CN101777384A - 应用于可程序化电阻式存储材料的感测电路 - Google Patents

应用于可程序化电阻式存储材料的感测电路 Download PDF

Info

Publication number
CN101777384A
CN101777384A CN200910169156A CN200910169156A CN101777384A CN 101777384 A CN101777384 A CN 101777384A CN 200910169156 A CN200910169156 A CN 200910169156A CN 200910169156 A CN200910169156 A CN 200910169156A CN 101777384 A CN101777384 A CN 101777384A
Authority
CN
China
Prior art keywords
voltage
storage unit
sensing
electric current
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910169156A
Other languages
English (en)
Inventor
龙翔澜
马克·拉莫瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
International Business Machines Corp
Original Assignee
Macronix International Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd, International Business Machines Corp filed Critical Macronix International Co Ltd
Publication of CN101777384A publication Critical patent/CN101777384A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5664Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using organic memory material storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0057Read done in two steps, e.g. wherein the cell is read twice and one of the two read values serving as a reference value
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits

Abstract

本发明揭露的存储单元感测方法是包含选择一存储单元。施加至存储单元的一第一偏压诱发存储单元中的第一反应。施加至存储单元的一第二偏压诱发存储单元中的第二反应,该第二偏压是与第一偏压不同。该方法包含根据该第一及第二反应之间的差值与一预定参考值,以决定储存在存储单元的资料值。

Description

应用于可程序化电阻式存储材料的感测电路
技术领域
本发明是关于根据可程序化电阻式存储材料的高密度存储装置的读取/感测电路,包含类似以硫属化物为基础的材料及其它材料的相变化材料,及此电路的操作方法。
背景技术
例如硫属化物材料及相似材料的相变化材料的可程序化电阻式存储材料,能由适用于集成电路实施程度的电流的施加,引起非晶态与结晶态之间的相变化。一般非晶态的特征为具有较一般结晶态高的电阻,其可轻易感知以指示资料。所述特性有益于使用可程序化电阻材料以形成非挥发性存储器电路,其可随机存取及写入。
此处称为重置或程序化的自非晶态变化至结晶态通常是一较低电流操作,其中电流会加热该材料而引起状态间的转换。此处称为重置的自结晶态变化至较高度的非晶态一般是一较高电流操作,其包含一短高电流密度脉冲以熔化或崩溃结晶结构,其后该相变化材料快速冷却,冷却相变化程序及使至少一部份相变化材料在非晶态中稳定化。
相变化存储器中,资料是由引起非晶态与结晶态之间的相变化材料的主动区中的转换而储存。图1是具有低电阻设定(程序化)状态100及高电阻重置(擦除)状态102的两个状态的一的存储单元的图,其中两者之间具有非重叠的电阻范围。
低电阻设定状态100的最高电阻R1与高电阻重置状态102的最低电阻R2之间的差异是定义用于区分在设定状态100与重置状态102的单元的读取界限101。由决定存储单元是否具有对应于低电阻状态100或高电阻状态102的一电阻,可决定储存在存储单元中的资料,例如由量测存储单元的电阻是否高于或低于读取界限101中的临界电阻Rsa103。为了能可靠地区分重置状态102与设定状态100,维持一相对大的读取界限101是重要的。
传统决定存储单元的电阻及由此而得储存在存储单元的资料值的方法,包含将存储单元的电压或电流响应与一参考值作比较。然而,在材料、工艺以及操作环境方面的差异,会导致包含与存储单元的阵列中的每一资料值相关的存储材料的电阻的差异的不同程序化特征。这些差异会使由将存储单元的响应与一参考值比较,难以准确地感测存储单元的电阻状态,造成可能的位错误。
因此,期望提供支持高密度装置的感测电路,其能准确读取程序化电阻式存储单元的电阻状态,以及操作此电路的方法。
发明内容
此处描述的存储单元的感测方法是包含选择一存储单元。施加至存储单元的一第一偏压以诱发存储单元中的第一反应。施加至存储单元的一第二偏压以诱发存储单元中的第二反应,该第二偏压是与第一偏压不同。该方法包含根据该第一及第二反应之间的差值与一预定参考值,决定一储存在存储单元的资料值。
此处描述的存储装置包含一存储单元。该装置包含施加至存储单元的一第一偏压诱发存储单元中的第一反应及施加至存储单元的一第二偏压诱发存储单元中的第二反应的电路,其中该第二偏压与该第一偏压不同。该装置还包含感测放大器电路,响应该第一及第二反应之间的差值与一预定参考值,以产生指示储存在该存储单元中的资料值的输出信号。
如上述,横跨一阵列的差值会使由将存储单元的响应与一参考值比较,难以准确地感测存储单元的电阻状态,造成可能的位错误。本发明由此处描述的根据该第一及第二反应之间的差值与一预定参考值决定储存资料值的感测方法,可解决此一困难。
附图说明
本发明其它态样及目的可由阅读以下的附图、及详细说明更为明了,
其中:
图1是具有低电阻设定状态及高电阻重置状态的两个状态之一的存储单元的图,其中两者具有非重叠的电阻范围。
图2是一集成电路200的简化方块图,其中可实施本发明。
图3是例示存储单元阵列的一部份,其中可实施本发明。
图4是例示用于相变化存储单元的范例电流-电压(IV)曲线。
图5是例示图3的IV曲线,其中第一及第二电压是施加至该存储单元。
图6是用于实施此处所描述决定储存在一选定存储单元中的资料值的感测方法的架构的简示图。
图7是一用于操作图6的架构的时序图。
具体实施方式
以下有关本发明的描述是参照特定结构的实施例及方法,将为我们所了解的是,未有意图将本发明限制于该特定揭露的实施例及方法,而是可使用其它特征、元件、方法及实施例实施本发明。描述较佳实施例以说明本发明,而非限制其定义在申请专利范围的主张的范围。具有该领域的通常知识者将可明了依照本说明的各种不同的均等变化。各种不同的实施例的相同元件通常是使用相同的元件符号。
图2是一集成电路200的简化方块图,其中可实施本发明。集成电路200包含一存储阵列205,其是使用包含可程序化电阻式存储材料的存储单元(未显示)实施,以下将更充分讨论。一字符线译码器210与多条字符线215电性连接。一位线译码器220与多条位线225电性连接以自阵列205中的存储单元(未显示)读取资料或写入资料。地址是经由总线260而传送到字符线译码器210以及位线译码器220。在方块230中的感测放大器以及资料输入结构,是经由资料总线235而耦合到位线译码器220。资料是经由资料输入线240而从集成电路200中的输入/输出端口、或从集成电路200的其它内部或外部来源,传送到方块230中的资料输入结构。其它电路265可被包含于集成电路200上,诸如一泛用目的处理器或特殊目的应用电路,或是提供由阵列205支持的系统单芯片功能性的模块的组合。资料是经由资料输出线245而从方块230中的感测放大器传送到集成电路200的输入/输出端口、或传送到其它位于集成电路200内部或外部的资料目的地。
在本实施例中,使用偏压调整状态机构的一控制器250,是控制所施加的偏压调整供应电压255,例如读取、程序化、擦除、擦除确认、与程序化确认电压。此控制器250可使用在此领域中所周知的特定目的逻辑电路而实施。在一替代实施例中,此控制器250包括一泛用目的处理器,此泛用目的处理器可安排于同一集成电路上,而此集成电路是执行一计算机程序以控制此元件的操作。在另一实施例中,可使用特定目的逻辑电路与泛用目的处理器的结合,以实施此控制器250。
如图3所示,阵列205的每一存储单元包含一存取晶体管(或其它存取装置诸如二极管),其的四个是如存储单元330、332、334及336所示及分别包含存储元件346、348、350及352。例示在图3的阵列部份是表示一可包含数百万存储单元的阵列的一小区段。
存储单元330、332、334及336的每一存取晶体管的源极是共同连接至源极线354,其是终止于诸如接地端的源极线终端电路355。于另一实施例,存取晶体管的源极线并不是电性连接的,而是独立控制的。一些实施例中,源极线终端电路355可包含诸如电压源及电流源的偏压电路,以及用于施加除了接地的外的偏压调整至源极线254的译码电路。
包含字符线356、358的多条字符线215沿第一方向平行延伸。字符线356、358是与字符线译码器210电性连接。存储单元330、334的存取晶体管的栅极是共同连接至字符线356,以及存储单元332、336的存取晶体管的栅极是共同连接至字符线358。
包含位线360、362的多条位线225沿第二方向平行延伸。存储元件346、348将位线360耦接至存储单元330、332的存取晶体管的个别的漏极。存储单元350、352将位线362耦接至存储单元334、336的存取晶体管个别的漏极。
感测放大器电路230可包含多个感测放大器(未直接显示),每一感测放大器是经由位线译码器220连接至对应位线360、362。或者,该感测放大器电路230可包含一单一感测放大器及电路,以选择性地将该感测放大器连接至对应的位线。感测放大器电路230可操作,以侦测到一被选定的存储单元中的第一电流与第二电流之间的差值,以响应至施加该被选定的存储单元的电压差值,第一电流与第二电流之间的差值是指示储存在该被选定存储单元的资料值。感测放大器电路中的感测放大器的实施例是相关于图6及图7,更详细描述如下。
应了解的是,存储阵列205并非限制于图3所例示的阵列组态,也可以使用其它阵列组态。此外,在一些实施例,双极晶体管或二极管可代替MOS晶体管作为存取装置。
存储单元的实施例包含用于存储元件的硫属化物为基础的材料以及其它材料。硫族元素(Chalcogens)包含任何四个元素的一氧(oxygen,O),硫(sulfur,S),硒(selenium,Se),以及碲(tellurium,Te),形成周期表的VIA族的部分。硫属化物包含一硫族元素与一更为正电性的元素或自由基的化合物。硫属化物合金包含硫属化物与其它材料如过渡金属的结合。一硫属化物合金通常包含一或多个选自元素周期表IVA族的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化物合金包含组合一或多个锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。许多相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,一大范围的合金合成物是可行的。该合成物可以表示为TeaGebSb100-(a+b),其中a及b表示组成元素的原子总计为100%的原子百分比。一位研究员描述了最有用的合金为,在沉积材料中所包含的平均碲浓度是远低于70%,典型地是低于60%,并在一般型态合金中的碲含量范围从最低23%至最高58%,且最佳是介于48%至58%的碲含量。锗的浓度是高于约5%,且其在材料中的平均范围是从最低8%至最高30%,一般是低于50%。最佳地,锗的浓度范围是介于8%至40%。在此合成物中所剩下的主要组成元素为锑。上述百分比是为原子百分比,其为所有组成元素加总为100%。(Ovshinsky‘112专利,栏10-11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,“Potential of Ge-Sb-TePhase-change Optical Disks for High-Data-Rate Recording”,SPIEv.3109,pp.28-37(1997))更一般地,一过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成一相变化合金其具有可程序化的电阻特性。有用的存储材料的特殊范例,是如Ovshinsky‘112专利中栏11-13所述,其范例在此是列入参考。
在一些实施例中,硫属化物及其它相变化材料掺杂杂质来修饰导电性、转换温度、熔点及使用在掺杂硫属化物存储器元件的其它特性。使用在掺杂硫属化物代表性的杂质包含氮、硅、氧、二氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛、氧化钛。可参见美国专利第6,800,504号专利及美国专利申请案第2005/0029502号。
相变化合金可由施加一电脉冲而从一种相态切换至另一相态。先前观察指出,一较短、较大幅度的脉冲倾向于将相转换材料的相态改变成大体为非晶态,及被称为重置脉冲。一较长、较低幅度的脉冲倾向于将相转换材料的相态改变成大体为结晶态,及被称为程序化脉冲。在较短、较大幅度脉冲中的能量,够大因此足以破坏结晶结构的键结,同时时间够短,因此可以防止原子再次排列成结晶态。合适的脉冲曲线可由经验决定而无须过度实验,特别适合一特定的相变化材料及装置结构。
下列是简要描述四种型态电阻式存储器材料的整理。
1.硫属化物材料
GexSbyTez
x∶y∶z=2∶2∶5
或其它合成物具有x:0-5;y:0-5;z:0-10
GeSbTe具有掺杂,例如N-,Si-,Ti-,或也可使用其它元素掺杂。
形成方法:由使用氩(Ar),氮(N2),以及/或氦(He)等等反应气体的物理气相沉积(PVD)溅镀或磁电管溅镀方式,在1毫托耳-100毫托耳的压力下。该沉积通常在室温的下完成。一具有外观比例1-5的准直器(collimater)可以被用来改善填入的效能。为了改善该填入的效能,使用数十至数百伏的一直流偏压。另一方面,直流偏压和准直器的组合可以同时搭配使用。
在一真空或一氮气环境的一后沉积退火处置,可以被选择性的执行以改善硫属化物材料的结晶状态。该退火温度通常介于摄氏100至400度之间,以及少于30分钟的退火时间。
硫属化物材料的厚度是由单元结构的设计所决定。通常,一硫属化物材料具有厚度大于8纳米会有一相变化的特征,使得该材料呈现至少两种稳定的电阻状态。
2.巨大磁组(CMR)材料
PrxCayMnO3
x∶y=0.5∶0.5,或其它合成物具有x:0-1;y:0-1
包含Mn氧化物的另一CMR材料也可使用
形成方法:由使用氩(Ar),氮(N2),氧(O2),以及/或氦(He)等等反应气体的物理气相沉积(PVD)溅镀或磁电管溅镀方式,在1毫托耳-100毫托耳的压力下。该沉积通常介于室温与摄氏600度之间,依据后沉积处置条件。一具有外观比例1-5的准直器可以被用来改善填入的效能。为了改善该填入的效能,使用数十至数百伏的一直流偏压。另一方面,直流偏压和准直器的组合可以同时搭配使用。一数十高斯至10,000高斯的磁场可以被施加以改善该电磁结晶相。
在一真空或一氮气环境或氧气/氮气混合环境之一后沉积退火处置,可以被选择性的使用以改善CMR材料的结晶状态。该退火温度通常介于摄氏400至600度之间,以及少于2小时的退火时间。
CMR材料的厚度是由单元结构的设计所决定。该厚度10nm至200nm的CMR材料可以被用来当核心材料。
一YBCO(YBaCuO3是一种高温超导材料)的缓冲层,可以被用来改善CMR材料的结晶状态。该YBCO的沉积是在CMR材料的沉积的前。YBCO的厚度是介于30nm至200nm之间。
3.两元素的化合物
NixOy;TixOy;AlxOy;WxOy;ZnxOy;ZrxOy;CuxOy;等等
x∶y=0.5∶0.5
其它合成物具有x:0-1;y:0-1
形成方法:
1.沉积:由使用反应气体氩(Ar),氮(N2),氧(O2),以及/或氦(He)等等的物理气相沉积(PVD)溅镀或磁电管溅镀方式,在1毫托耳-100毫托耳的压力下,使用一金属氧化物的标靶,例如NixOy;TixOy;AlxOy;WxOy;ZnxOy;ZrxOy;CuxOy;等等。该沉积通常是在室温下完成。一具有外观比例1-5的准直器可以被用来改善填入的效能。为了改善该填入的效能,使用数十至数百伏的一直流偏压。如果需要,直流偏压和准直器的组合可以同时搭配使用。
在一真空或一氮气环境或氧气/氮气混合环境的一后沉积退火处置,可以被选择性的执行以改善金属氧化物的氧气的分布。该退火温度通常介于摄氏400至600度之间,以及少于2小时的退火时间。
2.反应性沉积:由使用反应气体Ar/O2,Ar/N2/O2,纯氧(O2),He/O2,He/N2/O2等等的PVD溅镀或磁电管溅镀方式,在1毫托耳-100毫托耳的压力下,使用一金属氧化物的标靶,例如Ni,Ti,Al,W,Zn,Zr或Cu等等。该沉积通常是在室温下完成。一具有外观比例1-5的准直器可以被用来改善填入的效能。为了改善该填入的效能,使用数十至数百伏的一直流偏压。如果需要,直流偏压和准直器的组合可以同时搭配使用。
在一真空或一氮气环境或氧气/氮气混合环境的一后沉积退火处置,可以被选择性的执行以改善金属氧化物的氧气的分布。该退火温度通常介于摄氏400至600度之间,以及少于2小时的退火时间。
3.氧化:由使用一高温氧化系统,例如一火炉或是一快速热脉冲(RTP)系统。该温度介于摄氏200至700度,从数毫托耳至一大气压力,在纯氧或氮气/氧气混合气体。时间从数分钟至数小时。其它的氧化方法是等离子体氧化。一射频或一直流源具有纯氧或Ar/O2混合气体或Ar/N2/O2混合气体,在1毫托耳至100毫托耳的压力下被用来氧化金属的表面,例如Ni,Ti,Al,W,Zn,Zr或Cu等等。该氧化时间从数秒至数分钟。该氧化温度从室温至摄氏300度,依据等离子体氧化的程度而定。
4.聚合物材料
掺杂有Cu、C60、Ag等等的TCNQ
PCBM-TCNQ混合聚合物
形成方法:
1.蒸发:由使用热蒸发,电子束蒸发,或分子束外延(MBE)系统。一固态TCNQ以及掺杂物药丸在一单独密闭空间共同蒸发。该固态TCNQ以及掺杂物药丸是被放置于一W-舟或一Ta-舟或一陶磁舟。一高电流或一电子束被施加以熔化该来源,如此该物质被混合和沉积在晶片上。没有反应的化学物或气体。反应是在10-4至10-10的托耳压力下完成。晶片的温度是自室温至摄氏200度。
在一真空或一氮气环境的一后沉积退火处置,可以被选择性的执行以改善聚合物材料的成份分布。该退火温度通常介于室温至摄氏300度之间,以及少于1小时的退火时间。
2.旋转涂布法:由使用一有TCNQ掺杂溶液的旋转涂布器,在小于1000rpm的旋转。在旋转涂布的后,该晶片保持(通常是在室温或是在温度小于摄氏200度)一足够时间以使固态形成。该保持时间从数分钟到数天,由温度和成型的情况来决定。
再次参考图3,操作时每一存储单元346、348、350、352具有与储存在对应的存储单元中的资料值相关连的电阻范围。
因此,阵列205的存储单元的读取或写入可由以下方法达成,施加适当电压至字符线358、356其中之一及耦合位线360、362其中之一至一电压源,如此电流可流过该选定的存储元件。例如,通过一选定存储单元(此范例中是选定存储单元332与对应的存储元件348)的电流路径380是由以下方法建立,施加足够的电压至位线360、字符线358及源极线354以开启该存储单元332的存取晶体管及路径380的诱发电流自位线360流至源极线354,或反的亦然。所施加电压的大小与持续时间是视所进行的操作而定,例如一读取或写入操作。
在一包含有相变化材料的存储单元332的重置(或擦除)操作,字符线译码器210有助于提供字符线358适当的电压脉冲,以开启存储单元332的存取晶体管。位线译码器220有助于供应一电压脉冲至位线360适当的大小及持续时间,以诱发流过存储元件348的电流,该电流引起至少主动区域的温度高于存储元件348的相变化材料的转换温度,及也高于熔化温度,以使至少主动区域为液态。接着终止电流,例如藉由终止位线360及字符线358上的电压脉冲,造成相当快速的冷却时间,当主动区域快速冷却以稳定化至一非晶相。重置操作也可包含超过一个脉冲,例如使用成对的脉冲。
在一包含有相变化材料的存储单元332的设定(或程序化)操作,字符线译码器210用来提供字符线358适当的电压脉冲,以开启存储单元332的存取晶体管。位线译码器220用来供应一电压脉冲至位线360适当的大小及持续时间,以诱发一电流脉冲,足以引起相变化材料的一部份主动区域的温度高于转换温度,及引起一部份主动区域自非晶相转换成结晶相,此一转换降低存储元件348的电阻,以及将存储单元332设定至所期望的状态。
在一包含有相变化材料的存储单元332的读取(或感测)操作,字符线译码器210用来提供字符线358适当的电压脉冲,以开启存储单元332的存取晶体管。位线译码器220用来供应一电压至位线360适当的大小及持续时间,以诱发流过存储元件348的电流。位线360上以及流过存储元件348的电流是取决于其的电阻,及因此资料状态与存储单元332的存储元件348相关连。
然而,在材料、工艺以及操作环境方面的差异,将会导致横跨储存有一给定资料值的存储单元的阵列的多个存储元件的电阻的差异。这些差异会造成一与给定的电阻状态相关连的电流值分布。因此,假如一选定的存储单元中的电流是与该阵列中的另一存储单元的参考电流或电压比较,或是与一已知的电阻比较,电流值分布会使得难以准确地感测存储单元的电阻状态,以及因此所选定的存储单元的资料值。
本发明由此处所描述的感测方法有助于解决此一困难,该感测方法包含施加一第一电压脉冲横跨一选定的存储单元,以诱发该存储单元中的一第一电流,以及施加一第二电压脉冲横跨该选定的存储单元,以诱发该存储单元中的一第二电流,该第二电压脉冲与第一电压脉冲不同。接着,根据该第一与第二电流的差值决定储存在该选定存储单元中的资料值。
图4例示用于相变化存储单元的范例电流-电压(IV)曲线。图4中,曲线400表示存储单元在高电阻重置(擦除)状态的行为,以及曲线410表示存储单元在低电阻设定(程序化)状态的行为。
图4也包含表示自重置状态400至程序化状态410的转换的曲线415。应了解的是,曲线415只是例示性的,及曲线415的真实形状是视存储单元的的性质、施加至存储单元的电压及电流的态样,以及相变化化材料加热与冷却而定。
如图4所示,程序化临界电压Vth表示自重置状态400至程序化状态410的转换开始时的电压。因为存储单元由于存储元件的相变化材料的加热而进行一相变化,将了解的是程序化临界电压Vth是与包含存储单元结构、存储单元材料的热及电性质及施加电流与电压的脉冲形状的存储单元实施相关。
由于重置状态400与程序化状态410的电阻的差值,所以存储单元处于程序化状态410时相较于该存储单元处于重置状态400时,一横跨存储单元的施加电压的给定差值将会导致电流的更大的差值。
图5例示图4的IV曲线,其中第一及第二电压是施加至该存储单元。
横跨一选定的存储单元施加的第一电压V1诱发该存储单元的一第一电流I1。可由图5看出,假如该选定的存储单元是在重置状态400,第一电流将会是I1’,而假如该选定的存储单元是在程序化状态410,第一电流将会是I1”。与横跨该选定的存储单元施加的第一电压V1不同的第二电压V2诱发该存储单元的一第二电流I2。假如该选定的存储单元是在重置状态400,第二电流将会是I2’,而假如该选定的存储单元是在程序化状态410,第二电流将会是I2”。
因此,关于横跨该选定的存储单元所施加一给定电压差值AV=V2-V1,假如该选定的存储单元是在重置状态400,对应电流差值将会是ΔI’=I2’-I1’,而假如该选定的存储单元是在程序化状态410,对应电流差值将会是ΔI”=I2”-I1”。因此,该选定的存储单元的电阻状态可根据电流的差值是ΔI”或是ΔI’而决定。
图6是用于实施此处所描述的感测方法的架构的简示图,其是根据由横跨该选定的存储单元332所施加的第一与第二电压诱发的第一与第二电流之间的差值而决定储存在一选定的存储单元332的资料值。
在图6的简要方块示意图,存储单元332的模型是由存取晶体管600及一用于相变化元件348的可变电阻器所组成。位线360的模型是由所示的电阻器/电容器网络构成。位线译码器220是可操作以响应地址信号,而将该选定的位线360耦接至节点605。字符线译码器210是可操作以响应地址信号,而将该选定的字符线358耦接至一偏压电压(未图标)而足以开启晶体管600。
电压箝位电路610是耦接至节点605,以提供一电压(以下将参考图7更详细描述)至该选定存储单元332,在存储单元332状态的感测(读取)操作期间,由感测放大器电路620诱发存储单元332中的电流IPEC。将参考图7更详细描述,感测放大器电路620是根据由于第一与第二电压V1与V2的选定存储单元332中的电流之间的差值,决定储存在选定存储单元332中的资料值。感测放大器电路620也产生一代表储存在选定存储单元332中的资料值的输出信号Vout
图7是一用于操作第6图的架构的时序图。将了解的是,图7的时序图是经简化及未必成比例。
参考图6及图7,决定该选定存储单元332在时间T1的第一电流-电压操作点。一位线地址信号是供应至位线译码器120以将该选定存储单元332的位线360耦接至节点605,一字符线地址信号是供应至字符线358,足以开启存取晶体管600,及电压箝位电路610是响应至一第一箝位电压Vclamp而供应一第一电压V1至节点605,该第一电压V1是根据存储元件348的电阻,诱发通过存储单元332的电流IPEC。假如存储元件348是在该高电阻重置状态400,通过存储单元332的电流IPEC将会是I1’,而假如存储元件348是在该低电阻设定状态410,通过存储单元332的电流IPEC将会是I1”。
致能信号en2开启传输门640将节点660耦接至感测节点650,致能信号en1开启传输门641将串接排列的电压Vbias1与电阻负载元件Rload耦接至节点650,导致一电流ISIG由电压箝位电路610提供至感测放大器电路620。在该例示实施例,Rload显示如一电阻器,虽然在一些实施例,一主动负载诸如连接晶体管的二极管可替代使用。
由该电压箝位电路610提供的电流ISIG大小是与电流IPEC大小相关,及因而与存储元件348的电阻相关。在该例示实施例,电压箝位电路610包含操作放大器611与晶体管612,如此ISIG与IPEC大小实质相等,虽然将了解的是本发明并非限制于如此。例如,替代性实施例中,该电压箝位电路610可被实施,使得ISIG大小为IPEC大小的函数,例如成正比或成反比。
电流ISIG设定感测节点650上的一电压,信号S1被设定至一高状态以开启晶体管642,及将电容器C1的一第一节点661耦合至感测节点650,以及致能信号en3开启传输门643以将电压Vbias2耦接至电容器C1的第二节点662而提供等效路径,由此设定根据感测节点650的电压的节点662与661之间的电容器C1的电压。在该例示实施例,电压Vbias2实质上与电压Vbias1相等,虽然其它包含接地的偏压电压可替代使用。
由于感测节点650上的电压是与存储元件348的电阻有关,而横跨节点662与661之间的电容器C1的电压亦与存储元件348的电阻有关。
其次,决定该选定存储单元332在时间T2的第二电流-电压操作点。一位线地址信号是供应至位线译码器120,以将该选定存储单元332的位线360耦接至节点605,一字符线地址信号是供应至字符线358,足以开启存取晶体管600,及电压箝位电路610是响应至一第二箝位电压Vclamp而供应一第二电压V2至节点605,该第二电压V2是根据存储元件348的电阻,诱发通过存储单元332的电流IPEC。假如存储元件348是在该高电阻重置状态400,通过存储单元332的电流IPEC将会是I2’,而假如存储元件348是在该低电阻设定状态410,通过存储单元332的电流IPEC将会是I2”。
致能信号en2开启传输门640,以将节点660耦接至感测节点650,致能信号en1开启传输门641将串接排列的电压Vbias1与电阻负载元件Rload耦接至节点650,导致一第二电流ISIG由电压箝位电路610提供至感测放大器电路620。
电流ISIG设定感测节点650上的一电压,信号S1被设定至一高状态以开启晶体管644,及将电容器C2的一第一节点663耦合至感测节点650,以及致能信号en4开启传输门645,以将电压Vbias3耦接至电容器C2的第二节点664而提供等效路径,由此设定根据感测节点650的电压的节点664与663之间的电容器C2的电压。在该例示实施例,电压Vbias3实质上与电压Vbias1相等,虽然其它包含接地的偏压电压可替代使用。
如上述,在决定存储单元332的第一及第二操作点期间,感测节点650上的电压是根据存储单元332的电流IPEC。由于在程序化410及重置状态400的电阻的差值会导致电流IPEC更大的差值,假如存储单元332是在程序化状态410(ΔI”)较假如存储单元332在重置状态400(ΔI’),此ΔI”与ΔI’之间的差值将导致根据存储单元332的电阻状态的第一及第二操作点的感测节点650对应的电压差值。因此,在节点662与661之间的电容器C1的电压与在节点664与663之间的电容器C2的电压的结果差值可被感测,以指示储存在选定的存储单元332中的资料值。
在时间T3,信号S1与信号S2是设定至一高状态,以将电容器C1的节点661耦接至电容器C2的节点663,致能信号en5开启传输门646,以将电容器C2的节点664耦接至一参考电压Vbias4,及致能信号en5开启传输门647,以将节点662耦接至感测放大器680的一第一输入681。Vbias4是一预定电压,及在一些实施例可以是一接地。
如上述,在节点662与661之间的电容器C1的电压与在节点664与663之间的电容器C2的电压的差值是与存储元件348的电阻相关。因此,第一输入681与偏压电压Vbias4之间的电压结果差值是第一及第二电容器C1、C2的电压差额,及指示该选定的存储单元332的电阻状态。因此,第一输入681上的电压可被感测,以指示存储元件348的电阻状态。
感测放大器680是响应至该第一输入681上的电压与一在第二输入上的预定参考电压Vref的差异,及产生一指示存储元件348的电阻状态的输出信号VOUT。图7中,假如存储单元332是在程序化状态,VOUT是一沿着曲线770的第一电压,以及假如存储单元332是在重置状态,则是一沿着曲线780的第二电压。
虽然本发明是参考以上详述的较佳实施例及范例而揭示,但应了解所述范例是意图以例示性而非限制性方式。已知熟习本项技术的人士可依据本发明所述的实例在不脱离本发明精神和范围的所做的各种改变及组合,所述改变及组合将落入本发明的精神及权利要求范围内。

Claims (13)

1.一种存储单元的感测方法,该方法包含:
选择一存储单元;
施加至存储单元的一第一偏压以诱发存储单元中的一第一反应;
施加至存储单元的一第二偏压以诱发存储单元中的一第二反应,该第二偏压与第一偏压不同;及
根据该第一及第二反应之间的差值与一预定参考值,决定一储存在存储单元的资料值。
2.如权利要求1所述的存储单元的感测方法,其中,
该施加一第一偏压包含施加一第一电压至该存储单元以诱发存储单元中的一第一电流;
该施加一第二偏压包含施加一第二电压至该存储单元以诱发存储单元中的一第二电流,该第二电压与第一电压不同;及
该决定储存在存储单元的资料值包含根据该第一及第二反应之间的一差值与一预定参考值来决定该资料值。
3.如权利要求2所述的存储单元的感测方法,其中该决定储存在存储单元中的资料值,还包含:
根据该存储单元中的该第一电流,设定一感测节点至一第一感测电压;及
根据该存储单元中的该第二电流,设定该感测节点至一第二感测电压。
4.如权利要求3所述的存储单元的感测方法,其中:
该设定一感测节点至一第一感测电压的步骤包含电性耦接一串联安排的一第三电压及一电阻负载元件至该感测节点,及根据该存储单元中的该第一电流提供一第三电流通过该串联安排;及
该设定该感测节点至一第二感测电压的步骤包含电性耦接串联安排的一第三电压及一电阻负载元件至该感测节点,及经由根据该存储单元中的该第二电流提供一第四电流通过该串联安排。
5.如权利要求4所述的存储单元的感测方法,其中:
该第三电流与该第一电流成比例;及
该第四电流与该第二电流成比例。
6.如权利要求3所述的存储单元的感测方法,其中该决定在存储单元中的资料值,还包含:
根据该第一感测电压设定一电压于一第一电容器;
根据该第二感测电压设定一电压于一第二电容器;
根据设定于该第一电容器的电压与设定于该第二电容器的电压之间的差值耦接一电压至一感测放大器的一第一输出;及
根据该感测放大器的该第一输出的该电压与一施加至该感测放大器的一第二输出的预定参考电压之间的差值产生该感测放大器的一输出信号,该输出信号是指储存在该存储单元中的该资料值。
7.如权利要求6所述的存储单元的感测方法,其中假如该存储单元是在一程序化状态,则该感测放大器的该输出信号包含一第一输出电压,及假如该存储单元是在一重置状态,则该感测放大器的该输出信号包含一第二输出电压,该第一输出电压与该第二输出电压不同。
8.如权利要求6所述的存储单元的感测方法,其中:
该设定一电压于一第一电容器,包含电性耦接该第一电容器的一第一节点至该感测节点,当该感测节点上的电压是该第一感测电压,及电性耦接该第一电容器的一第二节点至一第四电压;
该设定一电压于该第二电容器,包含电性耦接该第二电容器的一第一节点至该感测节点,当该感测节点上的电压是该第二感测电压,及电性耦接该第二电容器的一第二节点至一第五电压;及
该耦接一电压至感测放大器的第一输出,包含:
电性耦接该第一电容器的该第一节点至该第二电容器的该第一节点;
电性耦接该第二电容器的该第二节点至一第六电压;及
电性耦接该第一电容器的该第二节点至该感测放大器的该第一输出。
9.一种存储装置,包含:
一存储单元;
施加至该存储单元的一第一偏压以诱发存储单元中的一第一反应及施加至存储单元的一第二偏压以诱发该存储单元中的一第二反应的电路,其中该第二偏压与该第一偏压不同;及
一感测放大器电路,响应该第一及第二反应之间的差值与一预定参考值,以产生指示储存在该存储单元中的一资料值的一输出信号。
10.如权利要求9所述的存储装置,其中:
该第一偏压包含一第一电压,其施加至该存储单元以诱发存储单元中的一第一电流;
该第二偏压包含一第二电压,其施加至该存储单元以诱发存储单元中的一第二电流;及
该感测放大器电路是响应该第一及第二电流之间的差值与该预定参考值,以产生指示储存在该存储单元中的该资料值的一输出信号。
11.如权利要求10所述的存储装置,其中该感测放大器电路包含一感测节点与串联安排的一第三电压及电阻负载元件选择性地耦接至该感测节点,且还包含:
一电路,根据该存储单元中的该第一电流提供一第三电流通过该串联安排,以及该电路也根据该存储单元中的该第二电流提供一第四电流通过该串联安排。
12.如权利要求11所述的存储装置,其中该感测放大器电路还包含第一及第二电容器,该感测放大器电路用于
根据第一感测电压设定于第一电容器的电压;
根据第二感测电压设定于第二电容器的电压;以及
响应至第一及第二电容器的电压差,以产生储存在该存储单元中的该资料值的一信号输出。
13.如权利要求12所述的存储装置,其中假如该存储单元是在程序化状态,则该感测放大器的输出信号包含一第一输出电压,及假如该存储单元是在重置状态,则该感测放大器的输出信号包含一第二输出电压,该第一输出电压与该第二输出电压不同。
CN200910169156A 2008-09-12 2009-09-11 应用于可程序化电阻式存储材料的感测电路 Pending CN101777384A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/209,920 2008-09-12
US12/209,920 US7719913B2 (en) 2008-09-12 2008-09-12 Sensing circuit for PCRAM applications

Publications (1)

Publication Number Publication Date
CN101777384A true CN101777384A (zh) 2010-07-14

Family

ID=42007090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910169156A Pending CN101777384A (zh) 2008-09-12 2009-09-11 应用于可程序化电阻式存储材料的感测电路

Country Status (3)

Country Link
US (1) US7719913B2 (zh)
CN (1) CN101777384A (zh)
TW (1) TWI415132B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165180A (zh) * 2011-12-16 2013-06-19 爱思开海力士有限公司 阻变存储装置
CN103811073A (zh) * 2014-02-28 2014-05-21 北京航空航天大学 一种非挥发存储器的高可靠性读取电路

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271855B2 (en) * 2008-12-22 2012-09-18 Unity Semiconductor Corporation Memory scrubbing in third dimension memory
US8681540B2 (en) * 2011-08-29 2014-03-25 Intel Corporation Tile-level snapback detection through coupling capacitor in a cross point array
JP5852741B2 (ja) * 2011-09-09 2016-02-03 インテル・コーポレーション メモリデバイスにおけるパス分離
GB2502553A (en) 2012-05-30 2013-12-04 Ibm Read measurements of resistive memory cells
US9042154B2 (en) 2012-08-28 2015-05-26 Micron Technology, Inc. Non-volatile memory including reference signal path
CN103716038B (zh) * 2013-12-25 2016-05-25 华中科技大学 一种基于相变存储器的非易失性逻辑门电路
US9761309B2 (en) 2014-02-28 2017-09-12 Hewlett Packard Enterprise Development Lp Sensing circuit for resistive memory array
US9728253B2 (en) * 2015-11-30 2017-08-08 Windbond Electronics Corp. Sense circuit for RRAM
KR102469172B1 (ko) 2016-03-14 2022-11-22 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 이의 검증 라이트 방법
US10147475B1 (en) * 2017-05-09 2018-12-04 Micron Technology, Inc. Refresh in memory based on a set margin
JP6574862B1 (ja) 2018-03-15 2019-09-11 株式会社東芝 メモリ装置
JP6829733B2 (ja) 2019-01-16 2021-02-10 ウィンボンド エレクトロニクス コーポレーション 抵抗変化型ランダムアクセスメモリ
US11049557B2 (en) 2019-07-19 2021-06-29 Macronix International Co., Ltd. Leakage current compensation in crossbar array

Family Cites Families (283)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) * 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) * 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) * 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US6420725B1 (en) * 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) * 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) * 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) * 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) * 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US7023009B2 (en) * 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) * 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) * 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) * 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) * 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6956779B2 (en) * 1999-01-14 2005-10-18 Silicon Storage Technology, Inc. Multistage autozero sensing for a multilevel non-volatile memory integrated circuit system
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
BR0009308A (pt) 1999-03-25 2001-12-18 Energy Conversion Devices Inc Elemento de memória
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) * 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6444557B1 (en) * 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
JP2002032988A (ja) * 2000-07-18 2002-01-31 Mitsubishi Electric Corp 内部電圧発生回路
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
CN101174633A (zh) 2001-01-30 2008-05-07 株式会社日立制作所 半导体集成电路器件及其制造方法
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) * 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6643165B2 (en) * 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6590807B2 (en) * 2001-08-02 2003-07-08 Intel Corporation Method for reading a structural phase-change memory
US6737312B2 (en) * 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) * 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
WO2003079463A2 (en) * 2002-03-15 2003-09-25 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
JP3624291B2 (ja) * 2002-04-09 2005-03-02 松下電器産業株式会社 不揮発性メモリおよびその製造方法
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6574129B1 (en) * 2002-04-30 2003-06-03 Hewlett-Packard Development Company, L.P. Resistive cross point memory cell arrays having a cross-couple latch sense amplifier
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) * 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4133141B2 (ja) 2002-09-10 2008-08-13 株式会社エンプラス 電気部品用ソケット
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
JP2006502578A (ja) 2002-10-11 2006-01-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 相変化材料を備えた電子装置
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
JP4928045B2 (ja) * 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
EP1593126B1 (en) 2003-01-31 2009-03-25 Nxp B.V. Mram architecture for low power consumption and high selectivity
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100979710B1 (ko) * 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) * 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7085154B2 (en) * 2003-06-03 2006-08-01 Samsung Electronics Co., Ltd. Device and method for pulse width control in a phase change memory device
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) * 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US20050018526A1 (en) * 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
US7132350B2 (en) * 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
KR100615586B1 (ko) * 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) * 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US20050062087A1 (en) * 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
KR100541816B1 (ko) * 2003-09-19 2006-01-10 삼성전자주식회사 반도체 메모리에서의 데이터 리드 회로 및 데이터 리드 방법
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
KR100618836B1 (ko) * 2004-06-19 2006-09-08 삼성전자주식회사 반도체 메모리 장치 및 반도체 메모리 장치의 프로그래밍방법
US7359231B2 (en) * 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) * 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) * 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) * 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7443062B2 (en) * 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
US7364935B2 (en) * 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (de) * 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) * 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
US7265373B2 (en) * 2005-01-04 2007-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacturing
JP4646634B2 (ja) * 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) * 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
KR100682946B1 (ko) 2005-05-31 2007-02-15 삼성전자주식회사 상전이 램 및 그 동작 방법
KR100668846B1 (ko) * 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7321130B2 (en) * 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) * 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) * 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
KR100655443B1 (ko) 2005-09-05 2006-12-08 삼성전자주식회사 상변화 메모리 장치 및 그 동작 방법
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7449710B2 (en) * 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7479649B2 (en) * 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
KR100735750B1 (ko) * 2005-12-15 2007-07-06 삼성전자주식회사 복수개의 균일한 기준 데이터들을 생성하는 기준 셀 블록및 감지증폭 유니트들을 구비하는 반도체 소자들 및 이를채택하는 시스템들
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (ko) 2006-01-05 2007-10-05 삼성전자주식회사 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) * 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) * 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) * 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) * 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) * 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
TWI312154B (en) * 2006-07-20 2009-07-11 Ind Tech Res Inst Multiple state sense amplifier for memory architecture
US7542338B2 (en) * 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7505330B2 (en) * 2006-08-31 2009-03-17 Micron Technology, Inc. Phase-change random access memory employing read before write for resistance stabilization
US7684225B2 (en) * 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
US7906368B2 (en) * 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) * 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) * 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory
US7660152B2 (en) * 2008-04-30 2010-02-09 International Business Machines Corporation Method and apparatus for implementing self-referencing read operation for PCRAM devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165180A (zh) * 2011-12-16 2013-06-19 爱思开海力士有限公司 阻变存储装置
CN103811073A (zh) * 2014-02-28 2014-05-21 北京航空航天大学 一种非挥发存储器的高可靠性读取电路
CN103811073B (zh) * 2014-02-28 2016-06-08 北京航空航天大学 一种非挥发存储器的高可靠性读取电路

Also Published As

Publication number Publication date
TWI415132B (zh) 2013-11-11
TW201011762A (en) 2010-03-16
US20100067285A1 (en) 2010-03-18
US7719913B2 (en) 2010-05-18

Similar Documents

Publication Publication Date Title
CN101777384A (zh) 应用于可程序化电阻式存储材料的感测电路
CN101221815B (zh) 重置一相变化存储单元的方法及设备
CN101183681B (zh) 用于提升保存能力的双稳态阻抗随机存取存储器结构
CN101887903B (zh) 具有晶体管、电阻及电容的相变化存储装置及其操作方法
CN101241757A (zh) 存储单元装置及编程方法
CN101958147B (zh) 一种相变化存储装置及其操作方法
US7551473B2 (en) Programmable resistive memory with diode structure
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
CN101236779B (zh) 储存装置与其程序化方法
US8036014B2 (en) Phase change memory program method without over-reset
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
CN101231884B (zh) 用于多阶相变化存储器的电流顺从感测架构
CN101577141B (zh) 存储器装置及其操作方法
CN101295539B (zh) 用以更新可编程电阻存储器的方法与装置
CN101814521B (zh) 相变化存储器的多晶硅栓塞双极性晶体管及其制造方法
CN100563042C (zh) 具有自对准气隙绝缘体的电阻随机存取存储器的制造方法
CN100543966C (zh) 用以制造存储元件的方法
CN101202110B (zh) 编程可编程电阻性存储单元的方法、装置及程序产品
CN101226952A (zh) 有金属氧化物的多阶电阻随机存取存储结构及其制造方法
CN101540368A (zh) 一种存储单元及制造存储单元阵列的方法
CN101241756B (zh) 具有不同读取与程序化路径的存储单元
CN101728483B (zh) 介电层夹置的柱状存储装置
CN101727975B (zh) 具有二极管结构的可编程电阻存储器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100714