RU2642921C1 - Импульсный источник ионов гелия - Google Patents

Импульсный источник ионов гелия Download PDF

Info

Publication number
RU2642921C1
RU2642921C1 RU2017110269A RU2017110269A RU2642921C1 RU 2642921 C1 RU2642921 C1 RU 2642921C1 RU 2017110269 A RU2017110269 A RU 2017110269A RU 2017110269 A RU2017110269 A RU 2017110269A RU 2642921 C1 RU2642921 C1 RU 2642921C1
Authority
RU
Russia
Prior art keywords
cathode
anode
anticathode
magnetic pole
stainless steel
Prior art date
Application number
RU2017110269A
Other languages
English (en)
Inventor
Юрий Яковлевич Лапицкий
Original Assignee
Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ) filed Critical Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ)
Priority to RU2017110269A priority Critical patent/RU2642921C1/ru
Application granted granted Critical
Publication of RU2642921C1 publication Critical patent/RU2642921C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/08Arrangements for controlling intensity of ray or beam

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

Изобретение относится к области ускорительной техники. Импульсный источник ионов гелия с холодными катодом и антикатодом состоит из соленоидальной катушки, надетой на немагнитную вакуумную камеру, внутри которой помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным углублением в виде стакана, примыкающий к катодному магнитному полюсу, кольцевой анодный изолятор, анод в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод в виде диска, выполненный из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса. На антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, диаметр выступа больше, чем диаметр стакана в катоде, но меньше, чем внутренний диаметр анода. Технический результат - стабилизации плотности разряда по оси отверстия ионной эмиссии. Устройство обеспечивает получение импульсного пучка ионов гелия при частоте импульсов 16-50 Гц, длительности импульсов синусоидальной формы по основанию импульса 100×10-6 с и амплитуде тока ионного пучка 80×10-3 А. 1 ил.

Description

Изобретение относится к ускорительной технике и может быть использовано в научной деятельности и технологических процессах, в которых используются пучки ионов гелия при среднем ионном токе более 50×10-6 А.
Если бомбардировать мишень с дейтерием ионами 3Не+1 с энергией 150…200 кэВ, возникает ядерная реакция с выходом протонов с энергией 18 МэВ, которые можно использовать для моделирования протонной составляющей радиационного пояса Земли при испытании аппаратуры космических спутников.
Сущность изобретения: использование кольцевого выступа на антикатоде для ограничения расширения канала разряда в гелии с целью стабилизации и интенсификации плотности разряда по оси отверстия ионной эмиссии. Известна конструкция источника с катодным конусом высокочастотных импульсов ионов водорода (RU 2231162, 20.06.2004), который содержит соленоидальную катушку, надетую на немагнитную вакуумную камеру, внутри которой помещены два магнитных полюса с круглым углублением в центре, катод и антикатод с отверстием эмиссии, анод в виде цилиндра с отверстием. В центре катода установлен конус из тугоплавкого материала, который обеспечивает стабильное положение канала разряда относительно оси ионного источника, если рабочим газом является водород. Механизм стабилизации положения канала разряда связан с возникновением в водородной плазме отрицательных ионов Н-. При использовании гелия в такой конструкции источника получить стабильное положение канала разряда не удается.
Прототипом изобретения является конструкция (RU 2249880, 10.04.2005), которая содержит вакуумную камеру, на которую надета соленоидальная катушка. Внутри камеры помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным выступом в виде стакана, примыкающий к катодному магнитному полюсу, анод в виде пустотелого цилиндра, выполненного из нержавеющей стали, антикатод в виде диска, выполненного из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии, в центре своей выступающей частью вставленный в отверстие антикатодного магнитного полюса. По оси вакуумной камеры, катодного магнитного полюса и катода выполнено сквозное отверстие, через которое пропущен стержень из тугоплавкого металла, торцевая часть стержня, выступающая из катода, является рабочей частью стержневого катода.
Специфика стабильного разряда в рассматриваемом ионном источнике заключается в том, что за счет осевых углублений в магнитных полюсах продольное магнитное поле на оси оказывается минимальным, что приводит к дрейфу осциллирующих электронов к оси источника, формированию интенсивного приосевого разряда и возникновению катодных пятен на торце стержневого катода. Стабильность работы ионного источника определяется стабильностью положения катодных пятен. Стабильность положения катодных пятен возможна при слабом осевом магнитном поле, где линии магнитного поля нормальны к поверхности катода. Все это достигается, если в качестве рабочего газа в рассматриваемом ионном источнике используется водород. Высокая теплопроводность водорода и его достаточно высокое сродство к электрону обеспечивают работу сложного механизма формирования канала разряда с высокой и стабильной плотностью по оси источника.
Техническая проблема заключается в том, что если в качестве рабочего газа в ближайшем аналоге использовать гелий, механизм формирования стабильного канала разряда нарушается из-за отсутствия в разряде отрицательно заряженных ионов.
В связи с этим возникает задача обеспечить получение импульсного источника ионов гелия с целью стабилизации плотности разряда по оси отверстия ионной эмиссии.
Поставленная задача достигается тем, что импульсный источник ионов гелия, поперечное сечение которого изображено на чертеже, состоит из соленоидальной катушки (1), надетой на немагнитную вакуумную камеру (2), внутри которой помещены катодный магнитный полюс (3) с центральным углублением, катод (4) из нержавеющей стали в виде плоского диска с центральным выступом в виде стакана, примыкающий к катодному магнитному полюсу (3), кольцевой анодный изолятор (5), анод (6) в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод (7) из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса (8), отличающийся тем, что на антикатоде (7) выполнен кольцевой выступ (7''), соосный с анодом (6) и ориентированный по направлению к аноду (6), внутренний диаметр выступа больше, чем внутренний диаметр стакана в катоде (4), но меньше чем внутренний диаметр анода (6). Плоская часть (7') внутри кольцевого выступа (7'') является активной эмиссионной поверхностью антикатода.
В рассматриваемой конструкции импульсного источника ионов гелия при поджиге разряда в начальный момент работает только механизм ион-электронной эмиссии. Плотность разряда невелика, а увеличение тока разряда происходит только за счет увеличения диаметра канала разряда. Введение кольцевого выступа на антикатоде, с одной стороны, экранирует от поля анода близкие к кольцевому выступу поверхности антикатода, препятствуя расширению канала разряда, а с другой стороны, торцевая 7'' и внутренняя 7' части кольцевого выступа оказываются в наиболее благоприятном для возникновения «катодных пятен» месте. Область возникновения «катодных пятен» оказывается на строго фиксированном расстоянии относительно оси ионного источника, обеспечивая подпитку электронами объем разряда. Но так как источнике постоянно обеспечиваются условия дрейфа осциллирующих электронов к оси источника, канал разряда оказывается при этом строго фиксирован по положению и по плотности.
Предложенное изобретение заключается в создании импульсного источника ионов гелия с холодными катодом и антикатодом, состоящего из соленоидальной катушки, надетой на немагнитную вакуумную камеру, внутри которой помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным углублением в виде стакана, примыкающий к катодному магнитному полюсу, кольцевой анодный изолятор, анод в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод в виде диска, выполненный из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса, где на антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, при этом диаметр выступа больше, чем диаметр стакана в катоде, но меньше, чем внутренний диаметр анода.
Техническим результатом изобретения является получение импульсного пучка ионов гелия при частоте импульсов 16-50 Гц, длительности импульсов синусоидальной формы по основанию импульса 100×10-6 с и амплитуде тока ионного пучка 80×10-3 А, который достигается за счет использования кольцевого выступа на антикатоде для ограничения расширения канала разряда в гелии с целью стабилизации плотности разряда по оси отверстия ионной эмиссии.
Примеры
Пример 1. Экспериментальная проверка работы конструкции источника проводилась при частоте импульсов от 16 до 50 Гц, длительности импульсов синусоидальной формы по основанию импульса 100×10-6 с. В результате работы ионного источника, в котором на антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, где диаметр выступа в 1,5 раза больше, чем диаметр стакана в катоде, был получен импульсный ионный ток ионов гелия при амплитуде тока ионного пучка 80×10-3 А со стабильной плотностью разряда.

Claims (1)

  1. Импульсный источник ионов гелия с холодными катодом и антикатодом, состоящий из соленоидальной катушки, надетой на немагнитную вакуумную камеру, внутри которой помещены катодный магнитный полюс с центральным углублением, катод из нержавеющей стали в виде плоского диска с центральным углублением в виде стакана, примыкающий к катодному магнитному полюсу, кольцевой анодный изолятор, анод в виде пустотелого цилиндра с кольцевой перемычкой в середине, выполненный из нержавеющей стали, антикатод в виде диска, выполненный из нержавеющей стали, по оси которого выполнено углубление с отверстием эмиссии в центре, своей выступающей частью вставленный в отверстие антикатодного магнитного полюса, отличающийся тем, что на антикатоде выполнен кольцевой выступ, соосный с анодом и расположенный по направлению к аноду, диаметр выступа больше, чем диаметр стакана в катоде, но меньше, чем внутренний диаметр анода.
RU2017110269A 2017-03-28 2017-03-28 Импульсный источник ионов гелия RU2642921C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017110269A RU2642921C1 (ru) 2017-03-28 2017-03-28 Импульсный источник ионов гелия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017110269A RU2642921C1 (ru) 2017-03-28 2017-03-28 Импульсный источник ионов гелия

Publications (1)

Publication Number Publication Date
RU2642921C1 true RU2642921C1 (ru) 2018-01-30

Family

ID=61173391

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017110269A RU2642921C1 (ru) 2017-03-28 2017-03-28 Импульсный источник ионов гелия

Country Status (1)

Country Link
RU (1) RU2642921C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135099A (en) * 1977-09-15 1979-01-16 Westinghouse Electric Corp. High energy, short duration pulse system
US20020070672A1 (en) * 1999-12-13 2002-06-13 Horsky Thomas N. Electron beam ion source with integral low-temperature vaporizer
RU2231162C2 (ru) * 2002-08-12 2004-06-20 Федеральное государственное унитарное предприятие Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики Источник с катодным конусом высокочастотных импульсов ионов водорода
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135099A (en) * 1977-09-15 1979-01-16 Westinghouse Electric Corp. High energy, short duration pulse system
US20020070672A1 (en) * 1999-12-13 2002-06-13 Horsky Thomas N. Electron beam ion source with integral low-temperature vaporizer
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation
RU2231162C2 (ru) * 2002-08-12 2004-06-20 Федеральное государственное унитарное предприятие Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики Источник с катодным конусом высокочастотных импульсов ионов водорода

Similar Documents

Publication Publication Date Title
Ryabchikov et al. High intensity metal ion beam generation
Deichuli et al. Low energy, high power hydrogen neutral beam for plasma heating
JP2013524467A (ja) 改良型イオン源
Gushenets et al. Electrostatic plasma lens focusing of an intense electron beam in an electron source with a vacuum arc plasma cathode
Wu et al. Design of a multi-cusp ion source for proton therapy
CN106057614A (zh) 一种冷阴极潘宁离子源
RU2642921C1 (ru) Импульсный источник ионов гелия
Burdovitsin et al. A plasma-cathode electron source for focused-beam generation in the fore-pump pressure range
Moskvin et al. Electron beam generation in an arc plasma source with an auxiliary anode plasma
Abdrashitov et al. Negative ion production in the RF multiaperture surface-plasma source
Koval et al. Formation of high intensity ion beams with ballistic focusing
Pikin et al. First test of BNL electron beam ion source with high current density electron beam
Vahrenkamp et al. A 100-mA Low-Emittance Ion Source for Ion-Beam Fusion
RU2671960C1 (ru) Импульсный источник водородных ионов с осцилляцией электронов в неоднородном продольном магнитном поле
Ivanov et al. Negative ion and neutral beams injectors at the Budker Institute of nuclear physics
Okamura et al. Laser ion source for low-charge heavy ion beams
Rawat et al. Effects of axial magnetic field in a magnetic multipole line cusp ion source
RU2231162C2 (ru) Источник с катодным конусом высокочастотных импульсов ионов водорода
Belchenko et al. Study of Fluctuations in the CW Penning Surface‐Plasma Source of Negative Ions
Deichuli et al. High power hydrogen neutral beam injector with focusing for plasma heating
Jiang et al. Experimental study of electron gun with hollow-anode vacuum-arc-plasma cathode
Belchenko et al. Extracted beam and electrode currents in the inductively driven surface-plasma negative hydrogen ion source
RU2726143C1 (ru) Источник интенсивных пучков ионов на основе плазмы ЭЦР разряда, удерживаемой в открытой магнитной ловушке
Abdrashitov et al. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices
RU2642847C2 (ru) Способ повышения ресурса самонакаливаемого полого катода в сильноточном разряде в аксиально-симметричном магнитном поле