CN101723323A - 基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用 - Google Patents

基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用 Download PDF

Info

Publication number
CN101723323A
CN101723323A CN200910204657A CN200910204657A CN101723323A CN 101723323 A CN101723323 A CN 101723323A CN 200910204657 A CN200910204657 A CN 200910204657A CN 200910204657 A CN200910204657 A CN 200910204657A CN 101723323 A CN101723323 A CN 101723323A
Authority
CN
China
Prior art keywords
zinc ferrite
weight
raw material
hydrogen
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910204657A
Other languages
English (en)
Other versions
CN101723323B (zh
Inventor
A·鲍多特
T·瓦尔
M·汤姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN101723323A publication Critical patent/CN101723323A/zh
Application granted granted Critical
Publication of CN101723323B publication Critical patent/CN101723323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及基于铁酸锌的固体在含氧原料深度脱硫的方法中的使用,尤其涉及对包含含氧化合物、含烃化合物和有机含硫化合物的原料进行脱硫的方法,所述脱硫是通过将硫捕获在包含铁氧化物或锌氧化物和多于20重量%铁酸锌的捕获物质上来进行的。所述方法在200℃-400℃范围内的温度下在氢的存在下进行。

Description

基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用
技术领域
本发明涉及基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用。
背景技术
包含含氧化合物的原料能够和催化剂接触,以通过蒸汽重整、部分氧化或自热重整反应来制备氢气。补偿性的水煤气变换反应能够显著提高氢气产量。但是,原料中杂质,尤其是含硫杂质,的存在是有害的,因为它导致这类反应中使用的一种或多种催化剂逐渐失活。
数种方法用于由富醇原料制备氢气。可以引用的例子是:
■以受控量空气进行的部分氧化反应(POX),它是放热性的,当使用乙醇时其化学等式如下:
■蒸汽重整反应,它是吸热性的,如下所示:
Figure G2009102046579D0000012
■自热重整反应,它将上述两种反应结合在一起,可以认为是一般绝热性的,一种反应的放热大致被另一反应的吸热所补偿。
得到的合成气因此主要由一氧化碳和氢气构成。它还可以不仅仅包含来自空气的氮气,和过量蒸汽,而且还可以含有来自初始原料中所含的含硫化合物分解的含硫化合物。
补偿性的水煤气变换反应(WGS)能够显著提高通过合成气中的一氧化碳的氧化得到的氢气产量。该反应如下:
Figure G2009102046579D0000013
这些化学反应在气相中在催化剂存在下并且通常在高温,典型地高于200℃,常常高于600℃的温度下进行,所述催化剂通常对原料中含硫化合物的存在非常敏感,所述含硫化合物可能导致催化剂逐渐失活。
氢气最终纯化(例如,在水煤气变换反应之后)以获得高于99.9%的纯度可以采用PSA(变压吸附)型吸附过程或者通过使用钯基金属膜来进行。在所有情况下,含硫杂质特别是硫化氢的存在对于这些方法是有害的。
