CN1015437B - 从拜耳液中萃取并提纯镓的方法 - Google Patents

从拜耳液中萃取并提纯镓的方法

Info

Publication number
CN1015437B
CN1015437B CN88103282A CN88103282A CN1015437B CN 1015437 B CN1015437 B CN 1015437B CN 88103282 A CN88103282 A CN 88103282A CN 88103282 A CN88103282 A CN 88103282A CN 1015437 B CN1015437 B CN 1015437B
Authority
CN
China
Prior art keywords
gallium
solution
resin
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN88103282A
Other languages
English (en)
Other versions
CN88103282A (zh
Inventor
莱姆番特·杰·米歇尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of CN88103282A publication Critical patent/CN88103282A/zh
Publication of CN1015437B publication Critical patent/CN1015437B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3253Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/04Manganese marine modules

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Physical Water Treatments (AREA)
  • Soy Sauces And Products Related Thereto (AREA)
  • Catalysts (AREA)

Abstract

工业铝酸钠溶液中所含镓的萃取和提纯方法是将镓固定在由多孔聚苯乙烯树脂构成的固定相上,树脂已在必要时有表面活性剂存在下用萃取剂浸渍过。将酸性介质洗脱镓所得镓盐提纯并浓缩以便通过电解而直接还原成高纯度金属镓(见图1)。

Description

本发明涉及萃取和提纯按拜耳法对铝土矿进行钠浸蚀而得铝酸钠溶液中所含镓的方法。
更具体地讲,本发明涉及用镓络合剂浸渍过的吸附树脂从碱液中萃取出镓并将这样萃取出的镓提纯而得浓氯化镓酸性溶液的方法。该溶液可直接电解而得高纯度金属镓。
长期以来只知道可利用镓的独特低熔点特性来制成低熔点合金,但近几年来镓又受到了普通的关注,特别是因为电子工业中于某些非常特殊的应用条件下用砷化镓作半导体要优于硅。
实际上大部分的镓来自拜耳液即众所周知的拜耳法制氢氧化铝过程中用氢氧化钠浸蚀铝土矿所得的铝酸钠溶液。尽管镓含量相当高,达到150-500mg/L拜耳液,但在大量存在化学性质极为相近的铝和可溶于强碱性介质的其它杂质,钒酸盐、锌酸盐、铁酸盐,钼酸盐…时仍难于选择性地分离回收镓。
用汞阴极进行电解是镓萃取量低时唯一采用的方法,但其中要求很高,处理大量汞也有问题,法拉第收率低并且关键的是产品纯度低,因此本技术领域里的普通技术人员就迅速转向以萃取溶解镓并通过固结或电解还原成金属态为特点的方法,其中常常还进行中间处理以及后续的提纯和浓缩。
但另一方面对产品质量的提高致使该法更为复杂化,实际上增加了原材料损失源并导致越来越糟糕的操作和生产条件。
同时RHONE-POULENC公司已对提高镓液-液萃取的 动力学问题进行了研究。因此而通过形成微乳液而在提高7-烯基-8-羟基喹啉萃取剂和碱性含镓溶液的交换面积方面取得了重大的进展(EP    0102280和EP    0102882)。
但需采用大量的萃取剂和溶剂在其后进行再生以便工业上从拜耳液中萃取出镓,所以进行了多方面的研究以试图用离子交换树脂萃取出镓。其中US4468374提出用带偕胺肟官能团作为活性基的树脂进行萃取。尽管该法比液-液萃取更具吸引力,但仍难以实施,因为偕胺肟基不稳定并且洗脱液于固定在树脂上的酸性镓介质内连续循环过程中会使树脂降解。
这方面MITSUBISHI    CHEMICAL    INDUSTRY在其日本专利№.85-095264中提出用7-烯基-8-羟基喹啉基络合剂浸渍以大孔聚合物为基础制成的吸附树脂,结果表明可将溶液中少量的镓固定在这样构成的固定相上,然后再用普通无机酸洗脱除镓。但该专利根本未涉及这些树脂的容量,更具体说是期望固定镓负荷量。此外,所述所有实施例都是用极稀的铝酸钠溶液进行的,这就排除了该法直接应用于工业拜耳液的可能性。
最近于1986年9月在慕尼黑由I.S.E.C.召开的学术报告会上Cote和Bauer报告了各种参数如树脂上固定萃取剂或络合剂量,镓,铝和氢氧化钠浓度,吸附树脂的化学性质以及旨在加强动力学的添加剂作用等对以通名Amberliste    XAD并用以商名“Kelex    100”出售的7-烷基-8-羟基喹啉浸渍过的各种吸附树脂的影响。已发现用具有丙烯酸酯骨架的半极性Amberliste    XAD7树脂可得到高于3g/l树脂的镓固定量,但用的是镓浓度至少比工业碱液高至少5倍的铝酸钠溶液,这就排除 了该法应用于浓度无论如何无法改变的碱液的任何可能性。
而且大多数应用多孔吸附树脂的方法的实际缺陷是需经水合并真空脱气而制成树脂。但一旦需要处理好几百升树脂,这种操作就难于进行。
这样一来,对本技术领域的普通技术人员来说唯一可直接用铝酸钠碱液回收和提纯镓的工业方法为液-液萃取法,其中采用7位上取代的8-羟基喹啉作萃取剂,但其众所周知的缺点是投资和生产费用高,因为需采用大量试剂特别是萃取剂和溶剂,而且还有试剂的降解损耗和镓的夹带损耗。
本发明涉及直接用工业铝酸钠溶液萃取镓的方法,其中将镓固定在浸渍树脂构成的固定相上,而用酸性介质洗脱时不会出现镓损失。
本发明还涉及镓在酸性溶液中的浓缩和提纯以通过电解将其直接还原成纯度4N的金属镓。
更具体地讲本发明方法为工业铝酸钠溶液中所含镓的萃取和提纯方法,其中将镓固定在由萃取剂浸渍过的多孔吸附树脂构成的固定相上,然后用酸性介质洗脱镓以在溶液中形成镓盐,该镓盐提纯并浓缩后再还原成金属镓,其特征是其中包括以下步骤:
A)于挥发性溶剂存在下用必要时加有表面活性剂的7-烷基-8-羟基喹啉萃取剂浸渍多孔吸附树脂;
B)蒸除溶剂并水合树脂后让直接来自拜耳循环的30-60℃铝酸钠液通过该树脂以将镓固定在树脂上;
C)树脂用水洗涤后再用浓度调为0.7-7N的强无机酸优选为硫酸洗脱镓;
D)第一次提纯和浓缩镓溶液,其中让镓在还原介质中以氢氧化镓的形态沉淀出来并再用该沉淀制成盐酸溶液,沉淀之前优选还将硫 酸进行预中和而沉淀出硫酸钙;
E)第二次以氯化物态提纯和浓缩镓溶液,其中用磷酸三丁酯有机液进行萃取,必要时用本身已含镓的有机相进行洗涤,并最后用水洗脱而得提纯的浓氯化镓溶液;
F)电解该提纯的浓氯化镓溶液而得纯度4N的金属镓。
在用多孔树脂于强碱性介质中萃取镓的研究过程中,已发现用DUOLITE INTERNATIONAL公司以商名XAD1180出售的带聚苯乙烯芳环非极性多孔树脂可得到优良的树脂上镓固定量。还出人意料地发现,这种于精心设置的条件下浸渍过的树脂,尽管具有非极性和疏水性,但仍可在几小时的接触时间内达到至少3g/L树脂的固定量,而且不会使固定离子交换相降解,其中直接应用来自拜耳循环中所谓溶液中部分氧化铝进行沉淀的分解步骤之后的铝酸钠溶液。微孔树脂XAD1180的浸渍是将其与溶液混合,该溶液中包括以商名Kelex 100出售的7-烷基-8-羟基喹啉萃取剂,乙醇溶剂以及式R3CH3NCl的氯化季铵表面活性剂,其中R含8-10个碳原子。该表面活性剂由SHEREX CHEMICAL Co.以商名ADOGEN 464出售。从经济角度看,这种润湿剂的应用价值是明显的,因为树脂在用Kelex 100萃取剂浸渍结束时经干燥除去溶剂后再于水性介质中进行水合。也可直接应用而无需象常见的那样进行真空脱气。
萃取剂量根据浸渍树脂量而定,优选应为150-400g    KELEX    100/l    XAD    1180干树脂。
以这样确定的Kelex    100重量计,可采用优选为5-15%(重量)的ADOGEN    464表面活性剂。Kelex在 乙醇中的比例并不关键并可进行调节而使溶液体积良好地润湿树脂。
将水合后备用的树脂放入柱中与来自拜耳循环中溶液中部分氧化铝进行沉淀的所谓分解步骤之后的工业铝酸钠溶液接触。铝酸钠溶液温度为30-60℃,但优选为约50℃,是以每小时2-10倍于柱柱中所含树脂的表观体积的流量即2-10BV/h泵送入树脂柱中的。
工业铝酸钠溶液中镓含量一般为150-500mg/l,而氢氧化钠浓度以Na2O计可为100-220g/l,Al2O3浓度为50-130g/l。
溶液泵送过树脂床的时间对镓含量200-300mg/l的溶液来说为4-12h左右,镓固定量为3-4g/l树脂左右。镓和铝的分离选择性很高,因为溶液中Al/Ga重量比一般为200-500,而固定镓的树脂上则降为0.5-2。
树脂洗脱前用1-3倍于其体积的水进行洗涤。洗出的游离铝酸钠和氢氧化钠循环送入拜耳循环。洗脱于50℃用强酸进行两次,优选是先用浓度0.7-1.2N的硫酸溶液以除去大部分的固定铝,然后再用浓度4-7N的硫酸溶液以溶解萃取出镓。树脂的最后洗涤是用1-3倍于其体积的水进行的,如实施例所述,其中大部分水在上游步骤中进行循环。
酸性洗脱液含1-20g/l的镓,但也含有杂质如铝(Al<1g/l),铁(Fe<100mg/l,锌(Zn<10mg/l)和钠(Na<60mg/l),至此可向其中加入镓浓度类似并来自其它镓回收方法的外来不纯酸性溶液如含镓碱液通过液-液萃取镓所得酸性溶液以及浸蚀以砷化镓为基础的含镓废料而得的酸性溶液。
所得酸性镓溶液因其中还含游离硫酸而可用石灰乳或碳酸钙进行预中和直至pH=2并于65℃下以硫酸钙的形式沉淀出SO2-离子,硫酸钙可经过例如过滤而除去。
这样用石灰乳或碳酸钙进行中和要比用氢氧化钠便宜,而且可夹带出一般为微量的某些有机残余物,这些残余物固定在固体沉淀颗粒上。
将无游离硫酸的镓溶液与来自下游提纯-浓缩和电解步骤并以氯化物态部分脱除了镓的循环酸性溶液混合。所得酸性镓溶液再用氢氧化钠溶液于还原剂硫代硫酸钠存在下中和直至pH=4以沉淀出氢氧化镓Ga(OH)3,而主要的二价金属杂质如铁和锌则留在溶液中。过滤和洗涤之后再用浓盐酸将氢氧化镓饼溶解成CaCl3
还可形成元素硫的轻质不溶化合物并可过滤除去。这时已可观察到溶液中镓的明显提纯效果,因为与树脂洗脱后的酸性镓溶液比较起来,以镓计的锌和铁含量分别减少了97和47倍。
下一步是将酸性氯化镓溶液于室温下与由磷酸三丁酯和一般为8-13碳醇的混合物构成的有机溶液接触,混合成分溶解在重质芳烃溶剂中。若采用以下重量百分比组成,则可使这种有机萃取液最为有效:
25%-TBP
10%-异十三烷醇
65%-SHELL    FRANCE以RESEX注册商标出售的重质芳烃溶剂
为了使这一镓浓缩步骤也成为附加提纯步骤,重要的是使有机相中的镓达到饱和以使尽可能大部分的“弱络合性”金属杂质如Fe, Zn,Al进入水相。前述有机溶液的性质和组成可通过调节有机相和水相的各自体积并考虑到酸性氯化镓溶液中镓的浓度而使有机相的镓达到饱和,同时又不会出现第3相。因此,对于水相中至少30g/l的浓度,
有机相体积/水相体积=0.8。
在这样进行萃取的过程中,称为“萃取物”的含镓有机相用水洗脱以便一方面形成再生后可再使用的有机相或有机溶液并另一方面形成pH≤2的高镓浓度(100-130g/l)的洗脱液水相。至此镓中杂质的重量组成分别为
Fe<50ppm    Zn<1ppm    Al<100ppm
这种已经有效的提纯还可进一步得到改进,其中在用以TBP为基础制成的有机相萃取镓和用纯水洗脱镓这两步骤之间增加中间洗涤步骤。下述实施例2和图3中该法变化实施方案所述有机相的洗涤是用来自后续洗脱步骤的称为洗脱液水相的含镓水相分流逆流进行的。每一次洗涤都让包括三价铁的杂质良好地向水相中扩散,而镓则几乎不或完全不扩散。
逆流洗涤之后将各流含镓水相与来自上游的酸性氯化镓溶液混合,然后再用有机液萃取。与实施例1和图2中所述的简单萃取-洗脱而不进行洗涤的情况不同的是,提纯效果是累进的并根据洗涤步骤级数而成指数曲线增加。
与根据洗涤元素而消耗不同浓度的酸,每次涉及的元素很少并会产生副产物的普通液-液萃取实际酸洗情况比较起来,这里所用的洗涤方法不消耗试剂而又对杂质发挥整体效应。
根据用水洗脱之前是否用有机液进行此中间逆流洗涤而可用部分 或全部pH≤2的含氯化物态镓的洗脱液水相来通过液态镓阴极电解制成纯度4N的金属镓。贫镓(10-30g/l)电解液循环送入氢氧化镓沉淀步骤(pH=4)。
第一步用有机液萃取后称为“提余液”并可能含镓5-20g/l的贫镓酸液再于室温下用有机相进行第二次萃取,其中总是根据提余液的镓含量来调整有机相和水相各自的体积。这样即可形成排放前需进行中和的完全无镓第二提余液以及将用水洗脱的含镓有机相或“第二萃取物”。从而得到洗涤后可再次使用的再生有机相以及含镓约30g/l的酸性“第二洗脱液”水相。
该“第二洗脱液”作为贫化电解液循环送到氢氧化镓沉淀步骤(pH=4)。
因此用工业铝酸钠溶液回收和提纯镓的方法可按图1所示操作流程加以概括。
A)制备XAD    1180树脂并用Kelex    100再混以溶剂和表面活性剂对其进行浸渍;
B)与工业碱液1接触以固定镓;
B)两次用强酸洗脱树脂上的镓,洗脱液成酸性溶液2,其中还有可能混有外来酸性溶液3而形成溶液4;
D)第一次提纯和浓缩;
a)必要时进行硫酸溶液4预中和并与贫镓循环溶液7和9混合,
b)沉淀Ga(OH)3(pH=4),
c)HCl溶解沉淀而成溶液5;
E)第二次提纯和浓缩;
a)第1次萃取溶液5,其中使以TBP为基础的有机液中的镓达到饱和,从而得到第1萃取物并可在必要时进行洗涤以及第1提余液8,
b)第1次用水洗脱第1萃取物,从而得到适于电解的第1含镓洗脱液6;
F)电解洗脱液6并将贫化电解液7送入步骤D),从而制得纯度4N金属镓10;
G)回收贫镓提余液8;
a)第2次用以TBP为基础的有机液萃取提余液8,从而得到第2萃取物以及第2无镓提余液,
d)第2次用水洗脱第2萃取物,从而得到含镓洗脱液9并将其循环至步骤D)。
但本发明的实施及其优点可从以下按图2所示方法详细流程进行试验的说明以及图3所示包括用洗脱液水相分流逆流对含镓有机相进行洗涤的变化实施方案的说明中明显看出。
实施例1
除了阐明在可能的情况下工业应用树脂萃取和提纯方法而带来的经济上的优越性,合理的投资和生产费用而外,本实施例还将说明本发明方法中对产物和试剂各物流进行的大范围控制和循环,这可降低试剂耗量和原材料损失并有助于降低生产费用。
试验说明中采用参考号标明物流。该方法成闭合环,某些物流要循环到先前的试验并将其标为a,而实施例中所得同一物流则标为b。闭合环按固定程序重复时可以看出物流a和b等同或接近。将251吸附树脂XAD    180与201溶液混合并搅拌15min, 溶液重量组成如下:KELEX100:6.25kg;ADOGEN464(氯化季铵):0.62Kg;加95%乙醇至201。这样润湿后的树脂在热纱浴中于约70℃进行轻微手工搅拌而得以干燥。将含Kelex 100和Adogen 464的干燥树脂与蒸馏水接触。发现颗粒容易水合和流动。因此用少量的Adogen 464,此处为Kelex 100质量的10%,即足以保证树脂颗粒的彻底润湿性。将这样水合后的树脂放入柱中占据1m高度上的281体积;由两块聚酯网保持在位。于6h内以约167l/h的流量将1000l来自拜耳循环的50℃分解液1泵送过树脂。穿过树脂的所有溶液将保持这一流量。分解液1的定量分析结果如下:Na2O总量=190g/l;Al2O3=109g/l;Ga=0.2383g/l。在柱出口处取出1000l均衡溶液13,定量分析发现:Na2O总量=186g/l;Al2O3=106g/l;Ga=0.156g/l。
1000l溶液中有82.30g镓已固定下来,这相当于溶液中镓含量为34.5%。另一方面,溶液中0.218%的Ga/Al2O3重量百分比固定后已降到0.147%。
将601洗涤水11送入柱中并收集301含Na2O总量为102g/l的第一组份12以将其与先前回收的1000l溶液13一起送入拜耳循环14。30lNa2O含量不高于9g/l的第二组份15可在适宜的洗涤步骤中从拜耳循环中回收。树脂的第一次洗脱是用451含H2SO4总量45.22g/l;含Al为0.133g/l和含游离H2SO4为43g/l的50℃溶液16进行的;该溶液由301含H2SO4为12.67g/l的溶液17a;151 含H2SO4总量为26.67g/l,含游离H2SO4为20g/l和含Al为0.4g的溶液18a,以及1364g92%硫酸19的混合物构成。
柱出口处收集45l溶液20,其中平均含H2SO4总量=35.55g/l;游离H2SO4=24g/l;Al=1.69g/l;Na2O=0.09g/l;Ga=痕量。
树脂的第二次洗脱是用301保持50℃的溶液21进行的,溶液含H2SO4总量=250g/l,游离H2SO4=248.7g/l;Ga=0.467g/l并且来自6.2kg92%H2SO422和271含H2SO4总量=66.55g/l;游离H2SO4=65.2g/l;Ga=0.519g/l的溶液23a。柱中出来的最初151构成溶液18b。然后收集到的均衡溶液2为洗脱结束时排出的15l与下述最终洗涤开始时排出的最初151的混合物构成,其中含H2SO4总量=175.3g/l;游离H2SO4=167.7g/l;Ga=2.743g/l;Al=0.28g/l;Fe=50mg/l;Zn=3.1mg/l;Na=39mg/l。
因此,这时镓的洗脱量为82.29g,而以固定镓量计的镓损失量仅为0.01g。
树脂的最终洗涤是用871保持50℃的水25进行的。在收集上述最初151之后,271第二组份即构成循环液23b。
柱出口收集到的第三组份体积为30l,构成了循环液17。第四即最后组份26体积为15l,其中含H2SO4=4.67g/l。该溶液在用石灰石24中和后与来自第一次洗脱的溶液20一起排放掉。用于生产镓的硫酸溶液在搅拌反应器中温度升至60℃。石灰乳27 连续缓慢引入反应器直至混合物达到PH2。所得悬浮液28真空过滤后的滤饼用501热水29洗涤。硫酸钙构成的脱水固体30重39.1kg,其中含7.7ppm的Ga。滤液综合而成体积为83.51的溶液31,其中含:Ga=0.982g/l;H2SO4总量=4.44g/l;游离硫酸=0.63g/l;Fe=53mg/l;Al=0.1g/l;Zn=1.7mg/l。
这时的镓量为81.99g,说明以酸性洗脱液中所含镓量计的镓损失量为0.30g,这相当于硫酸钙沉淀中所夹带的镓量。
该溶液31在搅拌反应器中与11含镓=18g/l;含HCl总量=33g/l的循环溶液7a以及0.61含Ga=50g/l;含HCl总量=92g/l的另一循环溶液9a一起加热到60℃。该混合物中还加入1086g20.8%苏打液32和21 50g/lNa2S2O3·5H2O水溶液33;加苏打相当于达到pH4。
这样所得基本上由镓和铝的氢氧化物构成的沉淀33真空过滤后用71纯水37洗涤。滤液16排放掉,而1.6kg滤饼35用3.215kg32%盐酸溶解。过滤后的盐酸溶液5体积为4.33l,其中含Ga=30g/l;含HCl总量=237.4g/l;游离HCl=182g/l;Fe=115mg/l;Zn=0.35mg/l;Al=1.9g/l。已发现相对于溶液2来说,铁和锌已大量提纯:这是由于Ga(OH)3沉淀条件(PH4)以在硫代硫酸盐还原介质中所致,因为在这些条件下2价金属在pH6以前是不会沉淀的。有机液38a中含(重量%):磷酸三丁酯=25%;异十三(烷)醇=10%;RESEX(重质芳烃溶剂)=65%,用于在有3台混合/澄清装置的送流萃取池中连续萃取先前的溶液5。相比进行调节以使4.33l水相对应于3.251有机相。该 萃取操作以及下述萃取操作都是在室温下进行的。所得提余液8为4l,其中含:Ga=7.57g/l。相应萃取物45为3.51,其中含:Ga=28.5g/l,这相当于接近有机相的饱和的值。该萃取物用水46以0.82l水/3.5l的量进行洗脱,因为逆流混合/澄清装置有4级。洗脱液水相6为pH≤2,体积0.835l,其中含Ga=119g/l;含HCl总量=215g/l;Fe=4mg/l;Zn<0.1mg/l;Al<1mg/l。因此可以看到,铁和锌因特定的萃取条件而又一次得到提纯;若在上述条件下不用磷酸三丁酯,则这两种元素就会完全与镓一起萃取出来。
正是应用了这种溶液6而在液态Ga阴极上通20A电流于10h30″内电解制得了81.4g纯度4N的金属镓10。部分贫化电解液构成了循环入氢氧化物沉淀步骤的溶液7b。另一方面上述所得仍含镓水溶液或提余液8以1.61组成同于38a的有机相/4l溶液8的量进行2级逆流萃取。含全部铝的贫镓提余液11成为废液,排放前需进行中和。相应的萃取物39用水42以0.6l水/1.6l有机相或萃取物39的相比进行2级逆流洗脱。洗脱液水构成的循环液9b。这次以及前次洗脱而得再生有机相43和44,将这后两者混合后用5%Na2CO2溶液洗涤,然后再用约10%的HCl洗涤,之后再以物流38和40重新分配到两次萃取过程中。
如果在最终物料平衡时,认为循环物流7和9在操作(a)至另一操作(b)的固定范围内组成相同,则Ga(OH)3沉淀之前所用镓量为81.99+30+18=129.99g,而在后续的沉淀,酸溶解,TBP萃取,洗脱以及电解之后所得镓量为81.4+30+18=129.40g,即损失量为0.59g。
浸渍树脂上初始固定的82.30g镓的总损失量为0.01+0.30+0.59=0.90g,因此从萃取步骤至最后纯度4N金金属镓步骤的镓总收率为:
100/(82.30-0.90)/82.30)/=98.90%
实施例2
该实施例说明用水洗脱前用以TBP为基础的镓饱和有机相进行逆流洗涤的变化实施方案。该方案可使氯化镓溶液在电解前进行更高推动力的提纯操作,这特别有利于来自上游步骤并由来自拜耳法的工业溶液2(图2)与大量外来溶液27如以砷化镓为基础的镓废料的盐酸溶液(图2)所成混合物构成的混合溶液进行处理。这些溶液带入特定的杂质如As或随意性的杂质如Cu,这是加入Fe,Zn,Al和Na构成的基本杂质中的。
按图3这种混合溶液在加上游循环氯化镓溶液之后即形成溶液5,其中镓浓度为40.9g/l,而杂质浓度如下表1。
表1
杂质    Fe    Na    Ca    Ti    As
g/l    0.146    0.46    0.07    0.042    0.113
H3PO4Al Zn Cu
0.13    3.6    0.002    0.0019
将该溶液5混入来自含镓有机液45进行第1次洗涤的物流6A以形成溶液5A,其中镓浓度为51.1g/l,而主要杂质Fe:0.133g/l,Na:0.41g/l和Al:3.2g/l。
将该溶液5A连续供入第一混合/澄清萃取池,其中包括4级萃 取区,4级洗涤区以及5级洗脱区,该溶液在其中与再生有机液38接触,其中有机液体积/氯化镓液体积之比为0.8左右。将萃取区出来的有意未完全贫镓的提余液8送入第二萃取池,其中包括3级萃取区以及2级反萃取区,萃取池出口处按图2和3一方面收集第二提余液11,其中至此完全贫镓而含溶液5中杂质的大部分,另一方面收集循环到上游的“第二洗脱液”水相。此外,含镓有机液或“第一萃取物”45在用洗脱液水相6分流6B逆流洗涤后成为洗涤液45A,再用水洗脱之后并在预先分出分流6B之后得到电解液6C。
洗脱液水相6C中以浓度为Ga=110g/l的镓计的杂质含量如下表2所示。为进行比较,还以镓计的ppm示出了未提纯氯化镓溶液5(表1)以及直接来自第一次萃取因此未象实施例1那样进行中间逆流洗涤的洗脱液水相6中的杂质含量。
表2
ppm/Ga    Fe    Na    Ca    Ti    As
溶液5    3570    11250    1710    1030    2760
未洗涤洗脱液6    90    30    100    30    <20
洗脱液6C    2.7    18    90    9    <9
P    Al    Zn    Cu
1000    88000    50    46
<10    20    <2    1
<2.7    9    <2    0.5
可以看出进行中间洗涤后杂质特别是Fe含量明显降低。该提纯效果还可在各洗涤步骤之间得到证实,表明含镓溶剂洗涤只具有除去有机相中可能夹带的水相泡,但这涉及到化学分配,其中这种效果随所用洗涤级数而成指数提高。
第1页最后1行之前加以下一段:
不过,按US3637711采用8-羟基喹啉,而且常常是取代8-羟基喹啉已在液-液萃取法回收铝酸钠碱液的最初步骤中取得了良好的结果,其中镓络合剂可用非氯代溶剂。

Claims (22)

1、工业铝酸溶液中所含镓的萃取和提纯方法:其中将镓固定在由萃取剂浸渍过的多孔吸附树脂构成的固定相上,然后用酸性介质洗脱镓以在溶液中形成镓盐,该镓盐提纯并浓缩后再还原成金属镓,于挥发性溶剂存在下用必要时加有表面活性剂的7-烷基-8-羟基喹啉萃取剂浸渍多孔吸附树脂,蒸除溶剂并水合树脂后让直接来自拜耳循环的30-60℃铝酸钠液通过该树脂以将镓固定在树脂上,树脂用水洗涤后再用浓度调为0.7-7N的强无机酸优选为硫酸洗脱镓,其特征是其中包括以下步骤:
a)第一次提纯和浓缩镓溶液,其中让镓在还原介质中以氢氧化镓的形态沉淀出来并再用盐酸溶液溶解制成氯化镓,
b)第二次以氯化物态提纯和浓缩镓溶液,其中用磷酸三丁酯有机液进行萃取并用水洗脱,
c)电解该提纯的浓氯化镓溶液而得纯度4N的金属镓。
2、权利要求1的方法,其特征是多孔吸附树脂为非极性疏水聚苯乙烯树脂。
3、权利要求1-2的方法,其特征是多孔吸附树脂用7-烷基-8-羟基喹啉萃取剂以150-400g萃取剂/干树脂的量进行浸渍。
4、权利要求1的方法,其特征是萃取剂溶解在挥发性溶剂中并按其重量加5-15%的表面活性剂。
5、权利要求1的方法,其特征是表面活性剂为式R3CH3NCl的氯化季铵,其中R具有1-8个原子。
6、权利要求1的方法,其特征是多孔吸附树脂浸渍后干燥并水合即可备用。
7、权利要求1的方法,其特征是来自拜耳循环分解步骤之后的铝酸钠溶液中镓浓度为150-500mg/l溶液,以Na2O计的钠总浓度为100-220g/l溶液,溶解Al2O3浓度为50-130g/l溶液。
8、权利要求1的方法,其特征是于4-12h内将备用树脂与小时流量为该接触树脂表观体积的2-10倍并优选为50℃左右的循环铝酸钠溶液接触。
9、权利要求1的方法,其特征是在用1-3倍于其体积的水洗涤之后,树脂上固定下来的镓在用强酸优选为硫酸并以0.7-1.2N后以4-7N的浓度于约50℃进行两次洗脱之后重新溶解。
10、权利要求1的方法,其特征是洗脱而得的酸性镓溶液中可以各种比例加入来自其它镓回收方法并也含1-20g镓/l的不纯酸性溶液如含镓碱溶液液-液萃取镓而得的酸性溶液以及浸蚀以砷化镓为基础的含镓废料所得的酸性溶液。
11、权利要求1和10的方法,其特征是含硫酸的酸性含镓溶液可用石灰乳或碳酸钙预中和至pH2以便于约60℃沉淀出硫酸钙,然后过滤除去硫酸钙。
12、权利要求1的方法,其特征是将无游离硫酸的酸性镓溶液与来自下游提纯,浓缩和电解步骤的部分贫镓循环液混合,然后在硫代硫酸钠存在下加氢氧化钠中和以便于约60℃沉淀出氢氧化镓,该沉淀倾析和/或过滤分离后用HCl重新溶解成氯化镓。
13、权利要求1的方法,其特征是室温下将酸性氯化镓溶液与有机液接触,有机液由25%(重量)磷酸三丁酯,10%(重量)C8-C13醇和65%(重量)重质芳烃溶剂的混合物构成,接触直至有机液中镓达到饱和为止。
14、权利要求13的方法,其特征是有机液体积/酸性氯化镓溶液体积之比为约0.8,条件是该溶液中镓浓度至少30g/l。
15、权利要求1,13和14的方法,其特征是在与酸性氯化镓溶液接触之后的含镓有机液在用水洗脱之前用来自后续洗脱步骤的含镓水相分流进行逆流洗涤。
16、权利要求15的方法,其特征是逆流洗涤之后将含镓水相分流与来自上游的酸性氯化镓溶液混合,然后进行用有机液的萃取步骤。
17、权利要求15的方法,其特征是逆流洗涤之后的含镓有机液再用水洗脱而一方面形成洗涤后可再生并循环使用的有机液,另一方面形成氯化物态高镓浓度洗脱液水相,再取其分流对含镓有机液进行逆流洗涤并将另一组份送去电解。
18、权利要求1,13和14的方法,其特征是与酸性氯化镓溶液接触后的含镓有机液直接用水洗涤而一方面形成可再生有机液,另一方面形成用于电解的氯化物态高镓浓度洗脱液水相。
19、权利要求18的方法,其特征是氯化物态高镓浓度水相PH≤2。
20、权利要求1的方法,其特征是洗脱液水相用液态镓阴极电解而得纯度4N的金属镓以及可循环送入氢氧化镓沉淀步骤的贫镓电解液。
21、权利要求1的方法,其特征是将酸性氯化镓溶液在用有机液进行第一次萃取后的贫镓溶液再第二次与有机液接触以萃取出残余镓并在用水洗脱后循环送入氢氧化镓沉淀步骤。
22、权利要求1的方法,其特征是本发明方法中所用试剂可循环送入本法步骤或拜耳法中的氧化铝生产步骤。
CN88103282A 1987-06-02 1988-06-02 从拜耳液中萃取并提纯镓的方法 Expired CN1015437B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708013A FR2616157A1 (fr) 1987-06-02 1987-06-02 Procede d'extraction et de purification du gallium des liqueurs bayer
FR8708013 1987-06-02

Publications (2)

Publication Number Publication Date
CN88103282A CN88103282A (zh) 1988-12-21
CN1015437B true CN1015437B (zh) 1992-02-12

Family

ID=9351848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN88103282A Expired CN1015437B (zh) 1987-06-02 1988-06-02 从拜耳液中萃取并提纯镓的方法

Country Status (17)

Country Link
US (1) US5102512A (zh)
EP (1) EP0297998B1 (zh)
JP (1) JPS644435A (zh)
CN (1) CN1015437B (zh)
AT (1) ATE62466T1 (zh)
AU (1) AU604325B2 (zh)
BR (1) BR8802654A (zh)
CA (1) CA1337021C (zh)
DE (1) DE3862346D1 (zh)
ES (1) ES2021870B3 (zh)
FR (1) FR2616157A1 (zh)
GR (1) GR3001757T3 (zh)
HU (1) HU209448B (zh)
IE (1) IE61367B1 (zh)
IN (1) IN169596B (zh)
RU (1) RU1813111C (zh)
YU (1) YU46913B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396804C (zh) * 2005-12-09 2008-06-25 韶关市华韦实业有限公司 用萃取-电解法从冶炼铅锌矿尾渣中提取金属镓的方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1012812B (zh) * 1986-01-31 1991-06-12 三菱化成株式会社 镓的回收方法
FR2605646B1 (fr) * 1986-10-24 1989-04-21 Pechiney Aluminium Extraction du gallium des liqueurs bayer a l'aide d'une resine adsorbante impregnee
DE3814916A1 (de) * 1988-05-03 1989-11-16 Int Gallium Gmbh Verfahren zur gewinnung von gallium
JPH02310326A (ja) * 1989-05-23 1990-12-26 Tanaka Kikinzoku Kogyo Kk 貴金属液中からの金の分離回収法
BE1004149A3 (nl) * 1990-04-27 1992-09-29 Acec Union Miniere Extractie van metalen door ionenuitwisseling.
US5187967A (en) * 1991-09-16 1993-02-23 General Electric Company Laser trimming of forgings
NL1015961C2 (nl) * 2000-08-18 2002-02-19 Akzo Nobel Nv Toepassing van een adsorbens voor de verwijdering van vloeibare, gasvormige en/of opgeloste bestanddelen uit een processtroom.
FR2813615A1 (fr) * 2000-09-07 2002-03-08 Metaleurop Sa Procede d'extraction du gallium
CN102071328A (zh) * 2010-12-09 2011-05-25 中国铝业股份有限公司 一种树脂吸附法生产的次品镓的提纯方法
CN102021334A (zh) * 2010-12-15 2011-04-20 中国铝业股份有限公司 拜耳法种分母液中提取镓和钒的方法
CN103388159B (zh) * 2012-05-11 2016-08-03 格林美股份有限公司 一种从含氮化镓废弃物中回收镓的方法
JP5992796B2 (ja) * 2012-10-23 2016-09-14 田中貴金属工業株式会社 貴金属の分離回収方法
CN103833057A (zh) * 2014-03-24 2014-06-04 连云港乐园新材料科技有限公司 一种高纯氧化铝的生产方法
JP6839694B2 (ja) 2018-12-17 2021-03-10 株式会社デンソー 酸化ガリウム膜の成膜方法
CN109439899B (zh) * 2018-12-25 2020-06-02 广东省稀有金属研究所 一种从锌置换渣硫酸浸出液中吸附分离镓的方法
RU2712162C1 (ru) * 2019-07-12 2020-01-24 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Способ получения галлатного раствора
CN111778413B (zh) * 2020-07-03 2022-05-20 神华准能资源综合开发有限公司 一种基于树脂法从粉煤灰中提取镓的方法
CN113003792A (zh) * 2021-04-17 2021-06-22 江苏国创新材料研究中心有限公司 一种含喹啉酸类高盐有机废水的处理方法
CN114604882A (zh) * 2022-04-19 2022-06-10 四川顺应动力电池材料有限公司 一种粉煤灰生产氧化铝且辅料循环利用的方法
CN117051267B (zh) * 2023-10-11 2023-12-29 矿冶科技集团有限公司 一种乳状液膜萃取分离镓的方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991613A (en) * 1960-11-28 1965-05-12 Asahi Chemical Ind Process for the recovery of gallium
US3637711A (en) * 1968-03-25 1972-01-25 Ashland Oil Inc Beta-alkenyl substituted 8-hydroxyquinolines
FR2365641A2 (fr) * 1976-09-27 1978-04-21 Rhone Poulenc Ind Procede de recuperation du gallium de solutions tres basiques par extraction liquide/liquide
IL50120A (en) * 1976-07-25 1981-03-31 Yeda Res & Dev Process for the extraction of metal ions from solutions using polymer impregnated with extraction agent
US4169130A (en) * 1977-07-13 1979-09-25 Rhone-Poulenc Industries Liquid/liquid extraction of gallium values from highly basic aqueous solutions thereof
FR2411894A1 (fr) * 1977-12-15 1979-07-13 Rhone Poulenc Ind Procede d'extraction du gallium
GB2047564B (en) * 1978-03-27 1983-01-26 Bend Res Inc Separator membrane and process using such membrane for removing ions from an aqueous solution
FR2460276A1 (fr) * 1979-07-03 1981-01-23 Rhone Poulenc Ind Procede de traitement de melanges d'oxydes de terres rares et de gallium
US4389379A (en) * 1980-08-15 1983-06-21 Societe Miniere Et Metallurgique De Penarroya Process for selective liquid-liquid extraction of germanium
FR2495601A1 (fr) * 1980-12-05 1982-06-11 Rhone Poulenc Ind Procede de purification de solutions de gallium
US4297325A (en) * 1980-12-08 1981-10-27 Filtrol Corporation Method of producing pseudoboehmite from aluminum salt solutions
AU560201B2 (en) * 1981-09-17 1987-04-02 Sumitomo Chemical Company, Limited Gallium recovery
JPS5858186A (ja) * 1981-10-03 1983-04-06 Agency Of Ind Science & Technol 塩化アルミニウム水溶液よりガリウムを分離濃縮する方法
JPS5896831A (ja) * 1981-12-02 1983-06-09 Sumitomo Chem Co Ltd ガリウムの回収法
FR2532295A1 (fr) * 1982-08-26 1984-03-02 Rhone Poulenc Spec Chim Procede d'extraction du gallium a l'aide d'hydroxyquinoleines substituees et de sulfates ou sulfonates substitues
FR2532296B1 (fr) * 1982-08-26 1985-06-07 Rhone Poulenc Spec Chim Procede d'extraction du gallium a l'aide d'hydroxyquinoleines substituees et de composes organophosphores
JPS5954626A (ja) * 1982-09-21 1984-03-29 Sumitomo Chem Co Ltd 希土類元素及びガリウムの分離回収法
JPS59169933A (ja) * 1983-03-15 1984-09-26 Sumitomo Chem Co Ltd キレ−ト樹脂を用いるガリウムの回収方法
JPS59205431A (ja) * 1983-05-09 1984-11-21 Dowa Mining Co Ltd GaおよびIn微量含有物質からのGaおよびInの回収方法
JPS59208031A (ja) * 1983-05-11 1984-11-26 Dowa Mining Co Ltd GaおよびIn微量含有物質からの金属GaおよびInの分離採取法
JPS59213622A (ja) * 1983-05-19 1984-12-03 Showa Alum Ind Kk ガリウムの回収法
JPS6042234A (ja) * 1983-08-11 1985-03-06 Mitsubishi Chem Ind Ltd ガリウムの回収法
CH655710A5 (de) * 1983-11-17 1986-05-15 Sulzer Ag Verfahren zur fluessig-fluessig-extraktion von gallium aus natriumaluminatloesung mit hilfe eines organischen extraktionsmittels.
JPS60166224A (ja) * 1984-02-03 1985-08-29 Mitsui Alum Kogyo Kk アルミニウム製錬ダストからのガリウムの回収方法
JPS6114133A (ja) * 1984-06-29 1986-01-22 Mitsui Alum Kogyo Kk アルミニウム電解発生ダストからガリウムを回収する方法
JPS6114129A (ja) * 1984-06-29 1986-01-22 Mitsui Alum Kogyo Kk アルミニウム電解発生ダストからガリウムを回収する方法
JPS6114127A (ja) * 1984-06-29 1986-01-22 Mitsui Alum Kogyo Kk アルミニウム電解発生ダストからガリウムを回収する方法
JPS61111917A (ja) * 1984-11-01 1986-05-30 Sumitomo Chem Co Ltd ガリウムの回収方法
DE3508041A1 (de) * 1985-03-07 1986-09-11 Preussag Ag Metall, 3380 Goslar Verfahren zur fluessig-fluessig-extraktion von gallium, germanium oder indium aus waessrigen loesungen
JPS61286220A (ja) * 1985-06-10 1986-12-16 Sumitomo Chem Co Ltd 吸着剤によるガリウム成分の回収方法
JPS62153120A (ja) * 1985-09-13 1987-07-08 Sumitomo Metal Mining Co Ltd 三塩化ガリウムの製造方法
US4728505A (en) * 1985-12-23 1988-03-01 Mitsui Aluminium Co., Ltd. Process for producing gallium-containing solution from the aluminum smelting dust
CN1012812B (zh) * 1986-01-31 1991-06-12 三菱化成株式会社 镓的回收方法
FR2603034B1 (fr) * 1986-08-22 1990-10-05 Penarroya Miniere Metall Procede de recuperation du gallium contenu dans une solution d'aluminate de sodium
FR2605646B1 (fr) * 1986-10-24 1989-04-21 Pechiney Aluminium Extraction du gallium des liqueurs bayer a l'aide d'une resine adsorbante impregnee
DE3814916A1 (de) * 1988-05-03 1989-11-16 Int Gallium Gmbh Verfahren zur gewinnung von gallium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396804C (zh) * 2005-12-09 2008-06-25 韶关市华韦实业有限公司 用萃取-电解法从冶炼铅锌矿尾渣中提取金属镓的方法

Also Published As

Publication number Publication date
CA1337021C (fr) 1995-09-19
AU1696788A (en) 1988-12-08
CN88103282A (zh) 1988-12-21
ATE62466T1 (de) 1991-04-15
US5102512A (en) 1992-04-07
EP0297998A1 (fr) 1989-01-04
HUT48691A (en) 1989-06-28
IE881647L (en) 1988-12-02
ES2021870B3 (es) 1991-11-16
DE3862346D1 (de) 1991-05-16
AU604325B2 (en) 1990-12-13
YU46913B (sh) 1994-06-24
IE61367B1 (en) 1994-11-02
HU209448B (en) 1994-06-28
EP0297998B1 (fr) 1991-04-10
BR8802654A (pt) 1988-12-27
YU106588A (en) 1990-04-30
GR3001757T3 (en) 1992-11-23
FR2616157A1 (fr) 1988-12-09
IN169596B (zh) 1991-11-16
JPS644435A (en) 1989-01-09
RU1813111C (ru) 1993-04-30

Similar Documents

Publication Publication Date Title
CN1015437B (zh) 从拜耳液中萃取并提纯镓的方法
US10000825B2 (en) Process, method and plant for recovering scandium
CN1071716C (zh) 制备纯碱金属钨酸盐和/或钨酸铵溶液的方法
KR101543243B1 (ko) 유가금속인 몰리브덴과 바나듐을 포함하는 수첨 탈황 폐촉매의 재제조용액으로부터 유가금속의 분리 및 회수방법
KR101467356B1 (ko) 무전해 니켈도금폐액으로부터 니켈을 회수하는 방법
JPH0741976A (ja) 金属硫酸塩含有の廃硫酸を再生する方法
CN107557598A (zh) 制备钒电解液的方法
CN1111682A (zh) 铝材表面处理的废液处理方法
CN114293033B (zh) 利用含钒碳酸化浸出液提钒和沉钒余液循环利用的方法
CN110592383A (zh) 一种吸附法从粉煤灰中提锂的方法
PL202742B1 (pl) Sposób elektrolitycznego wytwarzania ultraczystego cynku albo związków cynku z surowców zawierających cynk
JPS61261446A (ja) Zn含有物よりZnを回収する方法
RU2263722C1 (ru) Способ переработки ванадийсодержащих шлаков
AU2004319088B2 (en) Method of recovering gallium
CN1152158C (zh) 一种采用溶剂萃取净化铜电解液的方法
CN1077753A (zh) 活性氧化锌及高纯氧化锌制备工艺
US5171887A (en) Process for the preparation of oxalic acid and sodium hydrogen oxalate from crude sodium oxalate
RU2437946C2 (ru) Способ переработки ванадийсодержащего сырья
CN109371243A (zh) 一种锌冶炼厂污酸回收利用的方法
RU2044785C1 (ru) Способ получения пятиокиси ванадия
JP2003293050A (ja) チタンのフッ化物イオンを含む水溶液中の不純物金属イオンの除去方法
RU2068392C1 (ru) Способ извлечения скандия из отходов производства тетрахлорида титана
RU2170276C1 (ru) Способ переработки шламов гальванических производств
RU2026382C1 (ru) Способ переработки медного электролита
SU1650744A1 (ru) Способ переработки медного электролита

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee