TWI558657B - 奈米碳管應用於粉礦聚集物以增加其機械強度 - Google Patents

奈米碳管應用於粉礦聚集物以增加其機械強度 Download PDF

Info

Publication number
TWI558657B
TWI558657B TW101132831A TW101132831A TWI558657B TW I558657 B TWI558657 B TW I558657B TW 101132831 A TW101132831 A TW 101132831A TW 101132831 A TW101132831 A TW 101132831A TW I558657 B TWI558657 B TW I558657B
Authority
TW
Taiwan
Prior art keywords
mechanical strength
carbon nanotubes
binder
carbon nanotube
increase
Prior art date
Application number
TW101132831A
Other languages
English (en)
Other versions
TW201335060A (zh
Inventor
佛雷維歐 迪 卡斯楚 杜特拉
漢彌爾頓 波多 皮曼達
勒桑蒂 法德琳 甘薩加 迪
艾路西歐 安東尼奧 迪米羅 波吉絲
Original Assignee
淡水河谷公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淡水河谷公司 filed Critical 淡水河谷公司
Publication of TW201335060A publication Critical patent/TW201335060A/zh
Application granted granted Critical
Publication of TWI558657B publication Critical patent/TWI558657B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/18Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using a vibrating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/702Integrated with dissimilar structures on a common substrate having biological material component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

奈米碳管應用於粉礦聚集物以增加其機械強度
本發明係關於將奈米碳管用於粉礦聚集物以增強其機械強度之應用。本發明亦係關於一種製備具有增強之機械強度之礦聚集物之方法及具有奈米碳管之聚集物產物。
現今,奈米技術正在數個研究領域中現實化,主要包括工程學、化學、物理學及生物學。基於奈米級之各種革新產物已在世界範圍市場中商業化。奈米碳管技術現在係世界許多研究小組所探索之最熱門課題之一,係因其等具有優異機械、電學及熱學性質。此等特殊性質係源自奈米管之尺寸及結構組合。其等具有結晶結構,呈具有奈米直徑之圓柱形幾何形態,由碳原子組成。奈米碳管之用途可能性無法估量,且現今主要開發之應用係與材料強化有關。基於此可能性,本發明係關於奈米碳管之應用,目的係增加聚集物產物之機械強度。
礦聚集物產物之物理強度係冶金反應器所要求之一個主要品質參數且對製程之生產率及成本具有直接影響。奈米碳管技術開創在粉礦聚集路徑上之應用的廣範圍可能性,其用作複合網,其特徵當中尤其提供聚集物產物高物理強度。
當前技術提供各種礦冷聚集技術。此等技術係基於基本上將水泥、砂漿、有機黏結劑及碳酸化殘餘物用作黏結劑之粉礦聚集。與此等黏結劑相關的是,數種添加劑呈現出 加速聚集固化及改良其等機械強度。數項專利顯示針對煉鋼及冶金工業產生之工業殘餘物之尤其利用矽酸鈉添加劑之聚集技術。然而,未提及奈米碳管作為矽酸鹽基質強化以增加聚集產物之機械強度之應用。
本發明將製造聚集物中之一些問題減至最小,如:對大量添加黏結劑之需求;由冷路徑製成之聚集物之機械強度低;因運輸及處理而產生大量微細粉末;因熱衝擊而產生大量微細粉末;及受來自特定黏結劑衍生出之非所需元素污染。本發明將投與各種類型黏結劑之需要減至最小,不添加新污染物(除被視為有利於聚集物之碳外),顯著增加聚集物之機械強度,減少因運輸及處理而產生的微細粉末,及容許將此產物用於需要負載高強度之反應器中。
下表將本發明與習知技術路徑對比,凸顯主要差異:
引出本發明之研究係由五個階段組成:(i)將奈米碳管功能化/分散至矽酸鈉(黏結基質)中;(ii)製備奈米碳管與原材料之混合物用於製造聚集物;(iii)測量聚集產物之強 度;(iv)透過習知材料特徵化技術將產物特徵化,如X-射線繞射、穆斯堡爾(Mössbauer)光譜法、掃描式電子顯微法、雷曼(Raman)光譜法、測量比表面積(BET方法)及化學分析;及(v)評價聚集產物於造粒、燒結及還原製程中之性能。
於第一步驟中,藉由機械混合或使用超音波加工器將奈米碳管分散至基質(黏結劑)中。分散後,實施與礦之機械混合及接著聚集。
所形成產物係含有(或不含)煤炭、焦炭微細粉末、石油焦炭、石灰石、各種殘餘物及黏結劑之鐵、鎳及/或錳礦之聚集物。此等產物係透過造粒(產物:顆粒)或壓錠(產物:錠塊)之製程,使用天然及/或經研磨之鐵及/或錳及/或鎳礦之顆粒進料製成,無需在高溫下固化。
製備聚集物之方法將液態矽酸鈉(SiO2/Na2O莫耳比為2.15至3.90)用作主黏結劑。將液態矽酸鈉以1.5與4.5%之間之含量添加至粉礦與助熔劑之混合物中。將奈米碳管以可在0至2%範圍內變化之比例合併於矽酸鹽中。奈米碳管之分散可藉由機械混合物或透過使用超音波加工設備實施。奈米碳管之應用之潛力可在於奈米管之功能化過程,該過程發生在管分散至黏結基質中之前。該功能化使奈米碳管除具有與基質之物理相互作用外,亦具有與基質之化學相互作用。
在奈米碳管分散至矽酸鈉後,使所有其他成分參與該混合製程,接著盤/鼓式造粒或製錠。篩分所獲得之產物, 即顆粒及錠塊,及在150與200℃之間之溫度下進行乾燥製程。該等產物相較於不含奈米碳管之產物展示乾燥時或在高濕度條件下之高機械強度。
圖1顯示添加有少量奈米碳管之冷固化聚集產物之強度增加。觀察到在礦與黏結劑之混合物中應用0.01%奈米碳管(相對於黏結劑之量)會使聚集物之壓縮強度相較於對照樣品(即,不存在奈米管)增加50%以上。
可將其他添加劑,如樹薯及玉米澱粉,及微米矽石(殘留在用於製造金屬矽之不掉塵過濾器中之殘餘物)與矽酸鹽組合應用以改良產物品質。樹薯/玉米澱粉可以0.5與1.0%之間之比例使用,改良透過研磨產物而得之微細粉末之強度及產生。可以0.3%至1.0%範圍內之濃度的微米矽石取代矽酸鈉,而不促使產物之機械強度下降。
用於製備此等產物之技術路徑需要以下單元操作:1.將奈米碳管功能化/分散至液態矽酸鈉(黏結劑)中;2.製備混合物:將黏結劑添加至混合物之其他成分中;3.盤(或鼓)式造粒或製錠;4.篩分顆粒/錠塊;5.於150至200℃之間之傳送帶烘爐中乾燥;6.篩分。
本發明之應用相當廣泛,係因其容許自鐵、錳及鎳礦之顆粒進料及殘餘物製造具有可供聚集(燒結及造粒)及還原(鼓風爐、直接還原反應器等)製程使用之物理及冶金品質之聚結物。因此,本發明可應用於採礦及煉鋼工業。
透過冷路徑對具有良好化學品質之顆粒進料實施聚集來製造聚集物之可能性係可促進商業及策略益處之重要候選方案,如:(i)修正較低成本之燒結進料,該燒結進料缺少物理及化學品質;(ii)容許助益礦物劃分(SF/PF);(iii)顧及於燒結進料之要求;此方面在當今仍未提供;及(iv)成為製造更多無要求顆粒進料之主生產市場,同時促進具有在高溫下之高壓縮強度而可供還原反應器使用之顆粒及自還原錠塊之製造。
圖1顯示添加有少量奈米碳管之冷固化聚集產物之強度增加。

Claims (5)

  1. 一種將奈米碳管用於粉礦聚集物以增加其機械強度之應用,包含:透過機械混合或使用超音波加工機將奈米碳管分散至基質(黏結劑)中;實施與該礦之機械混合;及聚集。
  2. 一種製備具有高機械強度之礦聚集物之方法,其包含:將奈米碳管功能化/分散至黏結劑中;製備該混合物;造粒或製錠;篩分該等顆粒/錠塊;乾燥;及篩分。
  3. 如請求項2之方法,其中該黏結劑係液態矽酸鈉,該等奈米碳管之分散係透過機械混合或透過使用超音波加工設備實施,該造粒係藉由盤或鼓實施,及該乾燥係於150至200℃之間之傳送帶烘爐中進行。
  4. 如請求項3之方法,其中將該等奈米碳管以可在0至2%內變化之比例合併於該矽酸鹽中。
  5. 一種聚集物產物,其包含:鐵、鎳或錳粉礦或其混合物;及包含矽酸鈉之黏結劑及奈米碳管;其中該聚集物產物之機械強度高於對應之不含奈米碳管之聚集物產物。
TW101132831A 2011-09-08 2012-09-07 奈米碳管應用於粉礦聚集物以增加其機械強度 TWI558657B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161532420P 2011-09-08 2011-09-08

Publications (2)

Publication Number Publication Date
TW201335060A TW201335060A (zh) 2013-09-01
TWI558657B true TWI558657B (zh) 2016-11-21

Family

ID=47018682

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101132831A TWI558657B (zh) 2011-09-08 2012-09-07 奈米碳管應用於粉礦聚集物以增加其機械強度

Country Status (18)

Country Link
US (1) US8999032B2 (zh)
EP (1) EP2753719B1 (zh)
JP (1) JP6076983B2 (zh)
KR (1) KR101943132B1 (zh)
CN (1) CN104053797A (zh)
AR (1) AR087828A1 (zh)
AU (1) AU2012307033A1 (zh)
BR (2) BR112014005488B1 (zh)
CA (1) CA2847582C (zh)
CL (1) CL2014000546A1 (zh)
ES (1) ES2555464T3 (zh)
MX (1) MX2014002756A (zh)
PE (1) PE20142063A1 (zh)
RU (1) RU2623523C2 (zh)
SG (1) SG11201400373QA (zh)
TW (1) TWI558657B (zh)
UA (1) UA111378C2 (zh)
WO (1) WO2013033805A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036719A (ko) * 2012-07-23 2015-04-07 발레 에스.에이. 철광석 펠릿의 최적화된 제조를 위한 공정
GB201712982D0 (en) * 2017-08-14 2017-09-27 Phillips Peter Briquette
GB201813370D0 (en) * 2018-08-16 2018-10-03 Binding Solutions Ltd Binder formulation
IL282197B1 (en) 2018-10-29 2024-08-01 C2Cnt Llc Using carbon nanomaterials produced with a low carbon footprint to create composite materials with low CO2 emissions
BR102019023195B1 (pt) * 2019-11-05 2021-01-19 Vale S.A. processo de produção de aglomerado de finos de minério de ferroe o produto aglomerado
CN112359204A (zh) * 2020-11-06 2021-02-12 佩思国际科贸(北京)有限公司 冷压球团粘合剂、冷压球团及冷压球团的制备方法
US11987860B2 (en) 2021-09-16 2024-05-21 Sidney Nicodemos da Silva Low temperature briquette of fines bearing iron and other metals
BR102021018716B1 (pt) * 2021-09-20 2023-04-04 Tecnored Desenvolvimento Tecnologico S.A Aglomerado sólido prensado a frio, e, processo de produção do mesmo
AU2023242798A1 (en) * 2022-03-30 2024-09-05 Vale S.A. Method for producing high iron-content products from iron ore fines and biomass, and products thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020152839A1 (en) * 1999-11-01 2002-10-24 Jay Aota Cold bonded iron particulate pellets
US20030155143A1 (en) * 2002-02-15 2003-08-21 Tadashi Fujieda Electromagnetic wave absorption material and an associated device
TW200617182A (en) * 2004-10-01 2006-06-01 Jfe Steel Corp Method for manufacturing sintered ore
WO2007080356A1 (en) * 2006-01-11 2007-07-19 Solsys Limited Production of carbonaceous metal ore pellets
TW200936774A (en) * 2007-11-22 2009-09-01 Jfe Steel Corp Method for production of raw material for use in the production of sintered ore

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248831A (ja) * 1984-05-25 1985-12-09 Onoda Cement Co Ltd 非焼成塊成鉱の製造方法
US6682677B2 (en) * 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
US7896963B2 (en) * 2003-09-23 2011-03-01 Hanqing Liu Self-reducing, cold-bonded pellets
CN101100569B (zh) * 2007-07-17 2010-04-14 华中师范大学 一种防空泡腐蚀富锌涂料及其制备方法
US7767121B2 (en) * 2008-11-10 2010-08-03 Kryron Global, Llc Solid composition having enhanced physical and electrical properties
CN101565782B (zh) * 2009-05-31 2011-01-05 南昌大学 一种添加碳纳米管到金属熔体中的方法
US8168291B2 (en) * 2009-11-23 2012-05-01 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
JP5728584B2 (ja) * 2010-10-15 2015-06-03 セラニーズ アセテート,エルエルシー 煙フィルタ用多孔質体を形成する装置、システム、および関連方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020152839A1 (en) * 1999-11-01 2002-10-24 Jay Aota Cold bonded iron particulate pellets
US20030155143A1 (en) * 2002-02-15 2003-08-21 Tadashi Fujieda Electromagnetic wave absorption material and an associated device
TW200617182A (en) * 2004-10-01 2006-06-01 Jfe Steel Corp Method for manufacturing sintered ore
WO2007080356A1 (en) * 2006-01-11 2007-07-19 Solsys Limited Production of carbonaceous metal ore pellets
TW200936774A (en) * 2007-11-22 2009-09-01 Jfe Steel Corp Method for production of raw material for use in the production of sintered ore

Also Published As

Publication number Publication date
UA111378C2 (uk) 2016-04-25
SG11201400373QA (en) 2014-04-28
PE20142063A1 (es) 2014-12-17
CA2847582A1 (en) 2013-03-14
BR112014005488B1 (pt) 2019-03-06
CN104053797A (zh) 2014-09-17
ES2555464T3 (es) 2016-01-04
JP6076983B2 (ja) 2017-02-08
KR101943132B1 (ko) 2019-01-28
WO2013033805A1 (en) 2013-03-14
CL2014000546A1 (es) 2014-10-10
BR132015016738E2 (pt) 2018-03-20
AR087828A1 (es) 2014-04-23
JP2014526612A (ja) 2014-10-06
EP2753719B1 (en) 2015-09-09
TW201335060A (zh) 2013-09-01
EP2753719A1 (en) 2014-07-16
US8999032B2 (en) 2015-04-07
RU2623523C2 (ru) 2017-06-27
CA2847582C (en) 2019-05-28
KR20140061442A (ko) 2014-05-21
RU2014113558A (ru) 2015-10-20
AU2012307033A1 (en) 2014-03-20
MX2014002756A (es) 2014-04-16
US20130243973A1 (en) 2013-09-19
BR112014005488A2 (pt) 2017-04-04

Similar Documents

Publication Publication Date Title
TWI558657B (zh) 奈米碳管應用於粉礦聚集物以增加其機械強度
JP6129555B2 (ja) 焼結プロセスに用いられる鉱石微粉凝集物、及び鉱石微粉凝集物の製造方法
EP2734653B2 (en) Binder composition for agglomeration of fine minerals and pelletizing process
Hassaan et al. Production of geopolymer composites enhanced by nano-kaolin material
CN107285600A (zh) 一种利用工矿固体废弃物制备的催化剂进行污泥热解制活性炭的方法
JP2010526745A5 (zh)
KR20180110034A (ko) 소결광의 제조 방법
JP2022532002A (ja) 鉄鉱石微粉凝集体の製造方法及びその凝集体生成物
CN1720340A (zh) 冷压团块和造球的方法
Bhatrola et al. Comparative study of physico‐mechanical performance of PPC mortar incorporated 1D/2D functionalized nanomaterials
TWI596213B (zh) Sinter manufacturing method
CN103979787A (zh) 一种利用高钙粉煤灰制备矿物棉的方法
Karthikeyan et al. Dispersion effect of nano-structure pyrolytic carbon on mechanical, electrical, and microstructural characteristics of cement mortar composite
CN104016355B (zh) 酸化后的硅藻土尾矿
Shamsipur et al. Synthesis and Properties of Plasticized Sulfur-Montmorillonite Nanocomposites by Melt-Blending
Zhou et al. The bonding mechanism and effects of sodium ligninsulfonate (SL) in iron ore pelletization
JP2012082456A (ja) 製鉄用原料造粒物の製造方法
OA16751A (en) Application of carbon nanotubes on agglomerates of ore fines to increase the mechanical strength.
Weimin et al. Study on the pelletizing process of medium-and low-grade phosphate rock powders
CN104003622A (zh) 一种利用粉煤灰蒸压砖废品或用后砖制备矿物棉的方法
DE60215398T2 (de) Kaltbrikettierung und pelletierung von mineralischen feinteilchen unter verwendung eines eisenhaltigen hydraulischen bindemittels
JP2007302956A (ja) 製鉄用非焼成塊成鉱
CN112266242A (zh) 一种以小于200目的金红石为主要原料制备球状金红石颗粒的方法
OA20236A (en) Process for the production of iron ore fines agglomerate and the agglomerated product.
Sivrikaya Use of boron based binders in pelletization of iron ores