CN101814521A - 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法 - Google Patents

相变化存储器的多晶硅栓塞双极性晶体管及其制造方法 Download PDF

Info

Publication number
CN101814521A
CN101814521A CN201010003502A CN201010003502A CN101814521A CN 101814521 A CN101814521 A CN 101814521A CN 201010003502 A CN201010003502 A CN 201010003502A CN 201010003502 A CN201010003502 A CN 201010003502A CN 101814521 A CN101814521 A CN 101814521A
Authority
CN
China
Prior art keywords
covering layer
semiconductor substrate
single crystal
crystal semiconductor
conductive covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010003502A
Other languages
English (en)
Other versions
CN101814521B (zh
Inventor
龙翔澜
赖二琨
拉詹德南·毕平
林仲汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
International Business Machines Corp
Original Assignee
Macronix International Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd, International Business Machines Corp filed Critical Macronix International Co Ltd
Publication of CN101814521A publication Critical patent/CN101814521A/zh
Application granted granted Critical
Publication of CN101814521B publication Critical patent/CN101814521B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/32Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the bipolar type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种相变化存储器的多晶硅栓塞双极性晶体管及其制造方法。该相变化存储器的多晶硅栓塞双极性晶体管包括多个存储单元,且每个存储单元包括双极性结晶体管与存储元件。该双极性结晶体管是以共集极组态方式耦接,且包括射极,射极包括具有第一导电性的掺杂多晶硅,且与一条对应字线连接以定义出一pn结;双极性结晶体管亦包括基极与集极,其中基极利用位于该射极下方的该条对应字线一部分所形成,且集极包括位于基极下方的该单晶半导体衬底一部分。