处于法律考虑,将变性剂加入到富醇原料中以使得这些原料不适于食品消费。变性剂的量通常为醇量的1重量%-10重量%,更通常为2重量%-5重量%。
变性剂可以为天然气浓缩物或者汽油、瓦斯油或者石脑油型烃馏分。除了烃化合物以外,变性剂通常包含轻质硫醇型或者中间硫醇型的含硫化合物,或者芳香族含硫化合物,比如噻吩、苯并噻吩或者二苯并噻吩及其取代的衍生物。原料中的硫当量是可变的,但是通常小于2000ppmS,而且通常小于500ppmS,或者甚至100ppmS,或者甚至50ppmS。
所述含硫化合物在原料中的存在,即使以少量存在,可以证明对催化剂由于中毒而逐渐失活后的正确功能是有害的。而且,所得到的氢的深度纯化,或者通过PSA(变压吸附)型方法或者通过钯基膜,都可能是有很大问题的。
在现有技术中已经描述了许多在固体上对液体或气体原料进行脱硫的方法。
可以引用的例子是用于对天然气进行脱硫的方法,尤其是去除轻质硫醇,采用了通常为NaX型(13X)的分子筛,在压力通常为50-100bar下,于高温通常是大约300℃进行热再生步骤。专利申请WO-03/062177(A1)描述这种类型方法的例子。
专利US-2005/0109206特别描述了采用分子筛通过再生方法从天然气中去除硫醇,所述方法尤其包括采用富含含有多于5个碳原子的烃化合物的吹扫气体置换所吸附的硫醇的步骤。
专利申请US-2006/0131216描述了对烃原料比如天然气进行脱硫的方法,该方法采用第一固体在水蒸气和催化剂比如氧化铝、氧化钛或氧化锆的存在下将含硫的COS和CS2型化合物水解成其它含硫化合物,尤其是H2S,随后所述其它含硫化合物被第二吸附性固体,尤其是锌氧化物或镍氧化物型固体,捕获。
还可以引用的是利用吸附或者化学吸附型方法对液体原料例如瓦斯油或汽油型原料进行脱硫的方法。
专利US-3620969例如描述了使用分子筛来将液体烃馏分进行脱硫,利用了使用含有痕量水分的吹扫气体进行的热再生步骤。
专利申请US-2007/261993A描述了对来自催化裂化(FCC)的汽油进行脱硫的方法,包括将汽油蒸馏成包含至少噻吩的轻质馏分和重质馏分的步骤,所述轻质馏分采用液相吸附过程在八面沸石型分子筛上脱硫,所述重质馏分通过常规热处理方法在含有至少一种来自第VIII族的元素(选自由铬、钼和钨构成的组的元素)的催化剂(至少部分是硫化物形式)进行脱硫。
专利US5882614描述了采用固体比如锌氧化物和金属镍来将含有含硫杂质,尤其比如H2S、COS和轻质硫醇,的天然气在其转变成合成气之前进行脱硫。
专利US6159256描述了采用镍基催化剂对烃原料进行脱硫以获得纯化的流出物的方法,其中硫和镍反应形成硫化镍。
专利US6428685描述了采用基于铜、钴、镍、锰的金属助催化剂连同钙盐(硫酸盐、硅酸盐、磷酸盐、铝酸盐)对烃馏分,尤其是汽油或瓦斯油进行脱硫的方法。
专利申请US-2004/0091753描述了通过将含硫化合物吸附到处于中等温度的第一固体上然后吸附到处于高温的镍基固体上,将用于制备氢的烃原料进行脱硫的方法,其中所述第一固体是沸石型、炭型、活化氧化铝型、粘土型、氧化硅-氧化铝型。
专利申请US-2003/0163013描述了使用微孔固体比如和过渡金属阳离子(Cu、Ag)交换的Y沸石经由π络合现象对液体烃馏分例如汽油进行脱硫的方法。
专利申请US-2003/0183803要求保护使用铜氧化物和还原的金属助催化剂对烃原料进行脱硫的方法。
最后,专利申请US-2002/0139718A1要求保护在含氧流出物比如甲醇、乙醇或MTBE的存在下使用镍对液体烃原料比如汽油或瓦斯油进行脱硫的方法。
发明内容
本发明涉及通过将硫捕获在捕获物质(capture mass)上将包含含氧化合物、含烃化合物和有机含硫化合物的原料进行脱硫的方法,所述捕获物质包含铁氧化物或者锌氧化物和多于20重量%铁酸锌(zincferrjte)。
具体实施方式
本发明涉及通过将硫捕获在捕获物质上将原料脱硫的方法,其中所述原料包含含氧化合物(优选甲醇和/或乙醇)、含烃化合物和有机含硫化合物(优选脂族、环状和/或芳族含硫化合物),所述捕获物质包含铁氧化物或者锌氧化物和多于20重量%的铁酸锌。该方法在氢气存在下在200℃-400℃范围的温度进行操作。
所述捕获物质包含多于20重量%的铁酸锌,更优选多于50重量%的铁酸锌,更优选多于80重量%的铁酸锌,还更优选大于98重量%的铁酸锌,再更优选大于99.5重量%的铁酸锌。
压力通常为0.2-3.5MPa,优选0.5-3MPa,更优选0.5-1.5MPa。待处理原料的时空速度通常是0.1h-1-10h-1,优选0.5h-1-5h-1。处理过的液体原料的时空速度,HSV,定义为处理过的液体原料的体积流速除以固体化合物的体积。氢气/原料体积比通常为5-500,优选50-300。氢气和待处理液体原料的流速是在正常条件下给出的。
本发明的方法可以降低原料的硫含量,并限制在后续制氢反应中所用的催化剂(一种或多种)的失活现象。
这些原料中存在的硫实质上源自天然气浓缩物、汽油、石脑油、瓦斯油或任何含有含硫化合物的烃馏分类型的变性剂。在包含含氧化合物的原料中变性剂的量通常是1重量%-10重量%,更通常是1重量%-5重量%或者1重量%-2重量%。所述变性剂中的硫含量为1-5000ppm硫当量,更通常是10-500ppmS,或者甚至在10-100ppmS。
取决于变性剂的性质,含硫化合物的性质能够变化。在天然气浓缩物的情况下,它们实质上是轻质硫醇比如甲基硫醇、乙基硫醇、丙基硫醇或丁基硫醇,及其异构体和取代的衍生物,或者也可以作为增味剂(odorizing agent)加入的四氢噻吩(THT)。在汽油的情况下,含硫化合物可以是例如包含4-10个碳原子的直链、支化的或者环状硫醇,以及芳香族含硫化合物比如噻吩及其一甲基化的或者二甲基化的衍生物,或者苯并噻吩及其一甲基化的或者二甲基化的衍生物。在瓦斯油(gasoil)的情况下,含硫化合物实质上是芳香族化合物,比如苯并噻吩及其一甲基化的或二甲基化的衍生物、二苯并噻吩及其一甲基化的或二甲基化的衍生物,尤其是4,6-二甲基二苯并噻吩。
脱硫操作优选在气相中进行。在变体中,可以在液相中进行。当反应温度低于醇和氢气混合物的临界温度时,情况就是这样。
本发明的捕获物质捕获含硫的有机分子,尤其是认为是对常规加氢脱硫操作有抵抗力的分子,比如烷基化的苯并噻吩或者二苯并噻吩。
铁酸锌型混合氧化物通常通过共沉淀及随后的煅烧来获得。制备过程并不必需用于浸渍充当助催化剂的第二相的中间步骤。该铁酸锌混合氧即使在比表面积小于10m2/g的情况下是具有活性的。基于铁酸锌的活性物质的本发明合成并不必需如下的复杂方案:该复杂方案的目标是形成该固体对于含硫分子的高活性所需的大比表面积。该制备过程并不必需还原步骤来使得所述氧化物具有活性,也不需要将助催化剂(例如,铁氧化物或铜氧化物)分散在所述氧化物上的步骤。所述还原步骤(例如在氢气中)通常难以在固定床上以工业规模进行,这是因为该反应的放热性质。
但是,用于在氢气中还原的在先步骤也落在本发明的范围内。该步骤的典型条件会例如是300℃-400℃范围的温度和在例如1大气压-10bar范围的压力。
用于制备混合铁酸锌型氧化物的方法通常包括:
Figure G2009102046579D0000051
在6.1-6.9范围的pH在30℃-50℃范围的温度并且在碱的存在下,共沉淀锌II和铁III前体盐的混合物的步骤;
Figure G2009102046579D0000052
对得到的沉淀物进行过滤的步骤;
Figure G2009102046579D0000053
在125℃-175℃范围的温度干燥12-24小时的步骤;
Figure G2009102046579D0000054
在氧气存在下在600℃-700℃范围的温度煅烧1小时-3小时的步骤。
在本发明中提出的固体并不必需通过氢气在先活化以便具有活性的步骤。
在变体中,铁酸锌可以沉积在载体比如氧化铝上。
所述氧化铝含量因此优选小于80重量%。
式ZnFe2O4的铁酸锌通常具有锌铁尖晶石(franklinite)型晶体结构。铁酸锌晶粒尺寸通常为
Figure G2009102046579D0000055
优选
Figure G2009102046579D0000056
铁酸锌的比表面积采用根据BET方法的77K氮吸附技术测量通常为2m2/g-10m2/g。铁酸锌在比表面积小于10m2/g时具有活性。铁酸锌可以以粉末、珠粒或者挤出物的形式使用。铁酸锌优选在固定床中操作,但是也能够采用移动床操作。
铁酸锌的微孔及介孔体积通过采用BJH方法的相同氮吸附技术或者其变体确定为例如小于0.15cm3/g。
铁酸锌的大孔体积采用汞侵入和挤出技术测量为小于0.025cm3/g,所述汞侵入和挤出技术是本领域技术人员公知的。
这些表征技术已经例如在S Lowell等的著作“Characterization ofPorous Solids and Powders:Surface Area,Pore Size and Density”KluverAcademic Publishers,2004中描述。
实施例
实施例1:制备铁酸锌型固体吸附剂
通过将硝酸锌(II)、硝酸铁(III)的水溶液和作为碱化剂(basifyingagent)的氨水溶液的混合物进行沉淀,来制备所述吸附剂。在所述硝酸盐溶液中,锌和铁的重量浓度分别是13g/l和22.5g/l。沉淀剂的重量浓度是225g/l。
在合成开始时,将水启动剂(water starter)引入到夹套型硼硅酸盐玻璃反应器中然后加热到40℃,伴随着通过叶片型马达提供的大约150W/m3的搅拌功率。然后,经由泵送系统将前体和碱引入所述反应器中,以便调节引入速率和合成时间。通过碱泵的流速来控制pH:在整个共沉淀过程中保持为6.5±0.2的常数。
在反应过程中,将大约75W/m3的搅拌功率施加到反应介质,并且通过温度调节浴在反应器中保持40±2℃的温度。
在合成结束时,沉淀物通过Büchner烧瓶进行热过滤。在过滤45分钟后得到的湿滤饼于150℃在烘箱中干燥18小时。获得的固体随后在分子氧的存在下在650℃煅烧2小时。
得到的固体采用Bragg-Brentano型粉末衍射仪以θ-θ构型通过X射线衍射来表征。记录条件如下:阳极电压调至35kV,阳极灯丝的强度固定为35mA,采样间隔为0.05°2θ,每间隔的计数时间固定为5s,角度场为2-72°2θ。在本发明固体的试验衍射图上,峰的位置和“PowderDiffraction File”数据库中所记载的对应于锌铁尖晶石ZnFe2O4(PDF N°00-022-1012)的已知晶体学结构的衍射图相似。例如,本发明固体的最深的试验峰的位置如下:29.93°2θ-35.27°2θ-56.61°2θ-62.15°2θ。对于锌铁尖晶石,它们的位置是29.92°2θ-35.26°2θ-56.63°2θ-62.21°2θ。晶格参数(在立方晶系的情况下a=b=c)相同,也即,等于
Figure G2009102046579D0000071
对于本发明的固体,平均铁酸锌晶粒尺寸是
也在本发明合成的固体上进行了采用X射线荧光光谱的半定量分析。在针对550℃4小时的烧失量(LOI=0.3%)进行校正后,得到的含量如下:wt%Fe=42.48±0.74%和wt%Zn=23.18±0.78%。
最后,通过采用ASTM D3363-84或者NFX 11-621标准利用低温氮气容量分析估测所述固体的比表面积;等于6±1m2/g。
实施例2:通过在铁酸锌上化学吸附对用5%己烷和60ppmS丁烷硫醇变性的95%乙醇的模型原料进行脱硫
第二实施例描述了固体在固定床型反应器中的使用。将如实施例1所述制备的12克粉末形式的固体引入到内径为1cm、有用体积为9cm3的柱中。取决于所述固体的密度,将粒度测定值等价于测试固体的石英毛(quartz wool)和惰性物质对称地加入到所述反应器中。将所述柱置于温度经过调节的烘箱中。在测试之前,将所述固体首先在380℃的高温和7bar的压力下在氢气流中(5.7nL/hr)中还原12小时。在冷却后,将烘箱温度置于250℃。
所述温度调节是外部调节,其测量值取自柱壁的温度,这意味着可以在不用热电偶套管的情况下进行,而且可以避免柱中的优先路径。
将排出的流出物保温,并采用采样回路来取出以供在线分析监控。采用FID检测和PEPD分析仪通过气相色谱分析化合物。
将由乙醇(ethan)构成的模型液体原料使用Gilson注射泵以4h-1的HSV供给,然后使用指定的设备在氢气存在下蒸发,然后注入到所述反应器中。反应器中的压力为9bar,反应器入口处的氢气/原料比为420。
原料一接触到吸附剂,就观察到反应器流出物中硫含量的准立刻下降(quasi-immediate drop)到小于5ppm重量的值。在反应器出口处硫随时间的变化随后保持常数,在发生突破(breakthrough)现象之前保持为小于1mg/l,所述现象对应着当吸附剂完全被硫饱和时硫浓度升高到入口处的硫浓度值。在突破之前,气相色谱的PFPD检测器不能检测到痕量的硫。
在所述实施例中可以区分出代表铁酸锌基固体的性能的两个参数:
Figure G2009102046579D0000081
动态容量,其对应于恰恰在突破之前在吸附剂上捕获的硫量。在所用操作条件下,铁酸锌基吸附剂的动态硫容量是9重量%;
Figure G2009102046579D0000082
饱和容量,其对应于在饱和之后测得的吸附剂的最大硫容量。在所用操作条件下,铁酸锌基吸附剂的硫饱和容量是14重量%。

Claims (9)

1.通过将硫捕获在捕获物质上而对原料进行脱硫的方法,所述原料包含含氧化合物、含烃化合物和有机含硫化合物,所述捕获物质包含铁氧化物或锌氧化物和多于20重量%的铁酸锌,所述方法在氢气存在下在200-400℃范围的温度下进行。
2.根据权利要求1的方法,其中压力为0.2-3.5MPa。
3.根据权利要求1或2的方法,其中压力为0.5-3MPa。
4.根据权利要求1-3之一的方法,其中待处理的所述原料的时空速度为0.1h-1-10h-1
5.根据权利要求1-4之一的方法,其中所述氢气/原料体积比为5-500。
6.根据权利要求1-5之一的方法,其中所述原料包含脂族、环状和/或芳香族含硫化合物。
7.根据权利要求1-6之一的方法,其中所述化合物包含多于80重量%的铁酸锌。
8.根据权利要求1-7之一的方法,其中所述化合物包含多于98重量%的铁酸锌。
9.根据权利要求1-8之一的方法,其中所述含氧化合物是甲醇和/或乙醇。
CN200910204657.9A 2008-10-10 2009-10-10 基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用 Active CN101723323B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805624A FR2937045B1 (fr) 2008-10-10 2008-10-10 Mise en oeuvre de solides a base de ferrite de zinc dans un procede de desulfuration profonde de charges oxygenees
FR08/05624 2008-10-10

Publications (2)

Publication Number Publication Date
CN101723323A true CN101723323A (zh) 2010-06-09
CN101723323B CN101723323B (zh) 2015-11-25

Family

ID=40652233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910204657.9A Active CN101723323B (zh) 2008-10-10 2009-10-10 基于铁酸锌的固体在含氧原料深度脱硫的方法中的应用

Country Status (8)

Country Link
US (1) US8697920B2 (zh)
EP (1) EP2174710A1 (zh)
JP (2) JP2010100620A (zh)
CN (1) CN101723323B (zh)
BR (1) BRPI0904022B1 (zh)
FR (1) FR2937045B1 (zh)
RU (1) RU2500791C2 (zh)
UA (1) UA102222C2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741123A (zh) * 2015-03-11 2015-07-01 大连理工大学 一种新型纳米铁氧体吸附脱硫催化剂及其制备方法
CN106609166A (zh) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 脱硫剂及其制备方法
CN109310994A (zh) * 2017-04-12 2019-02-05 株式会社Lg化学 用于氧化脱氢的催化剂、催化剂的制备方法和使用催化剂进行氧化脱氢的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2576634C1 (ru) * 2014-12-12 2016-03-10 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Адсорбент для улавливания, концентрирования и хранения диоксида углерода
CN111085213A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种具有脱硫作用的规整载体催化剂及其制备和应用
CN111085191A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种具有脱硫作用的规整载体催化剂及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914288A (en) * 1997-09-29 1999-06-22 Research Triangle Institute Metal sulfide initiators for metal oxide sorbent regeneration
WO2001070393A1 (en) * 2000-03-21 2001-09-27 Phillips Petroleum Company Desulfurization and novel sorbents for same

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620969A (en) 1969-10-15 1971-11-16 Union Carbide Corp Desulfurization by selective adsorption with a crystalline zeolitic molecular sieve
SU403715A1 (ru) * 1970-06-15 1973-10-26 С. А. Апостолов Северо Западный заочный политехнический институт Способ каталитического гидрообессеривания углеводородов
US3832455A (en) * 1972-10-25 1974-08-27 Smith G Labor Preparation of zinc ferrite yellow pigments
PL139785B1 (en) * 1984-01-03 1987-02-28 Gdanskie Zaklady Rafineryjne Method of obtaining a catalyst for hydrorefining of lubricating oils in particular for refining processes being carried out under mild conditions
US4769045A (en) * 1986-04-10 1988-09-06 The United States Department Of Energy Method for the desulfurization of hot product gases from coal gasifier
JP2911961B2 (ja) * 1990-05-17 1999-06-28 日揮株式会社 高濃度アルコールの精製法及び精製用吸着剤
JP3762795B2 (ja) * 1993-07-29 2006-04-05 財団法人電力中央研究所 脱硫剤およびその製造方法
US5882614A (en) 1998-01-23 1999-03-16 Exxon Research And Engineering Company Very low sulfur gas feeds for sulfur sensitive syngas and hydrocarbon synthesis processes
US6156084A (en) 1998-06-24 2000-12-05 International Fuel Cells, Llc System for desulfurizing a fuel for use in a fuel cell power plant
US6290734B1 (en) * 1999-07-28 2001-09-18 Chevron U.S.A. Inc. Blending of summer gasoline containing ethanol
JP2001064076A (ja) * 1999-08-26 2001-03-13 Tdk Corp 磁性フェライト材料およびその製造方法
US6271173B1 (en) 1999-11-01 2001-08-07 Phillips Petroleum Company Process for producing a desulfurization sorbent
US6454935B1 (en) 1999-12-22 2002-09-24 Utc Fuel Cells, Llc Method for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
US6346190B1 (en) * 2000-03-21 2002-02-12 Phillips Petroleum Company Desulfurization and novel sorbents for same
EP1236495A1 (en) 2001-03-02 2002-09-04 Engelhard Corporation Process and apparatus for removing sulfur compounds from a hydrocarbon stream
WO2002074883A1 (fr) * 2001-03-21 2002-09-26 Waseda University Agent de desulfurisation, procede de fabrication et procede d'utilisation
RU2197323C1 (ru) * 2001-05-23 2003-01-27 Открытое акционерное общество "Катализатор" Катализатор гидроочистки нефтяных фракций и способ его получения
WO2003020850A2 (en) 2001-09-04 2003-03-13 The Regents Of The University Of Michigan Selective sorbents for purification of hydrocarbons
GB0201015D0 (en) 2002-01-17 2002-03-06 Ici Plc Hydrocarbon treating
US20030183803A1 (en) 2002-03-28 2003-10-02 Price Ashley G. Desulfurization and novel compositions for same
JP4625970B2 (ja) * 2003-03-11 2011-02-02 学校法人早稲田大学 脱硫剤及びその製造方法、脱硫方法並びに燃料電池用水素の製造方法
JP4521172B2 (ja) * 2003-09-26 2010-08-11 出光興産株式会社 脱硫剤及びこれを用いた脱硫方法
FR2861403B1 (fr) 2003-10-27 2006-02-17 Inst Francais Du Petrole Procede de purification d'un gaz naturel par adsorption des mercaptans
JP4722414B2 (ja) * 2004-06-02 2011-07-13 学校法人早稲田大学 脱硫剤及びその製造方法、脱硫方法並びに高純度水素の製造方法
US7427385B2 (en) 2004-12-17 2008-09-23 Exxonmobil Research And Engineering Company Systems and processes for reducing the sulfur content of hydrocarbon streams
WO2006101079A1 (ja) * 2005-03-24 2006-09-28 Idemitsu Kosan Co., Ltd. 脱硫剤及びこれを用いた脱硫方法
FR2889539B1 (fr) 2005-08-08 2011-05-13 Inst Francais Du Petrole Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914288A (en) * 1997-09-29 1999-06-22 Research Triangle Institute Metal sulfide initiators for metal oxide sorbent regeneration
WO2001070393A1 (en) * 2000-03-21 2001-09-27 Phillips Petroleum Company Desulfurization and novel sorbents for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEISHENG LIANG等: "Bench-Scale Testing of Zinc Ferrite Sorbent for Hot Gas Clean-up", 《JOURNAL OF NATURAL GAS CHEMISTRY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741123A (zh) * 2015-03-11 2015-07-01 大连理工大学 一种新型纳米铁氧体吸附脱硫催化剂及其制备方法
CN106609166A (zh) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 脱硫剂及其制备方法
CN106609166B (zh) * 2015-10-22 2020-09-04 中国石油化工股份有限公司 脱硫剂及其制备方法
CN109310994A (zh) * 2017-04-12 2019-02-05 株式会社Lg化学 用于氧化脱氢的催化剂、催化剂的制备方法和使用催化剂进行氧化脱氢的方法
US11660584B2 (en) 2017-04-12 2023-05-30 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst

Also Published As

Publication number Publication date
RU2500791C2 (ru) 2013-12-10
JP2015061851A (ja) 2015-04-02
US20100089798A1 (en) 2010-04-15
FR2937045B1 (fr) 2012-11-30
JP2010100620A (ja) 2010-05-06
FR2937045A1 (fr) 2010-04-16
UA102222C2 (ru) 2013-06-25
RU2009137577A (ru) 2011-04-20
BRPI0904022B1 (pt) 2018-02-06
US8697920B2 (en) 2014-04-15
EP2174710A1 (fr) 2010-04-14
CN101723323B (zh) 2015-11-25
BRPI0904022A2 (pt) 2010-07-20
JP5933667B2 (ja) 2016-06-15

Similar Documents

Publication Publication Date Title
Mansouri et al. Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni–Cu/γ-Al2O3 at low temperatures in absence of hydrogen
Zhang et al. Preparation of bifunctional NiPb/ZnO-diatomite-ZSM-5 catalyst and its reactive adsorption desulfurization coupling aromatization performance in FCC gasoline upgrading process
JP5933667B2 (ja) 酸素含有仕込原料を深度脱硫する方法における亜鉛フェライトをベースとする固体の使用
CN101934218B (zh) 一种脱硫吸附剂及其制备方法和应用
EA018844B1 (ru) Способ получения катализатора десульфуризации
CN101618314A (zh) 一种脱硫吸附剂及其制备方法和应用
Huang et al. Effect of pretreatment on the adsorption performance of Ni/ZnO adsorbent for dibenzothiophene desulfurization
BRPI0902204A2 (pt) adsorvente de dessulfurização, processo de preparação do adsorvente e método de dessufurização de óleo diesel ou gasolina de pirólise
JP5328655B2 (ja) 固体酸、その製造方法及び固体酸を脱硫剤として用いる炭化水素油の脱硫方法
CN102114407A (zh) 一种含锡脱硫吸附剂及其制备方法和应用
RU2448771C1 (ru) Адсорбент десульфуризатор для жидких фаз
CN102114406A (zh) 一种含锆脱硫吸附剂及其制备方法和应用
RU2361668C2 (ru) Способ получения катализатора для обессеривания потоков углеводородов
Wang et al. Evaluation of crystalline structure and SO2 storage capacity of a series of composition-sensitive De-SO2 catalysts
CN101934216B (zh) 一种脱硫吸附剂及其制备方法和应用
JP2009143853A (ja) アルコール類の製造方法およびそのアルコール類の製造方法を用いた水素または合成ガスの製造方法、アルコール類
KR20140088890A (ko) 탄화수소성 기체 혼합물로부터 황-포함 화합물을 제거하는 방법
Huang et al. Desulfurization of diesel over Ni/ZnO adsorbent prepared by coprecipitation
Polato et al. High Surface Area Mn, Mg, Al-Spinels as Catalyst Additives for SO x Abatement in Fluid Catalytic Cracking Units
KR101151198B1 (ko) 탄화수소 공급원료로부터 황화합물의 제거방법
KR20230113741A (ko) 메조포러스-마크로포러스 지지체 상의 포획 매스의 존재 하에서 유기 금속 불순물을 포획하는 방법
CN111111687B (zh) 脱硫催化剂、其制备方法及烃油脱硫的方法
Zhang et al. Cu/ZnO/Al2O3 sorbent promoted by Zr for the ultra-deep removal of thiophene in simulated coke oven gas
CN102114405B (zh) 一种含钛脱硫吸附剂及其制备方法和应用
US20100089799A1 (en) Use of zinc ferrite-based solids in a process for deep desulfurization of hydrocarbon fractions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant