CN101662442B - 用于在多路接入网络中通信的方法和系统 - Google Patents

用于在多路接入网络中通信的方法和系统 Download PDF

Info

Publication number
CN101662442B
CN101662442B CN2009101761390A CN200910176139A CN101662442B CN 101662442 B CN101662442 B CN 101662442B CN 2009101761390 A CN2009101761390 A CN 2009101761390A CN 200910176139 A CN200910176139 A CN 200910176139A CN 101662442 B CN101662442 B CN 101662442B
Authority
CN
China
Prior art keywords
assessment
channel
packet
signal
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101761390A
Other languages
English (en)
Other versions
CN101662442A (zh
Inventor
保罗·迪安·亚历山大
亚历山大·詹姆斯·格兰特
拉尔斯·希尔德霍伊·拉斯马森
斯蒂芬·彼得·亚卡斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cohda Wireless Pty Ltd
Original Assignee
Cohda Wireless Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cohda Wireless Pty Ltd filed Critical Cohda Wireless Pty Ltd
Publication of CN101662442A publication Critical patent/CN101662442A/zh
Application granted granted Critical
Publication of CN101662442B publication Critical patent/CN101662442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03171Arrangements involving maximum a posteriori probability [MAP] detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Abstract

本发明提供了一种通过追踪时变信道而在基于多路接入数据包通信网络中通信的方法,所述方法包括以下步骤:a)基于从接收数据包前同步码中导出的初始信道评估,初始化信道评估参考;b)基于在当前和所有先前接收的数据符号的编码部分中的数据包符号信道评估,更新所述信道评估参考;c)在后续的数据包数据符号到达时重复步骤b)。本申请还包括使用数据包样本假设的通信方法和使用评估时变信道损失的通信方法。