Description

相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
技术领域
本发明是关于一种使用相变化存储材料的高密度存储装置及其制造方法,其中,相变化存储材料可包括硫属化物材料及其它可编程电阻材料。
背景技术
相变化存储材料,如硫属化物材料及其它类似材料,在施加强度适用于集成电路的电流时,可于非晶态与晶态之间进行相变化。大致非晶态的电阻较大致晶态来得高,而此特性正可用于数据的表示。由于具备此种特性,业界致力研究如何将可编程电阻材料应用于可随机读写存取的非易失性存储电路。
由非晶态转变为晶态大致上属于低电流操作,而由晶态转变为非晶态(此处称为复位)则大致上属于高电流操作。复位过程是使用短暂的高电流密度脉冲来熔化或破坏晶体结构,之后相变化材料快速冷却,将熔融状态的相变化材料予以淬火,使至少部份相变化材料可稳定存在非晶态。
由于相变化是由加热所引发,欲提高相变化材料的温度并造成相变化,就必须提供相对高的电流。然而,因为场效晶体管是使用低电流来驱动,对于具有场效晶体管存取装置的相变化存储单元而言,如何取得需要的电流就成了问题。
虽然双极性结晶体管可提供较场效晶体管更大的电流驱动,但要将双极性结晶体管与CMOS周边电路进行整合并不容易,且会让设计及工艺变得非常复杂。
因此,有必要提供一种相变化存储单元,其具有与CMOS周边电路兼容的双极性结晶体管存取装置,且其设计整合与工艺相对容易。
发明内容
本发明提供的一种存储装置,包括一单晶半导体衬底及位于衬底内的多条字线,其中单晶半导体衬底具有第一导电性,且字线具有与第一导电性相异的第二导电性。存储装置包括多个存储单元,其中某些存储单元包括双极性结晶体管与存储元件。双极性结晶体管包括射极、基极以及集极,其中,射极包括具有第一导电性的掺杂多晶硅,且与对应字线连接以定义出pn结。基极利用位于射极下方的对应字线一部分所形成,集极包括位于该基极下方的单晶半导体衬底一部分。
此处所描述的存储装置制造方法包括形成一具有第一导电性的单晶半导体衬底,以及于该单晶半导体衬底内形成多个介电沟道。多条字线乃形成于单晶半导体衬底内,字线是具有与第一导电性相异的第二导电性,且相邻的字线是由介电沟道所分隔。该方法亦形成多个掺杂多晶硅栓塞、多个存储元件、上电极以及多条位线,其中,掺杂多晶硅栓塞具有该第一导电性,且与字线接触;存储元件是电性耦接至掺杂多晶硅栓塞;上电极位于存储元件上;位线位于上电极上,且耦接至上电极。
此处所描述的存储装置包括相变化存储单元,其不但具有与CMOS周边电路兼容的双极性结晶体管存取装置,且不需特别复杂的设计整合与工艺即可生产。
本发明的其它特色与优点可配合图式、实施方式及权利要求范围来了解。
附图说明
图1是部分存储单元阵列的示意图,其中存储单元包括具有多晶硅射极的双极性结晶体管。
图2A~图2B为阵列中第一实施例的存储单元部分剖面图。
图2C为阵列中第一实施例的存储单元的俯视图。
图3A~图3B为阵列中第二实施例的存储单元部分剖面图。
图4A~图4B为阵列中第三实施例的存储单元部分剖面图。
图5A~图5B为阵列中第四实施例的存储单元部分剖面图。
图6~图20依序为制造存储单元阵列的各步骤。
图21~图24为图7A~图7B所示制造字线步骤的另一实施例。
图25为集成电路的简化方块图,该集成电路的存储单元阵列内的存储单元包括前述具有多晶硅射极的双极性结晶体管。
【主要元件符号说明】
100                    存储单元阵列
110                    存储单元
115                    双极性结晶体管
120、120a、120b、120c、位线
120d、2520
125                    存储元件
126、400               存储元件厚度
127                    存储元件宽度
128                    主动区域
130、130a、130b、130c、字线
130d、2516
140                    导电材料
150、2514              字线译码器与驱动器
160、2518              位线译码器
165                    感应放大器/数据输入结构
200                    衬底
202                    阱
205                    第一掺杂区
210                    第二掺杂区
215、217、290          导电接触窗
220                    掺杂多晶硅栓塞
222                    pn结
230                    介电沟道
240                    导电覆盖层
250                    下电极
252                    下电极宽度
260、270、295          介电质
262                    二氧化硅层
264                    氮化硅层
266                    BPSG或PSG层
280                    上电极
300                    第一部分宽度
323                    第一部分
324                    第二部分
510                    侧壁导体
900、1400              介电质开口
1410                   开口宽度
1700                   上电极开口
1750                   接触窗开口
2000                   周边电路
2100                   侧壁表面
2510                   集成电路
2522、2526             总线
2524                   感应放大器与数据输入结构
2528                   数据输入线
2530                   其它电路
2532                   数据输出线
2534                   控制器
2536                   偏压调整供应电压与电流源
具体实施方式
以下揭露的内容大多需配合参考特定结构实施例及方法,然而,揭露内容的范围并不仅限于该多个特定结构实施例及方法,且揭露内容亦可透过其它特征、元件、方法及实例来实施。本发明所揭露的内容虽可透过较佳实施例来说明,但该多个实施例不可用来限制本发明的范围,本发明专利权的范围须以权利要求范围为准。本领域具有通常知识者于参考本发明揭露的内容后,应可了解其它可能的均等实施方式。此外,于后述的内容中,不同实施例的相同元件乃以相同元件符号表示。
图1是部分存储单元阵列100的示意图,其中存储单元包括具有多晶硅射极的双极性结晶体管。
如图1所示,阵列100中的各存储单元均包括双极性结晶体管存取装置及电性串连的存储元件,且存储元件可被设置成多种电阻状态之一,进而储存一个以上的数据位。
阵列100包括多条字线130,如字线130a、130b、130c、130d,其是于第一方向上平行延伸,并与字线译码器与驱动器150形成电性连接。字线130是耦接至阵列100的双极性存取晶体管的基极端。
多条位线120,如位线120a、120b、120c、120d,是于第二方向上平行延伸,并与位线译码器160形成电性连接。各双极性结晶体管的射极端是透过存储元件耦接至一条对应的位线120。
阵列100的存储单元乃以共集极组态方式耦接,也就是说,存储单元的集极端被耦接至参考电压,且其输入、输出分别为基极与射极端。因此,在操作过程中,位线120与字线130的电压,会诱发电流自位线120经由射极端与存储元件流至集极端或是反向亦然自集极端流至位线120。
于图1中,集极端是接地。无庸置疑地,集极端不一定要接地,其亦可耦接至可提供参考电压的电压源,举例来说,如图25的偏压调整供应电压、电流源2536。
以存储单元阵列100中的存储单元110为例,其包括双极性结晶体管115及电性连接的相变化存储元件125。双极性结晶体管115的基极端耦接至字线130b,而双极性结晶体管115的射极端则透过相变化存储元件125耦接至位线120b。
