CN101547875B - 压电陶瓷及压电元件 - Google Patents

压电陶瓷及压电元件 Download PDF

Info

Publication number
CN101547875B
CN101547875B CN2008800009672A CN200880000967A CN101547875B CN 101547875 B CN101547875 B CN 101547875B CN 2008800009672 A CN2008800009672 A CN 2008800009672A CN 200880000967 A CN200880000967 A CN 200880000967A CN 101547875 B CN101547875 B CN 101547875B
Authority
CN
China
Prior art keywords
piezoelectric
sample
piezoelectric ceramic
electric field
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800009672A
Other languages
English (en)
Other versions
CN101547875A (zh
Inventor
榊千春
下村惠美
坂井基祥
中村玄德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN101547875A publication Critical patent/CN101547875A/zh
Application granted granted Critical
Publication of CN101547875B publication Critical patent/CN101547875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供具有大的矫顽电场的值的同时,可在950℃以下的低温下烧成的压电陶瓷。所述压电陶瓷采用如下的组成:以通式Pbx-a-dBiaM3d{M1b(M21/3Nb2/3)yZr1-b-y-zTiz}O3表示,M1和M2分别为Ni和Zn的至少一种,M3为Ba和Sr的至少一种;所述a、b、d、x、y、z满足0.05≤a≤0.15、0<b≤0.075、0≤(a-2b)、0≤d≤0.1、0.97≤x≤1.00、0.020≤y≤0.250、0.398≤z≤0.512。此外,较好是M1为Ni,M2为Ni或Zn的至少一种。此外,较好是呈Ni偏析的状态。

Description

压电陶瓷及压电元件
技术领域
本发明涉及用于压电致动器、超声波振子和压电发声体等的压电陶瓷以及使用该压电陶瓷的压电元件。 
背景技术
作为用于压电致动器、超声波振子和压电发声体等压电元件的压电陶瓷,广泛采用可以获得大压电常数的锆钛酸铅(PZT)类的压电陶瓷。另外,为了改善PZT类压电陶瓷的特性,还开发了大量含第三成分的三成分类的压电陶瓷。 
作为三成分类的压电陶瓷,已知有以PbTiO3-PbZrO3-Pb(M21/3Nb2/3)O3(M2为Ni、Zn等2价的金属元素)表示的压电陶瓷。 
例如,专利文献1中,作为可获得良好的介电常数温度系数且烧结性提高了的铁电性陶瓷,记载有以43.5mol%PbTiO3、44.0mol%PbZrO3、12.5mol%Pb(Zn1/3Nb2/3)O3为基本组成且添加有少量的Bi和Zn的铁电性陶瓷。 
此外,专利文献2中,作为可在不足1150℃的温度下烧成、具有大的机械品质系数、高电场驱动引起机械品质系数的下降小的压电陶瓷组合物,记载有如下的压电陶瓷组合物:包含以(PbuA1-u)v{(Zn1/3Nb2/3)xTiyZrz}2-vO3表示的组合物、换算成MnO2相对于所述组合物为0.7~3mol%的Mn、换算成Al2O3相对于所述组合物为0.7~2.4mol%的Al、换算成SiO2相对于所述组合物为0.1~1.5mol%的Si,所述组成式中,A为选自La、Nd、Pr和Bi的至少一种元素,u和v分别满足0.92≤u≤0.99、0.97≤v≤1.03,x、y和z分别满足0.06≤x≤0.18、0.43≤y≤0.53、0.29≤z≤0.51且x+y+z=1的关系。 
专利文献1:日本专利特开平3-40965号公报 
专利文献2:日本专利特开2001-181037号公报 
发明的揭示 
另外,压电陶瓷的应变量以压电常数d的绝对值和驱动电场E的积(|d|×E)表示。因此,为了获得大的应变量,提高压电常数d并加大驱动电场E是有效的。但是,对于像压电发声体这样施加交流电场的用途的压电元件,如果以矫顽电场(Ec)以上的电场强度驱动,则发生脱极化,因此驱动电场E的值被限制在矫顽电场Ec以下。因此,用于施加交流电场的用途的压电元件的压电陶瓷较好是在具有大的压电常数d的同时,具有大的矫顽电场Ec。 
此外,压电陶瓷有时通过将压电陶瓷和内部电极同时烧成来制造。该情况下,内部电极必须具有比压电陶瓷的烧成温度高的熔点,内部电极中含有熔点高的Pd等。但是,像Pd这样熔点高的金属一般价格昂贵。因此,为了减少Pd等高价金属的含量来实现原料成本的降低,必须降低压电陶瓷的烧成温度。具体来说,为了将内部电极中的Pd的比例减少至价格较低的Ag为95~100%、Pd为0~5%的程度,需要使压电陶瓷的烧成温度降至950℃左右。 
据本发明人所知,专利文献1中所记载的铁电性陶瓷的矫顽电场的值不足,如果施加大的交流电场,则发生脱极化,所以在施加交流电的用途中难以获得大的位移量。另外,烧成温度也在1200℃以上,具备内部电极的情况下不得不提高内部电极中的Pd的含有率,难以降低原料成本。 
此外,专利文献2中所记载的压电陶瓷组合物强调可以低温烧成,但难以在1000℃以下烧成,需要进一步降低烧成温度。 
本发明是为了解决上述课题而完成的,其目的在于提供具有大的矫顽电场的值的同时,可在950℃以下的低温下烧成的压电陶瓷。此外,其目的还在于提供采用该压电陶瓷的即使在施加交流电的用途中也可以获得大的位移量的压电元件。 
本发明人为了解决上述课题而认真研究后,对于PZT类的压电陶瓷,得到了如下的发现。 
第一,发现通过使PZT类压电陶瓷的B位为受体过量的组成而生成氧缺陷,可得到高矫顽电场。此外,还发现通过使B位为受体过量,烧成时的物质扩散得到促进,因而烧结性提高,可在低温下烧成。另一方面,也发现 由于通过使B位为受体过量而生成的氧缺陷具有磁畴的磁通钉扎效果,所以产生导致压电常数下降的问题。 
第二,发现通过以起到给体的作用的Bi置换A位的Pb的一部分,可获得更高的矫顽电场。这被认为是由于通过起到给体的作用的Bi置换而生成A位缺陷,为了A位缺陷与氧缺陷取得电荷平衡,向B位的受体元素的固溶得到促进,可以使更多的受体元素固溶于B位。另外,还发现通过使Bi置换至A位,可以补偿使受体元素固溶于B位而导致压电常数的下降。这是由于通过Bi置换形成的A位缺陷使磁畴的旋转变得容易。 
第三,发现通过作为受体元素至少使Ni固溶的同时,使Ni偏析,可以使特性不易随烧成条件的变化而变化。如果烧成条件变化,则Bi蒸发量变化,所以即使烧成温度和烧成气氛等烧成条件发生很小的改变,压电陶瓷的特性也有可能大幅变化。这被认为是由于通过采用使Ni偏析的组成和烧成气氛的条件,即使因烧成条件的变化而发生Bi蒸发量的变化,通过Ni偏析量的变化,可以保持晶粒内的Bi和Ni的电荷补偿状态。 
本发明是基于上述发现的发明,本发明的压电陶瓷的特征在于,以通式Pbx-a-dBiaM3d{M1b(M21/3Nb2/3)yZr1-b-y-zTiz}O3表示,M1和M2分别为Ni和Zn的至少一种,M3为Ba和Sr的至少一种;所述a、b、d、x、y、z满足0.05≤a≤0.15、0<b≤0.075、0≤(a-2b)、0≤d≤0.1、0.97≤x≤1.00、0.020≤y≤0.250、0.398≤z≤0.512。 
此外,本发明是上述的压电陶瓷,其特征在于,所述a、b满足0.015≤b≤0.075、0≤(a-2b)≤0.02。 
另外,本发明是上述的压电陶瓷,其特征在于,所述M1是Ni,所述M2是Ni或Zn的至少一种。 
另外,本发明是上述的压电陶瓷,其特征在于,发生Ni的偏析。 
此外,本发明的压电元件具有由上述的任一项所述的压电陶瓷形成的压电陶瓷素坯和内藏于该压电陶瓷素坯的内部电极。 
如果采用本发明,通过以通式Pbx-a-dBiaM3d{M1b(M21/3Nb2/3)yZr1-b-y-zTiz}O3(M1和M2分别为Ni和Zn的至少一种,M3为Ba和Sr的至少一种)表示,所述a、b、d、x、y、z满足0.05≤a≤0.15、0<b≤0.075、0≤(a-2b)、0≤d≤0.1、 0.97≤x≤1.00、0.020≤y≤0.250、0.398≤z≤0.512,从而可以得到维持高压电常数且可在950℃左右的低温下烧成的同时、具有高矫顽电场的压电陶瓷。 
另外,通过所述a、b满足0.015≤b≤0.075、0≤(a-2b)≤0.02,Bi置换比例a和受体过剩量b达到2∶1左右,取得电荷平衡,所以烧结性得到改善。 
另外,通过使Ni偏析,即使烧成气氛和烧成温度等烧成条件改变,压电陶瓷的特性也不易发生变化,批量生产时特性的偏差得到抑制,生产性提高。 
此外,通过将本发明的压电陶瓷用于压电元件,因为压电陶瓷具有高压电常数和大矫顽电场,所以可以获得交流电场下的大应变量。此外,本发明的压电陶瓷可以在低温下烧成,所以对于具有与压电陶瓷同时烧成的内部电极的压电元件,可以减少内部电极中的Pd的含有比例而降低原料成本。 
附图的简单说明 
图1是表示本发明的压电元件的剖视图。 
符号的说明 
1:压电素坯,2:内部电极,3:外部电极。 
实施发明的最佳方式 
以下,对实施发明的最佳方式进行说明。本发明的压电陶瓷以下述的通式(A)表示。 
Pbx-a-dBiaM3d{M1b(M21/3Nb2/3)yZr1-b-y-zTiz}O3……(A) 
通式(A)中,M1和M2分别为Ni或Zn中的至少一种,M1和M2可以是同种元素,也可以是不同的元素。较好是M1为Ni,M2为Ni或Zn中的至少一种。 
此外,M3为Ba和Sr的至少一种。 
a表示A位的Bi置换比例,设为0.05≤a≤0.15。如果a不足0.05,则Bi置换产生的效果无法充分显现,矫顽电场和压电常数d下降。另一方面,如果a超过0.15,则烧结性恶化,因而压电常数下降。 
b表示B位的受体元素M1的摩尔比例,即B位的受体过剩量,设为0<b≤0.075。此外,较好是0.015≤b≤0.075。b=0时,受体过剩量为0,无法发挥本发明的效果。通过使b达到0.015以上,本发明的效果得到更显著的发挥。另一方面,如果b超过0.075,则虽然矫顽电场提高,但出现强烈的氧缺陷产生的磁畴的磁通钉扎效果,因此压电常数下降,|d|×Ec的值反而可能会下降。 
a和b被调整至满足0≤(a-2b)。这是因为如果(a-2b)的值低于0而呈负值,则受体过剩量相对于Bi置换比例变得过大,氧缺陷过度生成,绝缘性下降。 
此外,d表示A位的M3(Ba和Sr的至少一种)置换比例,设为0≤d≤0.1。这是由于即使M3的置换量为0也可以获得具备应有的特性的压电陶瓷,而通过在0.1以下的范围内进行M3置换,可以使压电常数增大。但是,如果M3的置换量超过0.1,则居里温度下降,因此是不理想的。 
x为A位成分的摩尔比例,设为0.97≤x≤1.00。如果x小于0.97,则A位和B位的比例与化学计量学组成的偏差过大,压电常数下降。另一方面,如果x超过1.00,则在晶界析出作为A位元素的Pb和Bi,绝缘性下降。 
y、z表示B位的各成分,即(M21/3Nb2/3)、Zr和Ti的摩尔比例,通过设为准同型相界附近的组成,可以获得高压电常数。因此,设为0.020≤y≤0.250且0.398≤z≤0.512。 
此外,本发明的压电陶瓷中,通过使0≤(a-2b)≤0.02,A位的Bi置换比例和B位的受体过剩量达到电荷平衡,可以获得更大的|d|×Ec的值。 
另外,本发明的压电陶瓷中,较好是产生Ni的偏析。通过使Ni偏析,即使烧成气氛和烧成温度等烧成条件改变,压电陶瓷的特性也不易发生变化,批量生产时特性的偏差得到抑制。由于特性的偏差得到抑制,不需要在烧成后测定特性值来进行筛选,生产性大幅提高。为了使Ni偏析,在本发明的范围内减小A位的摩尔比例x或提高烧成时的氧分压的方法是有效的,但使Ni偏析的方法并不局限于此。 
图1是表示本发明的压电元件的剖视图。压电元件包括由上述的压电陶瓷形成的压电素坯1、内藏于压电素坯1的内部电极2(2a,2b)、形成于压电 素坯1的表面且与内部电极2电连接的外部电极3(3a,3b)。压电素坯1沿图中箭头P所示的方向进行了极化处理。内部电极2由Pd的比例在5重量%以下的Ag/Pd合金或Ag形成,与由压电陶瓷形成的压电素坯1同时烧成。与外部电极3a连接的内部电极2a和与外部电极3b连接的内部电极2b在厚度方向上交替地设置。 
该压电元件中,通过对外部电极3a,3b间施加电压,在与极化方向P大致平行的方向上产生电场,通过横向压电效应,在图中S所示的方向上产生应变。 
下面,对本发明的压电陶瓷和压电元件的制造方法进行说明。 
首先,作为起始原料,准备Pb3O4、Bi2O3、ZrO2、TiO2、NiO、ZnO、Nb2O5、SrCO3和BaCO3,将这些原料粉末以满足所述的通式(A)的条件称量并混合。将该混合原料在750℃~930℃预烧结,得到预烧结粉末。将预烧结粉末、溶剂和粘合剂混合而制成陶瓷浆料,使用该陶瓷浆料通过刮刀法等公知的方法制成陶瓷生片。陶瓷生片的厚度可以在10μm~100μm左右的范围内适当设定。 
接着,将陶瓷生片切割或冲切成所需的尺寸,印刷含有金属粉末和粘合剂的电极糊料,形成内部电极图案。电极糊料中所含的金属粉末较好是使用Ag或Ag/Pd合金,使用Ag/Pd合金的情况下,从降低原料成本的角度来看,较好是使Pd的含有比例在5重量%以下。 
将形成有内部电极图案的陶瓷生片层叠数层或数十层左右,通过压制而形成陶瓷层叠体。将该陶瓷层叠体脱脂,再在880℃~1050℃左右、较好是880℃~950℃左右进行烧成,从而获得内藏内部电极的压电元件。通过将该压电元件研磨至规定的尺寸,通过溅射法或电极糊料的烧粘等方法形成外部电极。然后,通过向外部电极间施加1.0~5.0kV/mm的直流电场来进行极化处理,从而完成压电元件。 
本发明的压电元件由于使用的压电陶瓷的|d|×Ec的值大,因此可以在施加交流电场的用途中可以获得大的位移量。此外,因为可以在低温下烧成,所以可以减少内部电极的Pd的含有率,能够降低原料成本。 
还有,如果采用本发明的压电陶瓷,作为可共烧结的内部电极材料, 并不局限于Ag/Pd等材料,还可以使用价格更低的Ag,从内部电极材料方面来看,也可以实现原料成本的降低。 
实施例1 
下面,对本发明的具体的实施例进行说明。 
首先,作为起始原料,准备Pb3O4、Bi2O3、ZrO2、TiO2、NiO、ZnO和Nb2O5,将这些原料粉末以在通式(B)的范围内满足规定的组成的条件称量并混合。 
Pbx-aBia{Nib(Nic/3Zn(1-c)/3Nb2/3)yZr1-b-y-zTiz}O3……(B) 
将该混合原料在800℃~850℃预烧结,得到预烧结粉末。将预烧结粉末、作为溶剂的水和粘合剂混合而制成陶瓷浆料,使用该陶瓷浆料通过刮刀法制成厚约50μm的陶瓷生片。 
接着,冲切陶瓷生片,印刷含有由Ag或Ag/Pd合金形成的金属粉末和粘合剂的电极糊料,形成内部电极图案。Ag/Pd合金中的Ag和Pd的比例(重量比)为,Pd在5~20重量%(其余部分为Ag)的范围内设定为规定的比例。 
将形成有内部电极图案的陶瓷生片层叠9层,通过压制而形成陶瓷层叠体。将该陶瓷层叠体脱脂,在规定温度的氮气中进行8小时的烧成,从而获得压电烧结体。通过将该压电烧结体研磨至规定的尺寸,通过蒸镀法在正反面形成由Ag形成的外部电极。然后,通过向外部电极间施加3.0kV/mm的直流电场来进行极化处理。极化后,将压电烧结体切割成长13.0mm×宽3.0mm×厚0.6mm的尺寸,在端面通过蒸镀法形成外部电极,从而完成压电元件。 
各试样的组成、烧成温度、内部电极的Ag/Pd比例(重量比)示于表1(还有,表1中,Ag/Pd比记载为10/0的实施例25、26中使用Ag作为内部电极)。 
还有,表1中试样编号带*的试样为本发明的范围外的比较例(表2中也同样)。 
[表1] 
Figure G2008800009672D00081
对于所得的各试样,使用铁电体试验机(瑞迪安技术公司(ラジアント·テクノロジ一社)制RT600HVS)通过虚地方式测定相对于电场的极化的 磁滞曲线。接着,由该磁滞曲线求出矫顽电场(Ec)。另外,使用接触式位移计测定对各试样施加500V/mm的电场时的横向压电效应的位移量,由位移量和电场算出压电常数|d31|。然后,求出压电常数|d31|和矫顽电场Ec的积(|d31|×Ec)。测定结果示于表2。 
[表2] 
Figure G2008800009672D00101
试样1因b=0而在本发明的范围外,因此矫顽电场Ec低至1.20kV/mm,因 而|d31|×Ec的值低至336×10-6。试样2的a的值为0.170,超过本发明的上限值,同时b的值也达到0.080而超过本发明的上限值,因此虽然矫顽电场高,但压电常数|d31|大幅降低至198pm/V,结果|d31|×Ec的值低至337×10-6。试样11的a的值为0.030,低于本发明的下限值,同时z的值为0.389,在本发明的范围外,因此矫顽电场低至1.10kV/mm,结果|d31|×Ec的值低至341×10-6。试样12的x的值为1.010,超过本发明的上限值,因此绝缘性下降,无法将压电陶瓷极化。另一方面,试样16的x的值为0.960,低于本发明的下限值,因此压电常数|d31|的值大幅降低至166pm/V,结果|d31|×Ec的值低至257×10-6。试样17的(a-2b)的值为-0.012,低于本发明的下限值,因此绝缘性下降,无法将压电陶瓷极化。 
还有,B位的(Nic/3Zn(1-c)/3Nb2/3)的摩尔比例y超过本发明的上限值的试样24中,低温烧结困难而导致|d31|的下降,结果|d31|×Ec下降。 
与之相对,在本发明的范围内的试样3~10、13~15、18~23、25~27可以获得大的|d31|×Ec的值。试样22虽然在本发明的范围内,但(a-2b)的值在0~0.02的范围外,因此烧结性下降而压电常数|d31|降低至255pm/V,结果与本发明的范围内的其它试样相比,|d31|×Ec的值下降。 
此外,在本发明的范围内且满足0≤(a-2b)≤0.02的条件的试样3~10、13~15、18~21、25~27可以同时具有高矫顽电场和高压电常数,可获得395×10-6以上的大的|d31|×Ec的值。还有,试样23由于y的值为本发明的范围的上限值0.25,因此如上所述压电常数和|d31|×Ec的值良好,但矫顽电场稍低。 
还有,对于试样1~21,对压电元件的截面进行镜面研磨来进行WDX图谱分析,考察有无Ni偏析,结果试样18和19确认有Ni偏析,除此以外的试样未确认到Ni偏析。 
此外,c=1的试样25和c=0的试样26都确认获得了高的|d31|×Ec,但这时采用Ag电极作为内部电极,所以发现在例如c=0~1的范围内,作为可共烧结的内部电极材料,除了Ag/Pd等材料以外,还可以采用Ag。还有,由试样25和试样26的特性可知,采用Ag电极作为内部电极时也可以获得足够的特性。 
此外,从B位的成分的摩尔比例y来看试样1~27的特性的情况下,发现通过使y的值在0.020≤y≤0.250的范围内,可以获得良好的特性。 
此外,从B位的成分的摩尔比例z来看试样1~27的特性的情况下,发现通过使z的值在0.398≤z≤0.512的范围内,可以获得高的|d31|×Ec。 
实施例2 
下面,对本发明的第2个实施例进行说明。对于与实施例1共通的部分,略去说明。 
首先,通过与实施例1同样的方法,以在所述的通式(B)的范围内达到规定的组成比例的条件称量原料粉末,进行混合和预烧结,制成预烧结粉末。然后,使用该预烧结粉末,通过与实施例1同样的方法,制成压电元件。这时,烧成温度设为900℃,对于各组成,制备分别在1大气压的空气中(氧浓度20%)、氮气中(氧浓度0.5%)和氧气中(氧浓度100%)进行烧成的试样。 
对于各试样,通过与实施例1同样的方法测定压电常数|d31|。然后,以在空气中进行烧成的试样为基准,求出在氮气中或氧气中进行烧成时的压电常数|d31|的变化率。此外,对压电元件的截面进行镜面研磨,对Ni元素进行WDX图谱分析,从而考察有无Ni偏析。 
各试样的组成、烧成温度、内部电极的Ag/Pd比例示于表3,测定结果示于表4。表4中,“压电常数|d31|空气中”的栏表示在空气中烧成时的压电常数|d31|的值。此外,表3和表4中试样编号带*的试样28为本发明的范围外的比较例。 
[表3] 
Figure G2008800009672D00121
[表4] 
如表4所示,本发明的范围外的试样28确认在空气中烧成时的压电常数|d31|小至252pm/V。此外,烧成气氛采用氮气气氛时的|d31|变化率为-13%,烧成气氛采用氧气气氛时的|d31|变化率为-11%,确认由于烧成气氛的变化,压电常数|d31|大幅降低。 
此外,本发明的范围内的试样29的情况下,确认在空气中烧成时的压电常数|d31|高至313pm/V。但是,未发生Ni偏析的试样29的情况下,烧成气氛采用氮气气氛时的|d31|变化率为-21%,确认由于烧成气氛中的氧分压降低,压电常数|d31|大幅降低。 
与之相对,在本发明的范围内且发生Ni偏析的试样30中,不仅在空气中烧成时的压电常数|d31|高至310pm/V,在氮气气氛中烧成时的|d31|变化率为3%,烧成气氛采用氧气气氛时的|d31|变化率为-1%,即使改变烧成气氛,压电常数|d31|也不易变化,可以获得对于烧成条件的偏差也稳定的压电常数|d31|。 
实施例3 
下面,对本发明的第3个实施例进行说明。对于与实施例1共通的部分,略去说明。 
首先,作为起始原料,准备Pb3O4、Bi2O3、ZrO2、TiO2、NiO、ZnO、Nb2O5和SrCO3,以在下述的通式(C)的范围内达到如表5所示的组成比例的条件称量原料粉末,进行混合和预烧结,得到预烧结粉末。 
(Pbx-a-dBiaSrd){Nib(Nic/3Zn(1-c)/3Nb2/3)yZr1-b-y-zTiz}O3……(C) 
还有,表5中试样编号带*的试样34为本发明的范围外的比较例。 
然后,使用该预烧结粉末,通过与实施例1同样的方法,制成压电元件 (试样)。 
[表5] 
此外,作为起始原料,准备Pb3O4、Bi2O3、ZrO2、TiO2、NiO、ZnO、Nb2O5和BaCO3(使用BaCO3代替所述SrCO3),以在下述的通式(D)的范围内达到如表6所示的组成比例的条件称量原料粉末,进行混合和预烧结,得到预烧结粉末。 
(Pbx-a-dBiaBad){Nib(Nic/3Zn(1-c)/3Nb2/3)yZr1-b-y-zTiz}O3……(D) 
然后,使用该预烧结粉末,通过与实施例1同样的方法,制成压电元件(试样)。 
[表6] 
Figure G2008800009672D00142
对于使用以上述通式(C)表示的表5的预烧结粉末制成的各压电元件(试样),通过与实施例1同样的方法考察矫顽电场(Ec)和压电常数(|d31|)。此外,求出压电常数|d31|和矫顽电场Ec的积(|d31|×Ec),再求出居里点Tc。还有,居里点Tc通过以阻抗分析仪测定相对介电常数εr的温度特性,算出该相对介电常数εr的极大温度而求得。 
其结果示于表7。 
还有,表7中试样编号带*的试样34为本发明的范围外的比较例。 
[表7] 
  试样  编号   矫顽电场Ec   (kV/mm)   压电常数  |d31|   (pm/V)   |d31|×Ec   (×10-6)   居里点   Tc  (℃)
  31   1.21   348   421   230
  32   0.98   420   412   170
  33   0.95   442   420   150
  34*   0.89   468   417   130
  35   1.02   405   413   190
  36   0.93   451   419   150
此外,对于使用以上述通式(D)表示的表6的预烧结粉末制成的各压电元件(试样),通过与实施例1同样的方法考察矫顽电场(Ec)和压电常数(|d31|)。此外,求出压电常数|d31|和矫顽电场Ec的积(|d31|×Ec),再求出居里点Tc。还有,居里点Tc通过以阻抗分析仪测定相对介电常数εr的温度特性,算出该相对介电常数εr的极大温度而求得。其结果示于表8。 
[表8] 
  试样  编号   矫顽电场Ec   (kV/mm)   压电常数  |d31|   (pm/V)   |d31|×Ec   (×10-6)   居里点   Tc  (℃)
  37   0.96   421   404   190
  38   0.82   490   402   150
表7中表示改变Sr置换量(d)的试样编号31~36的各试样的特性变化。 
Sr的置换量设为5mol%(d=0.05)的试样32与未置换Sr的试样31相比,确认尽管|d31|×Ec未大幅变化,但|d31|上升约20%以上。 
此外,发现Sr的置换量在0~10mol%(d=0~0.10)的范围内的试样31~33中,|d31|随着Sr置换量的增加而上升,但Sr的置换量设为11mol%(d=0.11)的试样34中,居里温度低于150℃,实际使用上是不理想的。 
此外,试样35(d=0.05)和试样36(d=0.10)也与试样32、33同样,确认与未置换Sr的试样31相比,|d31|上升。 
由以上的结果可知,为了实现高的|d31|,理想的是使Sr的置换量在0~10mol%(d=0~0.10)的范围内。 
此外,表8中表示改变Ba置换量(d)的试样编号37(d=0.05)和试样38(d=0.10)的特性变化。 
确认像试样37和试样38这样,将A位的一部分进行Ba置换的情况下,与Sr置换的情况同样,|d31|也上升约20%以上。由该结果确认,在Ba置换的情况下,也可以获得与Sr置换的情况同样的效果。 
产业上利用的可能性 
如上所述,如果采用本发明,则可以得到维持高压电常数且可在950℃左右的低温下烧成的同时、具有高矫顽电场的压电陶瓷。 
此外,通过将本发明的压电陶瓷用于压电元件,可以获得交流电场下的大应变量,可以提高经济性良好的压电元件。 
因此,本发明可以广泛地适用于压电陶瓷和采用压电陶瓷的压电元件的领域。 

Claims (5)

1.压电陶瓷,其特征在于,以通式Pbx-a-dBiaM3d{M1b(M21/3Nb2/3)yZr1-b-y-zTiz}O3表示,M1和M2分别为Ni和Zn的至少一种,M3为Ba和Sr的至少一种;
所述a、b、d、x、y、z满足
0.05≤a≤0.15、
0<b≤0.075、
0≤(a-2b)、
0≤d≤0.1、
0.97≤x≤1.00、
0.020≤y≤0.250、
0.398≤z≤0.512。
2.如权利要求1所述的压电陶瓷,其特征在于,所述a、b满足
0.015≤b≤0.075、
0≤(a-2b)≤0.02。
3.如权利要求1或2所述的压电陶瓷,其特征在于,所述M1是Ni,所述M2是Ni和Zn的至少一种。
4.如权利要求3所述的压电陶瓷,其特征在于,在该压电陶瓷中发生Ni的偏析。
5.压电元件,其特征在于,具有由权利要求1~4中的任一项所述的压电陶瓷形成的压电陶瓷素坯和内藏于所述压电陶瓷素坯的内部电极。
CN2008800009672A 2007-02-07 2008-02-05 压电陶瓷及压电元件 Active CN101547875B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007027990 2007-02-07
JP027990/2007 2007-02-07
PCT/JP2008/051872 WO2008096761A1 (ja) 2007-02-07 2008-02-05 圧電磁器および圧電素子

Publications (2)

Publication Number Publication Date
CN101547875A CN101547875A (zh) 2009-09-30
CN101547875B true CN101547875B (zh) 2012-08-22

Family

ID=39681669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800009672A Active CN101547875B (zh) 2007-02-07 2008-02-05 压电陶瓷及压电元件

Country Status (6)

Country Link
US (1) US7965020B2 (zh)
EP (1) EP2090556B1 (zh)
JP (1) JP4390018B2 (zh)
KR (1) KR101051527B1 (zh)
CN (1) CN101547875B (zh)
WO (1) WO2008096761A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871111B2 (en) * 2008-03-18 2014-10-28 Ngk Insulators, Ltd. Piezoelectric/electrostrictive ceramic composition
JP5337513B2 (ja) * 2008-03-18 2013-11-06 日本碍子株式会社 圧電/電歪磁器組成物
JP5597368B2 (ja) * 2009-07-29 2014-10-01 京セラ株式会社 積層型電子部品およびその製法
JP5903578B2 (ja) * 2010-01-21 2016-04-13 株式会社ユーテック Pbnzt強誘電体膜及び強誘電体膜の製造方法
CN102555478B (zh) * 2010-12-28 2015-06-17 精工爱普生株式会社 液体喷射头和液体喷射装置以及压电元件
JP6381246B2 (ja) * 2014-03-25 2018-08-29 日本特殊陶業株式会社 圧電素子およびその製造方法
CN105683128B (zh) * 2014-08-29 2018-11-27 京瓷株式会社 压电陶瓷板以及板状基体、和电子部件
USD857020S1 (en) * 2016-05-25 2019-08-20 Tdk Corporation Piezoelectric element
JP6728260B2 (ja) * 2018-03-22 2020-07-22 株式会社東芝 積層型超音波トランスデューサ及び超音波検査装置
CN109836150A (zh) * 2019-04-12 2019-06-04 南方科技大学 一种基于织构化高温压电陶瓷的多层陶瓷致动器
JP1649916S (zh) * 2019-05-20 2020-01-20
CN114874009B (zh) * 2022-06-09 2022-12-13 郑州轻工业大学 一种近室温弛豫铁电材料Ba4SrBiTi3Nb7O30及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767579A (en) * 1971-02-25 1973-10-23 Nippon Electric Co Piezoelectirc ceramics

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519567A (en) * 1967-08-11 1970-07-07 Nippon Electric Co Piezoelectric ceramics
US3595795A (en) * 1967-11-08 1971-07-27 Nippon Electric Co Piezoelectric ceramic
US3594321A (en) * 1968-11-05 1971-07-20 Nippon Electric Co Piezoelectric ceramic
JPS4819476B1 (zh) * 1969-06-30 1973-06-13
JPS60215568A (ja) * 1984-04-09 1985-10-28 財団法人 小林理学研究所 強誘電体磁器組成物
JPS6289372A (ja) * 1985-10-16 1987-04-23 Seiko Epson Corp 圧電性磁器
JPH02301174A (ja) * 1989-05-16 1990-12-13 Tokin Corp 圧電磁器組成物
JPH0340965A (ja) * 1989-07-06 1991-02-21 Inax Corp 強誘電性セラミックス
DE4127829C2 (de) 1991-08-22 1994-05-19 Renate Prof Dr Ing Gesemann PZT - Werkstoffe und deren Verwendung
JPH0558729A (ja) 1991-08-30 1993-03-09 Tosoh Corp 圧電磁器組成物
JP3384048B2 (ja) 1993-07-29 2003-03-10 株式会社村田製作所 圧電磁器組成物
JPH10287469A (ja) * 1997-04-11 1998-10-27 Sony Corp 圧電材料
JP4100847B2 (ja) 1999-12-28 2008-06-11 Tdk株式会社 圧電セラミック組成物
JP2001181037A (ja) 1999-12-28 2001-07-03 Matsushita Electric Ind Co Ltd 圧電磁器組成物及び圧電トランス
JP2001328864A (ja) * 2000-05-16 2001-11-27 Matsushita Electric Ind Co Ltd 低温焼成圧電磁器組成物及び圧電トランス
JP4298232B2 (ja) * 2002-07-25 2009-07-15 株式会社村田製作所 圧電磁器組成物、及び圧電素子
JP2004307320A (ja) * 2003-03-24 2004-11-04 Kyocera Corp 圧電磁器組成物およびその製造方法
JP4665456B2 (ja) * 2004-08-11 2011-04-06 ソニー株式会社 圧電セラミックス、その製造方法、圧電アクチュエータ
WO2006075449A1 (ja) * 2005-01-14 2006-07-20 Murata Manufacturing Co., Ltd 圧電磁器組成物および圧電アクチュエータ
JP4873327B2 (ja) 2005-06-03 2012-02-08 株式会社村田製作所 圧電素子
JP4803354B2 (ja) * 2005-08-04 2011-10-26 セイコーエプソン株式会社 画像形成装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767579A (en) * 1971-02-25 1973-10-23 Nippon Electric Co Piezoelectirc ceramics

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP平2-301174A 1990.12.13
JP特开2001-328864A 2001.11.27
JP特开2004-59335A 2004.02.26
JP特开平10-287469A 1998.10.27

Also Published As

Publication number Publication date
US7965020B2 (en) 2011-06-21
KR101051527B1 (ko) 2011-07-22
EP2090556A4 (en) 2011-03-09
EP2090556B1 (en) 2016-09-21
JP4390018B2 (ja) 2009-12-24
WO2008096761A1 (ja) 2008-08-14
CN101547875A (zh) 2009-09-30
JPWO2008096761A1 (ja) 2010-05-20
US20090200898A1 (en) 2009-08-13
EP2090556A1 (en) 2009-08-19
KR20090069294A (ko) 2009-06-30

Similar Documents

Publication Publication Date Title
CN101547875B (zh) 压电陶瓷及压电元件
CN100453501C (zh) 压电陶瓷组合物和压电陶瓷电子部件
JP3874229B2 (ja) 圧電セラミックスおよびこれを用いた圧電デバイス
KR101235434B1 (ko) 압전 세라믹 조성물 및 이것을 이용한 압전 소자
EP1387417A2 (en) Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part
JPH11292625A (ja) 圧電セラミック素子の製造方法
CN1064941C (zh) 压电陶瓷组合物
US10177300B2 (en) Piezoelectric ceramic, manufacturing method therefor, and electronic component
KR100869093B1 (ko) 압전자기 디바이스의 제조방법
KR101043041B1 (ko) 초음파 진동자용 무연 압전세라믹스 조성물
JP4247936B2 (ja) 圧電体磁器組成物
JP2002068836A (ja) 圧電磁器組成物およびそれを用いた圧電セラミック素子
KR970007140B1 (ko) 작동기용 압전 세라믹 조성물
CN116710416A (zh) 压电元件和压电元件的制造方法
JP2010013295A (ja) 圧電磁器およびそれを用いた圧電素子
JP5207793B2 (ja) 圧電センサ
JP2004307320A (ja) 圧電磁器組成物およびその製造方法
JP5319208B2 (ja) 圧電磁器およびそれを用いた圧電素子
JP3781317B2 (ja) 圧電磁器材料
JP2000086341A (ja) 圧電磁器組成物及びその製造方法
JPS6358777B2 (zh)
JP3802611B2 (ja) 圧電磁器材料
JP4254310B2 (ja) 圧電材料及び積層型圧電体素子の製造方法
JPH0616473A (ja) 圧電磁器組成物
JPH10182225A (ja) 圧電磁器組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant