CN101384747A - 用于离子植入的双模式离子源 - Google Patents

用于离子植入的双模式离子源 Download PDF

Info

Publication number
CN101384747A
CN101384747A CNA2006800414104A CN200680041410A CN101384747A CN 101384747 A CN101384747 A CN 101384747A CN A2006800414104 A CNA2006800414104 A CN A2006800414104A CN 200680041410 A CN200680041410 A CN 200680041410A CN 101384747 A CN101384747 A CN 101384747A
Authority
CN
China
Prior art keywords
source
ion
ionization
subassembly
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800414104A
Other languages
English (en)
Other versions
CN101384747B (zh
Inventor
托马斯·尼尔·霍尔斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semequip Inc
Original Assignee
Semequip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semequip Inc filed Critical Semequip Inc
Publication of CN101384747A publication Critical patent/CN101384747A/zh
Application granted granted Critical
Publication of CN101384747B publication Critical patent/CN101384747B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/026Cluster ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0822Multiple sources
    • H01J2237/0827Multiple sources for producing different ions sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明揭示一种离子源,其用于提供由离子化团簇(例如,B2HX +、B5Hx +、B10Hx +、B18Hx +、P4 +或As4 +)或单体离子(例如,Ge+、In+、Sb+、B+、As+和P+)组成的一个范围的离子束,以出于制造CMOS装置的目的使得团簇植入物和单体植入物能够进入硅衬底中,且以高生产率完成此操作。所述范围的离子束是由根据本发明的通用离子源产生的,所述离子源经配置以在以下两种离散模式中操作:电子冲击模式,其有效地产生离子化团簇;以及电弧放电模式,其有效地产生单体离子。

Description

用于离子植入的双模式离子源
相关申请案的交叉参考
本申请案是2002年6月12日申请的第10/170,512号共同拥有的共同待决美国申请案的部分接续案,其是根据35 USC §371从2000年12月13日申请的第PCT/US00/33786号国际专利申请案国有化,所述申请案又主张1999年12月13日申请的第60/170,473号美国临时专利申请案和2000年11月30日申请的第60/250,080号美国临时申请案的权益。
技术领域
本发明涉及一种离子源,其用于在PMOS和NMOS晶体管结构的半导体制造中产生离子束来用于掺杂晶片以制成集成电路,且更特定来说涉及经配置以在双模式(例如,电弧放电模式和电子冲击模式)中操作的通用离子源。
背景技术
离子植入过程
半导体装置的制造部分涉及通过离子植入在硅衬底内形成晶体管结构。离子植入设备包含:离子源,其产生含有所要掺杂剂种类的离子束;射束线,其加速离子束并将离子束集中成为具有良好界定的能量或速度的离子束;离子过滤系统,其选择所关注的离子,因为在离子束内可能存在不同种类的离子;以及处理腔室,其容纳离子束照射到的硅衬底;所述离子束在衬底中穿透良好界定的距离。通过使离子束穿过直接形成于衬底表面上的掩模而产生晶体管结构,所述掩模经配置以使得仅衬底的离散部分暴露于离子束。在掺杂剂离子穿透进入硅衬底的地方,衬底的电特性被局部修改,从而通过引入电载流子而产生源极、漏极和栅极结构:例如,通过p型掺杂剂(例如,硼或铟)引入空穴,以及通过n型掺杂剂(例如,磷或砷)引入电子。
现有技术离子源
传统上,在离子植入设备中已经使用博纳斯(Bernas)型离子源。这些离子源已知为将例如BF3、AsH3或PH3的掺杂剂承载馈送气体分裂为其原子或单体组成物,从而大量产生以下离子:B+,As+和P+。这些离子已知为产生高达50mA的提取离子电流,从而在硅衬底处实现高达20mA的过滤离子束。博纳斯型离子源已知为热等离子体或电弧放电型源,且通常并入电子发射器(裸细丝阴极或间接加热阴极)以及电子反射极(或对阴极),其彼此以所谓的“映象”几何学相对安装。此类型的源产生受到磁场限制的等离子体。
目前,已经将团簇植入源引入到设备市场中。这些离子源和博纳斯型源的不同之处在于,其经设计为以分子形式产生掺杂剂原子的“团簇”或聚结物,例如Asn +、Pn +或BnHm +形式的离子,其中n和m是整数,且2≤n≤18。可将这些离子化团簇植入得更靠近硅衬底的表面,且以相对于其单体(n=1)对应物较高的剂量植入,且其因此对于形成超浅p-n晶体管结方面受到极大关注,例如在具有65nm、45nm或32nm的栅极长度的晶体管装置中。这些团簇源保留了引入到离子源中的馈送气体和蒸气的母体分子。这些当中最成功的已经使用了电子冲击离子化,且不产生密集等离子体,而是产生低离子密度,其比常规博纳斯源产生的密度小至少100倍。
发明内容
简要来说,本发明涉及一种离子源,其用于提供由离子化团簇(例如,B2Hx +,B5Hx +,B10Hx +,B18Hx +,P4 +或As4 +)或单体离子(例如,Ge+,ln+,Sb+,B+,As+,和P+)组成的一个范围的离子束,以使得团簇植入物和单体植入物进入硅衬底中以用于制造CMOS装置的目的,且以高生产率完成此方法。这是通过可在两种离散模式中操作的离子源的新颖设计而完成的:电子冲击模式,其有效地产生离子化团簇;或电弧放电模式,其有效地产生单体离子。
通过将气态B2H6、B5H9、B10H14或B18H22引入离子源来产生硼氢化物分子离子,在离子源中其通过“软”离子化过程(例如,电子冲击离子化)而离子化,所述过程保留了母体分子中的硼原子的数目(附着到离子的氢的数目可能不同于母体的数目)。同样,可将As蒸气或P蒸气引入离子源(从使元素As或P升华的蒸发器)以产生大量As4 +、As2 +和As+或P4 +、P2+和P+离子。下文将更详细地描述从元素蒸气产生As和P团簇的机制。通过在离子源内产生电弧放电,从而产生密集等离子体并将馈送气体BF3、AsH3、PH3、SbF5、lnCl3、InF3和GeF4分裂为其组成原子,而产生单体离子。这提供了目前许多半导体工艺所需的Ge+、In+、Sb+、B+、As+和P+离子的高电流。如下文详细描述的本发明是通过以下新颖方法来揭示的:构造并操作产生这些非常不同的离子种类(即,团簇和单体)的单一或通用离子源,并快速且容易地在其两种操作模式之间切换,从而实现其在半导体制造中的有效使用。
砷和磷团簇的产生
本发明的目的是提供一种制造半导体装置的方法,此方法能够通过植入P4 +和As4 +形式的离子化团簇而在半导体衬底中形成超浅掺杂杂质的N型导电性区。
本发明的又一目的是提供一种用于制造半导体装置的离子植入源和系统,其已经设计以通过使用P4 +和As4 +形式的团簇离子在半导体衬底中形成超浅掺杂杂质的N导电型区。
根据本发明的一个方面,提供一种植入团簇离子的方法,其包括以下步骤:提供每一分子含有多个As或P掺杂剂原子的分子供应源成为一离子化体积;将所述分子离子化成掺杂剂团簇离子;用电场提取并加速所述掺杂剂团簇离子;通过质量分析选择所需的团簇离子;以及将掺杂剂团簇离子植入半导体衬底中。
As和P团簇的经济效益
尽管已证明了用于半导体制造的P型硼氢化物团簇的植入,但没有列出N型团簇,其大量地产生大的离子化团簇。如果在至少1mA的电流中可产生n=4(或更大)的Pn +和Asn +的离子,那么将实现具有N型和P型导电性两者的超低能量、高剂量植入。由于CMOS处理需要这两种导电类型,因此这一发现将使团簇能够用于所有的低能量、高剂量植入,从而导致生产率的急剧增加,伴随有成本的降低。不仅每晶片的成本将急剧减少,而且将需要更少的离子植入器来对其进行处理,从而节省了占地面积和资本投资。
As和P团簇的工艺效益
形成用于亚65nm装置的漏极延伸部的优选方法预期并入从衬底法线倾斜≥30度的晶片,以便产生足够的“栅极下”掺杂剂浓度,而不依赖于通过过激的热激发技术带来的过量掺杂剂扩散。对于这些植入还需要优良的射束角度清晰度和低射束角度发散,但高电流植入器往往具有大的角度接受度和显著的射束不均性,中等电流植入器满足这些高倾斜和精确角度控制要求。由于中等电流植入器不传递足够高的电流,因此其对高剂量植入物的处理量对于生产来说太低。如果离子植入器可以高剂量速率产生所需的低能量射束,那么将实现很大的经济优势。由于漏极延伸部是植入物的最浅部分,因此其还处于最低能量(例如,对于As,大约3keV,65nm节点处);代表中等电流植入器的长的复杂的射束线无法产生处于低能量的足够的电流以用于制造这些装置。在中等电流射束线和其它扫描型单晶片植入器中使用As4 +和P4 +团簇植入将这些植入器的有用处理范围扩展到低能量和高剂量。通过使用这些团簇的高电流,对于低能量、高剂量(≥1014/cm2)植入物可实现高达16倍的处理量增加,其中有效As和P植入能量低达每原子1keV。
砷和磷的化学性质
如一般已知,元素固态As和P已知为以四面体形式存在(即,白磷P4和黄砷As)。因此其看上去是在离子源中产生四聚物离子的理想候选者。然而,尽管可合成这些化合物,但其与其更一般的形式(即,红磷P和灰砷As金属)相比具有更大反应性,且因此较不稳定。后面的这些形式是容易制造的,在空气中稳定,且廉价。重要的是已证明,当普通的红P和灰As蒸发时,其本质上主要形成处于蒸气相的P4和As4![例如参见M.沈(Shen)和H.F.斯克发(Schaefer)III,J.化学.物理.(Chem.Phys.)101(3)第2261-2266页,1994年8月1日;元素的化学性质第2版(Chemistry of the Elements.2 nd  Ed).N.N格林伍德(Greenwood)和A.厄因朔(Eamshaw),编辑,巴特沃思-海曼(Butterworth-Heiemann)出版社,牛津,英国,2001,第13章,第55页;R.E.霍尼格(Honig)和D.A.克莱默(Kramer),RCA观察(RCA Review)30,第285页,1969年6月。]电子衍射研究已经证明了在蒸气相中四面体As4占主导地位。然而此四面体相是脆弱的,且容易例如通过暴露于紫外线光或x射线而离解,并在由常规离子源形成的那种类型的等离子体中离解。实际上,已知在带能量的光轰击下,As4很容易离解成2个As2
通过蒸发固态形式的As和P(无定形或四面体固态相)并通过在新颖的电子冲击离子化源中的离子化而保留这些团簇,可产生离子化的As4和P4团簇的显著电流,其证明团簇可经受电子冲击。
尽管现有技术离子源已经使用蒸发的固态As和P来产生离子束,但没有保留四聚物。由这些电弧放电源产生的离子已主要由单体和二聚物组成。由于四聚物形式的As4和P4是脆弱的且容易通过引入能量而离解,因此为了将其保留,源应当没有过量的UV(例如由热细丝所发射),且更重要的是,通过例如电子冲击的“软”离子化技术来离子化。如下文将更详细论述,此技术有用于从蒸发的元素砷和磷产生As4 +离子。
用于产生As 4 和P 4 的新颖离子源的优点
本发明的离子源通过蒸发器引入了气态的As4和P4蒸气,所述蒸发器加热例如元素As或P的固态馈送材料并引导蒸气通过蒸气导管进入离子源的离子化腔室。一旦被引入离子源的离子化腔室,蒸气或气体就与从外部电子枪进入离子化体积的电子束相互作用,从而形成离子。蒸气没有暴露于热的产生UV的阴极,因为电子枪是在离子化体积的外部,且没有到达蒸气的视线。接着通过静电光学元件从离子化体积前方的矩形孔口提取离子,从而形成离子束。
附图说明
参考以下说明书和附图将容易理解本发明的这些和其它优点,其中:
图1是根据本发明的示范性离子束产生系统的示意图。
图2是图1所说明的示范性离子束产生系统的替代实施例的示意图,其说明固态蒸气源和原位清洁系统。
图3a是根据本发明的离子源的基本组件的示意表示,其包含电子枪、间接加热的阴极、源极衬里、阴极块、基底、提取孔口、源块以及安装凸缘。
图3b是本发明的离子源的分解图,其说明离子源的主要子系统。
图4a是图3a所说明的离子源的分解等距视图,其中展示已移除安装的凸缘组合件、电子枪组合件、间接加热的阴极组合件以及提取孔口板。
图4b是离子化体积衬里和接口或基底块的分解等距视图,其展示接口块中的充气室和充气室端口。
图4c是离子化体积组合件的等距视图,其中离子化体积是从阴极块、接口块和磁轭组合件形成,展示已移除了离子化体积衬里。
图5a是根据本发明一个方面的间接加热的阴极(IHC)组合件的分解等距视图。
图5b是IHC组合件的一部分的放大分解视图,其说明IHC、细丝、阴极套管以及阴极板的一部分。
图5c是图5b所说明的IHC组合件的横截面的正视图。
图5d是根据本发明一个方面的展示为装配到图5a所说明的IHC组合件的水冷阴极块的等距视图。
图5e是图5d所说明的组合件的正视图,其以截面说明IHC组合件的阴极块和阴极板。
图5f是根据本发明的围绕阴极块和离子化体积的磁轭组合件的等距视图。
图6a是根据本发明一个方面的形成外部电子枪组合件的发射器组合件的等距视图。
图6b是根据本发明的电子枪组合件的等距视图,其展示已经移除了静电屏蔽组合件。
图7是说明与电子枪和离子化体积轭组合件相关联的磁性电路的等距视图。
图8是根据本发明一个方面的示范性双热蒸发器组合件的等距视图。
图9a是根据本发明的源块的等距视图。
图9b类似于图9a,但展示已经移除了热蒸发器组合件。
图10是说明当在电子冲击离子化模式中操作时施加于离子源的每一元件的典型电压的图。
图11类似于图10,但指示当在电弧放电模式中操作时施加于离子源的每一元件的典型电压。
图12a和12b是说明连续建立每一操作模式所需的步骤序列的逻辑流程图。
图13是展示源块、接口块、阴极块与离子化体积衬里之间的热接口的图。
图14是源组合件在y-z平面中切割的横截面侧视图。
图15类似于图14,但是在x-y平面中切割。
图16类似于图14,但是在x-z平面中切割。
图17是已经移除前方孔口板的源的照片,其展示间接加热的阴极和离子化体积衬里。
图18是展示具有通孔的安装凸缘的照片,其展示已移除了蒸发器。
图19是曲线图,在左边垂直轴上是传递到与离子源相距2米定位且在分析器磁体下游的植入器法拉第杯的质量分析B18Hx +射束电流,且在右边垂直轴上是从同一离子源提取的总离子电流,其为进入离子源的蒸气流的函数。
图20是从本发明的离子源收集的B18H22质量谱。
图21是从本发明的离子源收集的PH3质量谱。
图22是从本发明的离子源收集的AsH3质量谱。
图23是展示单体P+、二聚物P2 +、三聚物P3 +和四聚物P4 +的P谱。
图24是展示单体As+、二聚物As2 +、三聚物As3 +和四聚物As4 +的As谱。
具体实施方式
本发明涉及一种离子源,其用于提供由离子化团簇(例如,B2Hx +、B5Hx +、B10Hx +、B18Hx +、P4 +或As4 +)或单体离子(例如,Ge+、In+、Sb+、B+、As+和P+)组成的一个范围的离子束,以使得团簇植入和单体植入到硅衬底中以用于制造CMOS装置的目的,且以高生产率完成此方法。所述范围的离子束是通过经配置以在以下两种离散模式中操作的根据本发明的通用离子源产生的:电子冲击模式,其有效地产生离子化团簇;和电弧放电模式,其有效地产生单体离子。
下文说明和描述根据本发明的通用离子源。图14展示根据本发明的穿过离子源组合件在y-z平面中切割的横截面(即,侧视图)。图15类似于图14,但是展示穿过源组合件在x-y平面中切割的横截面。图16展示穿过源组合件在x-z平面中切割的横截面。图17是已经移除前方孔口板的源的照片,其展示间接加热的阴极和离子化体积衬里。图18是展示具有通孔的安装凸缘的照片,其展示已经移除蒸发器。
为了有效地产生离子化团簇,本发明的离子源并入了以下特征:
·提供了电子冲击离子化源,例如位于离子化体积外部且在任何过程气体或蒸气退出离子化体积的视线以外的电子枪,且离子化腔室中的蒸气同样不暴露于由电子枪中的热阴极发射的电磁辐射;
·当在电子冲击模式中操作时,暴露于引入源中的蒸气的表面保持在一定温度范围内,所述温度范围足够低以防止温度敏感的母体分子的离解,且足够高以防止或限制蒸气不良地凝聚到所述表面上;
·提供多个蒸发器,其可产生进入源的稳定蒸气流,固态硼氢化物材料B10H14和B18H22的蒸发温度范围在20C到120C,而例如As和P的固态元素材料要求在400C与550C之间的范围内的加热以提供所需的蒸气流。因此,可将一个或一个以上“冷”蒸发器和一个或一个以上“热”蒸发器并入离子源中。
为了有效地产生单体离子,本发明的离子源还并入了以下特征:
·以“映象”几何学将电子源(阴极)、反射极(对阴极)和磁场并入离子源,其中沿着连接电子源和反射极的线将强磁场大体上平行于离子源的离子提取孔口而定向;
·提供电子元件,使得在阴极与对阴极之间可维持电弧放电,使得沿着磁场方向,即平行于且接近离子提取孔口的方向维持等离子体柱体;
·在离子源内提供离子化体积衬里(“内腔室”),其封围离子化体积,且允许在电弧放电期间达到远超过200C的温度,以便限制As、P和其它物质凝聚到围绕离子化体积的壁上;
·提供过程气体馈送以将常规气态掺杂剂源供应到离子源内。
离子源中提供了其它新颖特征以实现可靠性和性能:本发明的特征是,离子源优选通过受控引入原子氟气体而并入原位化学清洁过程,且用于构造离子源的元件的材料是选自对F的侵蚀具有抵抗力的材料:
离子化腔室衬里可从对卤素气体的侵蚀具有抵抗力的二硼化钛(TiB2)制成,且拥有良好的热和电传导性,但也可有用地由铝、石墨或不容易受到氟侵蚀的其它电和热导体来制造;
电弧放电电子源可以是间接受热阴极,且其暴露于清洁气体的部分可形成为厚的钨、钽或钼盘片,且因此在卤素环境中与裸细丝相比在抵抗故障方面稳固得多;
间接受热的阴极组合件机械地安装到水冷的铝“阴极块”上,使得将其辐射热负载限制于离子化腔室和衬里(注意到铝在F环境中钝化,且因此对化学蚀刻具有抵抗性);这实现了阴极在其被去能的时刻与原位清洁循环开始之间的快速冷却,从而减小了对难熔金属阴极的化学侵蚀的程度。
在电子冲击离子化期间(即,在团簇射束形成期间)加能的电子枪在离子化体积的远端,安装在外部且在原位清洁期间没有到达F气体负载的视线,且因此在抵抗F蚀刻带来的损坏方面较稳固。
并入其它新颖特征以改进源性能和可靠性:
·铝阴极块或框架处于阴极电位,从而消除了已知在间接受热阴极与现有技术源的源腔室之间发生的阴极电压短路的风险。这个块还便于形成处于阴极电位的反射极结构,借此消除了对专用电子反射极或对阴极的需要;
·离子化体积衬里由阴极块和基底围绕;铝基底和阴极块通过导热但电绝缘的弹性垫圈而保持与温度受控的源块热接触。这个特征将块和基底的最大温度限制于接近源块温度(源块通常保持在200C以下);
·离子化体积衬里通过高温、热和电传导垫圈(例如,铝)而与基底热接触,以限制其最大温度漂移,同时确保其温度高于阴极块和基底的温度;与其它已知的离子源不同,本身不提供离子化腔室。
·源磁场由围绕离子化腔室组合件的磁轭组合件提供。其嵌入在阴极块中。这提供用于使轭组合件保持处于比其永久磁体的居里温度低得多的温度的手段。
·离子源在两种离散模式中操作:电子冲击模式和电弧放电模式。如下文详细描述,每一者的操作条件极为不同。
当在电子冲击模式中操作时,满足以下条件:
·源块保持于大约100℃与200℃之间的温度。依据哪种物质在离子源中运行,这为源提供参考温度,从而防止例如硼氢化物的源材料或其它源材料的凝聚;
·间接受热的阴极没有被加能,且冷却水没有在阴极块中运行。阴极块与基底达成热平衡,阴极块通过导热但电绝缘的垫圈与基底热接触(基底又与源块良好热接触,且因此停留在源块温度附近);
·阴极块保持处于与基底和离子化体积衬里相同的电位;
·通过向电子发射器(即,阴极)施加负电位,且向阳极和枪基底施加正电位(即,在电子束传播穿过枪时电子束的局部环境的电位)来加能电子枪。相对于离子化体积测量阴极和阳极电压。这实现了“减速”场以在电子束在枪基底与离子化体积之间传播时作用于电子束,使得使气体或蒸气离子化的电子的能量可独立于在枪内传播的电子束的能量而变化,且特定可减小以实现对气体分子的更有效的离子化;
·永久磁场在电子束进入和穿过离子化腔室时提供对电子束的限制,从而实现邻近于且沿着离子源的离子提取孔口产生均匀的离子密度;
·TiB2衬里(也可由SiC、B4C、Al、C或非硅电路中的有害污染物的任何其它合适的导电材料制成)通过电和导热高温垫圈与基底热接触(基底与源块具有热连续性),且因此将稳定于接近源块温度,因为离子化体积内的电子束散发了非常少的功率(通常<10瓦)。因此衬里总是处于与离子化体积和源块相同的电位。
当在电弧放电模式中操作时,满足以下条件:
·源块保持于100℃与200℃之间。
·间接受热的阴极被加能,且冷却水在阴极块中运行。阴极块温度因此维持接近于水温,且比基底冷,基底与源块热接触;
·阴极块保持于与阴极相同的电位,相对于围绕离子化体积的衬里高达负100V。由于阴极块还包括反射极或对阴极,因此其还处于阴极电位。在存在永久轴向磁场时,这实现真实的“映象”几何学,且因此实现稳定的等离子体柱体。电弧电流由衬里吸收,衬里的电位建立等离子体电位。
·电子枪没有被加能,电子发射器设定于源块电位,且枪基底设定于阴极块电位。这防止任何净场从枪基底穿透穿过阴极块中的电子进入孔口。
·在间接受热的阴极被加能且电弧放电起始的情况下,衬里暴露于显著的辐射热负载。这允许衬里达到远超过基底的平衡温度。可通过减少或增加衬里与基底之间的热接触来“调谐”最大温度差。
参看图1,说明并入根据本发明的离子源的示范性离子束产生系统的示意图。如此实例所示,离子源400适合于产生离子束以用于输送到离子植入腔室,以便植入半导体晶片或平板显示器。离子束产生系统包含离子源400、提取电极405、真空外壳410、电绝缘材料的电压隔离衬套415、真空抽吸系统420、真空外壳隔离阀425、反应气体入口430、馈送气体和蒸气入口441、蒸气源445、馈送气体源450、反应气体源455、离子源高压电源460以及离子束输送外壳411。离子源400产生由箭头475说明的所得的离子束。
离子源400经构造以提供团簇离子和分子离子,例如B10Hx +、B10Hx -、B18Hx +和B18Hx -,或者更常规的离子束,例如P+、As+、B+、In+、Sb+、Si+和Ge。用于待离子化的气态馈送材料的气体和蒸气入口441连接到合适的蒸气源445,其可紧密接近于气体和蒸气入口441,或可位于更远的位置,例如气体分配盒中,位于端子封壳内的其它地方。
端子封壳是未图示的金属盒,其封围离子束产生系统。其含有用于离子源的所需设施,例如抽吸系统、功率分配、气体分配以及控制。当采用质量分析来选择射束中的离子种类时,质量分析系统也可位于端子封壳中。
为了提取具有良好界定能量的离子,离子源400通过高压电源460相对于提取电极组合件405和真空外壳410保持在高正电压(在产生带正电离子束的较一般情况下)。提取电极组合件405被设置成接近于提取孔口板上的提取孔口504且与其对准,所述提取孔口板形成离子化体积500的一部分。提取电极组合件由至少两个含孔口的电极板组成:最靠近离子化体积500的所谓的抑制电极406和“接地”电极407。抑制电极406相对于接地电极407被负偏置,以抵制或抑制在产生带正电离子束时被吸引到正偏置的离子源400的不合需要的电子。接地电极407、真空外壳410以及端子封壳(未图示)都处于所谓的端子电位,其处于大地接地,除非需要使整个端子浮动在接地以上,如某些植入系统的情况,例如对于中等电流离子植入器。提取电极405可具有下文所述的新颖的温度受控金属设计。
根据本发明的另一方面,图1说明的离子源400可经配置以用于原位清洁,即没有从离子源在真空外壳中的操作位置移除离子源,且具有极少的服务中断。实际上,对于适用于离子植入系统的离子源,例如对于掺杂半导体晶片,源腔室或离子化体积500较小、具有例如小于大约100ml的体积和例如小于大约200cm2的内部表面积,且经构造以接纳反应气体流,例如处于小于大约每分钟200标准升的流动速率的原子氟或反应性含氟化合物。由此,与真空外壳410连通的专用端点检测器470可用于监视化学清洁期间的反应气体产物。
图2说明类似于图1的离子源的实施例,其经配置以用于对包含提取电极组合件405的离子源400进行原位化学清洁。原位清洁系统详细参见2004年12月9日申请的第PCT/US2004/041525号国际专利申请案,其以引用方式并入本文。简要来说,三个入口通道分别整合在离子源400中。一个入口通道用于来自等离子体源455的反应气体430。另一入口通道用于来自许多储存体积450中选定一者的馈送气体435。第三入口用于来自蒸发器445的馈送蒸气440。基于等离子体的反应气体源455偏置于离子源400的高电压。这使远端等离子体源455能够共用离子源400的控制点,且还使得能够从处于源电位的离子源气体分配盒供应清洁的馈送气体465和来自储存源466的氩净化气体。还展示不同类型的端点检测器,即傅立叶变换红外线(FTIR)光学分光计。此检测器可通过石英窗口在外部(在真空外壳的外部)起作用。替代地,如图2所示,可使用提取类型的FTIR分光计,其在清洁期间直接对真空外壳410中的气体取样。而且,温度传感器TD可通过感测腔室表面的热隔离的代表性区域来感测经去能的离子化腔室的温度。传感器TD可监视通过F与污染沉积物的放热反应所产生的热量,以用作端点检测。
图3a是离子源的基本组件的简化示意性表示,其指示电子枪阴极10、间接受热的阴极(IHC)20、离子化体积衬里30、阴极块40、基底或接口块50、提取孔口板60、源块70以及安装凸缘80。离子化体积衬里30优选由TiB2或铝制成,但可有用地由SiC、B4C、C或非硅电路中的有害污染物且可维持100C与500C之间的操作温度的任何其它合适的导电材料构成。阴极块40优选为铝,因为铝具有较高的热和电传导性,且对抵抗卤素气体的侵蚀。Al还允许直接水冷却,因为其为非多孔的且非吸湿的。可使用其它材料,例如具有良好电和热属性的类似于钨和钼的难熔金属,然而其容易受到卤素气体的侵蚀。对阴极块的另一种考虑是与P+、As+和在电弧放电操作下产生的其它物质的离子轰击的相容性。由于阴极块与IHC阴极20等电位,因此其经受等离子体离子的离子轰击的腐蚀。因此必须考虑在所关注离子的轰击下材料的溅射速率,因为其将影响可用的源寿命。同样,基底50优选由铝制成,但可由钼或其它电和导热材料制成。由于源块70、安装凸缘80和离子提取孔口60通常在200C或以下操作,因此其可同样有用地由铝构成。离子化体积衬里30围绕离子化体积35,且与安装基底50具有轻微的热接触,安装基底50本身与源块70具有良好的热接触。除了离子通过的穿过离子化体积衬里30和提取孔口板60的狭槽以外,离子源的离子化体积完全由穿过离子化体积衬里30的圆柱形孔以及阴极块40的顶部和底部板界定。源块70受温度控制而达到直到例如200C。因此,当电子枪10激活时,非常少的功率转移到离子化体积衬里30,离子化体积衬里30的温度接近于源块70的温度。当IHC 100经加能时,离子化体积衬里30暴露于数百瓦功率,且可达到比源块70高得多的温度(直到400C或更高),其有益于将气体的凝聚限制在离子化体积衬里30的表面上。
图3b是本发明的离子源的分解等距视图,展示所述离子源的主要子系统。离子源包含离子提取孔口板60、离子化体积或腔室组合件90、IHC组合件100、电子枪组合件110、源块组合件120以及安装凸缘组合件130。离子源还包含耦合到端口135的低温蒸发器(未图示)。蒸气导管137用于将蒸气输送到离子化组合件90内。离子源还包含双热蒸气入口端口138、过程气体入口端口139以及可选的反应气体入口端口140。在示范性实施例中,原子F可经由反应气体入口端口140馈入到离子化体积组合件90。蒸发的As、P或SbO3进入双热蒸气入口端口138,同时B18H22蒸气可施加于蒸气导管137。
图4a是根据本发明的离子源的分解等距视图,其中展示已经移除了安装凸缘组合件130、电子枪组合件110、间接受热的阴极组合件100以及提取孔口板60。离子源包含源块120、阴极块40、安装基底或接口块50、离子化体积或源衬里30、衬里垫圈115、基底垫圈125以及阴极块垫圈127。如下文将更详细论述且如图4c所说明,当添加磁轭组合件150时,这些零件形成离子化体积组合件90(图3b)。垫圈125和127是由例如聚合物化合物制造的电绝缘导热垫圈。其目的是防止零件的热隔离,同时允许配对零件之间的电位差。举例来说,阴极块40在电弧放电操作期间处于基底或接口块50电位以下几百伏,且因此必须电隔离。然而,在电子冲击操作期间,阴极块40应当接近基底或接口块50的温度,且因此其无法热隔离。然而,垫圈115是金属垫圈,其形成离子化体积衬里30与基底或接口块50之间的接口。金属是经选择的,因为其具有承受离子化体积衬里30在电弧放电操作期间将达到的较高温度的能力。由于基底或接口块50有效地散热到源块120(其为恒温储集库,即,其通过耦合到闭合回路控制器的嵌入式欧姆加热器而受到有效温度控制),因此其跟随源块70温度附近的温度。源块70受到有效温度控制,且单独的源元件通过谨慎选择的热接触路径而跟随此温度,如图13中描述。源块70温度的闭合回路控制可使用常规PID控制器来实施,例如欧姆龙E5CK数字控制器,其可用于控制传递到嵌入在源块中的欧姆加热器的功率的工作循环,如此项技术中已知。
图4b是离子化体积衬里30和接口或基底块50的分解等距视图,其展示接口块50中的充气室和充气室端口。若干气体和蒸气入口端口,即蒸气端口137、反应气体端口140、过程气体端口139以及双热蒸气端口141a和141b馈入到形成于基底或接口块50中的气体充气室45中。接口块50具备一个或一个以上穿孔142a和142b以容纳安装的常规扣件(未图示),以将接口块50紧固到源块120,且借此在接口块50与源块120之间建立电传导。气体充气室45可为加工到接口块50内的腔,且用于收集任何馈入到充气室45内的气体并将其馈入到多个衬里端口32中。多个衬里端口32配置成“喷淋头”设计以沿着不同方向将气体分配到离子化体积衬里30内的离子化体积35中。通过将所有气体或蒸气输送到充当压载体积的充气室45中,充气室45接着通过喷淋头将气体直接馈入到离子化体积35中,而在离子化体积35中产生气体或蒸气分子的均匀分配。此配置导致呈现到提取孔口60的较均匀的离子分配,且随后形成空间上较均匀的离子束。
图4c是离子化体积组合件90的等距视图,其中展示已经移除了离子化体积衬里。离子化体积组合件90由阴极块40、接口块50以及磁轭组合件150形成。磁轭组合件150由磁性钢构成且引导周围的由一对永久磁体151a和151b产生的磁通量穿过离子化体积组合件90,从而在离子化体积35中产生例如约120高斯的均匀磁场。在电子冲击操作期间,此永久场限制了电子束,使得离子产生在邻近于离子提取孔口60的良好界定的窄柱体中。在电弧放电模式期间,同一场为阴极块40的阴极和上部板之间的等离子体柱体提供限制,所述上部板充当对阴极。
图5a是间接受热的阴极(IHC)组合件100的分解视图。IHC组合件通常在此项技术中是已知的。这些IHC组合件的实例可参见第5,497,006号、第5,703,372号和第6,777,686号美国专利以及第US 2003/0197129A1号美国专利申请公开案,其全部以引用方式并入本文。本发明的原理可应用于所有此类IHC组合件。用于本发明的替代IHC组合件100包含间接受热的阴极160、阴极套管161、细丝162、阴极板163、一对细丝夹具164a和164b、一对细丝引线165a和165b以及一对绝缘体167a和167b(未图示)。细丝162发射例如高达2A的电子电流,其通过电子轰击将间接受热的阴极160加热到炽热。由于细丝162保持在阴极电位以下高达1kV的负电位,因此高达2kW的电子束加热容量可用于例如阴极加热。实践中,在1kW与1.5kW之间的加热功率是足够的,但对于非常高的电弧电流(超过2A的电弧)可能需要更高功率。阴极160与阴极安装板163等电位。要求绝缘体167a和167b远离高达1kV的细丝电压。
现参看图5b和5c,IHC 160经由凸缘159定位在阴极板163上,且通过螺纹连接156由套管161锁定在适当位置。套管161用作用于IHC 160的辐射屏蔽物,从而除发射表面157处以外最小化通过辐射的热量损失。
可从单一钨圆柱体加工间接受热的阴极(IHC)160。示范性IHC 160可为大约0.375英寸厚,且在抵抗F蚀刻和离子轰击方面是稳固的。如图5c所见,IHC 160具有连接到具有底部凸缘159的中空圆柱体的厚圆形盘片的外观,所述底部凸缘在其安装零件阴极板163内与IHC 160对齐。将两个或两个以上圆形凹槽158或锯齿切口加工为圆柱体,以减少热量从阴极发射表面157传导到阴极板163,从而减少电子束加热要求。将类似的凹槽153加工在套管161中,以减少对阴极板163的热传递。套管161经由板163和套管161中的螺纹附接到阴极板163。套管161起两个作用:其“锁定”IHC 158,并充当IHC 160与其环境之间的辐射屏蔽物,从而减少加热功率要求。应注意,IHC 160及其套管161由水冷阴极块40封围,所述水冷阴极块40经设计以吸收辐射而减少总的源加热。细丝162由扭转成三折图案的近似1mm厚的钨线构成,其提供到达IHC 160盘片底部的相当均匀的发射电流覆盖。细丝162附接到双夹具164a和164b,所述夹具引导电流穿过双引线165a和165b到达真空通孔并到达60A细丝电源。此电源且因此所述细丝通过高压电源浮动到相对于IHC的负电位,使得离开细丝162的电子发射电流加速到达IHC 160,从而提供电子束加热。此2A、1kV电源提供高达2kW的电子束加热功率以使阴极表面157产生电子发射。在实践中,1kW的电子束加热是足够的(例如,600V下的1.7A),但对于超过数安培的IHC电弧电流,需要较高的阴极温度且因此需要较高的功率。
IHC 160、套管161以及细丝162优选由钨制成。图5b所示的细丝引线卷曲到细丝162上,且有用地由例如钼或钽制成。阴极板163可由石墨、不锈钢、钼或任何具有良好机械抗拉强度的高温导电材料制成。由于阴极板163直接安装到阴极块,因此其在IHC160经加能时处于阴极电位。
图5d和5e说明安装到水冷阴极块40上的间接受热的阴极组合件100。一对水配合件41a和41b用于输送去离子水通过真空接口。水循环通过阴极块40且可吸收数kW的功率,从而允许阴极块40一直保持远低于100℃。IHC 160与阴极块40等电位。如此,在阴极160与阴极块40之间不需要绝缘物,其形成离子化体积35的顶部和底部边界表面。这导致非常可靠的系统,因为在现有技术IHC源中,IHC与其紧接的周围环境相差高达150V。这又导致通过在IHC 160与碎屑穿透的离子化体积表面之间碎屑的聚集而沉淀的很常见的故障。所述配置的另一益处在于,其消除了对阴极腐蚀的常见故障,因为阴极块40的顶板由于其处于阴极电位而用作对阴极。等离子体柱体由离子化体积35限定边界且由穿过离子化体积衬里30以及阴极块40的顶板和底板的孔界定。这界定了非常稳定的体积来在电弧放电操作期间维持等离子体柱体。
图5f展示围绕阴极块40和离子化体积35的磁轭组合件150的细节。磁轭组合件150由磁性钢构成,且引导磁通量通过离子化体积或腔室组合件90,从而在离子化体积35内产生例如大约120高斯的均匀轴向磁场。此磁轭组合件150用于产生磁场以在电弧放电操作模式期间限制离子化体积35中所产生的等离子体。在电子冲击操作模式期间,由于插在轭组合件150与电子枪之间的磁性屏蔽物,电子枪组合件110被屏蔽于磁场,如下文图7中指示。
图6a和6b说明外部电子枪组合件110。特定来说,此类电子枪组合件可参见以引用方式并入本文的第6,686,595号美国专利以及第2004/0195973 A1号美国专利申请公开案。图6a是形成外部电子枪组合件110的一部分的示范性发射器组合件210的等距视图。图6b是电子枪组合件110的等距视图,其中展示已经移除了静电屏蔽组合件250。电子枪组合件110包含枪基底240,其承载发射器组合件210、阳极215、静电屏蔽组合件250以及磁性屏蔽物255。
从发射器组合件210中的细丝200发射的电子由阳极215提取,并通过磁偶极220弯曲90度,从而通过枪基底240中的孔口230。电子束通过磁性屏蔽物255而屏蔽于离子化体积组合件90内的由磁轭150产生的磁场。阳极215、枪基底240以及静电屏蔽组合件250全部处于例如与高出离子化体积组合件90的电位2kV一样高的阳极电位,所述离子化体积组合件90在电子冲击操作期间保持在源块120的电位。细丝电压例如为负数百伏,因此电子束在枪基底240与离子化体积35之间减速,如例如霍斯基(Horsky)在第6,686,595号美国专利中详细描述,所述专利以引用方式并入本文。
图7是与电子枪组合件110和磁轭组合件150相关联的磁路的物理表示。如图示,磁路由磁偶极220、枪磁性屏蔽物255以及磁轭组合件150组成。磁偶极220由磁性不锈钢制成,且在磁极上产生均匀的横向磁场,从而将由电子枪发射器产生的电子束弯曲近似90度。如此偏转后,电子束通过图6的孔口230并进入离子化体积,在该处电子束由腔室磁场限制。
图8是示范性双热蒸发器组合件301的等距视图。双热蒸发器组合件301包含双蒸发器炉300a和300b,加热器绕组310a和310b,以及一对蒸气喷嘴320a和320b。例如As、P、Sb2O3或InF3等固态源材料驻留在炉腔内,所述炉腔为中空的钢圆柱体。有时材料由形成所述材料与圆柱体之间的衬里的石墨坩埚捕获,从而防止对炉壁的污染。炉加热器绕组310a和310b承载48V DC下高达20A的电流,且可散发高达1kW的加热器功率。其被铜焊到炉上以获得良好热接触。喷嘴320a和320b有用地由钼制造以获得良好的温度均匀性,但可由钢或其它高温传导材料制成。喷嘴优选为1/4英寸管且不长于两英寸,以确保从炉到离子化体积的良好蒸气传导。炉300a和300b的温度由一对热电偶330a和330b监视。加热器绕组310a和310b的温度由一对热电偶331a和331b监视。
安装板340用于将双热蒸发器组合件301耦合到源块70。图9a展示源块70,其中已经移除了双热蒸发器组合件301,而图9b说明其中插入热蒸发器组合件301的源块。
图10是说明在电子冲击离子化模式中操作时施加到离子源的每个元件的典型电压的图。所有电压都参照源电位Vs,其相对于接地为正。安装基底或接口块50、阴极块40以及源块70保持在Vs。电子枪细丝200通过其相关电源(-1kV<Vc<-100V)保持在阴极电位Vc,且阳极240的电位Va为正(1kV<Va<2kV),使得离开细丝200并形成电子束27的电子的动能为e(Va-Vc)。离子提取孔口板60偏置到正或负电压,以改进所提取离子束(-350V<Vb<350V)的集中。IHC组合件100在电子冲击离子化模式期间未经加能,且在此模式期间保持在电位Vs。
图11类似于图10,但指示当在电弧放电模式中操作时施加于离子源的每个元件的典型电压。所有电压都参照源电位Vs,其相对于接地为正。电子枪组合件110未使用,但阴极电源连接到IHC阴极160Vc(-100V<Vc<-0),其与阴极块40等电位。由于电子枪组合件在此模式中未使用,因此其细丝200和阳极240保持在阴极电压Vc。IHC细丝162处于IHC 20电位以下高达1kV(-1kV<Vf<0),且可提供高达例如2A的电子束加热电流。IHC 160与其紧接周围环境相差例如高达100V。图12a和12b是连续建立每个操作模式所需的步骤序列逻辑流程图。由于离子源组件的电压对于两种操作模式来说是不同的,因此存在在模式之间移动的优选序列:
当从电子冲击模式600切换到电弧放电模式614时,如图12a所示,起初在步骤602中关闭电子枪组合件110。接着在步骤604中,将电子枪阳极215从其电源去耦。在步骤606中,将电子枪阳极215设定为阴极电位。这防止任何场在阴极块40的上部板处冲过阴极块40,从而使此成为有效的对阴极。在步骤608中,中断施加到离子提取孔口板60的偏压。提取孔口板60偏置仅在团簇模式中需要,且在放电模式中不推荐,具体是因为电源可能由于密集等离子体的接近而汲取高电流。接着在步骤610中,通过气动水流阀的自动排序来起始进入阴极块40的水流。水流阀通过水流传感器和延迟开关而联锁到离子源控制系统,使得IHC无法被加能,除非流已经建立。阴极块40在IHC组合件100的操作期间必须经水冷,以防止对源组件的不适当加热,且将磁轭150中的磁体151a、151b保持低于其居里温度。最后在步骤612中,可通过将过程气体引入离子化体积35并加能IHC组合件100来起始电弧,如此项技术中已知。
当从电弧放电614切换到电子冲击模式600时,如图12b所示,起初在步骤中,将IHC组合件100去能。接着在步骤618中,将电子枪阳极215连接到其正电源。在步骤620中,将阴极块40和IHC组合件100连接到源电压。在步骤622中,设定偏压并连接到离子提取孔口板60。在步骤624中,终止对阴极块40的水冷。最后在步骤626中,电子枪组合件110经加能以建立电子束。而且,将蒸气引入离子化体积35以开始离子化团簇形成。
图13展示源块70、接口块50、阴极块40与离子化体积衬里30之间的热接口。如图4a中进一步概述,在阴极块40、离子提取孔口60、接口或安装块50、离子化体积或源衬里30与源块70之间通过湿接触到这些组件的表面的导热垫圈来界定热路径。因此,离子化体积衬里30可达到比有效受到温度控制的源块70的温度高的温度。另外,水冷阴极块40在水冷却停用之后具有热路径以达到安装基底50的温度。
图19是传递到与离子源相距2米定位且在分析器磁体下游的法拉第杯的质量分析B18Hx +射束电流以及从离子源提取的总离子电流的曲线图。在右边垂直轴上以mA为单位展示所提取的离子电流,且在左边垂直轴上展示法拉第电流(类似于晶片上电流)。电流是作为进入离子源的B18H22蒸气流(测量作为进入离子源的入口压力)的函数来测量。蒸气通过在其它地方已详细描述的专有的闭合回路蒸气流控制器而馈入此离子源。穿过提取光学元件和此植入器的射束线的透射为约25%,且在最高蒸气流处开始下降,大概是由于与残余蒸气的电荷交换的缘故。
图20是在电子冲击模式中从本发明的离子源收集的B18H22质量谱。母体峰B18Hx +表示约85%的射束谱。母体210amu质量处的小峰为双倍离子化的B18Hx +或B18Hx ++
图21是在电弧放电模式中从本发明的离子源收集的PH3质量谱。超过10mA的31P+电流和超过2mA的双倍离子化磷传递到处于20kV提取电压的植入器的法拉第。此性能与在离子植入中使用的许多商业博纳斯型离子源相当。
图22是在电弧放电模式中从本发明的离子源收集的AsH3质量谱。超过10mA的70As+电流和大约0.5mA的双倍离子化砷以及0.5mA的砷二聚物传递到处于20kV提取电压的植入器的法拉第。此性能与在离子植入中使用的许多商业博纳斯型离子源相当。
图23是展示在电子冲击模式中产生的单体P+、二聚物P2 +、三聚物P3 +和四聚物P4 +的磷谱。所述谱是不平常的,因为单体、二聚物和三聚物峰全部处于大约相同的高度(大约0.9mA),使得三聚物产生最高剂量速率或大约3.6mA的有效磷原子电流。使用来自双模式源的热蒸发器的元素P蒸气产生所述谱。高团簇产量是因为P蒸气优选产生P4的事实,且此脆弱团簇在不将蒸气暴露于密集辐射或热量的情况下在电子冲击离子化的离子化过程期间保留。
图24类似于图23,但是以双模式源的热蒸发器产生的元素As蒸气来收集。As谱展示单体70As+、二聚物As2 +、三聚物As3 +和四聚物As4 +。在20kV提取处,4mA的5keVAs+的等效物传递到法拉第。
显然,依照以上教示,本发明的许多修改和变化是可能的。因此应了解,在所附权利要求书的范围内,可用与上文具体描述不同的方式来实践本发明。

Claims (1)

1.一种通用离子源,其包括:
离子化体积,其用于将源气体或蒸气离子化;
阴极组合件,其用于在第一操作模式中在所述离子化体积中产生等离子体;
电子枪,其用于在第二操作模式中产生电子,所述电子枪并置在所述离子化体积的外部,且经配置以将电子引导到所述离子化体积中;
气体或蒸气源;以及
用于在所述第一操作模式与所述第二操作模式之间切换的构件。
CN2006800414104A 2005-11-07 2006-11-06 用于离子植入的双模式离子源 Expired - Fee Related CN101384747B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/268,005 2005-11-07
US11/268,005 US7838842B2 (en) 1999-12-13 2005-11-07 Dual mode ion source for ion implantation
PCT/US2006/043138 WO2007056249A1 (en) 2005-11-07 2006-11-06 Dual mode ion source for ion implantation

Publications (2)

Publication Number Publication Date
CN101384747A true CN101384747A (zh) 2009-03-11
CN101384747B CN101384747B (zh) 2013-11-20

Family

ID=38023590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800414104A Expired - Fee Related CN101384747B (zh) 2005-11-07 2006-11-06 用于离子植入的双模式离子源

Country Status (7)

Country Link
US (4) US7838842B2 (zh)
EP (1) EP1945832A4 (zh)
JP (1) JP4927859B2 (zh)
KR (1) KR20080065276A (zh)
CN (1) CN101384747B (zh)
TW (1) TW200733243A (zh)
WO (1) WO2007056249A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668016A (zh) * 2009-10-27 2012-09-12 先进科技材料股份有限公司 离子注入系统及方法
CN103298233A (zh) * 2013-05-10 2013-09-11 合肥聚能电物理高技术开发有限公司 新型高密度阴极等离子体源
CN104282527A (zh) * 2013-07-11 2015-01-14 中国科学院大连化学物理研究所 一种稳定的直流放电负离子源
CN104380425A (zh) * 2012-06-29 2015-02-25 Fei公司 多种类离子源
US9142387B2 (en) 2009-10-27 2015-09-22 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
CN105900208A (zh) * 2013-12-20 2016-08-24 艾克塞利斯科技公司 针对离子注入系统的降低轨迹金属污染的离子源
US9455147B2 (en) 2005-08-30 2016-09-27 Entegris, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
CN107195522A (zh) * 2017-06-29 2017-09-22 上海集成电路研发中心有限公司 团簇离子注入的系统、大原子基团形成方法和超浅结制备方法
CN107393795A (zh) * 2010-02-26 2017-11-24 恩特格里斯公司 用于提高离子注入系统中的离子源的寿命和性能的方法和设备
CN111033679A (zh) * 2017-08-22 2020-04-17 普莱克斯技术有限公司 用于离子注入的含锑材料
US10651005B2 (en) 2017-02-01 2020-05-12 Fei Company Innovative source assembly for ion beam production
CN111868880A (zh) * 2017-10-26 2020-10-30 爱思特匹克斯有限公司 电子源

Families Citing this family (316)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043157A1 (en) * 1999-12-13 2001-06-14 Semequip, Inc. Ion implantation ion source, system and method
US7838842B2 (en) 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
US6995079B2 (en) * 2003-08-29 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US20080223409A1 (en) * 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
CN1894763B (zh) * 2003-12-12 2010-12-08 山米奎普公司 用于在离子植入中延长设备正常运行时间的方法及装置
US7942970B2 (en) * 2005-12-20 2011-05-17 Momentive Performance Materials Inc. Apparatus for making crystalline composition
WO2007146888A2 (en) * 2006-06-12 2007-12-21 Semequip, Inc. Vapor delivery to devices under vacuum
KR20090029209A (ko) * 2006-06-13 2009-03-20 세미이큅, 인코포레이티드 이온 주입을 위한 이온 빔 장치 및 방법
US7488951B2 (en) * 2006-08-24 2009-02-10 Guardian Industries Corp. Ion source including magnet and magnet yoke assembly
US8586459B2 (en) * 2006-11-06 2013-11-19 Semequip, Inc. Ion implantation with molecular ions containing phosphorus and arsenic
US7622722B2 (en) * 2006-11-08 2009-11-24 Varian Semiconductor Equipment Associates, Inc. Ion implantation device with a dual pumping mode and method thereof
US8013312B2 (en) * 2006-11-22 2011-09-06 Semequip, Inc. Vapor delivery system useful with ion sources and vaporizer for use in such system
US20080305598A1 (en) * 2007-06-07 2008-12-11 Horsky Thomas N Ion implantation device and a method of semiconductor manufacturing by the implantation of ions derived from carborane molecular species
US8193513B2 (en) * 2007-07-31 2012-06-05 Axcelis Technologies, Inc. Hybrid ion source/multimode ion source
TW200908100A (en) * 2007-08-07 2009-02-16 Promos Technologies Inc Mountable and dismountable inner shield
WO2009039382A1 (en) * 2007-09-21 2009-03-26 Semequip. Inc. Method for extending equipment uptime in ion implantation
US7700925B2 (en) * 2007-12-28 2010-04-20 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
TWI413149B (zh) * 2008-01-22 2013-10-21 Semequip Inc 離子源氣體反應器及用於將氣體饋給材料轉化成不同分子或原子物種之方法
US8330127B2 (en) * 2008-03-31 2012-12-11 Varian Semiconductor Equipment Associates, Inc. Flexible ion source
KR101420244B1 (ko) * 2008-05-20 2014-07-21 재단법인서울대학교산학협력재단 전자빔 집속 전극 및 이를 이용한 전자총
US7812321B2 (en) * 2008-06-11 2010-10-12 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8809800B2 (en) * 2008-08-04 2014-08-19 Varian Semicoductor Equipment Associates, Inc. Ion source and a method for in-situ cleaning thereof
JP4428467B1 (ja) * 2008-08-27 2010-03-10 日新イオン機器株式会社 イオン源
US7807961B2 (en) * 2008-10-08 2010-10-05 Varian Semiconductor Equipment Associates, Inc. Techniques for ion implantation of molecular ions
US8263944B2 (en) * 2008-12-22 2012-09-11 Varian Semiconductor Equipment Associates, Inc. Directional gas injection for an ion source cathode assembly
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
GB2470469B (en) * 2009-05-13 2014-04-23 Micromass Ltd Surface coating on ion source
US8471198B2 (en) 2009-05-13 2013-06-25 Micromass Uk Limited Mass spectrometer sampling cone with coating
GB0908246D0 (en) * 2009-05-13 2009-06-24 Micromass Ltd Surface coating on ion source
US8476587B2 (en) 2009-05-13 2013-07-02 Micromass Uk Limited Ion source with surface coating
GB0908250D0 (en) * 2009-05-13 2009-06-24 Micromass Ltd Surface coating on sampling cone of mass spectrometer
KR100949370B1 (ko) * 2009-07-01 2010-03-25 주식회사 에이팸 이온주입장치용 소스 헤드
US8802201B2 (en) * 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8253118B2 (en) 2009-10-14 2012-08-28 Fei Company Charged particle beam system having multiple user-selectable operating modes
EP2561540A4 (en) * 2010-04-09 2014-06-11 E A Fischione Instr Inc IMPROVED ION SOURCE
US9024273B2 (en) 2010-04-20 2015-05-05 Varian Semiconductor Equipment Associates, Inc. Method to generate molecular ions from ions with a smaller atomic mass
GB2484488B (en) * 2010-10-12 2013-04-17 Vg Systems Ltd Improvements in and relating to ion guns
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
JP5665679B2 (ja) * 2011-07-14 2015-02-04 住友重機械工業株式会社 不純物導入層形成装置及び静電チャック保護方法
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
WO2013068796A2 (en) * 2011-11-09 2013-05-16 Brookhaven Science Associates, Llc Molecular ion source for ion implantation
US9865429B2 (en) * 2011-12-01 2018-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion implantation with charge and direction control
US8922122B2 (en) * 2011-12-01 2014-12-30 Taiwan Semiconductor Manufaturing Company, Ltd. Ion implantation with charge and direction control
JP5822767B2 (ja) * 2012-03-22 2015-11-24 住友重機械イオンテクノロジー株式会社 イオン源装置及びイオンビーム生成方法
US9530615B2 (en) * 2012-08-07 2016-12-27 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US8975817B2 (en) * 2012-10-17 2015-03-10 Lam Research Corporation Pressure controlled heat pipe temperature control plate
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US9196452B2 (en) * 2013-03-08 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for carbon ion source head
US8994272B2 (en) * 2013-03-15 2015-03-31 Nissin Ion Equipment Co., Ltd. Ion source having at least one electron gun comprising a gas inlet and a plasma region defined by an anode and a ground element thereof
BR112015023115A2 (pt) * 2013-03-15 2017-07-18 Gen Electric dispositivo comutador de catodo frio e conversor de potência
US8993982B2 (en) * 2013-07-15 2015-03-31 Vg Systems Limited Switchable ion gun with improved gas inlet arrangement
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
TWI501286B (zh) * 2014-06-27 2015-09-21 Advanced Ion Beam Tech Inc 離子佈植機
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
CN107078009B (zh) 2014-09-01 2019-04-12 恩特格里斯公司 利用增强源技术进行磷或砷离子植入
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10012623B2 (en) 2014-11-24 2018-07-03 Marco CISTERNI Apparatus and method for mitigation of alterations in mass spectrometry in the presence of hydrogen
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US9899181B1 (en) 2017-01-12 2018-02-20 Fei Company Collision ionization ion source
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
RU2642921C1 (ru) * 2017-03-28 2018-01-30 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ) Импульсный источник ионов гелия
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11098402B2 (en) 2017-08-22 2021-08-24 Praxair Technology, Inc. Storage and delivery of antimony-containing materials to an ion implanter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102401446B1 (ko) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
CN111316417B (zh) 2017-11-27 2023-12-22 阿斯莫Ip控股公司 与批式炉偕同使用的用于储存晶圆匣的储存装置
US10580632B2 (en) * 2017-12-18 2020-03-03 Agilent Technologies, Inc. In-situ conditioning in mass spectrometry systems
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
RU2671960C1 (ru) * 2018-02-01 2018-11-08 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Импульсный источник водородных ионов с осцилляцией электронов в неоднородном продольном магнитном поле
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
KR20190128558A (ko) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
KR20190129718A (ko) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
SG10201904997TA (en) 2018-06-01 2020-01-30 Micromass Ltd Filament assembly
GB201810823D0 (en) * 2018-06-01 2018-08-15 Micromass Ltd An inner source assembly and associated components
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR20210024462A (ko) 2018-06-27 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 금속 함유 재료를 형성하기 위한 주기적 증착 방법 및 금속 함유 재료를 포함하는 필름 및 구조체
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11404254B2 (en) 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
TW202104632A (zh) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
JP2020133004A (ja) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材を処理するための基材処理装置および方法
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
US10923306B2 (en) 2019-03-13 2021-02-16 Applied Materials, Inc. Ion source with biased extraction plate
US11600473B2 (en) 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (zh) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (zh) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
US11170973B2 (en) 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
TW202115273A (zh) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US10957509B1 (en) * 2019-11-07 2021-03-23 Applied Materials, Inc. Insertable target holder for improved stability and performance for solid dopant materials
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210078405A (ko) 2019-12-17 2021-06-28 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 층을 형성하는 방법 및 바나듐 나이트라이드 층을 포함하는 구조
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
JP2021109175A (ja) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
TW202146882A (zh) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (zh) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 專用於零件清潔的系統
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR20210117157A (ko) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
TW202140831A (zh) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 形成含氮化釩層及包含該層的結構之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202200837A (zh) 2020-05-22 2022-01-01 荷蘭商Asm Ip私人控股有限公司 用於在基材上形成薄膜之反應系統
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
CN111722263B (zh) * 2020-06-15 2022-08-23 电子科技大学 一种用于大功率电子束束斑测量的法拉第杯设计
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR20220053482A (ko) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11854760B2 (en) 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236181A (zh) * 1998-04-30 1999-11-24 易通公司 用于离子源的十硼烷蒸发器
US6300636B1 (en) * 1999-10-02 2001-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion source head

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US567509A (en) * 1896-09-08 Wheat steamer
US2754422A (en) 1952-07-30 1956-07-10 Edward J Lofgren Source of highly stripped ions
US4017403A (en) * 1974-07-31 1977-04-12 United Kingdom Atomic Energy Authority Ion beam separators
US3955091A (en) * 1974-11-11 1976-05-04 Accelerators, Inc. Method and apparatus for extracting well-formed, high current ion beams from a plasma source
US4135093A (en) * 1978-01-24 1979-01-16 The United States Of America As Represented By The United States Department Of Energy Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources
US4258266A (en) * 1979-07-30 1981-03-24 Hughes Aircraft Company Ion implantation system
US4579144A (en) * 1983-03-04 1986-04-01 Uti Instrument Company Electron impact ion source for trace analysis
JPH0752718B2 (ja) * 1984-11-26 1995-06-05 株式会社半導体エネルギー研究所 薄膜形成方法
US4845366A (en) * 1987-10-23 1989-07-04 Air Products And Chemicals, Inc. Semiconductor dopant vaporizer
US4985657A (en) * 1989-04-11 1991-01-15 Lk Technologies, Inc. High flux ion gun apparatus and method for enhancing ion flux therefrom
US5306921A (en) * 1992-03-02 1994-04-26 Tokyo Electron Limited Ion implantation system using optimum magnetic field for concentrating ions
DE69304522T2 (de) * 1992-04-16 1997-01-23 Advanced Energy Ind Inc Stabilisator fuer schalt-mode geleistet radio-frequenz plasma einrichtung
US5330800A (en) 1992-11-04 1994-07-19 Hughes Aircraft Company High impedance plasma ion implantation method and apparatus
US5306922A (en) * 1993-03-16 1994-04-26 Genus, Inc. Production of high beam currents at low energies for use in ion implantation systems
US5780862A (en) * 1994-01-11 1998-07-14 Siess; Harold E. Method and apparatus for generating ions
US5497066A (en) * 1994-02-23 1996-03-05 D & D Advanced Technologies, Inc. Battery booster system
US5523652A (en) * 1994-09-26 1996-06-04 Eaton Corporation Microwave energized ion source for ion implantation
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
US5576600A (en) * 1994-12-23 1996-11-19 Dynatenn, Inc. Broad high current ion source
US5633506A (en) * 1995-07-17 1997-05-27 Eaton Corporation Method and apparatus for in situ removal of contaminants from ion beam neutralization and implantation apparatuses
US6259091B1 (en) * 1996-01-05 2001-07-10 Battelle Memorial Institute Apparatus for reduction of selected ion intensities in confined ion beams
GB2312178A (en) * 1996-04-16 1997-10-22 Univ Sheffield New calixarenes and their use in waterproofing
US5703372A (en) * 1996-10-30 1997-12-30 Eaton Corporation Endcap for indirectly heated cathode of ion source
US5939831A (en) * 1996-11-13 1999-08-17 Applied Materials, Inc. Methods and apparatus for pre-stabilized plasma generation for microwave clean applications
DE19702294A1 (de) * 1997-01-23 1998-07-30 Rossendorf Forschzent Modulator für die Plasmaimmersions-Ionenimplantation
US6479785B1 (en) * 1998-07-09 2002-11-12 Richard J. Fugo Device for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator
US6355933B1 (en) * 1999-01-13 2002-03-12 Advanced Micro Devices, Inc. Ion source and method for using same
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
WO2001043157A1 (en) * 1999-12-13 2001-06-14 Semequip, Inc. Ion implantation ion source, system and method
US6452338B1 (en) * 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US7838842B2 (en) 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
US6777686B2 (en) * 2000-05-17 2004-08-17 Varian Semiconductor Equipment Associates, Inc. Control system for indirectly heated cathode ion source
AU2001266847A1 (en) * 2000-11-30 2002-06-11 Semequip, Inc. Ion implantation system and control method
CN1507709A (zh) * 2000-12-21 2004-06-23 松下电器产业株式会社 无线系统、无线装置、无线连接方法、程序、及媒体
DE10131411A1 (de) * 2001-06-26 2003-02-20 Beru Ag Rad für Fahrzeuge mit Luftreifen und Anordnung aus einem Ventil, einer Vorrichtung zum Messen des Reifendruckes und einer sie im Luftreifen haltenden Feder
US20030079688A1 (en) * 2001-10-26 2003-05-01 Walther Steven R. Methods and apparatus for plasma doping by anode pulsing
GB0131097D0 (en) * 2001-12-31 2002-02-13 Applied Materials Inc Ion sources
US20040002202A1 (en) 2002-06-26 2004-01-01 Horsky Thomas Neil Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions
US6686595B2 (en) * 2002-06-26 2004-02-03 Semequip Inc. Electron impact ion source
KR100864048B1 (ko) * 2002-06-26 2008-10-17 세미이큅, 인코포레이티드 이온 소스
US6805779B2 (en) * 2003-03-21 2004-10-19 Zond, Inc. Plasma generation using multi-step ionization
US6975073B2 (en) * 2003-05-19 2005-12-13 George Wakalopulos Ion plasma beam generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236181A (zh) * 1998-04-30 1999-11-24 易通公司 用于离子源的十硼烷蒸发器
US6300636B1 (en) * 1999-10-02 2001-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Ion source head

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455147B2 (en) 2005-08-30 2016-09-27 Entegris, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
CN105702547A (zh) * 2009-10-27 2016-06-22 安格斯公司 离子注入系统及方法
US9685304B2 (en) 2009-10-27 2017-06-20 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
TWI584336B (zh) * 2009-10-27 2017-05-21 美商恩特葛瑞斯股份有限公司 離子佈植系統及方法
US9111860B2 (en) 2009-10-27 2015-08-18 Entegris, Inc. Ion implantation system and method
US9142387B2 (en) 2009-10-27 2015-09-22 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
CN102668016A (zh) * 2009-10-27 2012-09-12 先进科技材料股份有限公司 离子注入系统及方法
CN102668016B (zh) * 2009-10-27 2016-02-24 安格斯公司 离子注入系统及方法
CN107393795A (zh) * 2010-02-26 2017-11-24 恩特格里斯公司 用于提高离子注入系统中的离子源的寿命和性能的方法和设备
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9764298B2 (en) 2010-08-30 2017-09-19 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
CN104380425A (zh) * 2012-06-29 2015-02-25 Fei公司 多种类离子源
CN103298233B (zh) * 2013-05-10 2016-03-02 合肥聚能电物理高技术开发有限公司 高密度阴极等离子体源
CN103298233A (zh) * 2013-05-10 2013-09-11 合肥聚能电物理高技术开发有限公司 新型高密度阴极等离子体源
CN104282527A (zh) * 2013-07-11 2015-01-14 中国科学院大连化学物理研究所 一种稳定的直流放电负离子源
CN105900208A (zh) * 2013-12-20 2016-08-24 艾克塞利斯科技公司 针对离子注入系统的降低轨迹金属污染的离子源
CN105900208B (zh) * 2013-12-20 2018-07-10 艾克塞利斯科技公司 针对离子注入系统的降低轨迹金属污染的离子源
TWI654642B (zh) 2013-12-20 2019-03-21 美商艾克塞利斯科技公司 離子植入系統、離子源腔室以及用於離子植入系統的離子源
US10651005B2 (en) 2017-02-01 2020-05-12 Fei Company Innovative source assembly for ion beam production
CN107195522A (zh) * 2017-06-29 2017-09-22 上海集成电路研发中心有限公司 团簇离子注入的系统、大原子基团形成方法和超浅结制备方法
CN111033679A (zh) * 2017-08-22 2020-04-17 普莱克斯技术有限公司 用于离子注入的含锑材料
CN111033679B (zh) * 2017-08-22 2021-11-23 普莱克斯技术有限公司 用于离子注入的含锑材料
CN111868880A (zh) * 2017-10-26 2020-10-30 爱思特匹克斯有限公司 电子源
CN111868880B (zh) * 2017-10-26 2023-09-29 爱思特匹克斯有限公司 电子源

Also Published As

Publication number Publication date
US20070170372A1 (en) 2007-07-26
US7834554B2 (en) 2010-11-16
WO2007056249A1 (en) 2007-05-18
EP1945832A4 (en) 2010-11-10
US20080087219A1 (en) 2008-04-17
US20060097645A1 (en) 2006-05-11
US20080042580A1 (en) 2008-02-21
US7838842B2 (en) 2010-11-23
CN101384747B (zh) 2013-11-20
JP4927859B2 (ja) 2012-05-09
EP1945832A1 (en) 2008-07-23
KR20080065276A (ko) 2008-07-11
JP2009515301A (ja) 2009-04-09
TW200733243A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
CN101384747B (zh) 用于离子植入的双模式离子源
KR101108895B1 (ko) 가스 희석으로 이온 소스의 성능을 향상시키고 수명을 연장시키는 기술
US8502161B2 (en) External cathode ion source
CN101512716B (zh) 用于从离子源提取供在离子植入中使用的离子的方法及设备
TWI326102B (en) Method and apparatus for extending equipment uptime in ion implantation
CN102844842B (zh) 硅硼烷注入方法
JP2014075346A (ja) 水素化ホウ素クラスターイオンの注入によるイオン注入装置及び半導体製造方法
KR20080089646A (ko) 이온 주입 방법 및 이를 위해 사용되는 이온 소스
KR20100015890A (ko) 가스 혼합으로 이온 소스의 성능을 향상시키고 수명을 연장시키는 기술
US6670623B2 (en) Thermal regulation of an ion implantation system
TW201017707A (en) Double plasma ion source
US10748738B1 (en) Ion source with tubular cathode
US8330118B2 (en) Multi mode ion source
KR101562785B1 (ko) 이중 플라즈마 이온 소오스
TW201503208A (zh) 用於離子源抵抗氟和氟化氫的密封物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131120

Termination date: 20141106

EXPY Termination of patent right or utility model