为读取或写入存储单元阵列100中的存储单元110,可施加适当大小的电压及/或电流至对应的字线130b与位线120b,以诱发流经特定存储单元110的电流。电压及/或电流的施加时间与强度是依所进行的操作而定,如读取操作或写入操作。
于存储单元110的复位(擦除)操作中,施加至字线130b与位线120b的复位脉冲会诱发流经存储元件125的电流,以使主动区域开始转变成非晶相,而将相变化材料的电阻设定在与复位状态相关的电阻值范围内。前述的复位脉冲属于相对高能量的脉冲,其至少可提高存储元件125的主动区域的温度,使之高于相变化材料的相变(结晶)温度外,也高于熔融温度,以至少让主动区域成为液态。之后,快速终止复位脉冲,使主动区域在一短暂的淬火时间内快速冷却至相变温度以下,并稳定形成一大致非晶相。
于存储单元110的设置(或编程)操作中,乃于适当的时间内施加适当大小的编程脉冲至字线130b与位线120b,以诱发流经存储单元110的电流,其可将部分主动区域的温度升高至相变温度以上,并使该部分主动区域产生由非晶相转变至结晶相的变化,而此变化会降低存储元件125的电阻,并将存储单元110设置在一特定状态。
于存储单元110内数据的读取(或感应)操作中,乃于适当的时间内施加适当大小的读取脉冲至字线130b与位线120b,以诱发不致使存储元件125的电阻状态发生改变的电流。由于流经存储单元110的该电流,其大小端视存储元件125的电阻与储存在存储单元110的数据而定。因此,可利用方块165的感应放大器来比较位线120b的电流与一稳定的参考电流,或以其它方式,来确定存储单元的数据状态。
图2A及图2B为阵列100中存储单元(包括存储单元110)部分的剖面图,前者是沿位线120进行剖面而得,而后者是沿字线130进行剖面而得。图2C则为阵列100的俯视图。
阵列包括衬底200,其包括具有第一导电性的阱202,且该阱202包括第一掺杂区205与第二掺杂区210,第二掺杂区210的掺杂浓度是较第一掺杂区205高。衬底200尚包括位于阱202内的字线130,字线130是沿贯穿图2A的第一方向延伸,且其导电性与第一导电性不同之处,除了第一掺杂区205、第二掺杂区210以及字线130外,衬底200更包括单晶半导体衬底。
存储单元110包括经掺杂的多晶硅栓塞220,其具有第一导电性,且被作为双极性结晶体管115的射极。此外,经掺杂的多晶硅栓塞220与对应的字线130b接触,以定义pn结222。
字线130b位于栓塞220下的部分被作为双极性结晶体管115的基极,而阱202位于字线130b下的部分则作为双极性结晶体管115的集极。
字线130是由位于阱202内包含介电材料的介电沟道230所分隔。导电接触窗215、217将阱202的第二掺杂区210耦接至与参考电压耦接的导电材料140。
于本例示实施例中,经掺杂的多晶硅栓塞220包括浓掺杂的N型(N++)多晶硅,字线130包括位于硅衬底200内的P型材料掺杂区域,第一掺杂区205包括位于硅衬底200内的N型材料掺杂区域,且第二掺杂区210包括位于硅衬底200内的浓掺杂N型(N+)材料区域,据此以形成npn双极性晶体管115。
于另一实施例中,经掺杂的多晶硅栓塞220包括浓掺杂的P型(P++)多晶硅,字线130包括位于硅衬底200内的N型材料掺杂区域,第一掺杂区205包括位于硅衬底200内的P型材料掺杂区域,且第二掺杂区210包括位于硅衬底200内的浓掺杂P型(P+)材料区域,据此以形成pnp双极性晶体管115。
存储单元110包括位于经掺杂的多晶硅栓塞220上的导电覆盖层240,于本实施例中,导电覆盖层240包括硅化物,如含有Ti、W、Co、Ni或Ta的硅化物。导电覆盖层240可提供介于经掺杂的多晶硅栓塞220与下电极250之间的低电阻接触,且经掺杂的多晶硅栓塞220与导电覆盖层240是贯穿介电质260。于本实施例中,介电质260包括二氧化硅层262、位于二氧化硅层262上的氮化硅层264以及位于氮化硅层264上的硼磷硅玻璃(BPSG)层或磷硅玻璃(PSG)层。在某些实施例中,则可以不需要氮化硅层264。
下电极250位于导电覆盖层240之上,且贯穿介电质270并与存储元件125的下表面接触,其中存储元件125可包括一种以上选自下列群组的材料:锗、锑、碲、硒、铟、钛、镓、铋、锡、铜、钯、铅、银、硫、硅、氧、磷、砷、氮及金。
下电极250可以包括氮化钛或氮化钽,且不以此为限。氮化钛不但可与GST(容后详述)形成良好的接触,且是半导体工艺常用的材料,又能在GST相变的高温(通常介于600至700℃)提供良好的扩散势垒,因此,当存储元件125包括GST时,下电极的材料较佳为氮化钛。此外,下电极250也可以包括氮化铝钛或氮化铝钽,或包括一种以上选自下列群组的材料:钛、钨、钼、铝、钽、铜、铂、铱、镧、镍、氮、氧、钌或以上元素的组合。
上电极280位于存储元件125之上,且由导电接触窗290电性耦接至位线120b。上电极280与位线120可包括前述任一种下电极250所包括的材料,且不以此为限。
介电质295环绕于存储元件125、上电极280与导电接触窗290的四周,且于本实施例中,介电质295包括二氧化硅,而介电质270包括氮化硅。
于操作时,位线120b及字线130b的电压,会诱发电流自位线120b经由射极端与存储元件125流至衬底200或是反向亦然自衬底200流至位线120b。
主动区域128属于存储元件125的一部分,且位于主动区域128中的存储材料可被诱发而在至少两个固态相间进行相变化。本领域具有通常知识者应可了解,主动区域128可以非常小,如图2A所示,并可以此降低诱发相变化所需电流的大小。存储元件125的厚度126可通过薄膜沉积来建立,于某些实施例中,厚度126可小于100纳米,如介于10到100纳米之间。此外,存储元件125的宽度127大于下电极250的宽度252,且下电极250的宽度252较佳小于形成阵列100所采用工艺的最小特征尺寸,如光刻工艺。由于下电极250越小,就越能将其附近的部分存储元件125的电流集中,因此较小的下电极250将可降低诱发主动区域128产生相变化所需电流的大小。此外,由于介电质270还可提供主动区域128额外的隔热效果,产生相变化所需电流的大小亦可进一步降低。
如前所述,双极性结晶体管所能提供的电流驱动较场效晶体管来得大,此外,因为晶体管的射极包含掺杂多晶硅材料,而可以获得相对较大的电流增益,以以此降低字线130所需使存储元件产生相变化的电流。
图3A~图3B为阵列100中第二实施例的存储单元(包括存储单元110)部分剖面图,前者是沿位线120进行剖面而得,而后者是沿字线130进行剖面而得。
于此实施例中,存储元件125包括第一部分323与第二部分324。介电质270环绕于第一部分323四周,且第一部分323贯穿介电质270并与导电覆盖层240接触。第二部分324位于第一部分323之上,而存储元件125将导电覆盖层240耦接至上电极280。
本领域具有通常知识者应可了解,主动区域128可以非常小,如图3A~图3B所示,并可以此降低诱发相变化所需电流的大小。存储元件125第一部分323的宽度300小于导电覆盖层240的宽度,也小于存储元件125第二部分324的宽度。于较佳实施例中,第一部分323的宽度300小于形成阵列100所采用工艺的最小特征尺寸,如光刻工艺。由于存储元件125的第一部分323越小就越能将其电流集中,因此较小的第一部分323将可降低诱发主动区域128产生相变化所需电流的大小。此外,于较佳实施例中,介电质270可包括能提供主动区域128额外隔热效果的材料,以进一步降低产生相变化所需电流的大小。除此之外,存储元件125的第二部分324以及第一部分323的其它部分还可提供主动区域128一定的隔热效果,以隔绝来自上电极280的热能。
图4A~图4B为阵列100中第三实施例的存储单元(包括存储单元110)部分剖面图,前者是沿位线120进行剖面而得,而后者是沿字线130进行剖面而得。
于此实施例中,存储元件125包括存储材料柱,其贯穿介电质270并将导电覆盖层240耦接至上电极280,而介电质270环绕于存储元件125的四周。
本领域具有通常知识者应可了解,主动区域128可以非常小,以降低诱发相变化所需电流的大小。存储元件125的宽度400小于上电极280与导电覆盖层240的宽度,且较佳小于形成阵列100所采用工艺的最小特征尺寸,如光刻工艺。由于宽度的不同,电流将集中于此微小的柱状存储元件125,并可以此降低诱发主动区域128产生相变化所需电流的大小。此外,于较佳实施例中,介电质270可包括能提供主动区域128隔热效果的材料,以进一步降低产生相变化所需电流的大小。同时,可将主动区域128从导电覆盖层240及上电极280区隔开,让存储元件125的其它部分也可提供主动区域128一定的隔热效果。
图5A~图5B为阵列100中第四实施例的存储单元(包括存储单元110)部分剖面图,前者是沿位线120进行剖面而得,而后者是沿字线130进行剖面而得。
图5A~图5B所示的实施例与图2A~图2C所示者相似,在字线130的侧壁表面上有侧壁导体510。于此实施例中,侧壁导体510包括自我对准的硅化物(金属硅化物),且其包括钛、钨、钴、镍、钽,但并不以此为限。侧壁导体510可增加字线130的导电性,进而降低其负载,并提升阵列的一致性。
存储单元的实施例包括了使用相变化存储材料(包含硫属化物材料与其它材料)的存储元件。硫属化物包括下列四元素的任一者:氧(O)、硫(S)、硒(Se)、以及碲(Te),其位于元素周期表的第VI族。硫属化物包括将一硫属元素与一更具正电性的元素或自由基结合而得。硫属化物合金包括将硫属化物与其它物质如过渡金属等结合。硫属化物合金通常包括一个以上选自元素周期表第六栏的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)以及银(Ag)。许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b)。曾有研究员指出,最有用的合金是在沉积材料中所包含的平均碲浓度是远低于70%,典型地是低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳是介于48%至58%的碲含量。锗的浓度是高于约5%,且其在材料中的平均范围是从最低8%至最高30%,一般是低于50%,最佳地,锗的浓度范围是介于8%至40%。在此成分中所剩下的主要成分则为锑。其中百分比代表所组成元素的原子总数为100%时,各原子的百分比,请参考Ovshinky 5,687,112专利第10~11栏。由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4以及GeSb4Te7,请参考Noboru Yamada的文章″Potential of Ge-Sb-TePhase-Change Optical Disks for High-Data-Rate Recording″,SPIEv.3109,pp.28-37(1997)。更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)以及上述的混合物或合金,可与锗/锑/碲结合以形成一有可编程的电阻的相变化合金。可使用的存储材料的范例,是如Ovshinsky`112专利中第11-13栏所述,其范例在此被列入参考。
在某些实施例中,硫属化物以及其它相变化材料是掺杂有杂质,以修正其导电性、相变化温度、熔化温度以及其它使用掺杂硫属化物的存储元件的性质。用以掺杂硫属化物的代表性杂质包括氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛以及钛氧化物,请参见美国专利6800504号以及美国专利公开号2005/0029502号。
相变化合金可在此存储单元主动通道区域内,依其位置顺序于大致非晶态的第一结构状态与为大致结晶态的第二结构状态之间切换。这些合金至少为双稳定态。「非晶」是指相对较无次序的结构,其较单晶更无次序性,而带有可检测的特征,如较结晶态更高的电阻值。「结晶态」是指相对较有次序的结构,其较非晶态更有次序,因此包括可检测的特征例,如比非晶态更低的电阻值。典型地,相变化材料可电性切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其它受到非晶态与结晶态的改变而影响的材料特征包括原子次序、自由电子密度以及活化能。此材料可切换为不同的固态或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。
相变化合金可通过电脉冲而从一种相态切换至另一相态。曾有研究人员指出,一较短、较大幅度的脉冲倾向于将相变化材料的相态改变成大致非晶态。一较长、较低幅度的脉冲倾向于将相变化合金的相态改变成大致结晶态。由于较短、较大幅度脉冲中的能量够大,其足以破坏结晶结构的键能,同时时间够短,因此可以防止原子再次排列成结晶态。在无须过度实验的情形下,可利用实验方法决定适合特定相变化合金的适当脉冲量变曲线。在本说明书的后续部份,相变化材料乃以GST指称。此外,应了解的是,也可以使用其它类型的相变化材料。适用于PCRAM中的材料系为Ge2Sb2Te5
其它可以使用于本发明其它实施例的可编程电阻存储材料包括利用不同晶体变化来决定电阻者,或是利用电脉冲来改变电阻状态者。举例来说,可使用电阻随机存取存储器(RRAM)的金属氧化物材料,如钨氧化物(WOx)、氧化镍、五氧化二铌、二氧化铜、五氧化二钽、三氧化二铝、氧化钴、三氧化二铁、二氧化铪、二氧化钛、钛酸锶、锆酸锶、钛酸锶钡。其它实施例则可包括用于磁阻随机存取存储器(MRAM)的材料,而磁阻随机存取存储器可以是旋转力矩转移随机存取存储器(STT MRAM)。举例来说,这些材料可以是以下群组至少一种:钴铁硼、铁、钴、镍、钆、镝、钴铁、镍铁、锰砷、锰铋、锰锑、二氧化铬、氧化锰三氧化二铁、氧化铁五氧化二铁、氧化镍三氧化二铁、氧化镁二铁、氧化铕及铁磁性氧化物钇铁石榴石(Y3Fe5O12)。此可参考美国专利公开号第2007/0176251号,其发明名称为”Magnetic Memory Device and Method of Fabricating the Same”,其中的内容乃并入本文作为参考。其它的例子还包括用于可编程金属存储单元(PMC)的固态电解质材料,或用于纳米离子存储单元的材料,如银掺杂的锗硫化物解质或铜掺杂的锗硫化物解质。此部分请参考N.E.Gilbert等人发表的文章”A macro model of programmable metallization cell devices”,Solid-State Electronics,49(2005),1813-1819,且其内容乃并入本文作为参考。
用以形成硫属化物材料的例示方法利用PVD溅射或磁控溅射方式,其反应气体为氩气、氮气及/或氦气,压力为1mTorr至100mTorr。此沉积步骤一般是于室温下进行。一长宽比为1~5的准直器可用以改良其注入表现。为了改善其注入表现,亦可使用数十至数百伏特的直流偏压。另一方面,亦可同时合并使用直流偏压以及准直器。
有时需要在真空中或氮气环境中进行一沉积后退火处理,以改良硫属化物材料的结晶态。此退火处理的温度典型地是介于100℃至400℃,而退火时间则少于30分钟。
图6~图20依序为制造存储单元阵列的各步骤。
图6A和图6B分别为剖面图与俯视图,其显示形成衬底200的第一步骤。衬底200包括阱202,其具有第一掺杂区205、第二掺杂区210以及介电沟道230,且阱202以垂直图面的方向延伸。第一掺杂区205与第二掺杂区210可利用注入法及活化退火的方式形成,该多个方法均为具有通常知识者所熟知。于本实施例中,第一掺杂区205包括位于硅衬底200内的N型材料掺杂区域,第二掺杂区210包括位于硅衬底200内的浓掺杂N型(N+)材料区域。于另一实施例中,第一掺杂区205包括位于硅衬底200内的P型材料掺杂区域,且第二掺杂区210包括位于硅衬底200内的浓掺杂P型(P+)材料区域。
接着,进行离子注入以于阱202内第一掺杂区205形成字线130,其中字线130的导电性与第一掺杂区205及第二掺杂区210相异。此外,如本实施例所示,于衬底内再进行第二次离子注入,以形成由衬底上表面延伸至第二掺杂区210的浓掺杂区域,以得到如图7A、图7B所示的结构。于本实施例中,字线130包括位于硅衬底200内的P型材料掺杂区域,于其它实施例中,字线130可包括位于硅衬底200内的N型材料掺杂区域。
接着,介电质260乃形成于图7A、图7B所示的结构上,以产生如图8A、图8B所示的结构。于本实施例中,形成介电质260的步骤于衬底200上沉积包括二氧化硅之层262、于层262上沉积包括氮化硅的层264以及于层264上沉积包括BPSG或PSG的层266,且在某些实施例中可以不需要层264。
接着,形成贯穿介电质260的开口900,以暴露出字线130并形成第9A、9B图所示的结构。欲形成开口900,可先利用层264作为刻蚀停止层来选择性刻蚀层266,再选择性刻蚀层264以露出层262,最后再利用如湿法刻蚀的方式刻蚀层262以露出字线130。欲在操作过程中产生较大的电流,必须在字线130与之后形成的经掺杂的多晶硅栓塞220之间形成未受损害的接口,因此,湿法刻蚀比较适合用来刻蚀层262,并避免损害到射极-基极间接口。此外,在其它实施例中,湿法刻蚀并不会移除全部的刻蚀层262。在字线130与之后形成的经掺杂的多晶硅栓塞220之间形成质量较佳的接口,可以选择性进行重新氧化步骤及/或高温退火步骤。
接着,经掺杂的多晶硅栓塞220乃形成于开口900内,以产生如图10A、图10B所示的结构。经掺杂的多晶硅栓塞220具有和字线130不同的导电性,且其与对应的字线130接触于两者间定义pn结222。欲形成经掺杂的多晶硅栓塞220,可先对图9A、图9B所示的结构进行沉积多晶硅材料,再进行如化学机械抛光CMP的平面化步骤。
之后,形成多个贯穿介电质260而与第二掺杂区210接触的导电接触窗215,以产生如图11A、图11B所示的结构,而于本实施例中,导电接触窗215包括钨。
接着,导电覆盖层240乃形成于经掺杂的多晶硅栓塞220上,如图12A、图12B所示。导电覆盖层240包括硅化物,且该硅化物可包含钛、钨、钴、镍、钽,且不以此为限。于某实施例中,导电覆盖层240包括钴的硅化物(CoSi),且其形成方式是先沉积一层钴,再进行快速热处理工艺(RTP),以使钴与栓塞220的硅反应,而形成导电覆盖层240。应了解的是,其它硅化物也可通过沉积钛、砷、经掺杂的镍或其合金,并透过类似前述的方法形成。
接着形成介电质270,而产生如图13A、图13B所示的结构。于本实施例中,介电质270包括氮化硅。
之后,形成贯穿介电质270的开口1400以暴露出导电覆盖层240的上表面,并产生如图14A、图14B所示的结构,且开口1400的宽度1410较佳是属于亚光刻等级。于本实施例中,开口1400具有圆形剖面,所以宽度1410正好等于圆形剖面的直径。然而,在其它实施例中,开口1400的剖面也可以是正方形、椭圆形、长方形或其它不规则形状,端视形成开口1400的方法而定。
具有亚光刻等级宽度1410的开口1400可利用美国专利申请案第11/855979号所揭露的方法、材料、步骤,该申请案的发明名称为”PhaseChange Memory Cell in Via Array with Self-Aligned,Self-Converged BottomElectrode and Method for Manufacturing”,申请日为2007年9月14日,其内容乃并入本文作参考。举例来说,隔离层先形成于介电质270上,而牺牲层再形成于隔离层上。之后,在牺牲层上形成具有大小约略等于屏蔽工艺最小特征尺寸的开口的屏蔽,而该多个开口正好覆盖于开口1400上。之后以屏蔽选择性刻蚀隔离层与牺牲层,以于隔离层与牺牲层内形成通孔,并暴露出介电质270的上表面。于移除屏蔽后,对通孔进行选择性下切刻蚀,而在不影响牺牲层与介电质270的情形下刻蚀隔离层。之后,在通孔内形成注入材料。由于采用了选择性下切刻蚀工艺,通孔内的注入材料将会形成自我对准孔洞。接着,非等向性刻蚀注入材料以暴露出孔洞,并继续刻蚀以使介电质270暴露于孔洞以下的区域,进而在各通孔内形成包括有注入材料的侧壁间隔物。由于侧壁间隔物具有大致由孔洞大小所决定的开口尺寸,因此其可小于光刻工艺的最小特征尺寸。之后,以侧壁间隔物为屏蔽对介电质270进行刻蚀,以形成宽度1410小于最小特征尺寸的开口1400。隔离层与牺牲层可利用如CMP的平面化工艺移除,以产生如图14A、图14B所示的结构。此外,隔离层与牺牲层也可在材料(如电极材料)形成于开口1400后再以平面化工艺移除。
接着在开口1400内形成,以产生如图15A、图15B所示的结构。于本实施例中,下电极250包括氮化钛,且下电极250的形成是先将下电极材料以CVD沉积于图14A、图14B所示的结构上,再进行如CMP的平面化步骤。于其它实施例中,如图14A、图14B或图5A、图5B所示的,可将相变化材料沉积于开口1400内。
之后,存储元件125乃形成于下电极250之上,而上电极280乃形成于之上,以产生如图16A、图16B所示的结构。欲形成存储元件125与上电极280,可将一层存储材料沉积于图15A、图15B所示的结构上,再将一层上电极材料沉积于上,并将一层图案化光刻胶形成于上电极材料层上,再刻蚀存储材料层与上电极材料层。于此种实施例中,存储元件与对应的上电极可形成多层堆栈。
于图14A、图14B某些开口1400注入有存储材料的实施例中,可以不需形成存储材料层。
于本实施例中,存储元件125与上电极280具有大致正方形的剖面。然而,在其它实施例中,存储元件125与上电极280的剖面也可以是圆形、椭圆形、长方形或其它不规则形状,端视形成存储元件125与上电极280的方法而定。
之后,介电质295乃形成于图16A、图16B所示的结构上,并形成暴露上电极280的开口1700与暴露接触窗215的开口1750,以产生如图17A、图17B所示的结构。
接着再将导电接触窗217形成于开口1750内,并将导电接触窗290形成于开口1700内,以产生如图18A、图18B所示的结构。
之后再形成与参考电压耦接的导电材料140及位线120,以产生如图19A、图19B所示的结构。
位线120延伸至包括CMOS装置的周边电路2000,如图20A、图20B所示。
图21~图24为图7A~图7B所示制造字线130a步骤的另一实施例。
如图21A与图21B所示,图6A~图6B中介电沟道230内的部分介电材料乃利用刻蚀方式移除,并暴露出介电沟道230之间的阱的第一掺杂区205的侧壁表面2100。
接着在侧壁表面2100上形成侧壁导体510,以产生如图22A、图22B所示的结构。侧壁导体510包括硅化物,其包含钛、钨、钴、镍、钽,但并不以此为限。于某实施例中,侧壁导体510包括钴的硅化物(CoSi),且其形成方式是先沉积一层钴,再进行快速热处理工艺(RTP),以使钴与第一掺杂区205的硅反应,而形成侧壁导体510。应了解的是,其它硅化物也可通过沉积钛、砷、经掺杂的镍或其合金,并透过类似前述的方法形成。
之后乃形成介电材料,以注入介电沟道230,并产生如他23A、图23B所示的结构。
接着,再进行离子注入来注入掺杂物,以形成字线130,并产生如图24A、图24B所示的结构,其中字线130的导电性与第一掺杂区205及第二掺杂区210相异。于本实施例中,字线130包括衬底200的经掺杂的P型材料。
图25是可应用本发明的集成电路2510的简化方块图。集成电路2510内的存储器阵列100的存储单元具有多晶硅射极的双极性结晶体管。具有读取、设置与重设功能的字线译码器2514被耦接至多条字线2516,其间并形成电性连接,且该字线译码器与驱动器2514是沿着存储器阵列100的列排列。位线(行)译码器2518被耦接并电性连接至多条沿着存储器阵列100的行排列的位线2520,以读取、设置或重设阵列100内的相变化存储单元(图未示)。地址是透过总线2522提供至字线译码器与驱动器2514及位线译码器2518。方块2524中的感应放大器与数据输入结构包括读取、设置与擦除模式的电压及/或电流源,是透过数据总线2526耦接至位线译码器2518。数据是由集成电路2510上的输入/输出端或其它内部或外部的数据来源,透过数据输入线2528传送至方块2524的数据输入结构。集成电路2500亦可包括其它电路2530,如一般用途的处理器、特定用途的应用电路或是可提供此阵列100所支持的系统单芯片功能的多个模块的组合。数据是由方块2524中的感应放大器,透过数据输出线2532,传送至集成电路2510上的输入/输出端或其它集成电路2510内或外的数据目的地。
于本实施例中,控制器2534是以偏压调整状态机构来控制偏压调整供应电压、电流源2536,如读取、编程、擦除、擦除验证及编程验证电压及/或电流。此外,控制器2534亦可利用技术领域中已知的特殊目的逻辑电路来实作。于其它实施方式中,控制器2534可包括一般用途的处理器以执行计算机程序来控制元件的操作,而该处理器可以实作于相同的集成电路上。于另外的实施方式中,控制器2534可利用特殊目的逻辑电路与一般用途的处理器的组合来实作。
虽然本发明已参照实施例来加以描述,然本发明创作并未受限于其详细描述内容。替换方式及修改样式已于先前描述中所建议,且其它替换方式及修改样式将为熟习此项技艺的人士所思及。特别是,所有具有实质上相同于本发明的构件结合而达成与本发明实质上相同结果者,皆不脱离本发明的精神范畴。因此,所有此等替换方式及修改样式系意欲落在本发明于随附权利要求范围及其均等物所界定的范畴之中。

Claims (26)

1.一种存储装置,其特征在于,包括:
一单晶半导体衬底,具有一第一导电性;
多条字线,位于该单晶半导体衬底内,具有一与该第一导电性相异的第二导电性;
多个存储单元,每个存储单元包括双极性结晶体管与存储元件,该双极性结晶体管是以共集极组态方式耦接,且该双极性结晶体管包括:
一射极,包括具有该第一导电性的掺杂多晶硅,该射极与一条对应字线连接以定义出一pn结;
一基极,利用位于该射极下方的该条对应字线一部分所形成;以及
一集极,包括位于该基极下方的该单晶半导体衬底一部分。
2.根据权利要求1所述的存储装置,其特征在于,该单晶半导体衬底包括一第一掺杂区与一位于该第一掺杂区下方的第二掺杂区,该第二掺杂区的掺杂浓度高于该第一掺杂区。
3.根据权利要求1所述的存储装置,其特征在于,更包括导电接触窗,该导电接触窗与该单晶半导体衬底接触,并耦接至一参考电压。
4.根据权利要求1所述的存储装置,其特征在于,更包括具有硅化物的侧壁导体,该侧壁导体位于该多个字线的侧壁表面上。
5.根据权利要求1所述的存储装置,其特征在于,
该单晶半导体衬底包括n型掺杂的半导体材料;
该多个字线包括p型掺杂的半导体材料;且
每个存储单元的射极包括n型掺杂的多晶硅。
6.根据权利要求1所述的存储装置,其特征在于,
该单晶半导体衬底包括p型掺杂的半导体材料;
该多个字线包括n型掺杂的半导体材料;且
每个存储单元的射极包括p型掺杂的多晶硅。
7.根据权利要求1所述的存储装置,其特征在于,该存储单元更包括:
一导电覆盖层,包括硅化物,位于对应的双极性结晶体管上;
一下电极,位于该导电覆盖层与该存储元件之间,该下电极的宽度小于该存储元件的宽度;以及
一上电极,位于该存储元件之上。
8.根据权利要求1所述的存储装置,其特征在于,该存储单元更包括:
一导电覆盖层,包括硅化物,位于对应的双极性结晶体管上;以及
一上电极,透过该存储元件与该导电覆盖层电性耦接。
9.根据权利要求8所述的存储装置,其特征在于,该存储元件包括一存储材料柱,该存储材料柱是由一介电质所环绕,且该存储材料柱的宽度小于该导电覆盖层与该上电极的宽度。
10.根据权利要求8所述的存储装置,其特征在于,该存储元件包括:
一第一部分,位于该导电覆盖层之上,且由一介电质所环绕;
一第二部分,位于该第一部分之上,其中该第一部分的宽度小于该第二部分、该导电覆盖层以及该上电极的宽度。
11.一种制造一存储装置的方法,其特征在于,包括:
形成一具有一第一导电性的单晶半导体衬底;
于该单晶半导体衬底内形成多条字线,该多个字线具有一与该第一导电性相异的第二导电性;
形成多个存储单元,并使各存储单元包括双极性结晶体管与存储元件,该双极性结晶体管是以共集组态方式耦接,且该双极性结晶体管包括:
一射极,包括具有该第一导电性的经掺杂多晶硅,该射极与一条
对应字线接触以定义一pn结;
一基极,利用位于该射极下方的该条对应字线一部分所形成;以及
一集极,包括位于该基极下方的该单晶半导体衬底一部分。
12.根据权利要求11所述的方法,其特征在于,该单晶半导体衬底包括一第一掺杂区与一位于该第一掺杂区下方的第二掺杂区,该第二掺杂区的掺杂浓度高于该第一掺杂区。
13.根据权利要求11所述的方法,其特征在于,更包括形成导电接触窗,该导电接触窗与该单晶半导体衬底接触,并耦接至一参考电压。
14.根据权利要求11所述的方法,其特征在于,更包括形成具有硅化物的侧壁导体,该侧壁导体位于该多个字线的侧壁表面上。
15.根据权利要求11所述的方法,其特征在于,
该单晶半导体衬底包括n型掺杂的半导体材料;
该多个字线包括p型掺杂的半导体材料;且
每个存储单元的射极包括n型掺杂的多晶硅。
16.根据权利要求11所述的方法,其特征在于,
该单晶半导体衬底包括p型掺杂的半导体材料;
该多个字线包括n型掺杂的半导体材料;且
每个存储单元的射极包括p型掺杂的多晶硅。
17.根据权利要求11所述的方法,其特征在于,该形成多个存储单元的步骤更包括:
形成一导电覆盖层,包括硅化物,该导电覆盖层位于对应的双极性结晶体管上;
形成一下电极,该下电极位于该导电覆盖层与该存储元件之间,且该下电极的宽度小于该存储元件的宽度;以及
形成一上电极,该上电极位于该存储元件上。
18.根据权利要求11所述的方法,其特征在于,该形成多个存储单元的步骤更包括:
形成一导电覆盖层,包括硅化物,该导电覆盖层位于对应的双极性结晶体管上;以及
形成一上电极,该上电极透过该存储元件与该导电覆盖层电性耦接。
19.根据权利要求18所述的方法,其特征在于,该存储元件包括一存储材料柱,该存储材料柱是由一介电质所环绕,且该存储材料柱的宽度小于该导电覆盖层与该上电极的宽度。
20.根据权利要求18所述的方法,其特征在于,该存储元件包括:
一第一部分,位于该导电覆盖层上,且由一介电质所环绕;
一第二部分,位于该第一部分上,其中该第一部分的宽度小于该第二部分、该导电覆盖层以及该上电极的宽度。
21.一种制造一存储装置的方法,其特征在于,包括:
形成一具有一第一导电性的单晶半导体衬底;
于该单晶半导体衬底内形成多个介电沟道;
于该单晶半导体衬底内形成多条字线,该多个字线具有一与该第一导电性相异的第二导电性,且相邻的字线是由该介电沟道所分隔;
形成多个经掺杂的多晶硅栓塞,其具有该第一导电性,且与该多个字线接触;
形成多个存储元件,其电性耦接至该经掺杂的多晶硅栓塞;
于该存储元件上形成上电极;
于上电极之上形成多条位线,该多个位线耦接至该上电极。
22.根据权利要求21所述的方法,其特征在于,该形成单晶半导体衬底与该形成多条字线的步骤包括:
形成该单晶半导体衬底;
于该单晶半导体衬底内形成该介电沟道;
由该介电沟道移除一部分材料,以暴露该单晶半导体衬底的侧壁表面;
于该单晶半导体衬底的侧壁表面上形成侧壁导体,该侧壁导体包括硅化物;
以介电材料注入该介电沟道;以及
注入杂质于该介电沟道之间的该单晶半导体衬底内,以形成该多个字线。
23.根据权利要求21所述的方法,其特征在于,该形成多个经掺杂的多晶硅栓塞的步骤包括:
于该单晶半导体衬底上形成介电质,并形成多个贯穿该介电质的开口以暴露该多个字线;以及
于该开口内形成经掺杂的多晶硅栓塞。
24.根据权利要求21所述的方法,其特征在于,该形成多个存储元件以及该形成上电极的步骤包括:
于该经掺杂的多晶硅栓塞之上形成导电覆盖层,该导电覆盖层包括硅化物;
于该导电覆盖层之上形成下电极,该下电极的宽度小于该导电覆盖层的宽度;
于该下电极之上形成一层存储材料,并于该层存储材料之上形成一层上电极材料;以及
图案化该层存储材料与该层上电极材料。
25.根据权利要求24所述的方法,其特征在于,该于该导电覆盖层之上形成下电极的步骤包括:
于该导电覆盖层之上形成一介电层;
形成贯穿该介电层的开口以暴露该导电覆盖层之上表面;以及
于该开口内形成该下电极。
26.根据权利要求21所述的方法,其特征在于,该形成多个存储元件与该形成上电极的步骤包括:
于该经掺杂的多晶硅栓塞之上形成导电覆盖层,该导电覆盖层包括硅化物;
形成与该导电覆盖层接触之该存储元件;以及
于该存储元件之上形成该上电极。
CN2010100035021A 2009-01-13 2010-01-12 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法 Active CN101814521B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/353,219 2009-01-13
US12/353,219 US8030635B2 (en) 2009-01-13 2009-01-13 Polysilicon plug bipolar transistor for phase change memory

Publications (2)

Publication Number Publication Date
CN101814521A true CN101814521A (zh) 2010-08-25
CN101814521B CN101814521B (zh) 2012-11-14

Family

ID=42318401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010100035021A Active CN101814521B (zh) 2009-01-13 2010-01-12 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法

Country Status (3)

Country Link
US (2) US8030635B2 (zh)
CN (1) CN101814521B (zh)
TW (1) TWI385790B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680604A (zh) * 2012-09-24 2014-03-26 Adesto技术公司 阻变存储器
CN107154458A (zh) * 2016-03-04 2017-09-12 华邦电子股份有限公司 电阻式随机存取存储器结构及其制造方法
CN107591335A (zh) * 2016-07-08 2018-01-16 北大方正集团有限公司 电连接结构的制备方法和集成电路芯片
CN107646143A (zh) * 2015-06-02 2018-01-30 英特尔公司 使用背侧金属层的高密度存储器架构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510776B1 (ko) * 2009-01-05 2015-04-10 삼성전자주식회사 반도체 상변화 메모리 소자
TWI416697B (zh) * 2009-10-21 2013-11-21 Silicon Motion Inc 靜電放電保護裝置
KR101781624B1 (ko) * 2010-12-08 2017-09-25 삼성전자주식회사 가변 저항 메모리 소자 및 그 제조 방법
US9231205B2 (en) * 2013-03-13 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Low form voltage resistive random access memory (RRAM)
WO2017171866A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Integrated 1t1r rram memory cell
US9659998B1 (en) 2016-06-07 2017-05-23 Macronix International Co., Ltd. Memory having an interlayer insulating structure with different thermal resistance
US10833267B2 (en) * 2018-10-26 2020-11-10 International Business Machines Corporation Structure and method to form phase change memory cell with self- align top electrode contact
US11107979B2 (en) * 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture
US11171177B2 (en) * 2019-01-09 2021-11-09 Intel Corporation Phase change memory devices with enhanced vias
US10658583B1 (en) * 2019-05-29 2020-05-19 International Business Machines Corporation Forming RRAM cell structure with filament confinement
US11957069B2 (en) 2021-10-22 2024-04-09 International Business Machines Corporation Contact resistance of a metal liner in a phase change memory cell

Family Cites Families (317)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US648710A (en) * 1899-10-10 1900-05-01 George C Quelch Fuse-block.
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
AU6048896A (en) 1995-06-07 1996-12-30 Micron Technology, Inc. A stack/trench diode for use with a multi-state material in a non-volatile memory cell
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US6337266B1 (en) 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6091094A (en) 1998-06-11 2000-07-18 Siemens Aktiengesellschaft Vertical device formed adjacent to a wordline sidewall and method for semiconductor chips
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
EP1760797A1 (en) 1999-03-25 2007-03-07 OVONYX Inc. Electrically programmable memory element with improved contacts
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
GB0003302D0 (en) 2000-02-15 2000-04-05 Koninkl Philips Electronics Nv Semiconductor devices
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6444557B1 (en) 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US20020074658A1 (en) 2000-12-20 2002-06-20 Chien Chiang High-resistivity metal in a phase-change memory cell
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100574715B1 (ko) 2001-01-30 2006-04-28 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6473332B1 (en) 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP4218527B2 (ja) 2002-02-01 2009-02-04 株式会社日立製作所 記憶装置
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
CN100514695C (zh) 2002-03-15 2009-07-15 阿克松技术公司 微电子可编程构件
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US7623370B2 (en) 2002-04-04 2009-11-24 Kabushiki Kaisha Toshiba Resistance change memory device
AU2003221003A1 (en) 2002-04-09 2003-10-20 Matsushita Electric Industrial Co., Ltd. Non-volatile memory and manufacturing method thereof
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US20060163554A1 (en) 2002-10-11 2006-07-27 Koninklijke Philips Electronics N.C. Electric device comprising phase change material
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR100476690B1 (ko) 2003-01-17 2005-03-18 삼성전자주식회사 반도체 장치 및 그 제조방법
KR101009891B1 (ko) 2003-01-31 2011-01-20 엔엑스피 비 브이 자기 저항 메모리 셀, 자기 저항 메모리 셀의 매트릭스,자기 저항 메모리 셀의 매트릭스에 값을 기록하는 방법 및자기 저항 메모리 셀 제조 방법
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7323734B2 (en) 2003-02-25 2008-01-29 Samsung Electronics Co., Ltd. Phase changeable memory cells
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
US7400522B2 (en) 2003-03-18 2008-07-15 Kabushiki Kaisha Toshiba Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100979710B1 (ko) 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
DE102004039977B4 (de) 2003-08-13 2008-09-11 Samsung Electronics Co., Ltd., Suwon Programmierverfahren und Treiberschaltung für eine Phasenwechselspeicherzelle
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
KR100505709B1 (ko) 2003-09-08 2005-08-03 삼성전자주식회사 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US7485891B2 (en) 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
KR100568109B1 (ko) 2003-11-24 2006-04-05 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
JP4567963B2 (ja) * 2003-12-05 2010-10-27 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
KR100564602B1 (ko) 2003-12-30 2006-03-29 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
KR100574975B1 (ko) 2004-03-05 2006-05-02 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
US7005665B2 (en) 2004-03-18 2006-02-28 International Business Machines Corporation Phase change memory cell on silicon-on insulator substrate
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7158411B2 (en) 2004-04-01 2007-01-02 Macronix International Co., Ltd. Integrated code and data flash memory
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
KR100647218B1 (ko) 2004-06-04 2006-11-23 비욘드마이크로 주식회사 고집적 상변화 메모리 셀 어레이 및 이를 포함하는 상변화메모리 소자
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
JP2006127583A (ja) 2004-10-26 2006-05-18 Elpida Memory Inc 不揮発性半導体記憶装置及び相変化メモリ
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (de) 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US20060172067A1 (en) 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
KR100707182B1 (ko) 2005-02-18 2007-04-13 삼성전자주식회사 상전이 메모리 소자 및 제조방법
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
KR100663358B1 (ko) 2005-02-24 2007-01-02 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그 제조방법들
US7365382B2 (en) * 2005-02-28 2008-04-29 Infineon Technologies Ag Semiconductor memory having charge trapping memory cells and fabrication method thereof
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
US7408240B2 (en) 2005-05-02 2008-08-05 Infineon Technologies Ag Memory device
KR100682946B1 (ko) 2005-05-31 2007-02-15 삼성전자주식회사 상전이 램 및 그 동작 방법
US20060273298A1 (en) 2005-06-02 2006-12-07 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a transistor and resistance-switching material in series
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7388273B2 (en) 2005-06-14 2008-06-17 International Business Machines Corporation Reprogrammable fuse structure and method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7651906B2 (en) 2005-06-20 2010-01-26 Samsung Electronics Co., Ltd. Integrated circuit devices having a stress buffer spacer and methods of fabricating the same
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US20060289847A1 (en) 2005-06-28 2006-12-28 Richard Dodge Reducing the time to program a phase change memory to the set state
TWI290369B (en) 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
TWI273703B (en) 2005-08-19 2007-02-11 Ind Tech Res Inst A manufacture method and structure for improving the characteristics of phase change memory
KR100655443B1 (ko) 2005-09-05 2006-12-08 삼성전자주식회사 상변화 메모리 장치 및 그 동작 방법
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
KR100695164B1 (ko) 2005-11-09 2007-03-14 삼성전자주식회사 스위칭 소자로서 트랜지스터 및 다이오드를 포함하는하이브리드 타입의 비휘발성 메모리 소자
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US20070156949A1 (en) 2005-12-30 2007-07-05 Rudelic John C Method and apparatus for single chip system boot
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (ko) 2006-01-05 2007-10-05 삼성전자주식회사 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US7514705B2 (en) 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267618A1 (en) 2006-05-17 2007-11-22 Shoaib Zaidi Memory device
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US7473576B2 (en) 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US7682868B2 (en) 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7447062B2 (en) 2007-03-15 2008-11-04 International Business Machines Corproation Method and structure for increasing effective transistor width in memory arrays with dual bitlines
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
US7855119B2 (en) * 2007-06-15 2010-12-21 Sandisk 3D Llc Method for forming polycrystalline thin film bipolar transistors
US7906368B2 (en) 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory
US7551473B2 (en) 2007-10-12 2009-06-23 Macronix International Co., Ltd. Programmable resistive memory with diode structure
CN101262004B (zh) * 2008-04-11 2011-04-20 中国科学院上海微系统与信息技术研究所 双浅沟道隔离的双极型晶体管选通的相变存储单元及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680604A (zh) * 2012-09-24 2014-03-26 Adesto技术公司 阻变存储器
CN107646143A (zh) * 2015-06-02 2018-01-30 英特尔公司 使用背侧金属层的高密度存储器架构
CN107154458A (zh) * 2016-03-04 2017-09-12 华邦电子股份有限公司 电阻式随机存取存储器结构及其制造方法
CN107154458B (zh) * 2016-03-04 2019-07-26 华邦电子股份有限公司 电阻式随机存取存储器结构及其制造方法
CN107591335A (zh) * 2016-07-08 2018-01-16 北大方正集团有限公司 电连接结构的制备方法和集成电路芯片

Also Published As

Publication number Publication date
US20100176362A1 (en) 2010-07-15
US8030635B2 (en) 2011-10-04
US8237144B2 (en) 2012-08-07
TWI385790B (zh) 2013-02-11
US20120018845A1 (en) 2012-01-26
TW201027714A (en) 2010-07-16
CN101814521B (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
CN101814521B (zh) 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
CN101840928B (zh) 带有自对准存储元件的多晶硅柱双极晶体管
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
CN101894854B (zh) 具有垂直信道存取晶体管及存储器平面的相变化存储单元
CN101504967B (zh) 中心加热相变化存储器结构及其制造方法
CN101685827B (zh) 一种存储装置及其制造方法
CN101872838B (zh) 具有埋入相变化区域的存储单元及其制造方法
CN100563040C (zh) 相变化存储单元及其制造方法
CN101924062B (zh) 一种存储器装置及用于制造一集成电路装置的方法
CN102244194B (zh) 自动对准的鳍型可编程存储单元
US8624236B2 (en) Phase change memory cell having vertical channel access transistor
TWI497706B (zh) 具有自動對準底電極和二極體存取裝置之蕈狀記憶胞
CN101236985B (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
US8415651B2 (en) Phase change memory cell having top and bottom sidewall contacts
CN101083298B (zh) 具有缩减活性面积及接触面积的电阻式随机存取存储单元
CN101546809B (zh) 一种存储装置及其制造方法
CN101958399B (zh) 相变存储装置及其制造方法
CN100543966C (zh) 用以制造存储元件的方法
CN101170160A (zh) 具有自对准气隙绝缘体的电阻随机存取存储器的制造方法
CN101728483B (zh) 介电层夹置的柱状存储装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant