)
JP2015528068A (ja) Cns導入カーボン・ナノ材料及びそのためのプロセス
Feng et al. Fiber reinforcement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141112

Termination date: 20191123