Description

用于在多路接入网络中通信的方法和系统
本申请是分案申请,其原案申请的申请号为200480027511.7,申请日为2004年7月23日,发明名称为“用于在多路接入网络中通信的方法和系统”。
相关申请
本申请要求于2003年7月24日提交的题为“An OFDMReceiver Structure”的澳大利亚临时专利申请第2003903826号的优先权,其全部内容结合于此作为参考。
技术领域
本发明涉及无线通信领域。特别地,本发明涉及改进的多路接入通信。在一个方面,本发明涉及用于多路接入通信系统的改进的信号处理方法和装置。为了方便起见,以下使用一种在基于多用户数据包(package)的无线OFDM(Orthogonal Frequency DivisionMultiplexing,正交频分复用)通信系统中确定信号的接收的迭代法来描述本发明。然而,应当理解,本发明不仅仅局限于该用途。通过其它实例,在其他方面,本发明可以涉及用于多种系统和功能中联合迭代解码(例如线性多路接入信道解码器、迭代均衡(iterativeequalisation)、迭代联合信道评估和检测/解码、迭代空间-时间处理、迭代多用户干扰消除以及迭代解调)的递归滤波,。
背景技术
在本说明书中,使用单数形式的词“发明者”可认为是指本发明的一个(单数)或多个(复数)发明者。发明者确认了以下现有技术。
大多数无线通信系统都是基于所谓的多路接入技术,诸如语音和数据的信息在其中传输。这是一种许多同时激活的用户以有组织的方式共享同一系统资源的技术。在大多数情况下,共享多路接入系统中的资源意味着如果多于一个用户激活,那么所有激活的用户互相干扰。传统意义上,该干扰被认为是破坏传输的不可避免的噪声的一部分。
该干扰随着激活用户数量的增加而提高,因此,性能质量在有多少用户(容量)可同时共享资源的方面受到限制。
图1示出了在无线网络中可能出现的典型的多路接入的情景。无线终端102、104、和100b发射在网络接入点100a接收的信号。通常并非所有这些信号均打算发射给无线终端100a。它们可能是来自于属于其他网络的设备的信号,假定在无执照的无线频谱中。无论如何,通常总是存在一些人们所关心的用户,属于100a提供接入的网络。该网络目的在于为所有这些将被有效传输的信号做好安排。一般可能要求用户通过例如以不同频率传输或在不同时间传输来共享无线资源。就昂贵的无线资源来说,该技术可能会是一种浪费。
无线终端102可以具有产生和接收(语音、视频、数据等形式的)信息的相关用户103。类似地,无线终端102与一个用户相关。在车载用户105的情况中,车辆(例如公共汽车、火车或小汽车)可产生和接收通过网络通信的数据。该数据也可由车辆的乘客和/或司机产生和接收。网络接入点100b也可期望与无线终端100a通信,如在无线回传(wireless backhaul)或中继网(multihop networks)情况下。在该方面,其他用户的无线终端102、104组成任何中继网的一部分也是可能的。
一种提高容量的方法是引入误差控制编码。应用编码通过仅允许发送编码符号所有可能组合中的一部份,来改进性能。另一种方法是利用干扰中包含的信息。这被称为联合多用户检测。在这两种技术都使用的系统中,可以应用一种称为迭代解码的解码策略。在此,多用户检测器首先在可靠性信息方面提供对发送符号(transmitted symbol)的评估。该信息被转发到解码器,解码器也基于检测器的输入提供可靠性信息。然后再以迭代方式交换信息,直到信息没有进一步的改进为止。该解码策略可以大幅增加容量,在实际执行达到范围的复杂级别上非常接近理论容量极限。然而,最优的多用户检测器在实际执行中异常复杂,因为内在复杂性随激活用户的数量按指数级增长。作为代替,可以应用基于线性滤波的线性多用户检测,其相应的复杂性仅随激活用户的数量线性增长。发明者已确认因实际原因,用于迭代联合多用户解码的相关技术的线性滤波器是基于接收的信号和作为滤波器的输入的来自解码器的最新信息之上的。这些滤波器已基于各种最优标准来设计。
在多用户共享公共通信资源时,对信道资源的接入可通过多路接入方案来处理,通常按照媒体接入控制(MAC)协议执行。信道资源(例如可用带宽)在无线环境中一般是严格有限的。因此,希望尽可能有效地使用这些资源。允许多用户共享公共资源导致由冲突的接入尝试引起扰动和干扰的风险。该扰动通常被称为多路接入干扰。在无线局域网(WLAN)系统中,MAC尝试调度来自各站点的传输以避免冲突。有时MAC失败,各站点同时接入信道资源。该情况的实例如图2中所示,该图示出了来自第一发射站1、第二发射站2的数据包的传输,以及由最下面的一条线表示的在接入点接收的数据包。物理层接收器可能不能恢复这种冲突的数据包。随着网络上通信负载的增加,该问题成为网络容量和服务质量的重要限制因素。
导致相似影响的另一问题是由与例如WLAN相关的通信信道的多径性质引起的。多径信道使得同一信号的几个延迟副本也到达接收器。这进而产生性质上与上述的多路接入干扰类似的自干扰。在这种情况下,该问题变成对达到合格性能所需功率的限制因素,其转化为对WLAN覆盖范围的限制。图3示出了到达接收器的原始信号的直接版本和反射版本的实例,其中所示上方的两条线表示了数据包的直接传输和反射传输。自干扰由接收信号中的阴影示出,由图中最下方一条线所示的接入点表示。传输范围可受上述干扰机制影响,也可受接收器的分集信号处理的复杂性影响。因此,物理层接收器设计者努力确保有效使用所有可用时间、频率和空间分集(后者可通过使用多单元天线来实现)。
发明者也确认了,当使通过无线连接传输的数据包同步时,每个数据包通常具有相同短信号的多个重复的前同步码(preamble)。接收的数据包信号可以与自身的延迟形式相关,其中延迟通常等于前同步码中重复信号分量的持续时间。该相关可以对给定的采样顺序反复执行。然后该合成相关的输出功率可以与原始接收信号的平均功率结合以限定判定统计值。判定统计值超出给定阈值的点被选为数据包到达的时间。然而,该技术仍有缺陷,其中很大程度上是由于信号干扰可能被与同步处理有关的处理放大或加重,从而在确定数据包定时中产生不确定性。
一般来说,在基于数据包的通信系统中,减少接收器的等待时间(latency)是很重要的,或换句话说,使在信号的到达与对这些信号所包含的位的解码之间产生尽可能少的延迟。另外,接收器处理不能确定无线信道在数据包长度的时间内的变化以及对发送信号的波形的相关影响。由于本应完整的跟踪不良数据包被丢弃,所以这可能会导致低于最优数据传输率。
在基于OFDM的数据包通信系统中,可能出现信道损失,这将导致传输OFDM信号的信道和被接收的信号自身的改变。总体来说,这些信道损失包括因多径衰减而产生的传输信道上的变化和OFDM符号的变化,该OFDM符号的变化由于接收器不准确所引起的频率和时间偏移以及因传输和接收处理结合导致的相位偏移而导致。这些信道损失可从OFDM符号变化至OFDM符号,换句话说,它们在数据包的长度上可能并不是不变的。传统上,信道损失的计算是通过使用数据包的前同步码进行评估,并由贯穿接收数据包并假定在数据包长度中没有变化的导频(pilot)符号所保持。其他方法使用数据评估来帮助,例如信道评估,这些方法被实施于频域中并可能通过丢弃每个接收符号的循环前缀而导致功率损失。一般来说,在这种基于数据包的通信系统中,不采用所有可用接收信息来处理信道损失。
关于用于无线数据包通信系统中的多重接收天线的空间分集,相关技术方案基于每个天线对接收信号的同步提供判决,之后提供多数票决或在判决之前增加接收测量。这些方法不会解决多个天线上信号统计值的变化,这导致同步精确性降低以及数据包损失增加。
在EP 1387544中,指出了接收器对输入信号的时间同步性对于该信号的有效解码是必要的。在许多基于数据包的应用中,发送器在每个发射的数据包开始处插入了特殊前同步码,来帮助接收器进行其时间评估工作。在OFDM系统中,发送器给予信号一特殊结构,被称为循环前缀。每个OFDM符号都插入了该循环前缀。循环前缀是被插在信号开始处的该信号最后段的一小部分的副本。许多OFDM符号是以多种通信形式顺序地发射。在EP 1387544中,使用保护间隔形式的循环前缀座位激活符号最后部分的循环延续,使接收器而不是前同步码来时间同步,在EP 1387544中,公开了一种二步时间同步法,即pre-FFT和post-FFT时间同步算法。这两种技术相辅相成,可以被一起使用。pre-FFT技术包括应用“延迟和相关”算法来查找OFDM符号的循环前缀。这可以通过将“延迟和相关”算法中的延迟设置为循环前缀与其所复制区域的距离来实现。之后使用包括递归无限脉冲响应(IIR)滤波器的自回归滤波器来滤波相关器的输出,以确定整个OFDM符号的相关平均值。然后通过EP 1387544的图2中的平滑器44,应用第二滤波弃除在最大可测量延迟即循环前缀持续时间之外的样本。然而,EP 1387544涉及利用流信号的系统,并不容易适用于随机到达的数据包。在流信号的情况下,信号总是存在,但有关OFDM符号边界的精确定时必须被确定。
在US 6,327,314(Cimini,Jr.等人)中,针对使用OFDM和一个或多个接收天线的无线通信系统,解决了在不利的传播环境中追踪无线信道的问题。Cimini,Jr.披露的解决方案使用解码器和解调器的输出来生成训练或参考信号,驱动用于解码下一个符号的信道评估。解码、解调、和信道评估环依照这样的范例来运行,即信道评估可以使用所有输出达到并包括将被解码的符号。每个OFDM符号被解码一次。通过将接收的OFDM信号与训练信号相乘来获得原始信道评估。这些训练信号可以来源于解码步骤。对应于每个OFDM符号的原始信道评估被存储于数据库中。每次要处理新的OFDM信号时,使用数据库中所有原始评估来产生处理波阵面(wavefront)处的信道评估。在本披露中,每次访问数据库时,都存储原始信道评估并执行平滑步骤,这会引起较高程度的复杂度。
在US 6,477,210(Chuang等人)中,也针对于使用OFDM和一个或多个用于接收的天线的无线通信系统,解决了在不利的传播环境中追踪无线信道的问题。这份披露中提供的解决方案通过更清楚地披露处理流程并为该处理增加向后递归,从而扩充了US6,327,314公开的解决方案。该向后递归包括以下和向前递归中一样的步骤:解调、解码、和信道评估,但该处理是从数据包尾部开始。Chuang等人只限于诸如Viterbi解码器的最大概率解码系统。有多其他类型的FEC系统,不使用ML解码(如,软输出解码器诸如后验概率(A-Posterior probability)技术),另外,Chuang的方案不适合于其中的操作。
在Czylwik,A.的题目为“Synchronization for systems withantenna diversity”,IEEE Vehicular Technology Conference,Vol.2,19-22 Sep.1999,pp 728-732的论文中,考虑了接收器的时间和频率同步。为了成功解码数据包,接收器必须确定数据包的到达时间。该评估中的误差可能造成信号功率损失或如控制编码和FFT窗口的高层结构的同步中的失败。要评估的另一参数是残余频率偏移。如果要解码数据包,必须准确地评估该参数并消除或计算其影响。评估中的误差可造成解调器失败和之后的数据包解码失败。当接收器有两个天线时,有可能使用这两个信号来改进时间和频率偏移的评估。如Czylwik中所披露的,用于单个天线的常规技术存在包含两个分量的计算和之后的合并。在论文中,就时间和频率偏移的评估提出了两种主要方法。第一种方法中,基于接收功率强度选择一个天线,将常规技术仅应用于该信号。在Czylwik所披露的第二种方法中,对每个天线计算第一和第二常规分量。将每个天线的两个第一分量相加。将每个天线的两个第二分量相加。之后所得到的总和被常规地视为第一和第二分量。Czylwik还披露了根据每个相应天线的信号强度测量,在通过天线合并前选择将每个分量权重。该选择权重显示出比该论文中的任何其他方案效果更好。论文还披露了用于时间同步的结果度量的滤波。
本说明书中的任何文献、装置、行为、或知识的讨论均被包括用于解释本发明的内容。不应认为这是在承认其中任何一种素材构成澳大利亚、美国或其他地区相关领域中本公开和本权利要求书的优先权日当日或之前的现有技术基础或常识的一部分。
发明内容
本发明的一个目标是克服或减轻相关技术系统的至少一个缺点。
在一个方面中,本发明提供了一种迭代解码电路,用于无线多用户通信接收器,其包括:
第一信号处理装置,用于接收至少一个接收信号,所述第一信号处理装置包括至少两个线性迭代滤波器,使得:
第一线性迭代滤波器向评估信号输出提供所选接收信号的评估,以及;
第二线性迭代滤波器向所述第一线性迭代滤波器的输入提供至少一个延迟一个迭代周期的其他接收信号的评估;
第二信号处理装置,用于接收第一线性迭代滤波器的评估信号输出,并在解码电路的后续迭代周期中向第一信号处理装置的输入提供进一步的接收信号评估。
在另一方面中,本发明提供了一种通过迭代地接收多个用户信号,而在多路接入网络中通信的方法、设备和系统,包括:
基于线性信道约束,对多个用户信号确定第一组信号评估;
基于非线性信道约束和第一组信号评估,确定第二组信号评估;
提供第二组信号评估作为确定第一组信号评估的步骤的输入;
重复上述步骤至少一次。
另一方面,本发明为接收多个用户信号提供了迭代接收器,包括:
第一信号处理部件,用于基于线性信道约束,对多个用户信号确定第一组信号评估;
第二信号处理部件,用于接收第一组信号评估,并基于非线性信道约束,确定第二组信号评估;
其中信号处理部件可操作地连接,以便提供第二组信号评估作为后续迭代周期中第一组信号处理部件的输入。
在另一方面中,本发明提供了一种通过迭代地接收OFDM数据包而在多路接入网络中通信的方法、设备和系统,包括:
a)采样接收器输入信号;
b)将输入信号与多个先前存储的接收数据包样本评估中的一个相加,来确定数据包样本假设;
c)由样本假设来确定信息位评估,用于信息位评估表中的储存;
d)由样本假设来确定更新的接收数据包样本评估,用于更新多个先前存储的评估;
e)从样本假设中减去更新的样本评估,以确定噪声假设,并提供噪声假设作为接收器输入信号;
f)重复步骤a)至e)直至信息位评估表中积累至少一个或多个完整的数据包。
在另一方面中,本发明提供了一种通过迭代地提供样本评估表,而在多路接入网络中通信的方法、设备和系统,包括:
a)采样接收器输入信号;
b)由采样的接收器输入信号样本来确定数据包样本评估;
c)存储数据包样本评估;
d)通过将接收器输入与选定的先前存储的数据包样本评估相加来确定数据包样本假设;
e)通过解码和重新传输模拟数据包样本假设来确定更新的数据包样本评估;
f)用更新的数据包样本评估更新选定的先前存储的数据包样本评估。
在另一方面中,本发明提供了一种通过迭代地提供数据包信息位评估表,在多路接入网络中通信的方法、设备和系统,包括:
a)通过将接收器输入与选定的先前存储的数据包样本评估相加来确定数据包样本假设;
b)通过利用一种或多种硬解码技术和软解码技术解码数据包样本假设来确定信息位评估;
c)将信息位评估与一个或多个先前确定的信息位评估一起存储;
d)重复步骤a)至c)直至积累了完整的数据包。
在另一方面中,本发明提供了一种包括确定混合OFDM接收数据包样本评估的在多路接入网络中通信的方法、设备和系统,包括:
将时域信道应用接收样本评估与频域信道应用接收样本评估复用,以将复用的时域样本评估映射为对应于以下中的一个或多个:
OFDM信号循环前缀;
OFDM尾部;和
OFDM保护周期,
并且其中复用的频域样本评估被映射为对应于以下中的一个或多个:
OFDM信号的前同步码;和
OFDM有效负载数据符号。
在另一方面中,本发明提供了一种在OFDM多路接入网络中通信的方法、设备和系统,包括:
执行多用户干扰消除,其包括调整单通道(single pass)OFDM接收器,来以采样级别迭代地接收信号,以允许接收器在接收器输入端从干扰信号的观测中区分要求的数据包。
在另一方面中,本发明提供了一种通过同步到达接收器的数据包,而在多路接入通信网络中通信的方法、设备和系统,包括:
接收数据包输入信号;
确定对应于数据包输入信号的相关信号;
处理输入和相关信号,以将输入信号和相关信号中的至少一个滤波;
通过合并处理过的相关信号的功率分量和处理过的输入信号的功率分量,来确定判决统计值;
指定由判决统计值的预定阈值条件所给定的时间点为接收数据包的到达时间。
在另一方面中,本发明提供了通过追踪时变信道,而在基于多路接入数据包的通信网络中通信的方法、设备和系统,包括:
a)基于接收数据包前同步码中的初始信道评估,初始化信道评估参考;
b)基于在当前和所有先前接收的数据符号的编码部分中的数据包数据符号信道评估,更新信道评估参考;
c)在后续的数据包符号到达时重复步骤b)。
在另一方面中,本发明提供了一种通过评估时变信道损失,而在基于多路接入数据包的通信网络中通信的方法、设备和系统,其中信道损失包括信道变化、信号频率偏移和信号时间偏移,包括:
a)基于接收数据包中包括的初始导频和前同步码符号,初始化一组信道损失评估;
b)执行解码操作,其包括处理该组信道损失评估和接收数据包,以确定一组发送符号评估;
c)用该确定组的符号评估和接收数据包来更新该组信道损失评估;
d)重复步骤b)和c)。
在另一方面中,本发明提供了一种通过在用于接收发送数据包的接收器中的时变信道评估,而在多路接入网络中通信的方法、设备和系统,包括:
a)基于接收数据包前同步码中包括的信息来评估频率偏移;
b)使用评估频率偏移来校正接收信号;
c)使用接收数据包前同步码中包括的信息来确定信道评估;
d)将接收信号的样本序列转换为频域,以使样本序列包含OFDM符号和插入的循环前缀;
e)执行解码操作,其包括处理已确定的信道评估和接收数据包;
f)使用解码结果和接收数据包前同步码中的信息来产生发送样本序列。
g)将发送样本序列转换为频域;
h)通过合并频域中的接收样本序列和发送样本序列,来更新已确定的信道评估;
i)重复步骤e)至h)。
在一个优选实施例中,更新已确定的信道评估的合并操作的步骤h)通过分开频域中的接收样本序列和发送样本序列来执行。
在另一方面中,本发明提供了一种通过在用于接收传输的数据包的接收器中的时变信道评估,在多路接入网络中通信的方法、设备和系统,其中接收器从接收信号中检索OFDM符号并将检索的符号转换为频域,包括:
a)确定训练符号矩阵,其由从解码器导出的符号评估组成;
b)确定频域接收的OFDM符号的矩阵;
c)通过将OFDM符号矩阵乘以训练符号矩阵的共轭,来确定中间信道评估矩阵;
d)确定包括训练符号矩阵的绝对值的训练权重的中间矩阵;
e)对两个中间矩阵执行包括2维滤波的平滑操作;
f)通过将平滑的信道评估矩阵除以平滑的训练加权矩阵来确定信道评估。
在本发明的一个实施例中,确定训练权重的中间矩阵的步骤d)可包括其他函数,如(训练符号矩阵绝对值)2
在另一方面中,本发明提供了一种通过评估用于接收发送数据包的接收器中的偏移,而在多路接入网络中通信的方法、设备和系统,包括:
a)确定接收的OFDM符号的矩阵;
b)确定共轭数据符号的矩阵,其中数据符号包括一个或多个前同步码、训练和评估符号;
c)确定2维傅立叶变换矩阵,其包括乘以共轭符号矩阵的接收符号矩阵;
d)将傅立叶变换矩阵滤波;
e)通过定位峰值功率在已滤波的傅立叶变换内的发生,来确定时间和频率偏移。
在一特定实施例中,用于评估偏移的上述步骤a)至e)可作为信道评估的手段有效使用。例如,在本发明的上述方面中通过评估时变信道损失来提供通信,用确定的该组符号评估和接收数据包来更新该组信道损失评估的步骤c)可以包括用于评估偏移的上述步骤a)至e)。
在另一实施例中,上述方法可用作本文要求的信道评估器,因为使用确定的该组符号评估来更新该组信道评估。
在另一方面中,本发明提供了一种通过同步多天线接收器中的接收信号,而在多路接入数据包通信网络中通信的方法、设备和系统,包括:
将在多个天线中每个天线处的接收信号观测与已知的信号前同步码相关,来提供接收信号序列;
确定每个接收信号序列的功率信号;
基于每个天线的评估天线信号强度,依照时间平均权重来合并确定的功率信号;
依照预定的阈值条件确定接收信号的到达时间。
在本发明的实施例中,提供了一种计算机程序产品,包括:
计算机可用介质,具有驻留于所述介质上的计算机可读程序代码和计算机可读系统代码,用于在多路接入通信网络中通信,所述计算机程序产品包括:
在所述计算机可用介质内用于执行本文公开的方法步骤的计算机可读代码。
本说明书公开的和/或所附权利要求中限定的其他方面和其他优选方面是本发明描述的一部分。
本发明在两个通信装置间提供了改进的或提高的无线连接,如IEEE 802.11a接入点至IEEE 802.11a工作站或无线网络(wirelessmesh)中的两个节点间。本发明得到了增强的点对点连接的关键性能指标,即范围、功率、数据传输率和可靠性。通过下列领域的高级信号处理技术实现了性能的提高
-解码
-同步
-均衡
-信道评估
-多接收天线的完全利用。
另外,正如本领域技术人员可以理解的那样,利用多天线进行传输的技术调整后可用于提供电子生成的定向天线。本发明有以下优点。
-干扰的空间去除,
-显著增加的接收器灵敏度,
-显著增加的衰退鲁棒性(robustness to fading),以及
-天线模式的自配置
干扰的空间去除有效地略掉或去除了来自不同兴趣源(interestsource)的流或点位置的信号。这些信号的去除增加了接收无差错信号的概率,从而增加了连接的可靠性并因此增加了吞吐量,减少了再发送和丢弃的数据包。如在接收天线处测量的一样,干扰信号有空间特征,这基本上由其位置确定。然而,没有设置在一起的发送器可能会产生相似的空间特征,并且设置在一起的发送器也可能产生不同的空间特征。
重要的是,增加接收器灵敏度意味着接收器可操作较低的信噪比(SNR)点,这会带来许多益处。既然减小了信号可被成功解码的接收功率,所以路径损失可以通过增加接收器和发送器间的距离从而增加范围而增加。可选地,本发明允许降低传输功率同时仍然保持连接。增加接收器的灵敏度也意味着每位需要较少的功率,因此,每组符号可传输更多数量的信息位。这提高了数据传输率。
本文所公开的发明技术提供的衰退鲁棒性可以减少因极度的无线信道变化或衰退产生的数据包误差的数量。通过增加鲁棒性,可以产生更加可靠的连接,通过较少的再发送和较少的丢弃的数据包,确保更佳的用户体验和吞吐量增加。
使用多天线传输和接收功能,允许去除来自所关心方向外的干扰。该功能是自适应的,因此安装时或安装寿命内不需要在安装时天线定向。
通过实例,给出了带有和不带有本发明的点对点技术的样本通信连接的指标性能测量。
  典型的现有技术   本发明
  范围   300m   1km
  所需的Tx功率   1.0W   0.1W
  最大数据传输率   500kbps   5Mbps
本发明还提供了改进的信道追踪能力。信道追踪技术指接收器当信道在单个数据包持续时间内迅速改变时的自适应。通常,用于解码接收数据包的信道评估由数据包开始处的已知序列来确定。该评估可用于整个数据包的解码。然而如果发送器和接收器间的相对速度足够大,数据包开始时经历的信道和数据包末尾处差别相当大,数据包末尾处的信道评估不正确会导致解码误差。当无线信道在数据包期间改变时还会显现出其他其他处理。这包括发送和接收无线电处理之间的失配,其造成时间和频率同步中的残余频率偏移和错位。很难建立完美匹配的发送和接收无线电设备。
本发明的高级信号处理技术允许接收器电路建立追踪数据包期间在信道中的改变的渐进的信道评估。应用该信道追踪技术的益处在于高移动性条件下的和发送与接收无线电处理间较大失配情况下的通信能力。以实例方式,给出使用和未使用本发明的信道追踪技术的样本通信连接的典型性能测量。
  典型现有技术   本发明
  最大移动性   40km/hr   400km/hr
本发明还提供了干扰消除,允许从信号中消除相同标准的干扰。术语“相同标准”指来自多用户系统中其他用户的相似数据包结构的传输,或来自同一发送器或装备有多发射天线的装置的多个发射天线的多径发射(反射)。在所有无线通信系统中,多个活跃发送器共享无线介质。该共享可以在基础设施网络中通过以协调方式将无线介质分为时间和频率片段来实现,或在特定网络(Ad-hocNetwork)中通过所有活跃发送器以不协调方式竞争介质的使用权来实现。两种方案都将介质的使用限制在边界明确的频率和时间内,其中只有一名用户可传输。当两个发送器无意中选择在同一时间使用同一频率,就会出现数据包冲突。干扰消除技术包括高级信号处理技术,其益处在于以下方面
-采集
-干扰减轻
-范围
-网络吞吐量
-减少的控制开销
本发明的干扰消除技术的其它益处是解决来自于以同一时间同一频率传输的同一标准的两个或多个发送器之间的冲突。这有很多的优点。首先,发生冲突时,所有发送数据包被正确接收,通过减少再发送和丢弃数据包增加了吞吐量和可靠性。其次,通过取消了关于仅有一个发送器可以在给定时间使用给定频率的要求,可以增加介质的可承载通信量。而且,在基础设施设计(如频率规划方面)中以及在共处一地的竞争网络(如处于相邻办公室的不同公司使用两个IEEE 802.11网络)的情况下,可给予更大的灵活性。
在期望用户和干扰用户依照不同标准传输的情况下,干扰消除结构可以使用用于所有相关标准的接收器和重新发送器。接收器于是能够产生假定,干扰信号能够启动干扰消除。
根据本发明的实施例冲突可以在物理层解决。导致的网络信令开销的减少,其益处远远超出了解决两个数据包的冲突。典型定量测量是网络吞吐量增加了一倍,并且数据包损失减少几个数量级,如下所示:
  典型现有技术   本发明
  吞吐量   10Mbps   20Mbps
本发明实施例的中继技术允许选定的(可能全部)无线装置充当路由器,在通信网络中从一个设备向另一个设备转发数据包。这意味着尽管两个设备不能互相接收信号,如果它们之间有一组可连接构成无线电波路径的中间设备,那么它们可以通过该中间设备组传递其消息而互相通信。
根据特殊网络动态(particular network dynamics),中继技术可以使用动态路由确定技术来建立并保持要求的路由表。中继网络在灵活性、可靠性和基础设施成本方面提供了许多益处。
灵活性通过要求最小规划的自形成网络实现。唯一的要求是在无线电范围内装置不可以与核心网络隔离。所有满足该标准的配置都是可行的。
如果网络中装置之间存在多条路径,在当前路由堵塞或最好要避免拥塞时,动态路由确定可选择新的路由。因此,如果一个设备将断线,网络可以重新安排路由表,将该设备从所有路由中排除,并通过网络找到新的路径,因而产生稳定的自恢复(因此更加可靠的网络)。考虑到移动的网络节点,动态路由确定持续适用于网络配置的改变。
根据本发明实施例的中继网络提供了简单的解决方案为广阔地区提供了高带宽连接。由于安装简单灵活,基础设施成本低,连接速度高、可靠,中继网络通常提供了投资的最佳回报。
发明者将最好地利用本发明实施例技术的益处的通信领域的四个应用区域确定为
-移动中继无线网络
-固定中继无线网络
-IEEE802.11a接入点芯片组
-802.16基站
-OFDM基带接收器协处理器
以下将依次描述上述确认的应用中的每一个。其他应用也可能得益于本发明实施例的这些技术。
首先,移动中继无线电网络要求与移动实体网络有效实时通信。该概念提供了移动实体间以及固定网络与移动实体间的.效能成本合算的双向高带宽通信。在要求业务正规地连接至宽带主干网的位置设置无线路由器。可以使用固定网络连接到其他网络,诸如国际互联网或其他专用网络。除了电力使用和物理安装点外,每个无线路由器不需要其他基础设施。无线路由器可以是固定的或是移动的。本领域技术人员可以理解,路由器可根据连接质量使用例如数据通信方法适应环境。由于如上所述提供的改进的移动性和范围导致提供更加有效的网络,因此相对于其他中继无线电网络,本发明的实施例提供了竞争优势。如上所述相对于相关技术的专用通信网络,本发明实施例在数据传输率、范围、移动性和网络成本上提供了相当大的改进。
其次,通过在具有可用的一个或多个宽带主干连接的固定用户位置安装无线路由器来提供固定中继无线电网络。唯一的要求是所有路由器必须能够构成一个(直接或中继地)连接回主干连接的链路。不需要昂贵的基站配置,最大范围也不受限于信号强度。固定中继无线电网在提供高带宽连接到广域网中形成灵活的、低基础设施成本的解决方案,该方案可靠、容易管理,并且能够自恢复。
此外,本发明使得在接收器滤波结构中使用所有解码器输出(所有迭代上的解码器输出都被存储并能够被合并)来提供改进的评估确定。极大地增加了可支持的用户数量。尤其有利的是,例如在本发明的OFDM系统中,不要求将过大的矩阵转化成评估。由于通过在迭代循环中包括解码所提供的反馈符号的质量,所以接收器性能优于相关技术的接收器的性能。本发明的实施例基于干扰消除,其中从接收信号中减去先前的多用户接收信号的评估来消除其引起的干扰。因此,这些实施例不会经历对多个用户信号使用树形检索方法的缺点和复杂性,树形检索方法使得必须通过给定的树寻找许多路径。本发明使得方便地根据每个用户信号的向前纠错编码对每个用户信号进行解码。强误差控制编码结构的使用,用于显著地改进了符号评估,获得了优良的干扰评估。这进而又能够给更多数量的用户提供支持。本发明的实施例不要求用户同步,使得能够实现改进的多用户接收。本发明的实施例还有益地使用解码器输出作为训练符号而不是仅使用解调器输出。有利地,波束成形的接收系数可在没有发送器交互情况下确定。而且,使用解码器输出改进信道评估使得可以精确地评估要求的波束成形系数。根据本发明的实施例,信道评估分接头的平滑是在频域以及时域中执行的。此外,由于改进了对应于其间隔的信道评估使得接收器的灵敏度增加,所以本发明的实施例允许对符号多次解码。
本发明应用的更多范围通过以下详细描述将变得显而易见。然而,可以理解,说明本发明优选实施例的详细描述和具体示例只是作为说明给出,对于本领域技术人员来说,很明显,对于该详细描述的各种改变和修改都是在本发明的精神和范围之内的。
附图说明
通过参照以下优选实施例的描述,并结合附图,相关领域的技术人员可以更好地理解本发明的进一步公开、改进、优点、特征、和多个方面,附图只是作为说明给出,而不是限制本发明的范围,并且其中:
图1示出了相关技术的多路接入无线通信系统;
图2示出了包含接入冲突的相关无线通信系统中的MAC失败的实例;
图3示出了相关技术无线通信系统的WLAN网络中的自干扰;
图4示出了根据第一实施例的常规迭代接收器结构;
图5示出了编码CDMA的传输系统模型;
图6示出了正则迭代多用户解码器;
图7示出了根据第一实施例的具有线性多用户评估的迭代多用户解码器;
图8示出了根据第一实施例的递归滤波器Λk (n),当n=1时,递归滤波器Λk (n)输入信号为r,而当n≥2时,输入信号为
Figure G2009101761390D00231
以及
图9示出了根据第一实施例在迭代次数10之后误码率与用户的比值,N=8,Eb/No=5dB;
图10示出了典型的相关技术的单通道OFDM接收器的高层结构;
图11示出了根据第二实施例的图10中单通道OFDM接收器高层结构的改变,以推动迭代接收器技术;
图12示出了根据第二实施例的在迭代接收结构中使用的OFDM软/硬解码和再发送结构;
图13示出了根据第二实施例的混合再发送;
图14示出了根据第二实施例的用于OFDM软/硬解码和再发送结构的硬解码和再调制;
图15示出了根据第二实施例的用于OFDM软/硬解码和再发送结构的软解码和再调制;
图16示出了根据第二实施例的用于时域信道应用处理的结构;
图17示出了根据第二实施例的用于频域信道应用处理的结构;以及
图18示出了典型OFDM数据包物理层格式和相关多路复用器映射的一个实例;
图19a和19b示出了根据本发明优选实施例的与基带接收器处理器结合的无线调制解调器;
图20示出了根据相关技术的数据包结构;
图21示出了相关技术的时间同步判决的实例。
图22示出了根据本发明第三实施例的接收滤波器的三角滤波系数;
图23示出了根据本发明第三实施例的滤波判决统计值的实例;
图24示出了相关技术无线信道的实际频域;
图25示出了图24的在接收器相位和频率偏移校正之后的频域;
图26示出了用于接收器的相关技术处理的误差图;
图27示出了根据本发明第四实施例,在对OFDM符号进行平滑后的无线信道评估;
图28示出了本发明使用理想训练符号的第四实施例的误差图;
图29示出了根据本发明第四实施例的原始无线信道评估或信道评估数据库;
图30是根据相关技术的WLAN数据包格式的一个实例;
图31是根据本发明第五实施例的OFDM符号子载波矩阵结构;
图32是本发明第五实施例应用产生的子载波和OFDM符号上的信道功率(幅度)的表示;
图33示出了对应于图32示出的波形的信道相位;
图34示出了根据本发明第五实施例的子载波和OFDM符号同步度量(synchronization metric)。
具体实施方式
系统概述
在无线网络中,网络装置接收的信号包括来自所有活跃发送器的分量。这些分量,连同噪声一起构成了接收信号。在一些情况下,其中只有对应于具体发送器的一个分量是人们所关心的。在其他情况如网络接入点的接收下,接收分量中有多个是人们所关心的。不管是哪种情况,其他信号分量在接收信号中的出现抑制了对指定的所关心的发送信号的准确评估。本文公开了根据本发明的实施例的系统、方法和设备,其用于处理由来自不同发送器的一个或多个接收信号分量组成的接收信号。该处理通常驻留于图19a和图19b中示出的无线收发器190的基带接收器处理中。射频收发器集成电路(IC)是一种模拟装置,其作为收发器的数字信号处理部件LLC、MAC、Rx、Tx与天线系统之间的接口。在接收模式下,IC将接收信号放大并降频变换为适合于驱动模拟数字转换器。在发射模式下,其将信号升频变换并放大为适合于天线的激励。
基带接收器负责确定是否存在任何数据包,如果认为存在数据包,则从接收信号中恢复发送信息评估。
图19b示出了正则基带接收处理器Rx。每个天线的接收信号由射频电路IC提供作为输入。之后由滤波器302a和302b将这些信号滤波302,以除去带干扰外的任何信号。然后将滤过的信号303与当前接收信号评估306合并,执行干扰消除功能304。理想地,干扰消除模块304消除接收信号中除了所关心数据包以外的所有数据包中的信号分量。然后,通过将干扰消除的输出309输入之单数据包处理器313,来实现所关心数据包的解码。
单数据包处理器313将多天线接收信号视为是由干扰消除模块304传输的,并产生所关心数据包的传输信息位314的评估和接收符号306的评估。然后将这些符号与所关心数据包的信道评估一起反馈到干扰消除模块304。在一些情况下,优选地,仅将发送符号评估传送回干扰消除模块304。
单数据包处理器313可包含高级或传统单数据包技术。如果单数据包处理器质量高,则接收器的多用户干扰消除性能将会更好。与同步和信道评估相关的技术是单数据包处理器313性能的关键。
本文描述了解码器310中使用的提高同步和信道评估鲁棒性的技术。该同步在其操作中使用了所有的天线信号。信道评估利用解码器的输出来提高信道评估的精确性。
通过干扰消除模块304中的搜索器发现新数据包。搜索器调查模块304中生成的中间信号。该中间信号是所有当前检测到的数据包的接收信号减去评估接收信号,并被称为噪声假设,因为理想条件下所有发送器分量被从接收信号中除去,只剩下随机噪声。
在对等待敏感的应用中,既可以在用于解码器输出辅助信道评估的310内又可以在用于多数据包干扰消除的304、310以及312之间,以比数据包速率更高的速率执行反馈回路。在基于OFDM的系统中,回路速率的优选是以OFDM符号速率出现具有解码和干扰消除的OFDM符号速率。
在以数据包速率执行基于数据包的解码和干扰消除的应用中,公开了单数据包处理器313的另外的基于数据包的技术。考虑到长序列的符号,这些技术手段使得可实现额外的信号处理增益。
不管哪种情况,都需要经过干扰消除器304和单数据包处理器313之间的数量的当前评估表。也可以使用用于确定哪一个数据包需要更新的控制器。
参照图4至图9,第一实施例来源于这一常规认识,在多用户接收器中使用线性滤波器经过许多次迭代后,每次迭代提供新信息,并且随着滤波器结构收敛,解码器的输出也收敛并最终完全相关。多用户解码电路装置的线性滤波器可根据至少一个预定的递归表达式构造。
本文所披露的第一实施例的滤波器设计中的创新就是要利用这样的事实,即解码器提供的信息经过迭代最初仅边缘相关,即,在开始几次迭代中,每次迭代提供新信息。随着结构收敛,解码器的输出也收敛并最终变成完全相关。
所披露的滤波器设计基于一种使用来自以前所有迭代的所有可用信息的技术。这意味着滤波器在尺寸上是随相当于用户数量的因素线性增长的。明显这是不现实的。因而所披露的滤波器设计使得能够通过经过迭代的滤波器输出的递归反馈来使用所有可用的信息,而不需要滤波器增大。滤波器的尺寸保持不变。为实现这一点,可以根据本文获得的递归表达式来设计该结构中的滤波器。
具有较低实施复杂性的相关结构通过修改结构中使用的具体滤波器获得。然而常规递归结构仍然是这些修改的滤波器的基础。在这些情况下,根据适当不同的策略使用本文所披露的原理来设计各个滤波器。
本文所披露的用于迭代信号处理的递归滤波结构不限于多用户检测,而是也可直接应用在同样结构的系统和功能中。这种应用例如包括迭代均衡、迭代联合信道评估和检测/解码、迭代时空处理、以及迭代解调。
在第一实施例的广义方面,图3及图10总体上示出了一种迭代信号处理装置,其具有一对或多对第一和第二信号处理部件1、2,这些对部件处于迭代配置中,每个第一信号处理部件把一个或多个取决于一个或多个发送信号的接收信号作为输入,其中对于每个所述信号处理部件对,所述第一信号处理部件1的输出是基于当前和一个或多个先前由所述第一信号处理部件1接收的信号的选定的发送信号的特征的评估,其被输入所述相应的第二信号处理部件2,对所述第二信号处理部件2的输出提供所述选定的发送信号的进一步评估,各对的所有所述第二信号处理部件的输出是后续迭代周期中所有所述对的每个所述第一信号处理部件的输入。
在第一实施例的另一方面,根据上述的迭代信号处理装置10提供选定的一个或多个发送信号的特征评估,然后将所述评估延迟一个迭代周期,并将所述延迟评估输出至所述第一线性迭代滤波器的输入,其中所述第一信号处理部件1包括至少两个线性迭代滤波器,其中所述线性迭代滤波器中的第一个向所述第二信号处理部件2输出选定的一个或所述发送信号的选定的特征评估,以及第二所述迭代滤波器具有与所述第一线性迭代示波器相同的输入。
第一实施例被设计用于任何应用常规线性信道模型描述的通信系统。接收器输入端的接收信号通过发送信号和噪声的权重和描述。一组权重因子表示施加于发送信号上的一组线性约束。信号上可能施加了其他约束。其他约束和线性信道施加的线性约束是无关的。
最理想的接收器结构是找到被施加所有约束控制的发送信号评估。该方法对于大部分实际所关心的情况过于复杂。作为另一选择,常规迭代接收器结构包括两个分开的部件(见图4)。第一部件1找到理想评估,其只受线性信道约束控制,而不考虑其他所有约束。通过根据预定顺序(解交织(de-interleaved))重新排序,仅仅优选地将这些评估混合,并用作第二部件2的输入,该第二部件找到只受所有其他约束控制而不考虑线性信道约束的理想评估。这些评估又反过来,优选地混合回原始顺序中(交织),取消预定的重新排序,并用作后续迭代周期中第一部件1的输入。
加强线性信道约束的第一部件1的理想设计通常还是过于复杂。为了限制复杂性,可将部件设计本身限于是线性的,以产生线性信号处理部件。该线性信号处理部件的设计是本披露的给定所选输入时关于第一实施例的主体。在以下描述中,第一实施例位于线性信号处理部件或信号处理部件1中,对应图4中的部件1。图4的剩余部分称作信号处理部件2。
线性信号处理部件1的功能是用于基于接收信号将所选发送信号从其他“干扰”发送信号中分离,该接收信号是如上所述所有发送信号的权重和。
线性信号处理部件1的输入是由信号处理部件2提供的一个或多个接收信号和一个或多个发送信号评估。线性信号处理部件1的输出是所选发送信号的评估。
线性信号处理部件1包括两个线性滤波器。基于一个或多个输入信号对线性信号处理部件的输入、延迟一段处理时间的迭代周期的第一滤波器的输出、以及延迟一段处理时间的迭代周期的第二滤波器的输出,第一线性滤波器作为输出提供所选发送信号的评估。
基于一个或多个输入信号对线性信号处理部件的输入、以及延迟一段处理时间的迭代周期的第二滤波器的输出,第二滤波器作为输出提供一个或多个其他发送信号(干扰所选发送信号)的评估。
第一滤波器的输出是线性信号处理部件的输出。
以下将参照附图并如附图中所示,更加详细地描述第一实施例的具体实施例。这些实施例只是说明性的,并不用于限制实施例的范围。可以包括其他实施例的提议和描述,但它们可能没有示出在附图中,或者可选地,实施例的特征可能在图中示出但没有在说明书中描述。
使用适合用作迭代多用户解码器的一部分的线性多用户评估器(MUE)来描述本实施例。提供了Turbo解码领域中该技术在用于编码CDMA的传输系统中的具体应用。然而,如前所述,滤波器的结构和揭示的原则在通信领域的其他许多方面非常有用。因而提供的实施例绝不应视为一种限制。
说明书包括以适当精确方式表达的理论考虑,并使用数学分析来证明根据需要使用假设的方法的正确性。本文中并未对所使用的所有定理提供证明。如本文所包含的披露与执行上述功能的滤波器部件的实际装置和配置有定向相关。另外,本文所提供的披露对于本领域技术人员是容易理解的。该披露使得本领域技术人员可以轻松地将此处披露的部件的理论配置转化为各种装置,以解决问题或改进装置性能,以及转化为各种应用领域的算法,其中一些先前已经描述过,一些将在本文中进行描述。
本实施例是为应用常规线性信道模型描述的任何通信系统设计的。接收器输入端的接收信号用发送信号和噪声的权重和来描述。可能有多个接收的可观测量与同一符号内部相关,即接收信号可以是接收可观测量的向量。
r = Σ i - 1 K s i x i + n - - - ( 1 )
其中,发送了总共K个信号,sk是信号xk的权重因子,而n是噪声向量。
这里,该组权重因子,s1,s2,...,sk代表施加于发送信号的一组线性约束。其他约束可能已经施加于信号x1,x2,...,xk,诸如误差控制编码、信道衰退等等。这些其他约束与线性信道施加的线性约束无关。
理想接收器结构找到所有受到施加的约束控制的发送信号的评估。该方法对于大部分所关心的实际情况过于复杂。作为另一选择,常规迭代接收器结构包括两个分开的部件(见图4)。第一部件1找到理想评估,只受线性信道约束控制而不考虑其他所有约束。这些评估是第二部件2的输入,该第二部件找到只受所有其他约束控制而不考虑线性信道约束的理想评估。这些评估又反过来在后续的迭代周期中作为第一部件1的输入。
加强线性信道约束的第一部件1的理想设计通常也是过于复杂的。为了限制复杂性,可将部件1设计本身限制为线性,以产生线性滤波器。本文披露了给定滤波器的所选输入时该线性滤波器的设计。该滤波器的功能是用于基于接收信号将所选信号从其他“干扰”信号中分离,该接收信号是(1)中所述所有发送信号的权重和。本说明书中提供的所有引用均结合于此作为参考。本文所披露的滤波器设计更新利用了这一事实,解码器提供的信息最初仅经过迭代边缘相关,即,在开始几次迭代中,每次迭代提供新信息。公开的滤波器设计基于使用来自先前所有迭代的所有可用信息的技术。
这意味着滤波器在尺寸上随等同于用户数量的因素而线性增长。明显这是不现实的。因而所披露的滤波器设计使得能够通过经过迭代的滤波器输出的递归反馈来使用所有可用信息,而不要求滤波器增大。滤波器的尺寸保持不变。滤波器设计基于两个线性迭代滤波器,其中第一线性滤波器基于接收信号提供期望信号的评估、提供来自于信号处理部件2的所有用户信号最近的评估、以及基于信号处理部件1的所有先前输入的所有用户信号的评估向量提供第二线性滤波器的输出。图8中清楚地示出了这两个线性滤波器。
根据其中导出的迭代表达式,可基于线性最小均方差标准来适当地设计线性迭代滤波器。
本实施例适用于由这种常规线性信道模型描述的任何系统及要应用上述迭代接收器的任何系统。这种应用的实例包括(但不限于)下列各项:
●线性多路接入系统中编码传输的解码。
●通过符号间干扰信道的编码传输的解码。
●通过未知信道的编码传输的联合信道评估和检测/解码。
●时空编码传输的解码。
●具有更高阶调制格式(higher order modulation formats)的编码传输的解码。
以下将说明常规(generic)线性多路接入系统的多用户解码的设计。
多用户解码实例中的系统模型
Turbo解码背后的基本原则是对于接收信号上施加的各种约束进行分别独立地解码。通过在各个解码器之间迭代传递外来信息来解决全部约束。对于Turbo编码,这些约束是并行链接码。对于Turbo均衡,这些约束是符号间干扰信道的信道编码和记忆。对于多用户解码,由于多路接入信道以及由于各个用户的编码器而有一些约束。
在本实施例中,公开了适合于推导用作迭代多用户解码器一部分的线性多用户评估器(MUE)的理论框架。我们来考查两输入端线性最小均方差(LMMSE)评估器(其帮助激发我们的主要成果),即递归贝叶斯评估器的推导。所提出的评估器基于接收信号和由误差控制编码解码器经过所有预先迭代所提供的所有后续输出产生评估。通过观测到这些评估在开始的迭代中是松弛相关的而激发该方法。
注:Pn是概率n向量(长度n的非负向量,总和为1)的空间。E[x]是随机向量x和y的期望值,varx=E[x*x]且covx=<x,x>=E[xx*]。同样,cov(x,y)=<x,y>=E[xy*]。
我们来考查图5中的K使用线性多路接入系统。用户k,k=1,2...,K使用速率R编码C对其二进制信息序列bk[l]进行编码,以产生编码的二进制序列dk[l]。
我们来考查为2L编码位每用户的传输。每个用户通过交织器(interleaver)πk独立地置换其编码序列。将用户k的交织器输出的序列表示为uk[l],l=1,2...,2L。成对地交织编码位uk[l]被不存储地映射到四相相移键控(QPSK)信号群, Q = { &PlusMinus; 1 / 2 &PlusMinus; j / 2 } , 给定调制编码符号序列xk[i],其中i=1,2...,L是符号时标。我们选择QPSK只是为了简单起见,要注意,一般来说也可以是不同的编码约束和用户间符号映射。
在符号时间i,每个用户传输实N芯(chin)扩展序列sk[i]∈{-1,1}N与xk[i]的乘积,sk[i]xk[i]。我们通过让sk[i]的每个元素在用户和时间上独立并恒等分布来模拟扩展序列在大大长于数据符号持续时间的期间内的使用。仅为了概念简单起见,用户是符号同步的,通过加性(addtitive)白高斯噪声(AWGN)信道传输,并以同一功率水平接收。然而,这些假定并不是必须的。芯匹配滤波接收向量r[i]∈□N在符号时间i=1,2,...,L时可写为
r[i]=s[i]x[i]+n[i]    (2)
其中S[i]=(s1[i],s2[i],...,sk[i])是用户k作为列k的扩展序列的NxK矩阵。符号□代表复数集合。向量x[i]∈QK具有元素xk[i],向量n[i]∈□N是采样的圆对称i.i.d.高斯噪声处理,其中covn[i]=σ2I。符号Q代表可能的调制符号集合,例如QPSK。
因此,不要求确定具体符号间隔,这些指标将被省去。为了以后的使用,我们定义Sk=(s1,s2,...sk-1,sk+1,...,sk)和xk=(x1,x2,...,xk-1,xk+1,...,xk)t来指示从S或x中删除了用户k。
来自多用户评估的递归滤波器
Turbo原则在编码线性多路接入系统中的应用,其中对于每个用户,我们把误差控制编码看作一个约束,并把多用户信道(2)看作其他约束,得到图6中的正则接收器结构[1]。
迭代n1,多用户APP从前迭代n-1计算的用户k=1,2,...,K中获得输入r以及外在概率(extrinsic probability)集合qk (n-1) q k ( n - 1 ) [ i ] &Element; P | Q | 是用户k在发送符号xk[i]∈Q上的外在概率分布。集合Q是在发送器处所有可能调制符号的集合。多用户APP计算用户k的更新的外在概率向量Pk (n)[i]。在适当的解交织(de-interleaving)后,外在的Pk (n)被每个用户用作编码C的独立APP解码的前提,(在交织后)产生外在概率值qk (n),其用作后来迭代的前提。多用户APP中的边际化(marginalization)要求对|Q|K-1项求和。在保持同样基础架构的同时提出了许多复杂性较低的其他选择。
我们来考查图7中示出的接收器结构。有一组线性滤波器Λk (n),每个用户一个。这些滤波器的系数可以在每次迭代时重新计算。对于第一次迭代,n=1,对Λk (1)的输入正好为r。对于以后的迭代,n=2,3...,用户k的滤波器的输入为r,以及来自先前迭代的所有其他用户的信号评估集合 { x ^ k &prime; ( m ) : k &prime; &NotEqual; k , m &Element; M } , 其中 M &SubsetEqual; { 1,2 , . . . , n - 1 } 是限定迭代存储阶次的集合。通常在文献中,M={n-1},尽管已经考虑了最近的M={n-1,n-2}[2]。
滤波器Λk (n)的输出是用户k的相应的编码符号的评估
Figure G2009101761390D00363
的更新序列。使用有关符号(symbol-wise)的映射T:□→P|Q|将这些评估从信号空间映射到概率向量空间。所得到的概率向量pk (n)序列被用作编码C的单独APP解码的前提。这些APP解码器能输出后验或外在概率qk (n)(两种方法在文献中都有研究)。概率向量qk (n)的序列又反过来通过有关符号的函数U:P|Q|→□被映射到信号空间。通常,T计算向量pk (n)假定
Figure G2009101761390D00364
是有已知均值和方差(variance)的高斯分布,同样,U的一般选择是条件均值。
下列可很容易地证明的引理为滤波器Λk (n)的推导提供了有用的总体框架。
引理1
假设对于参数x我们有向量观测c=(atbt)t,其是两个向量观测a和b的结合。给定c时x的LSE评估为
x ~ = < x , a > < a , a > - 1 a + m ( b - < b , a > < a , a > - 5 a ) - - - ( 3 )
其中
m=(<x,b>-<x,a><a,a>-1<a,b>)(<b,b>-<b,a><a,a>-1<a,b>)-1
我们看到(3)可以写成 x ~ = ga + m ( Fa - b ) , 其中
m=(<x,b>-<x,a><a,a>-1<a,b>)(<b,b>-<b,a><a,a>-1<a,b>)-1(4)
F=<b,a><a,a>-1                                              (5)
g=<x,a><a,a>-1                                              (6)
迄今为止在文献中,迭代解码中用于多用户评估的线性滤波器Λk (n)已基于接收信号r和干扰用户
Figure G2009101761390D00372
的最近的编码符号评估来设计。然而在n次迭代后,我们有该可用评估的序列,即
Figure G2009101761390D00373
和r。已经观测到,在初始迭代[2]期间,这些评估没有强相关。
将以下可观测量的递归定义形式视为滤波器Λk (n)的输入,
c k ( n ) = r n - 1 c k ( n - 1 ) x ^ k ( n - 1 ) n = 2,3 , . . . - - - ( 7 )
LMMSE标准的直接应用得出结果 &Lambda; k ( n ) = < x k , c k ( n ) > < c k ( n ) , c k ( n ) < > - 1 . 然而显然Λk (n)随n在维数上增长,这是不现实的。
受到递归贝叶斯评估(RBE)[3]的启发,我们可证明以下定理,用于通过由Λk (n)给定递归形式来解决该维数问题(受输入信号的一定约束控制)。
定理1
作以下假设,
A1:接收信号r=Sx+n,根据(2)描述,其中n是圆对称复高斯变化的(Gaussian),其中covn=σ2I,且σ2以及S已知。
A2:单用户APP解码器输出的干扰用户
Figure G2009101761390D00381
的交织编码符号评估可写为 x ^ k ( n ) = x k ( n ) + v ^ k ( n ) , 其中
Figure G2009101761390D00383
与x不相关,与时间和迭代也不相关,但与给定迭代的用户相关,即当n≠m,以及 < v ^ k ( n ) v ^ j ( n ) > = q kj 时, < x , v ^ k ( n ) > = 0 , < v ^ k ( n ) , v ^ k ( m ) > = 0 .
用上述确定的元素定义 Q k ( n ) = < v ^ k &OverBar; ( n ) , v ^ k &OverBar; ( n ) > .
使ck (n)满足(7)式。依照A1和A2,给定ck (n)的xk的LMMSE评估由图8示出的递归滤波器的输出
Figure G2009101761390D00388
给出。
评估的更新是
x ~ k ( n ) = x ~ k ( n - 1 ) + m k ( n ) ( x ^ k &OverBar; ( n - 1 ) - x ~ k &OverBar; ( n - 1 ) )
图中的滤波器定义如下:
m k ( n ) = - w k ( n ) ( I + Q k ( n - 1 ) - W k ( n ) ) - 1
M k ( n ) = ( I - W k ( n ) ) ( I + Q k ( n - 1 ) - W k ( n ) ) - 1
当n=3,4,...时有递归更新等式
w k ( n ) = w k ( n - 1 ) [ I - ( H k ( n - 1 ) ) - 1 ( I - W k ( n - 1 ) ) ] - 1
W k ( n ) = W k ( n - 1 ) + ( I - W k ( n - 1 ) ) ( H k ( n - 1 ) ) - 1 ( I - W k ( n - 1 ) )
H k ( n ) - I + Q k ( n - 2 ) - W k ( n - 1 )
x ~ k ( 0 ) = 0 x k &OverBar; ( 0 ) = 0 时初始条件为 m k ( 1 ) = s k t ( SS t + &sigma; 2 I ) - 1 , n=1时, M k ( 1 ) = s k &OverBar; t ( SS t + &sigma; 2 I ) - 1 , n=2时, w k ( 2 ) = s k t ( SS t + I ) - 1 S k &OverBar; , W k ( 2 ) = S k &OverBar; t ( SS t + &sigma; 2 I ) - 1 S k &OverBar; .
已经使用计算机模拟来评估提出的技术。出于模拟起见,每个用户使用最大自由距离4状态卷积码自然映射到QPSK。每个用户因此是传输1位每信道使用。N=8时的二进制扩展序列在每个用户的每个符号上生成i.i.d.。传输是芯同步的,所有用户都以同一功率水平被接收。
图9示出了指示的模拟结果。图中示出了三条曲线。PIC是[4]的并行干扰消除方法。IPIC是[2]的改进的并行干扰消除方法。RBE是提出的递归贝叶斯评估技术。对于少数用户,各条曲线在接近于10-4的单用户BER处开始。当各接收器收敛失败时,其曲线会偏离单用户。对于PIC,这会在K/N=1.125处发生。对于IPIC,极值是1.625,而对于RBE是1.875。IPIC相对于PIC的性能优势在[2]中有报道。递归贝叶斯技术支持更高的负载。事实上,(对较小系统的)进一步数字调查已经显示,RBE与使用多用户APP支持几乎相同的负载。
本文描述的是用于迭代多用户解码的计算机实现的高效递归滤波器。滤波器使用单用户解码器的输出的整个历史来加快收敛并支持更高负载。
参照图10至图18描述了第二实施例,其中包括多种从适于(或实现)相关技术的单通道OFDM接收器以采样水平迭代地接收信号的常规解决方案中提供的具体解决方案,允许接收器在接收器输入端将所需数据包与干扰(冲突)信号观测值区分。方法如下:
●整体系统解决方案-迭代接收器结构本身。
●其他解决方面-样本评估表。
●其他解决方面-信息位评估表。
●其他解决方面-时/频域信道应用样本评估的多路复用。
在一个方面中,第二实施例提供了接收OFDM数据包的系统和方法,包括以下各项:
a)采样由来自一个或多个天线的信号组成的接收器输入信号;
b)将输入信号与多个先前存储的接收数据包样本评估中的一个相加,来确定数据包样本假设;
c)由样本假设来确定信息位评估,用于信息位评估表中的储存;
d)由样本假设来确定更新的接收数据包评估,用于更新多个先前存储的评估;
e)从样本假设中减去更新的样本评估,以确定噪声假设,并将噪声假设提供为接收器输入信号;
f)重复步骤a)至e)直至信息位评估表中积累至少一个或多个完整的数据包。
在另一方面中,第二实施例提供了在OFDM接收器中提供样本评估表的系统和方法,包括:
a)采样接收器输入信号;
b)由采样的接收器输入信号来确定数据包样本评估;
c)存储数据包样本评估;
d)通过将所选的先前存储的数据包样本评估与接收器输入相加来确定数据包样本假设;
e)通过解码和再发送模拟数据包样本假设来确定更新的数据包样本评估;
f)用更新的数据包样本评估更新所选的先前存储的数据包样本评估。
在另一方面中,第二实施例提供了在OFDM接收器中提供数据包信息位评估表的系统和方法,包括:
a)通过将接收器输入与选定的先前存储的数据包样本评估相加来确定数据包样本假设;
b)通过利用一种或多种硬解码技术和软解码技术解码数据包样本假设来确定信息位评估;
c)将信息位评估与一个或多个前确定的信息位评估一起存储;
d)重复步骤a)至c)直至积累了完整的数据包。
在另一方面中,第二实施例提供了确定混合OFDM接收数据包样本评估的系统和方法,包括以下步骤:
复用时域信道应用接收样本评估和频域信道应用接收样本评估,以将复用的时域样本评估映射为对应于以下中的一个或多个:
OFDM信号循环前缀;
OFDM尾部;和
OFDM保护周期,
其中复用的频域样本评估被映射为对应于以下中的一个或多个:
OFDM信号的前同步码;和
OFDM有效负载数据符号。
在另一方面中,第二实施例提供了用于基于OFDM的数据包网络通信的迭代样本评估方法,包括以下步骤:
a)从窗口匹配接收样本或噪声假设中选择一个作为输入信号;
b)将空数据包评估加入包含数据包样本评估的样本评估表;
c)选择所述表条目中的一条;
d)将所述数据包样本评估加入所述输入信号来创建数据包接收样本假设;
e)解码和再发送模拟所述数据包接收样本假设,以创建新数据包样本评估和新信息位评估;
f)用新信息位评估更新所述信息位评估表;
g)从所述数据包接收样本假设中减去所述新数据包样本评估来创建噪声假设;以及
h)用所述新数据包样本评估更新所述样本评估表条目;
对于每个数据包,所有所述步骤至少迭代一次。
在另一方面中,第二实施例根据前面段落提供了迭代样本评估方法,其中步骤e)进一步包括:
i)软解码所述所选数据包样本评估,以生成软编码位和新数据包信息位评估,以重新插入到所述信息位评估表中;
j)软调制所述软编码位,以生成发送符号评估;
k)由所述数据包接收样本假设和所述发送符号评估构造时域信道评估;
l)由所述发送信号评估构造数据包发送样本评估;
m)将所述时间数据包发送样本评估与所述时域信道评估相卷积,以生成时域信道应用接收样本评估;并且与步骤k)和m)同时进行;
n)由所述数据包接收样本假设和所述发送符号评估构造频域信道评估;
o)将所述发送符号评估与所述频域信道评估相乘,生成数据包接收符号评估;之后
p)由数据包接收符号评估构造频域信道应用接收样本评估;以及
q)将时域信道应用接收样本评估与频域信道应用接收样本评估复用,以重新插入到所述样本评估表,其中对数据包中的每个OFDM符号重复进行步骤n)至p)。
在另一方面中,第二实施例根据前述段落之前的段落提供了迭代样本评估方法,其中步骤e)进一步包括:
r)硬解码所述所选数据包样本评估,以生成硬编码位和新数据包信息位评估,以重新插入到所述信息位评估表;
s)硬调制所述硬编码位,以生成发送符号评估;
t)由所述数据包接收样本假设和所述发送符号评估构造时域信道评估;
u)由所述发送符号评估构造数据包发送样本评估;
v)将所述时间数据包发送样本评估与所述时域信道评估相卷积,生成时域信道应用接收样本评估;并且与步骤t)和u)同时进行;
w)由所述数据包接收样本假设和所述发送符号评估构造频域信道评估;
x)将所述发送符号评估与所述频域信道评估相乘,以生成数据包接收符号评估;之后
y)由数据包接收符号评估构造频域信道应用接收样本评估;以及
z)复用时域信道应用接收样本评估,用于重新插入到所述表。
参照图10至图18,根据第二实施例,以下各块被用于接收器信号处理技术:
●OFDM软输出解码228
●OFDM硬输出解码222
●编码224
●软调制230
●硬调制226
●采集(acquisition)204
●匹配滤波器202
●总和208
●减212
●卷积236
●乘240
●频率转换的时间(取决于系统标准)234
●时域信道评估器232
●频域信道评估器238
●时域、频域复用220
●样本评估表(包括相关控制器)206
●信息位评估表(包括相关控制器)213
表1和表2提供了各图中数值信号和处理过程以及本文中的参考号的索引。
  1002   接收样本
  1004   窗口匹配接收样本
  1006   空样本评估
  108   前数据包接收样本评估
  110   数据包接收样本假设
  112   新数据包信息位评估
  114   新数据包接收样本评估
  116   噪声假设
  118   完整数据包信息位评估
  119   数据包发送符号评估
  120   时域信道应用接收样本评估
  122   频域信道应用接收样本评估
  126   硬编码信息位
  128   软编码信息位
  130   时域信道评估
  132   数据包发送样本评估
  134   频域信道评估
  136   数据包接收符号评估
表1:信号
  202  p(t)带宽限制滤波器-匹配滤波器
  204  采集
  206  样本评估表
  208  ∑-加
  210  OFDM软/硬解码和再发送
  212  ∑(-ve)-减
  213  信息位评估表
  214  OFDM软/硬解码和再调制
  215  混合再发送
  216  TDCA时域信道应用
  218  FDCA频域信道应用
  220  MUX时域/频域复用
  222  OFDM硬输出解码
  224  编码
  226  硬调制
  228  OFDM软输出解码
  230  软调制
  232  时域信道评估器
  234  F→T-802.11a频域向时域转换
  236  卷积-线性卷积
  238  频域信道评估器
  240  乘
表2:功能块
本发明第二实施例适宜基于数据包的OFDM WLAN系统(如IEEE 802.11a,IEEE 802.11g)。这种系统的典型的接收器依照图10执行处理任务。系统的输入是每个连接天线的复杂的过度取样的基带接收信号1002。每个天线接收的信号经由频带限制滤波器202,之后接着有数据包检测和同步(采集)处理模块204。该采集块使用一个或多个匹配滤波器天线信号1004。一旦采集到数据包,将使用硬或软解码技术解码并传输到更高处理层(如MAC)。典型接收器结构图10可被修改为提供样本水平的干扰消除的迭代结构。
迭代接收器结构和功能
接收器的输入是来自每个连接到接收器的天线的过度取样的数字I/Q基带样本,被称为接收样本1002。接收样本1002在时间上加窗口,并经由与脉冲波形匹配的滤波器202,生成加窗的匹配接收样本1004。这构成了第一迭代(n=1)的噪声假设116。对于所有进行的的迭代(n>1),噪声假设116由干扰信号的反馈提供。图11中的n条件开关SWn示出了该情况。
接收器的迭代是以下各个处理来执行的:
●尝试使用采集204处理在噪声假设116中采集新数据包。
●如果发现新数据包,则将空条目1006添加到样本评估表206和信息位评估表213中。样本评估表206中的每个条目在信息位评估表213中有对应条目。
●由样本和信息位评估表的演进,确定信息位评估表213(206)中完整数据包{y1…ym}。
●释放到更高层(MAC),之后从信息位评估表213中移除完整数据包{y1…ym}。
●从样本评估表206中移除完整数据包{y1…ym}。
●在样本评估表206中选择数据包k进行处理。
●将从样本评估表206中所选的数据包k的前数据包接收样本评估208加入噪声假设116,以生成数据包接收样本假设110。
●使用OFDM软/硬解码和再发送处理210,为从数据包接收样本假设110中的所选的数据包k生成新数据包接收样本评估114和新信息位评估112。
●用新信息位评估112更新在信息位评估表213中所选数据包k的前信息位评估。
●用新数据包接收样本评估114更新在样本评估表206中所选数据包的k的前样本评估。
●从数据包接收样本假设110中减去212新数据包接收样本评估114,以生成噪声假设116。
持续执行迭代直至从信息位评估表213中释放所有数据包。一旦达到这种状态,清除表206、213,更新时间窗口,并且重复整个处理过程。
迭代干扰消除
样本水平的干扰消除要求对采集204处理找到的每个数据包使用OFDM软/硬解码和再发送210处理,为每个天线生成新数据包接收样本评估114。每个数据包的新数据包接收样本评估114被存储在样本评估表206中。干扰消除结构要求在软/硬解码和再发送210处理前,各数据包将其前的数据包接收样本评估108与噪声假设116相加208,为每个天线生成数据包接收样本假设110。之后从数据包接收样本假设110中减去212软/硬解码和再发送210处理所生成的新数据包接收样本评估114,以产生更新的噪声假设116。新数据包接收样本评估114也用于更新样本评估表206。之后将噪声假设116反馈通过系统(减去前处理数据包的最新评估的影响)来提供迭代干扰消除。图11为该处理提供了图形参考。
样本评估表
样本评估表206包含每个接收天线的OFDM软/硬解码和再发送210处理为采集204处理找到的各数据包所生成的新数据包接收样本评估114。
对于每次迭代,从样本评估表204中选出迭代(k)的数据包。k的选择可基于不同的度量,如排序的信号功率、执行的处理周期最小值和到达的次序。该选择在图11中通过k控制开关SWk进行了描述,其中k是当前选择的数据包。
信息位评估表
信息位评估表213包含OFDM软/硬解码和再发送处理210(215)为采集204处理找到的各数据包所生成的最近新数据包信息位评估112。
每次迭代提供了向更高层(如MAC)释放已完成信息位评估118的机会。通过在样本评估表206中对各数据包进行评估度量,来选择哪一个数据包已完成。例如,度量可以基于诸如信号功率、执行的迭代数量和完成的数据包的数量的指标。然后将这些度量和目标值相比较。所有满足目标的数据包被标记,以便从信息位评估表213中释放。
对于每个获得的数据包,在样本评估表206和信息位评估表213中都有条目。完成的数据包的选择在图11中通过{y1…ym}控制开关SWy进行了描述,其中{y1…ym}是完成的数据包信息位评估表。迭代接收器结构的特征是数据包的数据包接收样本评估114一直被从噪声假设116中减去,即使在数据包被释放,其相应条目在两个表中被移除之后。
混合再发送
图12和图13中描述了混合再发送215处理。其使用时域信道应用216和频域信道应用218处理,以生成新数据包接收样本评估114。两种处理都使用用于每个接收天线的数据包接收样本假设110和数据包发送符号评估119,为每个接收天线创建信道应用接收样本评估120、122。时域信道应用216处理产生时域信道应用接收样本评估120。频域信道应用218处理产生频域信道应用接收样本评估122。之后信道应用样本评估120、122,被复用220到一起,以形成每个天线的新数据包接收样本评估113。以下将更加详细描述每个处理过程。
时域信道应用(TDCA)
时域信道应用216处理在图16中有进一步的详述。时域信道评估器232使用来自每个天线的OFDM软/硬解码和再调制214处理(见图14和图15)以及数据包接收样本假设110的数据包发送符号评估119,为每个接收天线产生时域信道评估130。之后频域向时域转换234使用数据包发送符号评估119,产生数据包发送样本评估132。然后通过卷积236处理将每个天线的数据包发送样本评估132和时域信道评估130线性卷积,用于为每个天线产生时域应用接收样本评估120。
频域信道应用(FDCA)
频域信道应用218处理在图17中有进一步的详述。频域信道评估器238使用来自每个天线的OFDM软/硬解码和再调制214处理以及数据包接收样本假设110中的数据包发送符号评估119,为每个天线产生频域信道评估134。之后通过乘240处理,将频域信道评估134一次一个OFDM符号地与数据包发送符号评估119相乘,来产生数据包接收符号评估136。然后使用频域向时域转换处理234,将数据包接收符号评估136转换为频域信道应用接收样本评估122。
时域、频域信道应用复用(MUX)
现在参照图13,复用220处理取得时域信道应用接收样本评估120和频域信道应用接收样本评估122,并将它们复用到一起来产生混合新数据包接收样本评估114。
诸如在第二实施例中使用的那些OFDM调制方案,一般采用循环前缀来对抗多径干扰。同时,由于无线信道和频带限制滤波器的时间分散特征,在新数据包接收样本评估114开始和结束处都有尾部(tail)。从频域信道应用接收样本评估122中取走与信号的OFDM部分相应的新数据包接收样本评估114。从时域信道应用接收样本评估120中取走新数据包接收样本评估114中的剩余样本。在本实施例中这些样本包含新数据包接收样本评估114的循环前缀和尾部。
图18示出了复用器映射的实例。
优选应用区域
本发明第二实施例的优选应用区域是可按IEEE 802.11a、IEEE802.11g、IEEE 802.16以及HiperLAN无线局域网(WLAN)标准使用的OFDM接收器。然而,本领域技术人员可以理解,所披露的本发明可用于任何基于封装(packed based)的OFDM通信系统。
参考图19至图23描述了第三实施例,第三实施例来源于这样的认识:减少到达用于提供判决统计值的接收器的一个或多个原始信号中的失真,导致判决统计值本身的整体改进。另外,适当选择减少这些失真的手段导致更可靠地确定数据包的到达时间。
在一方面中,第三实施例通过同步到达接收器的数据包为多路接入通信网络中的通信提供了方法和设备,包括:
接收数据包输入信号;
确定对应于数据包输入信号的相关信号;
处理输入和相关信号,使得过滤输入信号和相关信号中的至少一个;
通过合并处理过的相关信号的功率分量和处理过的输入信号的功率分量来确定判决统计值;
指定由判决统计值的预定阈值条件给定的时间点为接收数据包的到达时间。
通过具有三角脉冲响应的中央加权滤波器、升根(root raised)余弦滤波器、Hanning窗滤波器、Hamming窗滤波器或结合的Hanning/Hamming窗滤波器中的一种,来执行输入和相关信号中的至少一个的处理。预定阈值条件可以是与预定阈值相交的判决统计值或在预定阈值上方发生的最大判决统计值中的一个。相关信号的确定可以在取样数据包输入信号的每第K个样本处执行,其中K是大于等于1的整数。以下更加详细描述本发明的第三实施例。
FFT窗口同步的功率平均掩码
尤其是经过无线介质发送的数据包的同步,一般是通过使用由同一信号的几次重复组成的前同步码并使接收信号与其本身的延迟形式相关而实现的。该延迟可以选择与定义前同步码的重复信号分量的持续时间相同。与接收信号的平均功率不同,该相关处理的输出功率通常被标准化。标准化相关器输出超过阈值的点被选为数据包到达时间。该技术有许多不足。例如,其没有理想地利用相关器输出的统计值,因而在确定数据包时序时可能引入较大误差容限。在第三实施例中,公开了可以更准确地确定数据包到达时间的方法。因而可以减少同步误差,结果也减少了数据包损失率。更具体地说,该方法使用了线性滤波方法以在计算功率前来解读相关器输出,因而提高了用于数据包同步的统计值的质量。这主要是由于滤波器的噪声抑制特性实现的。可以理想地设计线性滤波器的形状来抑制前同步码和无线信道的特征。一个实例是升根余弦滤波器,或Hanning/Hamming窗口滤波器。本发明的一个优选实施例是使用带有应用于相关器输出的三角脉冲响应的中央加权平均滤波器。该滤波器较其他能实现的滤波器可更准确地确定数据包到达时间,并且可更高效地执行。另外也提出一旦超出阈值,则使用最大相关功率作为判决点,而不是相关功率首次与阈值相交的时间。本领域技术人员将认识到,本方法潜在地可应用于任何使用重复前同步码来数据包同步的通信系统。发明者认识到滤波器广泛用于常规应用中,数据包的同步可以看作是滤波问题。因此发明者提出将原始相关输出用作优选的滤波器输入。在功率计算前对相关器输出使用中央加权(或其他)滤波器,这被用作数据包到达时序的度量。与自身延迟形式相关的接收信号的标准化功率的阈值测试同样是计划中的。延迟和前同步码的重复大小相当。标准化可通过除以接收信号的滑动窗平均功率实现。在第三实施例中,这尤其有利于提供有以下功能的接收器:
原始相关输出的滤波;
中央加权平均滤波器,优选地为具有高效执行的三角滤波器;
上面允许判决点基于相关器输出功率的最大值而不是第一水平相交处,导致更好地表征数据包的时序,以避免数据包传输损失/无效。第三实施例可包括用于数据包数据传输的接收器技术,其中运用重复的前同步码来确定数据包数据时序并允许滤波器形式的自适应设计抑制无线信道统计值。
应用领域
第三实施例技术应用于点对点通信连接,其中使用有特定类型前同步码的波形结构来进行传输。具体地说,前同步码可以通过基座信号(base signal)的一个或多个重复形成。如前所述,以及本实施例中图19所示的无线调制解调器190的示例形式,实现该技术的功能装置优选地驻留于常规接收器190的基带接收器处理器Rx。基带接收器Rx的相对逻辑位置在图19中示为“基带Rx”。
更详细地说,在基于数据包的通信系统中,数据包到达时序由接收器190确定。一旦确定时序,数据包剩余(一般为数据承载)部分的校正也可通过使用数据包结构的先验知识(a-priorknowledge)确定。因此不能准确地确定数据包时间将导致普遍的数据包误差。采用的普通技术是在具有特殊结构的数据包传输的开始处发送前同步码,可在接收器190处有效地确定到达时间。该结构要求在前同步码中几次重复短信号。图20示出了典型数据包的结构,其中在传输开始时多次重复同步字(Sync Word,缩写为SW)。
常规的时间同步技术使接收信号与其自身延迟形式相关。该延迟可被设为同步字长度,而相关长度可被设为同步字重复数量(L)减1。该相关每样本(或每K个样本,其中K很小,如4)执行一次。如果接收信号序列是{ri-1,ri,ri+1,ri+2,…},那么在时间为i时,相关器输出为
&rho; i = &Sigma; j = i i + N ( L - 1 ) r j * r j + N
该相关值与观察序列中的功率相比较,
&sigma; i = &Sigma; j = i i + N ( L - 1 ) r j * r j
以形成判决统计值|ρi 2|/σi 2。当度量值超过阈值时选择到达时间i。
发明者认识到在接收序列ri中出现的任何噪声都被该平方处理(squaring process)放大,从而可能导致同步技术捡出不正确的到达时间。不用等待统计值与阈值相交,可以调整本算法,从而通过包括少量的判决延迟来选择最大统计值。该最大值是从那些在阈值之上的统计值中选择的。图21示出了与给定阈值相交的多个统计值。
优选方法
在根据本发明第三实施例的方法中,发明者利用前同步码自动相关的模式以减轻时间同步执行中噪声的消极影响。这可以通过用中央加权低通滤波器滤波序列ρi和σi来实现。注意,在随后的用于生成判决统计值的序列的平方处理之前应用该滤波器。通过在平方之前滤波,将更好地抑制噪声的出现。滤波器可被设计成抑制前同步码的自动相关属性,但在优选实施例中使用了三角滤波器。
三角滤波器有脉冲响应,其特性是三角形的,具体来说(离散时间)滤波器的系数(分接头)是
f i = N - | i | N 2
如图22所示。如果上述滤波器被应用到基本序列(ρi和σi),那么典型结果将在图23中示出。可以看到阈值相交技术受益于滤波器的应用,因为审查图23可以看出现在更加接近最大值。噪声影响也被减少,因而提高了最大值和阈值相交技术。优选方法是将滤波器应用到这两个原始序列,使用滤波序列计算度量,并使用统计值在阈值之上的最大值。有利地,通过在判决统计值生成之前进行相关器输出滤波和功率测量处理,来实现到达时间的更精确同步;在判决统计值上阈值确定的窗口内使用最大值检索。
通过精确地评估前同步码(以及数据包)的到达时间,数据包解码失败的数量可以显著减少。除了提高恢复数据有效负载的机会以外,由于更可靠地恢复了网络控制和数据包,其对于网络用户也有有利影响。
参照图24至图31说明了本发明的第四实施例,其中提供的解决方案来源于这样的认识:可以通过使用数据包编码部分的符号评估改进信道评估以及基于最新接收数据符号信道评估迭代更新这些信道评估,来提高接收器的灵敏度。第四实施例的另一方面在于将各个接收数据符号转换为频域,从而使得对于改进的解码,能够释放时间平滑后的信道评估。
有利地,在第四实施例中,可以通过获得符号n的信道评估、解码符号n、更新符号n的信道评估、更新符号n-1的信道评估(通过从符号n的新信道评估的时域平滑)、解码符号n-1、更新信道评估n-1,来对每个OFDM符号多次解码。
根据第四实施例,本发明在基于数据包的通信系统中提供了追踪时变信道的方法和系统,包括:
a)基于从接收数据包前同步码中得出的初始信道评估,初始化信道评估参考;
b)基于在当前和所有先前接收的数据符号的编码部分中的数据包数据符号信道评估,更新信道评估参考;
c)在后续的数据包数据符号到达时重复步骤b)。
该方法优选地包括在接收器的信道评估数据库中存储信道评估参考。该方法优选地包括在更新存储的信道评估参考之前将数据包数据符号信道评估转换为频域,来提供时间平滑信道评估参考。该方法还优选地包括参考FEC解码步骤来对于步骤b)内的每个后续的接收数据符号流水线操作(pipeline)以下步骤:解调制、调制、以及更新信道评估参考。
在现有技术的目前情况下,信息的高移动性高带宽传输受到接收器处理技术或方法不能追踪无线信道的时变性质及其对发送信号和其波形的影响的限制。因而,高移动性传输的相关技术系统仅支持低数据传输率。在第四实施例中,披露了一种利用OFDM信号结构的接收器技术,以及这些OFDM信号被误差控制编码这一事实。因此,允许进行高移动性、高带宽数据传输。另外,通过提高接收器灵敏度,该技术也有益于固定通信无线电网络。具体地,第四实施例通过开发一种算法而实现,该算法允许可靠解码因高速变化的无线信道而扭曲的信息的OFDM调制数据包,但是无需包括过度使用导频或训练信号的数据传输率。
在本发明第四实施例的优选方面,设计了一种可以在每个OFDM符号基础上操作以避免增加解码的等待时间和复杂性的算法。相应地,在本实施例中,利用了三种统计值:无线信道在OFDM符号速率上的频域统计值;无线信道在OFDM符号上的时域统计值以及;每个解码的OFDM符号的输出。这些统计值被用于评估从OFDM符号至OFDM符号的无线信道。当新的OFDM信号到达时,信道和数据评估被更新相应的符号和少量前符号。这样,每个OFDM符号每次用改进的信道评估来多次解码。利用来自接收信号和数据包前同步码的消息的无线信道预测来初始化该处理。该预测使用无线信道的统计值。对于本领域技术人员来说,很明显本实施例允许在快速变化的无线环境中有效解码OFDM数据包。因而在增加频谱效率上支持增加移动性方面具有好处。不增加执行的复杂性或等待时间就实现了这点,同时增加了接收器的灵敏度。在这点上,在高移动性和固定无线网络中都有潜力。本领域技术人员应承认,本实施例可应用于与以上优选实施例相似的共享公共基础信道模式的任何宽带调制技术中。一些实例增加了多接收天线、多载波OFDM。或多载波CDMA。
有利的是,第四实施例提供了:
●迭代信道和数据评估,其中通过使用数据辅助技术改进初始评估。
●在OFDM符号上存储的频域平滑可为改进的解码释放时间平滑信道评估。
●解码器输出得到存储于“CEDB”(信道评估数据库)中的信道评估,将在以下做更详细说明。
●来自CEDB的信道预测启动基于OFDM符号回路的处理。
●随之而来的低等待时间、高带宽和高移动性数据。
在第四实施例中,公开了能够从高速移动的移动设备有效接收高数据传输率信号的基带数字接收器技术。并给出了简单的性能分析。
应用领域
本技术应用于通过使用编码正交频分复用(OFDM)传输的点对点通信连接。一般来说,编码OFDM传输由以下步骤形成:
1.在一个(OFDM)符号持续期间前向纠错(FEC)编码信息位,之后
2.常规OFDM调制。
一个(OFDM)符号期间的FEC编码可以是编码块,或者该编码可以在多个OFDM符号上延续,但必须能够使用每OFDM符号解码技术。接收器将利用OFDM符号上的编码来提高性能。
如第三实施例一样,体现该技术的功能设备优选地位于如图19所示的无线调制解调器190的示例形式的接收器190的基带接收器处理器Rx中。基带接收器Rx的相关逻辑位置在图19中示为“基带Rx”。
基于等待时间和OFDM符号的处理回路
在基于数据包的通信系统中,使在信号到达与解码信号中所包含的位之间的延迟尽可能地少,这对于执行接收器处理很重要。这很重要,是因为应答的周转时间是网络性能的重要驱动器(significant driver)。在OFDM调制系统中,该要求通常强制使用每OFDM符号处理(per OFDM symbol Processing)。也就是,当相当于信号的新OFDM符号到达时,基带Rx应释放相当于信息位的OFDM符号。使得能够解码OFDM符号的信息和解码该符号的输出之间的延迟必须为几个OFDM符号持续时间的等级。
移动环境中的OFDM信道评估
在移动无线电通信系统中,相干接收器设计通常要求在基带接收器中使用精确的信道评估方法。该领域中,将被评估的信道是运动和反射引起的多径衰退信道。在其他使用中,使用信道评估来驱动FEC解码器,这是接收器的一个关键方面。信道一般在OFDM调制信号的情况下,在接收信号被切分成OFDM符号大小的片断后,在频域中测量。在移动通信系统中,信号传输的信道随时间改变,并且如果车辆速度足够高,信道可能在数据包接收期间改变。在相关技术的接收器技术中,假定多径衰退信道在数据包期间不变,使信道能在数据包开始时一次性评估。在多数标准(如IEEE802.11a)中正是为此目的使前同步码在数据包开始时传输。
优选方法
在根据第四实施例的方法中,利用了分割OFDM的接收信号以提供追踪时变信道的便利界限。信道评估从OFDM符号至OFDM符号变化。优选实施例还利用OFDM符号被编码这一情况,从而能够将解码数据作为信道评估器的训练信息使用。此处还利用了信道随时间和频率变化的方式的统计值。
获取频域中信道的评估。发明者将CEDB定义为信道评估数据库,其包含频率维中(在子载波上)而非时间维中平滑的各OFDM符号的信道评估。对于具有N个OFDM符号的数据包,本方法包括以下步骤,如以下陈述。OFDM窗口同步要求的步骤在此处所示处理之前发生。内回路(3.4)长度为L个OFDM符号,并使迭代信道和数据评估能够进行。
Figure G2009101761390D00621
信道预测(上述步骤3.3)和生成信道评估(上述步骤3.4.5)都在其执行中在OFDM符号上应用了CEDB时域平滑。平滑强度(在子载波和OFDM符号维上)是由此处未描述的处理独立控制的。
有利地,第四实施例提供了:
1.迭代信道和数据评估,其中通过使用数据辅助技术改进了(步骤3.4)初始评估(类似可常规获得的那些)。
2.在OFDM符号上存储的频域平滑可为改进的解码释放时间平滑信道评估(步骤2,3.4.4)。
3.解码器输出驱动存储在CEDB中的信道评估(步骤3.4.3,3.4.4)。
4.由CEDB预测信道来启动基于回路的处理(步骤3.3)。
为了执行的目的,利用并行性,两个处理可并行运行以下步骤,包括:
1.解调、调制和信道评估阶段(步骤3.4.1,3.4.3,3.4.4和3.4.5),以及
2.FEC解码(步骤3.4.2)
当处理1正在处理OFDM符号n时,处理2正在处理OFDM符号n-2。该偏移要求参考3.3中的预测器为一个另外的OFDM符号做好准备。
现在描述使用该实施例技术获得的益处。
复杂性
通过利用FEC解码器功能的流水线操作,就传播环境而言,在保持高自适应能力的同时,接收器设备最困难的方面被完全利用。
灵敏度
通过精确地评估信道,解码器阶段的性能可以显著提高(通常,接收器灵敏度提高超过1dB)。发现即使对于时间不变信道情况也是如此,并且为了训练的目的,这通过利用数据符号而实现。在移动性存在的情况下,接收器及时追踪信道的能力使得接收器可以有效运行,而常规系统可能无法做到。同时,实现了数据符号的迭代(多次接入)评估的益处。
等待时间
通过使用每OFDM符号处理和流水线操作FEC解码器,发明者已获得高质量数据评估的尽可能早的释放。因此相对于常规技术,接收器不用增加等待时间即可运行。应注意常规技术在高速移动情况下可能失败。
性能分析
在本部分中,提供了使用常规的、理想化的、和本提出的接收器处理技术所获得的数据和信道评估的实例。实例中使用的通信链接的属性在下表中示出。
  参量   值   单位
  带宽   16.0   MHz
  载波频率   5.0   GHz
  数字子载波   256   子载波
  OFDM符号持续时间   16   us
  OFDM符号数每数据包   38   OFDM符号
移动单位速度 30 ms-1
  相干频率   3.0   MHz
  位数每子载波   2   比特
  导频子载波间隔   32   子载波
  Eb/No   8.0   dB
  FEC速率   1/2
  FEC存储   5
  导出
  信道相干频率   48.0   子载波
  信道相干时间   62.5   OFDM符号
  数据包长度   640.0   us
  多普勒频率   0.5   kHz
(接收器应用FFT后测量的)实际无线信道如图24所示。在相位图中的快速相位旋转源自降频转换步骤中FTT窗口错位和残余中频。这些都是真实世界的损失。接收器对两个参量都做出评估并且可能在逐个信号的基础上弥补这些损失。校正的结果如图25所示。注意图中示出了评估量校正的实际无线信道,并为了评估的目的在此示出。接收器的目标是准确的评估校正的信道。
常规处理
在常规处理中,无线信道仅基于前同步码评估。本方法的主要限制是无线信道(校正后)在帧上必须不变。如图25所示,情况并非如此,因为在一些子载波中OFDM符号30附近有相位改变。因此预计在数据包的OFDM符号30附近将开始出现解码器失效。如图26所示情况确实如此。
优选方法(完美的训练符号)
图28示出了本提出的系统的性能,其中示出了解码器训练符号发生消除(training symbol generation eliminated)的失败可能性。由于图28中的误差,仍然记录用于数据恢复的解码器输出。这表示了数据辅助无线信道评估最可能的情况。在下文中,可能将该结果与为训练使用解码器输出得到的结果比较。注意相对于常规技术,显著地减少了差错数量。
优选方法
本部分评估了本提出的方法的性能。图29中示出了CEDB,并且示出了无线信道的好的评估,尽管没有使用在OFDM符号上的平滑技术。然而在子载波上的平滑是很明显的。一旦使用在OFDM上的符号平滑,会观测到与实际无线信道很好的匹配,如图28所示。从图28和图29中可以看到使用本提出的方法获得的误差导致与与理想化方法相同的差错模式。误差性能大大优于图26所示的常规方法。
参照图30至图34描述的第五实施例,其来源于这样一个认识,即通过使用接收器解码器的输出作为加性导频或训练符号,以及对其进行每个符号地迭代更新,用于当信道评估、频率和时间偏移在整个数据包中变化时重新计算它们,可以提高接收器灵敏度。
在一个方面中,第五实施例通过评估时变信道损失,提供了在基于多路接入数据包网络中通信的系统和方法,其中信道损失包括信道变化、信号频率偏移和信号时间偏移,该系统和方法包括:
a)基于接收数据包中包括的初始导频和前同步码符号,初始化一组信号损失评估;
b)执行解码器操作,其包括处理该组信道损失评估和接收数据包,以确定一组发送信号评估;
c)通过使用该确定组的符号评估和接收数据包来更新该组信道损失评估;
d)重复步骤b)和c)。
在另一方面中,第五实施例通过在用于接收发送数据包的接收器中的时变信道评估,提供了在多路接入网络中通信的系统和方法,包括:
a)基于接收数据包前同步码中包含的信息,评估频率偏移;
b)使用评估的频率偏移校正接收信号;
c)使用接收数据包前同步码中包含的信息确定信道评估;
d)将接收信号的样本序列转换为频域,以使样本序列包括OFDM符号和插入的循环前缀;
e)执行解码操作,其包括处理确定的信道评估和接收的数据包。
f)使用解码结果和接收数据包前同步码中的信息生成发送样本序列;
g)将发送样本序列转换成频域;
h)通过合并在频域中的接收样本序列和发送样本序列来更新已确定的信道评估;
i)重复步骤e)至h)。
在另一方面中,第五实施例通过在用于接收发送数据包的接收器中的时变信道评估,提供了在多路接入网络中通信的系统和方法,其中接收器从接收信号中检索OFDM符号并将检索的符号转换为频域,该系统和方法包括:
a)确定训练符号的矩阵,其包括从解码器导出的符号评估;
b)确定频域接收的OFDM符号的矩阵;
c)通过将OFDM符号矩阵乘以训练符号矩阵的共轭矩阵,来确定中间信道评估矩阵;
d)确定包括训练符号矩阵的绝对值的训练权重的中间矩阵;
e)在两个中间矩阵上执行包括2维滤波的平滑操作;
f)通过将平滑的信道评估矩阵除以平滑的训练加权矩阵来确定信道评估。
在另一方面,第五实施例通过评估用于接收发送数据包的接收器中的偏移,提供了在多路接入网络中通信的系统和方法,包括:
a)确定接收的OFDM符号的矩阵;
b)确定共轭数据符号的矩阵,其中数据符号包括一个或多个前同步码、训练和评估符号;
c)确定2维傅立叶变换矩阵,其由接收符号矩阵乘以共轭符号矩阵组成;
d)将傅立叶变换矩阵滤波;
e)通过在滤波后的傅立叶变换内定位峰值功率的发生,来确定时间和频率偏移。
第五实施例提供了信道损失的可靠评估。在相关技术中,是在理论上而不是在实际环境中,使用解码器输出来辅助无线电通信系统和无线电网络中信道系数的评估和接收信号的同步。这些现有理论方法针对解码器输出所遇到的困难包括在其他常规信道评估和同步技术中对解码器输出的不确定性的适当处理。换句话说,应用一次完成(one-shot)的或仅前同步码的信道评估技术或处理迭代处理的困难导致较低效的和准确度较低的信道评估和同步性能。由此,本实施例中使用的信道评估和同步技术描述了采用相当于解码输出(除前同步码之外)的整个数据包。虽然有其他人也提倡了这一方法(至少概括地说)时,在本实施例中,管理解码器输出和后续处理中的不确定性的具体方法通过以下描述的特征与相关技术区分。在本实施例中,在评估信道时,发明者首先将再调制的解码器输出和前同步码的频域形式用作训练符号。之后从该训练符号序列并从该接收信号的频域形式计算频域信道评估。这可以通过除法或通过最小均方差评估,或通过其他评估技术实现。解码器输出的任何误差都将消除,类似于交织器的使用,并且不会对信道评估局部区域产生直接影响。
应该注意第五实施例的信道评估方法能够通过将数据包切分成为假定不变的片断来追踪在数据包上变化的信道。因而本实施例的实际影响是,更可靠的信道评估为显著改进无线电通信中的信息数据包恢复提供了机会。
另一方面,同步技术中,发明人采用前同步码和解码器输出来除去数据调制对接收信号的影响,然后应用2维快速傅立叶变换。然后通过执行峰值功率查找而实现残余时间和频率偏移的评估。采用这些处理可使得有效的同步化成为可能。
在另一方面,提供了信道评估器。该方面使用了软FEC解码(如SOVA)的输出来提高无线信道评估的质量,从而重复该解码步骤,使用新信道评估,提供改进的输出。这些软输出被用于生成软训练符号。首先将接收的OFDM符号矩阵乘以软训练符号的共轭阵,以获得中间原始信道评估。然后计算等于各软训练符号绝对值或绝对值平方的训练权重的进一步中间矩阵。然后基于信道统计值使用滤波器平滑这两个矩阵。然后以有关元素(element wise)的方式,将平滑的原始信道评估除以平滑的训练加权矩阵而获得信道评估。对于本领域技术人员来说,这方面对高移动性、高数据传输率通信网络的影响是显而易见的。因此,较低的数据包损失率对网络容量会产生影响。本方法也提高了适应快速改变的无线信道与更可靠地解码数据传输的能力。同样,增加的接收器灵敏度也导致减少数据包损失率,并为基于OFDM的高速度节点系统增加范围。
第五实施例的描述中使用了下列首字母缩写词。
  APP  后验(A-Posterior)概率
  DSP  数字信号处理器
  FEC  前向纠错
  FFT  快速傅立叶变换
  IF  中频
  IFFT  反FFT
  OFDM  正交频分复用
  RF  射频
  SOVA  软输出Viterbi算法
本发明第五实施例提供了一套基带数字接收器技术,其能从高速移动的移动设备有效地接收高数据传输率信号。
应用领域
该套技术应用于通过使用编码正交频分复用(OFDM)传输的点对点通信连接。如上所述,编码的OFDM传输由以下各项形成:
●在一个(OFDM)信号持续时间内,前向纠错(FEC)编码信息位,然后
●常规OFDM调制。
一个(OFDM)信号期间的FEC编码可以是编码块,或者该编码可以在多个OFDM符号上持续,但必须可用每OFDM符号解码技术。接收器可利用OFDM符号上的编码来提高性能。
该技术一般位于无线调制解调器的基带接收器处理器中。该位置在图19中示为“基带Rx”。
在基于数据包的通信系统中,使信号到达与信号中包含的位的解码之间的延迟尽可能地少,这对于执行接收器处理很重要。这很重要,是因为应答的周转时间是网络性能的重要驱动器。在OFDM调制系统中,该要求通常强制使用每OFDM符号处理。然而随着信号处理能力提高,可以设想另一个更强的选择可以供系统设计者使用。该更强的技术将在对传输的每个位(如Turbo编码)做出判决时使用整个观测。在目前的技术中,仅使用了部分接收的信号来辅助任何特定信息位的解码。通常,局部信道评估可以通过使用一部分观测而形成,并且然后可执行该部分的解码。由于执行的复杂性和当前可用DSP技术的性能,目前还没有实现使用观测来遵循并辅助信道(或任何其他未知参数的)评估的好处。在此,第五实施例提供的技术使用整个观测来改进信道评估,并因此减少解码器误差。另外,传输波形通常被结构化以允许接收器的每OFDM符号处理。如果减轻该要求,则可以应用基于帧的信道编码技术,以进一步提高通信连接的性能。这些技术的实例是使用数据包水平的交织和块(如Turbo)编码,其对性能提供很大的益处。
移动环境中的OFDM信道评估
在移动无线电通信系统中,相干接收器设计需要在基带接收器中使用精确的信道评估技术。将被评估的信道是发送器和接收器间相对运动和多传播路径以及由于发射/接收无线电不匹配导致的残余误差引起的多径衰退信道。在其他使用中,使用信道评估来驱动FEC解码器,这是接收器的一个关键方面。在OFDM调制信号的情况下,信道一般在接收信号已分离成为OFDM符号大小的片断并经过IFFT的应用被变换后,在频域中测量。在移动通信系统中,信号传输的信道随时间改变,并且如果车辆速度足够高,信道可能在数据包持续期间改变。从接收器的角度看,这可解释为在数据包开始时经历的信道和数据包结束时经历的信道大不相同。相关技术的接收器技术,假定多径衰退信道在数据包期间不变,使单个信道评估的计算在数据包开始时进行,以解码整个数据包。在使用OFDM传输方案的多数标准(如IEEE 802.11a)中,在每个OFDM符号开始时传输前同步码,使无线信道的评估在数据包开始时执行。
然而,可以通过在无线信道的评估中使用数据辅助技术来提高通信连接的质量。在这种情况下,对接收信号应用FEC解码器的结果导致生成发送符号的评估,尽管不绝对准确,但适合作为加性导频符号来使用。用于OFDM的数据辅助信道评估的典型实例在频域中执行,因此由于丢弃了每个接收OFDM符号中的循环前缀而受到功率损失。丢弃的循环前缀理论上对于信道评估是有用的,通常达到收信号能量的10-50%。因为确定循环前缀的发送信号可以在接收器处被评估,如下所述,其能量在无线信道评估中可能是有用的,不应丢弃。
频率和时间偏移评估
由于接收信号从射频(RF)或中频(IF)到基带的不精确的降频转换,所以发生频率偏移。时间偏移一般是由因多径衰退信道和噪声的影响造成数据包到达时间评估不准确所引起的。多径或时间弥散的信道造成发送数据包的多个副本在不同时间到达接收器,在那里降低数据包到达时间的确定性。常规地,频率和时间偏移的评估是在整个数据包期间(如802.11a)最初通过使用数据包的前同步码做出并使用导频符号保持、其插入有发送器。图30中示出了用于802.11a的数据包格式的实例。
频率偏移表现为载波间干扰和在OFDM符号上的恒定相位旋转,时间偏移表现为在OFDM子载波上的相位旋转。发明者假定要求精密的频率间偏移评估在初始频率偏移校正后与残余误差保持一致。接收信号中引起的相位偏移是由于数据调制、无线信道上的传输、降频转换中频率同步的不精确以及频率转换期间OFDM符号的调整时间不精确的共同影响所导致的。为了评估无线信道,必须首先去除数据符号(不论是前同步码、导频符号或未知符号)对接收信号的影响,从而仅留下无线信道和时间/频率偏移的影响。在前同步码和导频符号的情况下,这些符号是先前已知的,因此可在接收器处去除。使用相关技术的方法,因为数据符号在接收器处未知,所以受数据影响的观测部分在帮助频率和时间偏移的评估中不可用。然而第五实施例使用数据辅助技术,通过提供更多评估处理可用的符号来显著地提高评估的性能。
所提出的方法
这里提出的方法是为信道评估的重新计算和当其在数据包上变化时频率与时间偏移的重新计算而将解码器输出用作加性导频符号的迭代处理。总的来说,这里,我们将多径信道的影响连同RF或IF向基带转换所引起的频率偏移以及时间向频率转换中的错位所引起的时间偏移,一起称为信道损失。在第一次迭代中,使用传输方案指定的导频和前同步码符号评估信道损失。这些评估用于驱动解码器的初始执行,并产生第一发送符号评估。其后的迭代使用前迭代的发送符号估计值作为新导频符号,来辅助信道损失评估。新信道损失评估然后用于重新运行解码器,并生成新符号评估。该处理可以重复I次,其中I是迭代次数,是大于等于0的整数。
具体信道损失评估器的细节将在以下部分描述。
信道评估
有两种方法可用于无线信道的评估。当无线信道给定为在数据包或其离散分段持续期间不变时,可以使用一种方法。另一种则是可应用于当无线信道在数据包持续期间变化时。
用于OFDM的基于序列的信道评估
这里描述的基于序列的信道评估器应用于当信道在数据包或其任何一实质部分期间不变时。本技术使用了所有可用接收能量,并在OFDM信号接收器中常规使用的OFDM符号切分之前执行。
执行步骤如下:
Figure G2009101761390D00741
步骤1至3是在典型的OFDM接收器中执行的共同操作。步骤4在OFDM接收器中一般找不到。常规地,将接收序列切分为小OFDM符号期间,由丢弃的循环前缀区域分隔。如在步骤5.1中,每个ODFM符号通过FFT转换成频域供处理(信道评估、解码等)。步骤4将接收样本序列的代表整个数据包或其所选部分的所有部分,包括循环前缀部位转换为频域,从而以序列水平评估频域信道。这要求其他步骤(5.2和5.3)产生整个数据包频域发送信号的假设。在频域中,接收信号等于发送信号乘以信道再加上任何噪声。步骤5.4利用了这一事实。5.4的步骤可以用基于最小均方差标准的理想线性评估器替代。
使用软训练符号的信道评估
这里描述的信道评估器在常规OFDM接收器的频域中运行。假定通过使用FFT,接收信号被切分成OFDM符号,循环前缀被丢弃,并且得到的OFDM符号被转换为频域。常规OFDM接收器中发现有这些处理。第五实施例提出的方法是在无线信道的重新评估中使用FEC解码器的符号评估输出作为加性导频符号或“软训练符号”的迭代处理。这样做(同时注意到这些符号评估输出可能不精确),可以改进无线信道的评估,以使后续的执行FEC解码器对前面的执行产生改进的结果。
许多不同类型的“软输出”解码器现在是可用的,包括软输出Viterbi算法(SOVA)、后验概率(APP)解码器,以及各种类型的Turbo编码。本领域技术人员将会理解,根据相关技术文献中可以找到的技术,这些软输出用于生成软训练符号。正是这些软训练符号的使用要求仔细考虑并在此提出改进的技术。
在没有噪声和其他损失的情况下,接收的OFDM符号等于传输的OFDM符号与频域信道的乘积。如果OFDM系统有N个子载波(频率接收器(frequency bin)),那么我们可以定义长度为N的向量来表示一定OFDM符号期间i内的传输数据di和无线信道hi。接收的OFDM符号在此情况下是ri=di.*hi,其中运算符“.*”对应于向量的关于元素的乘积。当di在接收器处完全已知(例如如果是导频符号)的情况下,那么在此无噪声的理想情况下,信道完全能恢复为
h ^ i = r i . / d i = h i
其中,类似于运算符“.*”,运算符“./”对应于向量元素的关于元素的除法。在数据辅助技术中,使用了解码器输出
Figure G2009101761390D00752
而不是实际传输的数据。该评估是有误差的。第五实施例包含解决“训练”符号不确定性的技术。该方法可用于时变或时间不变无线信道中并根据信道变化采用稍微不同的形式。以下是对时变无线信道评估器的描述。
假定有下列条件:
1.整个数据包相当于接收OFDM符号R,以及
2.整个数据包相当于软训练符号D(一些可能是“硬”导频符号)
对于M个子载波和N个OFDM符号,可以将这两个对象构造为矩阵,如图31所示,其中行是子载波(语音或频率接收器)而列是OFDM符号(时间)。
首先,将软训练符号的共轭(标记为X*)乘以接收的OFDM符号矩阵,以获得中间原始信道评估V=R.*D*。注意(如上所述的)常规步骤规定为除法,而不是乘法。之后计算训练权重T=|D|的进一步中间矩阵或其他函数,如绝对值平方。然后通过使用匹配信道相干时间和频率的2维滤波器(f)平滑这两个矩阵。滤波器输出可以通过分别地在时域和频域(先行后列,或先列后行)上执行平滑而相近似,以保存复杂性。然后将时变信道的评估推导为
H ^ i = f ( V ) . / f ( T ) = f ( R . * D * ) . / f ( | D | )
解码器输出的不确定性在获得训练符号的绝对值步骤中得以解决。小训练符号由从FEC解码器步骤中不确定的软输出得到。当无法确定可靠的评估时,软输出FEC解码器将输出零。乘以0(在步骤R.*D*中)可从信道评估处理过程中有效排除该符号评估。注意在下一次迭代中,该信号评估可能会稳定,由于改进的统计值驱动FEC解码器,增加了其可靠性,因此其可以包括在信道评估处理过程中。在理想情况下,解码器将输出正确的硬判决,所有数据符号将用作完整训练以产生非常精确的信道评估。
在信道被假定为在数据包上时间不变的情况下,滤波函数简单的加上该列,并得出假定应用到整个数据包上的一列。
在一些情况下,可以批准方法中应用于原始信道评估和训练权重的2维滤波器f是不同的。在这些情况中,时变信道评估将是
H ^ i = f 1 ( V ) . / f 2 ( T ) = f 1 ( R . * D * ) . / f 2 ( | D | )
其中f1和f2执行不同的滤波。
使用2D FFT联合时间和频率偏移评估
如图31所示,在第五实施例的这一方面,我们消除了数据对于OFDM接收矩阵中邻近符号间的相位差异的影响,然后应用2维FFT。该消除可以通过将观测的OFDM符号矩阵乘以相应的共轭数据符号矩阵来实现,其中共轭数据符号可以是前同步码、训练符号或是评估的符号。然后将FFT输出进行滤波,以抑制噪声,并在所得到的2维度量空间中执行峰值功率的查找。滤波将对可测量到的最大偏移产生影响,因此推荐只使用非常弱的滤波。就图31的矩形中的相对位置而言,峰值的位置决定时间和频率偏移。
评估的粒度和范围受以下限制。如果有M个子载波和N个OFDM符号,那么可从本技术得到的范围和分辨率如下所示
  分辨率   限制
  频率偏移   OFDM符号频率/N   OFDM符号频率
  时间偏移   OFDM符号持续时间/M   OFDM符号持续时间
现在给出参数化的系统示例。
  参数  值
  语音数量  256
  符号数量  20
  相干语音   40
  相干符号   50
  实际频率偏移   0.05
  实际时间偏移   0.20
通过图32和图33中示出的实际信道幅度和相位,我们得到了图34中示出的峰值检测的度量。注意该峰值在预计的相对位置,即沿OFDM符号维的0.05的部分和沿子载波维的0.2部分处。如上面模型中参数值表中所示,这些评估匹配实际时间和频率偏移。
通过精确地评估信道,FEC解码器阶段的性能得以显著提高,通常接收器灵敏度提高超过1dB。甚至对于时间不变的信道,情况也是如此,为训练目的,通过使用数据符号可实现性能提高。在移动性存在的情况下,接收器及时追踪信道的能力使得接收器可以有效运行,而常规系统可能无法做到。同时也可实现对数据符号迭代评估的益处。
在第六实施例中,本发明提供了一种基于以下使用的解决方案:首先将多路接入通信网络中每个天线的接收信号与已知信号前同步码相关,然后基于评估的天线信号强度统计地合并每个天线相关信号序列。应注意,为了确定合并系数,必须确定初始时序评估。这些系数的计算实际上将要求通过其他方式进行初始粗时序和频率偏移评估。初始时序评估的质量最后可能比期望的要差些。发明者认为对合并的信号进行进一步处理将产生高质量的时序评估。
在第一方面,第六实施例通过同步多天线接收器中的接收信号,而提供了在多路接入数据包网络中通信的系统和方法,包括:
将多个天线中每个天线的接收信号观测与已知信号前同步码相关,来提供接收信号序列;
确定各接收信号序列的功率信号;
根据基于每个天线的评估天线信号强度的时间平均权重,合并已确定的功率信号;
根据预定阈值条件确定接收信号的到达时间。
本发明第六实施例的一个优选方面包括:
确定对每个天线接收信道的相对相位和幅度系数的评估;
将接收信号与评估系数合并,以提供复合信号;
通过将复合信号与其自身的延迟形式相关,以确定接收信号的到达时间。
在相关技术中,用于同步的度量基于数据包前同步码的相关器输出。在多接收天线情况下,需要一种方法,用于合并或推导出一种用于生成同步的度量新方法。相关技术方案提出每个天线做出判决,之后多数票决或在判决前加度量。这些方法中没有一个能充分解决天线上的信号统计值的变化。最终结果是降低了同步准确性,增加了数据包损失率。更深一层的问题涉及有效使用多天线进行数据承载,但不良地运用多天线进行同步。在此情况下,本来会被解码的数据包可能会由于同步调制而丢失。
在第六实施例中,我们披露了一种方法,用于确定每个天线度量,和用于以后在天线上合并以便生成达到时间评估的度量。该方法基本包括两个步骤。第一步将接收信号与已知前同步码相关,导出每个天线度量。然后,根据基于评估天线信号强度的时间平均权重,确定每个天线的序列功率并在天线上叠加。之后应用阈值以便确定到达时间。
第六实施例的另一方面涉及获得每个天线上信道相对相位和幅度的快速评估以及之后根据这些系数的共轭合并接收信号。然后通过将该复合信号与其自身延迟形式相关,该处理将如相关技术一样继续进行。第六实施例的本方面的应用在于涉及多接收天线的同时使用的无线通信连接的同步,其中多天线用于主要通过增加的分集而增加通信连接的鲁棒性。
在另一方面,根据最小均方差标准合并每个天线的信号,其中合并系数取决于每个天线的背景噪声测量以及接收的信号能量。然后通过将该复合信号与其自身延迟形式合并,该处理如相关技术一样继续进行。
尤其有利地是,第六实施例为以下提供了准备:用于天线上的度量的合并方法;目前不要求OFDM具体特征,并且;可以将OFDM特性清楚限定的形式。
本领域技术人员可以理解本发明的使用不受描述的特定应用限制,本发明也不受在此描述或示出的关于特定元素和/或特征的优选实施例的限制。可以理解可以对本发明做出各种修改而不背离本发明的原则。因此,本发明应被理解为包括在其范围内的所有修改。
本发明已结合具体实施例进行了描述,可以理解还可以对本发明做进一步修改。该应用应包括大体遵循本发明原则的任何变化、使用或调整,并包括本发明所属技术领域中已知的或日常实践中以及可应用于上文提出的基本特征的对本公开的偏离。
因为本发明可以几种不背离本发明基本特征的精神的形式实施,除非另有规定,可以理解上述实施例不是要限制本发明,而应广泛地解释为在所附权利要求定义的本发明的精神和范围内。各种修改和等效的装置应包括在本发明和所附权利要求的精神和范围内。因此,具体实施例将被理解为对本发明原则可能实行的多种方式的说明。在以下权利要求中,装置加功能的条款应包括执行定义功能的结构,不仅包括结构等价物,也包括等价结构。例如,尽管钉子和螺钉在结构上不佛等价,钉子使用圆柱表面将木质部件固定到一起,而螺钉使用螺旋状表面将木质部件固定到一起,在固定木质部件的环境中,钉子和螺钉是等价结构。
本发明中使用的“包括/组成”是用来指定所述特征、整数、步骤或成分的存在,并不排除一个或多个其他特色、整数、步骤、成分或其组的存在或添加。
参考文献
[1]M.C.Reed,C.B.Schlegal,P.D.Alexander and J.Asenstorfer.”Iterative multiuserdetection for CDMA with FEC:Near-single-user performance,”IEEE Trans.Commun.,pp.1693-1699,Dec.1998。
[2]S.Marinkovic,B.S.Vucetic and J.Evans.”Improved iterativeParallel interference cancellation for coded CDMA systems,”In theProc.IEEE int.Symp.Info.Theory,(Washington D.C.),p.34,July2001。
[3]D.E Catlin,Estimation,Control,and the Discrete KalmanFilter,Springer Verlag,1989。
[4]P.D.Alexander,A.J.Grant and M.C.Reed,“Iterativedetection on code-division multiple-access with error control coding,”European Transactions on Telecommunications,vol.9,pp.419-426,Sept.-Oct.1998。

Claims (7)

1.一种通过追踪时变信道而在基于多路接入数据包通信网络中通信的方法,所述方法包括以下步骤:
a)基于从接收数据包前同步码中导出的初始信道评估,初始化信道评估参考;
b)基于在当前和先前接收的数据符号的编码部分中的数据包数据符号信道评估,更新所述信道评估参考;
c)在后续的数据包数据符号到达时重复步骤b)。
2.根据权利要求1所述的方法,还包括以下步骤:
在接收器的信道评估数据库中存储信道评估参考。
3.根据权利要求1或2中任一项所述的方法,还包括以下步骤:
在更新所述存储信道评估参考前,将所述数据包数据符号信道评估转换为频域,以提供时间平滑的信道评估参考,
其中,所述更新通过基于误差控制的解码进行。
4.根据权利要求1所述的方法,其中所述方法还包括以下步骤:
对于在步骤b)内的每个后续接收的数据符号,流水线操作解调制和调制步骤;以及
用又一步骤FEC解码来更新所述信道评估参考。
5.根据权利要求1所述的方法,进一步包括评估基于多路接入数据包的通信网络中的时变信道损失,其中信道损失包括信道变化、信号频率偏移和信号时间偏移,所述方法还包括以下步骤:
d)基于接收数据包中包括的初始导频和前同步码符号,初始化一组信道损失评估;以及
e)执行解码器操作,其包括处理所述组信道损失评估和所述接收数据包,以确定一组发送符号评估,
其中,每个接收数据包具有前同步码符号、第一编码数据符号和后续的编码数据符号。
6.根据权利要求5所述的方法,进一步包括以下步骤:
f)用所确定的一组发送符号评估和所述接收数据包来更新所述组信道损失评估。
7.根据权利要求6所述的方法,进一步包括以下步骤:
重复步骤e)和f)。
CN2009101761390A 2003-07-24 2004-07-23 用于在多路接入网络中通信的方法和系统 Active CN101662442B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003903826A AU2003903826A0 (en) 2003-07-24 2003-07-24 An ofdm receiver structure
AU2003903826 2003-07-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800275117A Division CN1860690A (zh) 2003-07-24 2004-07-23 用于在多路接入网络中通信的方法和系统

Publications (2)

Publication Number Publication Date
CN101662442A CN101662442A (zh) 2010-03-03
CN101662442B true CN101662442B (zh) 2013-07-31

Family

ID=31983457

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2004800275117A Pending CN1860690A (zh) 2003-07-24 2004-07-23 用于在多路接入网络中通信的方法和系统
CN2009101761390A Active CN101662442B (zh) 2003-07-24 2004-07-23 用于在多路接入网络中通信的方法和系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2004800275117A Pending CN1860690A (zh) 2003-07-24 2004-07-23 用于在多路接入网络中通信的方法和系统

Country Status (9)

Country Link
US (4) US7486726B2 (zh)
EP (2) EP1658679B1 (zh)
JP (3) JP2006528847A (zh)
KR (1) KR101115597B1 (zh)
CN (2) CN1860690A (zh)
AU (3) AU2003903826A0 (zh)
CA (2) CA2533443C (zh)
SG (1) SG144943A1 (zh)
WO (1) WO2005011128A1 (zh)

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611311B2 (en) * 2001-06-06 2013-12-17 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US7190749B2 (en) * 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
CN1961498B (zh) * 2003-08-08 2012-04-18 北方电讯网络有限公司 通信信号均衡系统和方法
US7480234B1 (en) 2003-10-31 2009-01-20 Cisco Technology, Inc. Initial timing estimation in a wireless network receiver
US7809020B2 (en) * 2003-10-31 2010-10-05 Cisco Technology, Inc. Start of packet detection for multiple receiver combining and multiple input multiple output radio receivers
US7903617B2 (en) 2003-12-03 2011-03-08 Ruey-Wen Liu Method and system for multiuser wireless communications using anti-interference to increase transmission data rate
US7593473B2 (en) * 2004-12-01 2009-09-22 Bae Systems Information And Electronic Systems Integration Inc. Tree structured multicarrier multiple access systems
US8422955B2 (en) * 2004-12-23 2013-04-16 Qualcomm Incorporated Channel estimation for interference cancellation
US8099123B2 (en) 2004-12-23 2012-01-17 Qualcomm Incorporated Adaptation of transmit subchannel gains in a system with interference cancellation
US8406695B2 (en) 2004-12-23 2013-03-26 Qualcomm Incorporated Joint interference cancellation of pilot, overhead and traffic channels
US8442441B2 (en) * 2004-12-23 2013-05-14 Qualcomm Incorporated Traffic interference cancellation
JP2006211242A (ja) 2005-01-27 2006-08-10 Toshiba Corp 無線通信方法および無線通信装置
US8279985B2 (en) * 2005-02-22 2012-10-02 Adaptix, Inc. Intelligent demodulation systems and methods in an OFDMA multicell network
JP4474468B2 (ja) * 2005-02-25 2010-06-02 株式会社エヌ・ティ・ティ・ドコモ 集中化されていない媒体アクセス制御を有するネットワーク用の受信機および送信機
CN101133568A (zh) * 2005-03-03 2008-02-27 松下电器产业株式会社 无线通信装置
US7257171B2 (en) * 2005-04-04 2007-08-14 Motorola, Inc. Method and apparatus for reference symbol aided channel estimation
US7233633B2 (en) * 2005-04-04 2007-06-19 Motorola, Inc. Channel estimation using linearly constrained filter coefficients
US7848463B2 (en) * 2005-04-07 2010-12-07 Qualcomm Incorporated Adaptive time-filtering for channel estimation in OFDM system
US20060227891A1 (en) * 2005-04-07 2006-10-12 Samsung Electronics Co., Ltd. Method of channel estimation for MIMO-OFDM using phase rotated low overhead preamble
US7360147B2 (en) * 2005-05-18 2008-04-15 Seagate Technology Llc Second stage SOVA detector
US7502982B2 (en) * 2005-05-18 2009-03-10 Seagate Technology Llc Iterative detector with ECC in channel domain
US7395461B2 (en) * 2005-05-18 2008-07-01 Seagate Technology Llc Low complexity pseudo-random interleaver
US8116818B2 (en) * 2005-06-02 2012-02-14 Cisco Technology, Inc. Method and system for transmitter beamforming
WO2006130988A1 (en) * 2005-06-10 2006-12-14 Telecommunications Research Laboratories Wireless communication system
KR100754584B1 (ko) * 2005-07-04 2007-09-05 삼성전자주식회사 모뎀에서 데이터 스케쥴링 장치 및 방법
WO2007013559A1 (ja) * 2005-07-29 2007-02-01 Matsushita Electric Industrial Co., Ltd. 無線通信装置及び無線通信方法
AU2011213712B2 (en) * 2005-08-22 2014-10-30 Cohda Wireless Pty Ltd Method and System for Communication in a Wireless Network
CN101292483A (zh) * 2005-08-22 2008-10-22 科达无线私人有限公司 用于在无线网络中通信的方法和系统
US8619884B2 (en) * 2005-09-02 2013-12-31 Qualcomm Incorporated Communication channel estimation
US8472877B2 (en) * 2005-10-24 2013-06-25 Qualcomm Incorporated Iterative interference cancellation system and method
EP1781056A1 (de) * 2005-10-25 2007-05-02 Siemens Aktiengesellschaft Intrafrequenz- und Interfrequenzmessungen in einem Funkkommunikationssystem
US8385388B2 (en) * 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
KR101020437B1 (ko) * 2005-12-28 2011-03-08 엘렉트로비트 시스템 테스트 오와이 전파경로를 탐색하는 방법, 장치, 분석기 및 컴퓨터프로그램
US7876839B2 (en) * 2005-12-30 2011-01-25 Intel Corporation Receiver and method for channel estimation for multicarrier communication systems
US7817735B2 (en) * 2006-01-11 2010-10-19 Amicus Wireless Technology Ltd. Device and method of performing channel estimation for OFDM-based wireless communication system
JP4542997B2 (ja) * 2006-02-08 2010-09-15 株式会社東芝 無線通信装置及び無線通信方法
JP4804184B2 (ja) * 2006-03-23 2011-11-02 キヤノン株式会社 通信方法、通信装置、コンピュータプログラム
AU2007233563B2 (en) * 2006-04-03 2011-07-14 National Ict Australia Limited Channel estimation for rapid dispersive fading channels
WO2007123366A2 (en) * 2006-04-25 2007-11-01 Lg Electronics Inc. A method of configuring multiuser packet and a structure thereof in a wireless communication system
US7864884B2 (en) * 2006-04-27 2011-01-04 Nokia Corporation Signal detection in OFDM system
US8045927B2 (en) * 2006-04-27 2011-10-25 Nokia Corporation Signal detection in multicarrier communication system
US7623487B2 (en) * 2006-05-24 2009-11-24 Nortel Networks Limited OFDM system and method for supporting a wide range of mobility speeds
JP4711892B2 (ja) 2006-06-05 2011-06-29 パナソニック株式会社 マルチアンテナ通信装置
KR101227505B1 (ko) * 2006-06-09 2013-01-30 엘지전자 주식회사 랜덤 액세스 채널을 통한 데이터 전송 방법
TWI690179B (zh) 2006-06-09 2020-04-01 美商進化無線責任有限公司 行動通訊系統中傳送資料之方法和裝置
WO2008040088A1 (en) 2006-10-05 2008-04-10 Cohda Wireless Pty Ltd Improving receiver performance in a communication network
KR100877742B1 (ko) * 2007-05-08 2009-01-08 포스데이타 주식회사 Ofdm 또는 ofdma를 지원하는 무선통신시스템에서의 채널 추정 장치 및 방법
US8259836B2 (en) * 2006-12-04 2012-09-04 Samsung Electronics Co., Ltd. Method and system for generating candidate beamforming coefficients for transmission of data over a wireless medium
US20080130778A1 (en) * 2006-12-04 2008-06-05 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using a transfer matrix for beamforming estimation
US8040856B2 (en) * 2006-12-04 2011-10-18 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using a beamforming acquisition protocol
US8265177B2 (en) * 2006-12-04 2012-09-11 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed high definition video data using beambook-constructed beamforming signals
KR100875927B1 (ko) * 2006-12-05 2008-12-26 한국전자통신연구원 프리앰블을 이용하여 주파수를 보상하는 장치 및 그 방법
KR100945419B1 (ko) * 2007-03-27 2010-03-04 삼성전자주식회사 광대역 무선통신 시스템에서 슬라이딩 윈도우 채널 추정장치 및 방법
US7764747B2 (en) 2007-03-30 2010-07-27 Olympus Corporation Methods and systems for transmitting and processing pilot signals
US8213556B1 (en) 2007-05-07 2012-07-03 Marvell International Ltd. Signal power estimation for cellular OFDM systems
WO2008148032A1 (en) * 2007-05-25 2008-12-04 Ruey-Wen Liu Method and system for multiuser wireless communications using anti-interference to increase transmission data rate
KR20080067316A (ko) * 2007-06-21 2008-07-18 한국전자통신연구원 Ofdma 시스템의 혼합 버스트 할당 방법 및 장치
US20090046798A1 (en) * 2007-08-13 2009-02-19 Samsung Electronics Co., Ltd. System and method for acquiring a training matrix for a breamforming acquisition protocol using a butson matrix
US7953579B2 (en) * 2007-08-30 2011-05-31 Micron Technology, Inc. Jittery signal generation with discrete-time filtering
US8681666B2 (en) * 2007-10-01 2014-03-25 Qualcomm Incorporated Partial discarding of cyclic prefix for efficient TDD or half-duplex FDD operation
JP5145852B2 (ja) * 2007-10-15 2013-02-20 日本電気株式会社 係数決定装置、無線通信システム、係数決定方法及び係数決定プログラム
US8081690B2 (en) * 2008-01-11 2011-12-20 Qualcomm Incorporated OFDM channel estimation
US8259828B2 (en) * 2008-02-12 2012-09-04 Mediatek Inc. Sub-carrier alignment mechanism for OFDM multi-carrier systems
EP2247017A1 (en) * 2008-02-21 2010-11-03 Sharp Kabushiki Kaisha Transmission device, reception device, communication system, and communication method
US8520500B2 (en) 2008-03-28 2013-08-27 Qualcomm Incorporated Buffered demod and demap functions
US7821914B2 (en) * 2008-03-31 2010-10-26 Entropic Communications, Inc. Method of generation and set of implementation efficient preambles for OFDM systems
US8107545B2 (en) * 2008-04-30 2012-01-31 Samsung Electronics Co., Ltd. Method and system for phase tracking in wireless communication systems
ES2540916T3 (es) * 2008-05-09 2015-07-14 Vodafone Holding Gmbh Procedimiento y sistema de comunicación de datos
CA2665672A1 (en) * 2008-05-10 2009-11-10 Research In Motion Limited Method and apparatus for signal strength indication
US8422686B2 (en) * 2008-06-19 2013-04-16 International Business Machines Corporation Automated validation and execution of cryptographic key and certificate deployment and distribution
US8891350B2 (en) * 2008-07-07 2014-11-18 Mediatek Inc. Method and apparatus of data transmission over guard sub-carriers in multi-carrier OFDM systems
US7664190B1 (en) * 2008-08-04 2010-02-16 Mediatek Inc. Multi-carrier receiver with dynamic power adjustment and method for dynamically adjusting the power consumption of a multi-carrier receiver
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
US9335980B2 (en) 2008-08-15 2016-05-10 Apple Inc. Processing vectors using wrapping propagate instructions in the macroscalar architecture
US9335997B2 (en) 2008-08-15 2016-05-10 Apple Inc. Processing vectors using a wrapping rotate previous instruction in the macroscalar architecture
US8539205B2 (en) * 2008-08-15 2013-09-17 Apple Inc. Processing vectors using wrapping multiply and divide instructions in the macroscalar architecture
US9317283B2 (en) * 2008-08-15 2016-04-19 Apple Inc. Running shift for divide instructions for processing vectors
US8447956B2 (en) * 2008-08-15 2013-05-21 Apple Inc. Running subtract and running divide instructions for processing vectors
US9342304B2 (en) 2008-08-15 2016-05-17 Apple Inc. Processing vectors using wrapping increment and decrement instructions in the macroscalar architecture
US8170592B2 (en) * 2008-09-12 2012-05-01 Broadcom Corporation Method and system for frame timing acquisition in evolved universal terrestrial radio access (EUTRA)
US9130788B2 (en) * 2008-10-15 2015-09-08 Stmicroelectronics, Inc. Determining a response of a rapidly varying OFDM communication channel using an observation scalar
US9148311B2 (en) 2008-10-15 2015-09-29 Stmicroelectronics, Inc. Determining responses of rapidly varying MIMO-OFDM communication channels using observation scalars
CN101808057B (zh) * 2009-02-16 2015-07-08 华为技术有限公司 一种盲均衡的方法、装置和译码器
CN101827047B (zh) * 2009-03-03 2013-06-26 华为终端有限公司 一种频域干扰信号消除方法及装置
EP2264575B1 (en) * 2009-06-19 2017-08-09 Elo Touch Solutions, Inc. Method for determining the locations of one or more impacts or touches on a surface of an object including two or more transducers
US9008584B2 (en) 2009-06-19 2015-04-14 Cohda Wireless Pty. Ltd. Environment estimation in a wireless communication system
CN101945073B (zh) * 2009-07-03 2013-02-27 中兴通讯股份有限公司 基于导频的时偏估计装置和方法
US8189541B2 (en) 2009-07-13 2012-05-29 Broadcom Corporation Method and system for generating timed events in a radio frame in an E-UTRA/LTE UE receiver
US9172561B2 (en) 2009-07-29 2015-10-27 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
JP5678171B2 (ja) 2010-04-12 2015-02-25 クゥアルコム・インコーポレイテッドQualcomm Incorporated ネットワークにおける低オーバーヘッド通信のためのチャネル推定
US8559537B2 (en) 2010-05-12 2013-10-15 GM Global Technology Operations LLC Spectral-temporal averaging for IEEE 802.11p dynamic channel equalization
US8989317B1 (en) * 2010-05-20 2015-03-24 Kandou Labs, S.A. Crossbar switch decoder for vector signaling codes
CN101909036B (zh) * 2010-08-13 2013-11-13 北京交通大学 正交频分复用的改进互相关定时同步方法
JP5579551B2 (ja) * 2010-09-10 2014-08-27 シャープ株式会社 受信装置、受信方法及びプログラム
CA2968031C (en) * 2010-10-29 2021-06-15 Lilee Systems, Ltd System and method of frequency offset compensation for radio system with fast doppler shift
US8660217B2 (en) * 2010-11-05 2014-02-25 Qualcomm Incorporated Methods and apparatus for low complexity soft-input soft-output group detection
CN102035787B (zh) * 2010-11-23 2013-08-07 山东大学 一种MIMO-OFDM无线通信接收机的带排序Turbo增强方法
US8767848B2 (en) * 2010-12-23 2014-07-01 Texas Instruments Incorporated Channel estimation based on long training symbol with doubled cyclic prefix
US9369885B2 (en) * 2011-04-12 2016-06-14 Qualcomm Incorporated Method and apparatus for selecting reference signal tones for decoding a channel
US8830120B2 (en) * 2011-11-30 2014-09-09 C&P Technologies, Inc. Prescribed modulus chirp-like waveforms with multiple frequency notches
US9179328B2 (en) * 2011-12-06 2015-11-03 Telefonaktiebolaget L M Ericsson (Publ) Doppler shift compensation apparatus and method
US9389860B2 (en) 2012-04-02 2016-07-12 Apple Inc. Prediction optimizations for Macroscalar vector partitioning loops
US9300407B2 (en) * 2012-09-07 2016-03-29 Futurewei Technologies, Inc. Channel estimation for optical orthogonal frequency division multiplexing systems
CN103684601B (zh) * 2012-09-14 2016-04-20 富士通株式会社 系数确定装置、均衡器、接收机和发射机
GB2508165B (en) 2012-11-21 2015-03-18 Broadcom Corp Signal selection in a receiver
EP2736187B1 (en) * 2012-11-22 2017-03-08 Nxp B.V. Wireless receiver circuit and method
CN104995612B (zh) 2013-01-17 2020-01-03 康杜实验室公司 低同步开关噪声芯片间通信方法和系统
EP3098811B1 (en) * 2013-02-13 2018-10-17 Telefonaktiebolaget LM Ericsson (publ) Frame error concealment
US9426680B2 (en) 2013-02-25 2016-08-23 Itron, Inc. Real-time radio spectrum assessment engine
US9014307B2 (en) 2013-02-25 2015-04-21 Itron, Inc. Radio to analog-to-digital sample rate decoupled from digital subsystem
US9252998B2 (en) 2013-02-25 2016-02-02 Itron, Inc. Radio to detect and compensate for frequency misalignment
US9077487B2 (en) 2013-02-25 2015-07-07 Itron, Inc. Radio to support channel plans of arbitrary width and/or spacing
US8958506B2 (en) * 2013-02-25 2015-02-17 Itron, Inc. FSK/MSK decoder
US9363128B2 (en) 2013-03-15 2016-06-07 Echelon Corporation Method and apparatus for phase-based multi-carrier modulation (MCM) packet detection
US9526074B2 (en) 2013-03-15 2016-12-20 Google Technology Holdings LLC Methods and apparatus for determining a transmit antenna gain and a spatial mode of a device
US9413575B2 (en) * 2013-03-15 2016-08-09 Echelon Corporation Method and apparatus for multi-carrier modulation (MCM) packet detection based on phase differences
US9817663B2 (en) 2013-03-19 2017-11-14 Apple Inc. Enhanced Macroscalar predicate operations
US9348589B2 (en) 2013-03-19 2016-05-24 Apple Inc. Enhanced predicate registers having predicates corresponding to element widths
CA2920292C (en) 2013-08-21 2021-06-22 University Of South Australia A multiuser communications system
US9210004B2 (en) * 2013-09-19 2015-12-08 Broadcom Corporation Radio channel estimation
FR3011409B1 (fr) * 2013-10-01 2015-10-30 Inst Mines Telecom Telecom Paristech Methode de decodage map par reseau de points augmente
US10042037B2 (en) * 2014-02-20 2018-08-07 Nestwave Sas System and method for estimating time of arrival (TOA)
US9294927B2 (en) * 2014-03-12 2016-03-22 Verizon Patent And Licensing Inc. Data flow transmission via aggregated bands
US10701685B2 (en) * 2014-03-31 2020-06-30 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
US10285195B2 (en) * 2014-06-11 2019-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Processing of random access preamble sequences
CN105763308B (zh) * 2014-12-19 2019-09-06 上海朗帛通信技术有限公司 一种laa通信的方法和装置
US9942004B2 (en) * 2015-06-15 2018-04-10 Ching-Yih Tseng Apparatus and methods for maximum likelihood symbol detection in communications systems
WO2017026399A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017032701A1 (en) * 2015-08-24 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Method of adapting radio resources, device and computer program
JP6817945B2 (ja) * 2015-08-31 2021-01-20 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US9992124B2 (en) 2015-10-09 2018-06-05 Itron, Inc. Multi-channel decoder architecture
JP6832871B2 (ja) * 2015-12-28 2021-02-24 株式会社村田製作所 マルチプレクサ
US9756281B2 (en) 2016-02-05 2017-09-05 Gopro, Inc. Apparatus and method for audio based video synchronization
US10395754B2 (en) * 2016-03-21 2019-08-27 Nandext Srl Method for decoding bits in a solid state drive, and related solid state drive
US9697849B1 (en) 2016-07-25 2017-07-04 Gopro, Inc. Systems and methods for audio based synchronization using energy vectors
CN106230765B (zh) * 2016-08-03 2019-06-28 深圳智微电子科技有限公司 一种基于前导序列的混叠信息帧解调方法及解调装置
US9640159B1 (en) 2016-08-25 2017-05-02 Gopro, Inc. Systems and methods for audio based synchronization using sound harmonics
US9653095B1 (en) * 2016-08-30 2017-05-16 Gopro, Inc. Systems and methods for determining a repeatogram in a music composition using audio features
CN106452674B (zh) * 2016-09-30 2019-04-12 西安交通大学 一种基于802.11ac网络的实际数据包恢复方法
US9916822B1 (en) 2016-10-07 2018-03-13 Gopro, Inc. Systems and methods for audio remixing using repeated segments
US10277334B2 (en) * 2016-11-03 2019-04-30 Khalifa University of Science and Technology Hybrid OFDM body coupled communication transceiver
US10382244B2 (en) 2017-02-14 2019-08-13 Samsung Electronics Co., Ltd. System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
WO2018163196A1 (en) * 2017-03-07 2018-09-13 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Method and system for cancelling self-interference by a node in a wireless communication system
US10784908B2 (en) * 2017-03-10 2020-09-22 Intel IP Corporation Spur reduction circuit and apparatus, radio transceiver, mobile terminal, method and computer program for spur reduction
US10587365B2 (en) * 2017-03-16 2020-03-10 Integrated Silicon Solutions, (Cayman) Inc. Repetition scheme for flexible bandwidth utilization
US20180288706A1 (en) * 2017-03-29 2018-10-04 Intel Corporation Wireless communication device, system and method to provide an operational cyclic prefix length to decode a wake-up packet
CN111713060A (zh) * 2017-10-24 2020-09-25 马维尔亚洲私人有限公司 Wifi信道聚合
CN111406385B (zh) * 2017-11-24 2021-12-28 华为技术有限公司 一种用于网络接入节点生成相位补偿后的调制符号的处理设备
US10659941B2 (en) * 2018-03-13 2020-05-19 Cypress Semiconductor Corporation Communicating packets in a mesh network
DE102018206132B4 (de) * 2018-04-20 2019-11-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Decodergestützte iterative Kanalschätzung
US10939476B1 (en) 2018-05-08 2021-03-02 Marvell Asia Pte., Ltd. WiFi backoff timer
US10594530B2 (en) * 2018-05-29 2020-03-17 Qualcomm Incorporated Techniques for successive peak reduction crest factor reduction
CN111246571B (zh) * 2018-11-28 2023-09-29 鹤壁天海电子信息系统有限公司 一种空闲信道搜索方法及装置
CN109586728B (zh) * 2018-12-11 2022-10-25 哈尔滨工业大学 基于稀疏贝叶斯的调制宽带转换器框架下信号盲重构方法
CN113906698A (zh) 2019-01-11 2022-01-07 马维尔亚洲私人有限公司 Wifi多频带通信
US11818799B1 (en) 2019-05-30 2023-11-14 Marvell Asia Pte Ltd Data unit aggregation in a wireless network with multiple channel segments
US11611462B2 (en) 2019-06-19 2023-03-21 Marvell Asia Pte Ltd Padding and backoff operations when transmitting via multiple frequency segments in a WLAN
CN112751792B (zh) * 2019-10-31 2022-06-10 华为技术有限公司 一种信道估计方法及装置
WO2022002347A1 (en) * 2020-06-29 2022-01-06 Nokia Technologies Oy Training in communication systems
WO2022139870A1 (en) * 2020-12-21 2022-06-30 Zeku, Inc. Method and apparatus for receiving data in orthogonal frequency division multiplexing system with iterative correction
CN112769725B (zh) * 2020-12-23 2022-01-07 重庆邮电大学 基于全相位频谱纠正的Costas序列时频联合同步方法
CN112752338B (zh) * 2020-12-29 2023-05-05 恒玄科技(上海)股份有限公司 定位方法,电子设备及存储介质
KR102641464B1 (ko) * 2020-12-29 2024-02-28 국립한밭대학교 산학협력단 딥러닝 기반의 무선 통신 시스템 및 방법
KR102613817B1 (ko) * 2021-04-28 2023-12-13 고려대학교 산학협력단 무선 통신 시스템에서 복수의 액세스 포인트에 대한 시간 오프셋 추정 및 피드백 방법 및 장치
CN113673158B (zh) * 2021-08-19 2023-05-26 西北工业大学 适用于强干扰环境下的波束域变分贝叶斯方位估计方法
CN113630152B (zh) * 2021-10-11 2022-02-08 中国人民解放军海军工程大学 引导式数字抗截获抗干扰装置及方法
CN114443400B (zh) * 2022-04-11 2022-08-02 飞腾信息技术有限公司 信号测试方法、装置、片上系统、电子设备及存储介质
CN115296971B (zh) * 2022-06-23 2024-05-14 华中科技大学 通信系统中由置换阵列信号星座图构成的超低复杂度接收机
CN115242593B (zh) * 2022-07-21 2023-06-23 电子科技大学长三角研究院(湖州) 用于共生无线通信系统中乘性多址接入信道的调制方法
CN116016061B (zh) * 2022-12-16 2024-05-07 重庆邮电大学 高机动平台短波双选信道双迭代Turbo均衡方法
CN116683882B (zh) * 2023-06-06 2023-12-01 上海韬润半导体有限公司 一种n相输入可配置的无源滤波器系统和实现方法
CN117714022A (zh) * 2024-02-05 2024-03-15 苏州联讯仪器股份有限公司 一种多通道比特偏移计算方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308808A (zh) * 1998-06-24 2001-08-15 阿斯科姆电力线通讯有限公司 通过遭受脉冲串干扰的传输信道传输数字数据的方法
WO2001099329A1 (en) * 2000-06-20 2001-12-27 Nokia Corporation Error estimation method and apparatus

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127051A (en) * 1988-06-13 1992-06-30 Itt Corporation Adaptive modem for varying communication channel
US5136612A (en) * 1990-12-31 1992-08-04 At&T Bell Laboratories Method and apparatus for reducing effects of multiple access interference in a radio receiver in a code division multiple access communication system
US5282155A (en) * 1992-11-19 1994-01-25 Bell Communications Resarch, Inc. Adaptive digital filter architecture for parallel output/update computations
NL9302076A (nl) * 1993-11-30 1995-06-16 Tno Systeem voor het genereren van een tijdvariant signaal ter onderdrukking van een primair signaal met minimalisatie van een predictiefout.
JP3145003B2 (ja) * 1995-03-23 2001-03-12 株式会社東芝 直交周波数分割多重伝送方式とその送信装置および受信装置
FR2738967B1 (fr) * 1995-09-15 1997-12-05 France Telecom Dispositif d'egalisation adaptatif pour systemes de communications numeriques
FI100150B (fi) * 1996-03-19 1997-09-30 Nokia Telecommunications Oy Vastaanottomenetelmä ja vastaanotin
US5764646A (en) * 1996-04-02 1998-06-09 Ericsson Inc. Packet data transmission with clash subtraction
US6161209A (en) * 1997-03-28 2000-12-12 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Joint detector for multiple coded digital signals
US5966262A (en) 1997-03-31 1999-10-12 Regents Of University Of Mn Method and apparatus for high data rate detection for three dimensional 110 channels
US6178196B1 (en) * 1997-10-06 2001-01-23 At&T Corp. Combined interference cancellation and maximum likelihood decoding of space-time block codes
US6327314B1 (en) 1998-04-01 2001-12-04 At&T Corp. Method and apparatus for channel estimation for multicarrier systems
US6483821B1 (en) * 1998-04-22 2002-11-19 Texas Instruments Incorporated CDMA mobile communications system and method with improved channel estimation and pilot symbol transmission
BR9901056A (pt) * 1998-04-30 2000-01-18 Lucent Technilogies Inc Estimação de canal usando realimentação de decisão temporária.
BR9901493A (pt) * 1998-04-30 2000-01-11 Lucent Technologies Inc Avaliação iterativa de canal.
US6618452B1 (en) * 1998-06-08 2003-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst carrier frequency synchronization and iterative frequency-domain frame synchronization for OFDM
US6671338B1 (en) * 1998-11-12 2003-12-30 Hughes Electronics Corporation Combined interference cancellation with FEC decoding for high spectral efficiency satellite communications
AU749134B2 (en) * 1999-04-22 2002-06-20 Nippon Telegraph & Telephone Corporation OFDM packet communication receiver
US6614857B1 (en) * 1999-04-23 2003-09-02 Lucent Technologies Inc. Iterative channel estimation and compensation based thereon
US6359935B1 (en) * 1999-05-24 2002-03-19 Ericsson Inc. Method for iterative demodulation and decoding for a system with coding and differential demodulation
JP2001069117A (ja) * 1999-08-31 2001-03-16 Matsushita Electric Ind Co Ltd Ofdm通信装置及び伝搬路推定方法
US6765969B1 (en) * 1999-09-01 2004-07-20 Motorola, Inc. Method and device for multi-user channel estimation
FR2798542B1 (fr) * 1999-09-13 2002-01-18 France Telecom Recepteur a multiplexage par repartition en frequences orthogonales avec estimation iterative de canal et procede correspondant
FR2801753B1 (fr) * 1999-11-25 2002-05-03 Groupe Ecoles Telecomm Perfectionnements aux dispositifs d'egalisation adaptative pour recuperateurs de systemes de communication numeriques
WO2001041387A1 (en) 1999-11-27 2001-06-07 Deutsche Telekom Ag Method for co-channel interference cancelation in a multicarrier communication system
US6700919B1 (en) * 1999-11-30 2004-03-02 Texas Instruments Incorporated Channel estimation for communication system using weighted estimates based on pilot data and information data
FI113721B (fi) * 1999-12-15 2004-05-31 Nokia Corp Menetelmä ja vastaanotin kanavaestimaatin iteratiiviseksi parantamiseksi
DE60139603D1 (de) 2000-02-07 2009-10-01 At & T Corp System und verfahren zur quasi-optimalen gemeinsamen kanalschätzung und datendetektion für cofdm-systeme
US6477210B2 (en) 2000-02-07 2002-11-05 At&T Corp. System for near optimal joint channel estimation and data detection for COFDM systems
US6460160B1 (en) * 2000-02-14 2002-10-01 Motorola, Inc. Chase iteration processing for decoding input data
FR2808391B1 (fr) * 2000-04-28 2002-06-07 France Telecom Systeme de reception pour antenne multicapteur
FR2809249B1 (fr) * 2000-05-16 2004-04-23 France Telecom Procede et systeme de detection et de decodage iteratif de symboles recus, couple a une reestimation des coefficients du canal de transmission
US7068628B2 (en) * 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
NZ506558A (en) * 2000-08-25 2003-04-29 Ind Res Ltd A broadband indoor communication system using ofdm
FR2813726B1 (fr) * 2000-09-01 2006-06-23 Thomson Csf Procede et dispositif pour demoduler des signaux provenant de multi-utilisateurs
KR100342496B1 (ko) * 2000-09-08 2002-06-28 윤종용 고속 서처의 직교확산부호 가설 변경 장치 및 방법
US6650714B2 (en) * 2000-11-30 2003-11-18 Arraycomm, Inc. Spatial processing and timing estimation using a training sequence in a radio communications system
US6907084B2 (en) 2000-10-06 2005-06-14 Texas Instruments Incorporated Method and apparatus for processing modulation symbols for soft input decoders
US6788733B1 (en) * 2000-11-09 2004-09-07 Qualcomm, Incorporated Method and apparatus for interference cancellation in a communication system
US7106709B2 (en) * 2000-11-29 2006-09-12 Telefonaktiebologet Lm Ericsson (Publ) Timing drift compensation in wireless packet-based systems
US6901120B2 (en) * 2000-12-06 2005-05-31 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for iterative parameter estimation
US7075967B2 (en) * 2001-01-19 2006-07-11 Raze Technologies, Inc. Wireless communication system using block filtering and fast equalization-demodulation and method of operation
NZ509688A (en) * 2001-02-01 2003-06-30 Ind Res Ltd Maximum likelihood sychronisation (estimating time delay) for wireless digital communications system using a pilot symbol
JP3768108B2 (ja) 2001-02-05 2006-04-19 株式会社日立国際電気 Ofdm受信装置
FR2821217B1 (fr) * 2001-02-21 2003-04-25 France Telecom Procede et systeme de codage-decodage iteratif de flux de donnees numeriques codees par combinaisons spatio-temporelles, en emission et reception multiple
US7310304B2 (en) * 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US7088782B2 (en) * 2001-04-24 2006-08-08 Georgia Tech Research Corporation Time and frequency synchronization in multi-input, multi-output (MIMO) systems
US7158558B2 (en) * 2001-04-26 2007-01-02 Interuniversitair Microelektronica Centrum (Imec) Wideband multiple access telecommunication method and apparatus
KR100434473B1 (ko) * 2001-05-11 2004-06-05 삼성전자주식회사 직교주파수 분할 다중 시스템에서 채널 복호 장치 및 방법
US7012966B2 (en) * 2001-05-21 2006-03-14 At&T Corp. Channel estimation for wireless systems with multiple transmit antennas
US6940914B1 (en) * 2001-06-11 2005-09-06 Cingular Wireless Ii, Llc Turbo channel estimation for OFDM systems
EP1282245A1 (en) 2001-07-30 2003-02-05 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation in a multi carrier transmit diversity system
US6956815B2 (en) * 2001-08-16 2005-10-18 Proxim Corporation Method and apparatus using pseudo-inverses of linear transformations in multi-carrier modulation receivers and transceivers
JP2003092561A (ja) * 2001-09-18 2003-03-28 Sony Corp 受信装置及び受信方法
US7203255B2 (en) * 2001-09-24 2007-04-10 Atheros Communications, Inc. Method and system to implement non-linear filtering and crossover detection for pilot carrier signal phase tracking
US7088787B2 (en) * 2001-09-24 2006-08-08 Atheros Communications, Inc. Post-FFT scaling to reduce multiple effects
US7123670B2 (en) * 2001-09-24 2006-10-17 Atheros Communications, Inc. Fine frequency offset estimation and calculation and use to improve communication system performance
US7548506B2 (en) * 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US6931052B2 (en) * 2001-11-16 2005-08-16 Nortel Networks Limited Symbol-directed weighting in parallel interference cancellation
US7023935B2 (en) * 2001-11-27 2006-04-04 Mitsubishi Electric Research Laboratories, Inc. Trellis based maximum likelihood signal estimation method and apparatus for blind joint channel estimation and signal detection
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US7209433B2 (en) * 2002-01-07 2007-04-24 Hitachi, Ltd. Channel estimation and compensation techniques for use in frequency division multiplexed systems
US6704376B2 (en) * 2002-01-23 2004-03-09 Bae Systems Information And Electronic Systems Integration Inc. Power and confidence ordered low complexity soft turbomud with voting system
US7092436B2 (en) * 2002-01-25 2006-08-15 Mitsubishi Electric Research Laboratories, Inc. Expectation-maximization-based channel estimation and signal detection for wireless communications systems
GB2384651B (en) * 2002-01-28 2004-03-24 Toshiba Res Europ Ltd Signal selection systems
US20030161415A1 (en) * 2002-02-26 2003-08-28 Eyal Krupka Iterative channel tracking
US6687492B1 (en) * 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6891500B2 (en) * 2002-03-18 2005-05-10 Christopher J. Hall Method and apparatus for geolocating a wireless communications device
MXPA04009123A (es) * 2002-03-21 2005-09-08 C Hinz Martin Tecnologia de optimizacion del segmento del sistema de serotonina y catecolamina.
US7139339B2 (en) * 2002-04-02 2006-11-21 Broadcom Corporation Iterative data-aided carrier frequency offset estimation for code division multiple access systems
US7139336B2 (en) * 2002-04-05 2006-11-21 Nokia Corporation Method and system for channel estimation using iterative estimation and detection
AUPS205302A0 (en) 2002-05-02 2002-06-06 University Of South Australia Filter structure for iterative signal processing
JP2003332943A (ja) * 2002-05-10 2003-11-21 Ntt Docomo Inc チャネル推定を行う無線通信局および無線通信方法
EP1376896A1 (en) * 2002-06-20 2004-01-02 Evolium S.A.S. Iterative channel estimation for receiving wireless transmissions using multiple antennas
US7095812B2 (en) * 2002-06-24 2006-08-22 Agere Systems Inc. Reduced complexity receiver for space-time- bit-interleaved coded modulation
US7912999B2 (en) * 2002-07-03 2011-03-22 Freescale Semiconductor, Inc. Buffering method and apparatus for processing digital communication signals
GB0215639D0 (en) 2002-07-05 2002-08-14 British Broadcasting Corp OFDM receivers
US20040005010A1 (en) 2002-07-05 2004-01-08 National University Of Singapore Channel estimator and equalizer for OFDM systems
US7161896B1 (en) * 2002-08-12 2007-01-09 Cisco Systems Wireless Networking (Australia) Pty Limited Channel estimation in a multicarrier radio receiver
GB2392065B (en) * 2002-08-15 2004-12-29 Toshiba Res Europ Ltd Signal decoding methods and apparatus
US7239672B2 (en) * 2002-09-05 2007-07-03 Silicon Integrated Systems Corp. Channel estimator for WLAN
US7474688B2 (en) * 2002-10-01 2009-01-06 Texas Instruments Incorporated System and method for detecting multiple direct sequence spread spectrum signals using a multi-mode searcher
US7324585B2 (en) * 2002-10-01 2008-01-29 Texas Instruments Incorporated System and method for performing symbol boundary-aligned search of direct sequence spread spectrum signals
US8170513B2 (en) * 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7453793B1 (en) * 2003-04-10 2008-11-18 Qualcomm Incorporated Channel estimation for OFDM communication systems including IEEE 802.11A and extended rate systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308808A (zh) * 1998-06-24 2001-08-15 阿斯科姆电力线通讯有限公司 通过遭受脉冲串干扰的传输信道传输数字数据的方法
WO2001099329A1 (en) * 2000-06-20 2001-12-27 Nokia Corporation Error estimation method and apparatus

Also Published As

Publication number Publication date
EP2528237B1 (en) 2020-02-19
EP2528237A1 (en) 2012-11-28
AU2004301643B2 (en) 2010-04-08
AU2003903826A0 (en) 2003-08-07
USRE48314E1 (en) 2020-11-17
AU2004301643A1 (en) 2005-02-03
US8411767B2 (en) 2013-04-02
AU2010202223B2 (en) 2013-02-21
US7486726B2 (en) 2009-02-03
JP2010193518A (ja) 2010-09-02
JP2006528847A (ja) 2006-12-21
WO2005011128A1 (en) 2005-02-03
JP4982586B2 (ja) 2012-07-25
US20040264561A1 (en) 2004-12-30
US20080317150A1 (en) 2008-12-25
EP1658679A1 (en) 2006-05-24
AU2010202223A1 (en) 2010-06-24
US8964865B2 (en) 2015-02-24
CN1860690A (zh) 2006-11-08
US20130201972A1 (en) 2013-08-08
KR101115597B1 (ko) 2012-03-05
CA2781639A1 (en) 2005-02-03
CA2533443A1 (en) 2005-02-03
KR20060130005A (ko) 2006-12-18
CN101662442A (zh) 2010-03-03
EP1658679B1 (en) 2018-03-07
JP2012110001A (ja) 2012-06-07
CA2533443C (en) 2015-09-29
EP1658679A4 (en) 2007-11-14
SG144943A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
CN101662442B (zh) 用于在多路接入网络中通信的方法和系统
CN101232474B (zh) 宽带无线接入系统中的接收装置和方法
CN100388641C (zh) 在传输信道之间确定增益偏置的方法
JP5664892B2 (ja) 通信ネットワークにおける受信機性能の改善
CN102546507B (zh) 无线通信中用于分集合并和对数似然缩放的噪声方差估计
CN1864338B (zh) 用于根据信号质量量度选择接收天线的方法和装置
US8270547B2 (en) Channel estimation method and system for inter-carrier interference-limited wireless communication network
CN101651648A (zh) 用于在无线通信系统中执行初始同步的系统和方法
JP2013168853A (ja) 受信装置、受信方法および受信プログラム
US7313180B2 (en) Receiving device, receiving method, and program
US20230412244A1 (en) Receiving apparatus, transmitting apparatus, control circuit, storage medium, reception method, and transmission method
Bader et al. MC-CDMA system evaluation using the MMSE decorrelator and the PIC in the reverse link over an asynchronous channel environment
PUNNAIAH et al. Asynchronous Classification of Digital Amplitude-Phase Modulated Signals in Rayleigh-Fading Channel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant