CN101253622B - 局部化soi上方的无电容器dram - Google Patents

局部化soi上方的无电容器dram Download PDF

Info

Publication number
CN101253622B
CN101253622B CN2006800203457A CN200680020345A CN101253622B CN 101253622 B CN101253622 B CN 101253622B CN 2006800203457 A CN2006800203457 A CN 2006800203457A CN 200680020345 A CN200680020345 A CN 200680020345A CN 101253622 B CN101253622 B CN 101253622B
Authority
CN
China
Prior art keywords
silicon
buoyancy aid
insulator layer
state
storage arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800203457A
Other languages
English (en)
Other versions
CN101253622A (zh
Inventor
苏拉·马修
吉格伊什·D·特里维迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN101253622A publication Critical patent/CN101253622A/zh
Application granted granted Critical
Publication of CN101253622B publication Critical patent/CN101253622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor

Abstract

本发明提供一种在局部化绝缘体上硅上方形成无电容器DRAM的方法,其包含以下步骤:提供硅衬底(10);以及在所述硅衬底内界定硅柱(16)阵列。在所述硅衬底(10)的至少一部分顶部且在所述硅柱(16)之间界定绝缘体层(18)。在所述绝缘体层(18)顶部所述硅柱(16)周围界定绝缘体上硅层(22、24),且在所述绝缘体上硅层(22、24)内部和上方形成无电容器DRAM(26-40)。

Description

局部化SOI上方的无电容器DRAM
技术领域
本发明大体上涉及一种局部化绝缘体上硅(“SOI”)半导体设计,且更具体地说,涉及在动态随机存取存储器(“DRAM”)阵列中形成局部氧化物。
背景技术
使用绝缘体上硅或SOI衬底通常能够在绝缘体(例如氧化物)上方制造典型的电路元件。在一种应用中,可在SOI上形成无电容器DRAM。使用SOI设计与传统硅衬底相比增加了针对这些无电容器DRAM的存取晶体管的浮体效应,从而产生远为更有效的存储。在此类DRAM中编程浮体可通过碰撞电离(“II”)或通过栅极引发漏极泄漏(“GIDL”)来进行。感测是非破坏性的且在较低电压下使用电阻或电流感测方法来进行。对经由GIDL的无电容器DRAM的进一步描述可在Yoshida等人的“A Design of a CapacitorlessIT-DRAM Cell Using Gate-induced Drain Leakage(GIDL)Current for Low-power andHigh-speed Embedded Memory,Technical Digest”(2003年国际电子装置会议,第913-916页)(IEEE Cat.No.03CH37457,2003)中找到,其内容以全文引用的方式并入本文中。
发明内容
根据本发明的一个实施例,揭示一种在局部化绝缘体上硅上方形成无电容器DRAM的方法。所述方法包含以下步骤:提供硅衬底;以及在所述硅衬底内界定硅柱阵列。在硅衬底的至少一部分上方且在硅柱之间界定绝缘体层。在绝缘体层上方在硅柱周围界定绝缘体上硅层,且在绝缘体上硅层内部和上方形成无电容器DRAM。
根据本发明的另一实施例,揭示一种形成存储器芯片的方法。所述方法包含以下步骤:在存储器芯片上界定外围区和存储器阵列区。在存储器阵列区中形成至少一个绝缘体上硅区,而在外围区中没有形成绝缘体上硅区。在至少一个绝缘体上硅区上或内部形成至少一个无电容器DRAM。
根据本发明的另一实施例,揭示一种存储器装置。所述存储器装置包含源极和漏极。所述存储器装置进一步包含形成在所述源极与所述漏极之间的浮体,所述浮体界定在局部化绝缘体上硅内。所述存储器装置进一步包含邻近于浮体的栅极。
根据本发明的另一实施例,揭示一种集成电路。所述集成电路包含外围区和阵列区。在所述阵列区内形成至少一个局部化绝缘体上硅。所述集成电路进一步包含形成在阵列区内的源极和漏极。在所述至少一个局部化绝缘体上硅内在所述源极与所述漏极之间形成浮体。集成电路进一步包含邻近于浮体的栅极。
根据本发明的另一实施例,揭示一种系统。所述系统包含源极以及第一漏极和第二漏极。所述系统进一步包含形成在源极与第一漏极之间的第一浮体以及形成在源极与第二漏极之间的第二浮体,所述浮体界定在局部化绝缘体上硅内。所述系统进一步包含邻近于第一浮体的第一栅极以及邻近于第二浮体的第二栅极。
根据本发明的一个实施例,揭示一种操作无电容器DRAM的方法。所述方法包含以下步骤:将浮体置于第一状态中,以及通过测量无电容器DRAM的源极处的第一电流来检测所述第一状态。所述浮体界定在局部化绝缘体上硅内。
附图说明
图1是上面已经执行根据本发明一个实施例的局部SOI形成过程的第一步骤的存储器装置的一部分的示意性横截面图。
图2说明上面已经执行根据本发明一个实施例的局部SOI形成过程的第二步骤的图1的存储器装置。
图3说明上面已经执行根据本发明一个实施例的局部SOI形成过程的第三步骤的图1的存储器装置。
图4说明上面已经执行根据本发明一个实施例的局部SOI形成过程的第四步骤的图1的存储器装置。
图5说明上面已经执行根据本发明一个实施例的局部SOI形成过程的第五步骤的图1的存储器装置。
图6说明构建于图5的局部SOI衬底上方的无电容器DRAM。
图7是图6的无电容器DRAM的局部俯视平面图。
具体实施方式
尽管本发明的优选实施例结合无电容器DRAM来说明局部SOI,但应了解这些形成局部SOI的方法同样可并入到其它集成电路制作中。另外,尽管依据特定DRAM制作技术来描述以下方法,但所属领域的技术人员将众所周知的是,此类技术可由其它制作和修改半导体材料的方法替代。
SOI通常通过均匀层转移来形成。因此,为了在SOI上方制造无电容器DRAM,举例来说,存储器装置的阵列和外围的整个表面并入有SOI衬底。然而,尽管在阵列内需要SOI,其中绝缘体增强浮体作用,但其不利地影响外围中的芯片性能。
此外,经由层转移形成SOI是个困难、费时且昂贵的过程。不同的硅和绝缘层熔化引起许多技术问题,且必须在特定条件下以特定温度执行。
因此,此项技术中需要通过常规半导体制作技术形成SOI局部区域,且同时使得芯片剩余部分未被修改。进一步需要一种通过常规DRAM制作技术使用块硅制作无电容器DRAM的方法。因此,可在没有经由层转移形成SOI的费用和困难的情况下实现无电容器DRAM的优点。
图1到5说明一种用于廉价地且有效地形成局部SOI的方法。根据这种方法,可在存储器芯片的阵列内单独地形成SOI结构,从而将在典型半导体衬底上和内部形成外围。
虽然未在任何图式中展示,但可使用任何典型衬底10(其通常由硅晶片形成)来执行以下形成局部SOI的方法。在其它实施例中,衬底10可包含其它适宜材料(例如,其它III-IV组材料)或形成于单个晶体片上方的外延层。
最初参看图1,优先地首先在衬底10上方形成热生长薄介电层(未图示),其在优选实施例中包含铺垫氧化物。接着,可在衬底10和介电层上方沉积硬掩模层12(例如氮化硅)。可通过任何众所周知的沉积工艺来形成硬掩模层12,所述沉积工艺例如为喷溅、化学气相沉积(CVD)或旋涂沉积等。虽然在优选实施例中硬掩模层12包含氮化硅,但必须了解其还可由氧化硅(举例来说)或可在衬底蚀刻期间保护下伏衬底且还经得起额外处理的其它材料形成,如将从下文进一步描述的制作步骤中可见的。
在同样未在图式中说明的步骤中,接着可使用形成于硬掩模层12上方的光致抗蚀剂层来图案化硬掩模层12。可使用常规光刻技术来图案化光致抗蚀剂层以形成掩模,且可穿过经图案化的光致抗蚀剂各向异性地蚀刻硬掩模层12来在存储器装置的阵列区内获得多个硬掩模岛14。接着可通过常规技术来移除光致抗蚀剂层,例如通过使用氧基等离子体。在替代实施例中,可各向异性地蚀刻硬掩模层12来获得硬掩模栅格,其可大体上提供与硬掩模岛14相似的功能性(即,保护衬底10的将用以起源横向外延过度生长的部分),下文将详细描述。
如说明一部分阵列的横截面图的图1中所示,接着选择性地回蚀刻衬底10的硅。所述蚀刻过程相对于形成硬掩模层12的材料选择性地蚀刻衬底10。举例来说,可使用选择性湿式蚀刻,其相对于氮化硅来剥离硅。在另一实施例中,可使用离子铣削或反应性离子蚀刻。因此,存储器装置的阵列成为硅柱16的阵列,优选的是其中每一有源区域区中心具有一个硅柱。这些硅柱16中的每一者界定在硬掩模岛14下方。同时,优选地留下存储器装置的外围的至少一部分不被触及、由硬掩模12的未经图案化区保护。
在替代实施例中,只需要为多个有源区域形成一个硅柱16。举例来说,可为每五个有源区域形成一个硅柱16。然而,在此实施例中,以下某些步骤(例如图3所示的硅横向外延生长)可能花费长得多的时间。如熟练技工将知道的,通常执行未在图式中展示的步骤来分开有源区域。举例来说,在一个实施例中,可在每一有源区域周围界定场氧化物,以防止邻近的有源区域之间的干扰。另一方面,在为每一有源区域独自形成局部化或伪SOI的情况下,可省略单独场分隔步骤,如所说明的。
在图2中,展示阵列的根据以上步骤剥离的部分由绝缘体层18(优选地,氧化物)填充。在优选实施例中,绝缘体层18被毯覆式沉积在阵列上方,至少达到硅柱16的顶部表面的高度。在沉积足够量的绝缘体之后,可通过所属领域的技术人员众所周知的许多工艺中的任一者来移除可能已经形成于装置的岛14和其它部分上方的多余物。举例来说,可将装置表面平面化到硬掩模岛14的顶部表面,如图2所示。可使用任何适宜的平面化工艺,例如化学机械抛光(“CMP”)。
因此,阵列优选地包含多个由绝缘体18包围的硅柱16,而外围将仅仅保留其原始配置,其中硬掩模层12上覆于覆盖衬底10的介电层(例如,铺垫氧化物,未图示)上方。
转向图3,可在阵列内使用另一掩蔽工艺(例如上文所述的工艺)以在硅柱16周围切开绝缘体层18,至少在需要有源区域的区中切开。在所说明的实施例中,每一有源区具有其自身的沟槽20,使得绝缘体18在沟槽20之间的未蚀刻部分充当场分隔。如上文描述的,这个工艺优选地使用根据常规光刻技术图案化的光致抗蚀剂来执行,可视情况用硬掩模执行。在优选实施例中,可接着使用选择性蚀刻工艺来选择性地相对于硬掩模层12和衬底10来凹陷绝缘体层18,进而在存储器装置中在硅柱16周围形成沟槽20。优选地持续进行这个蚀刻过程,直到绝缘体层18内的沟槽20获得大于硬掩模层12的高度但小于硅柱16的高度的深度为止,进而暴露硅衬底10的形成硅柱16的一部分。优选地,沟槽20具有约200与1,000
Figure 2006800203457_1
之间的深度。
在优选实施例中,可接着使用硅作为晶种层来从硅柱16外延生长一些硅层22。如所属领域的技术人员众所周知的,外延生长产生具有与硅衬底10相同的结晶结构的硅延伸体22。优选地,采用选择性外延法以免需要随后从暴露的氧化物和氮化物表面移除多晶硅。优选地,生长约50
Figure 2006800203457_2
与500
Figure 2006800203457_3
之间的硅(或其它半导体)。
如图4所示,接着可在形成于硅柱16周围的沟槽20内沉积非晶硅层24。在优选实施例中,非晶硅24可毯覆式沉积在阵列上方,从而填充沟槽20。在沉积足够量硅之后,可通过所属领域的技术人员众所周知的许多工艺中的任一者来移除多余物。如图4所示,优选地将装置表面平面化到硬掩模岛14的顶部表面。可使用任何适宜的平面化工艺,例如CMP。在另一实施例中,硅延伸体22可改为通过外延沉积来延伸,以便填充沟槽20。在又一布置中,可在下文描述的结晶步骤之后进行平面化。
在优选实施例中,可接着在硅层24的表面上方生长薄氧化物23(如图4所示),这可进一步有利于使用外延沉积的硅延伸体22作为晶种层来使填充硅24结晶。
优选的硅和氧化物沉积之后进行退火过程,借此非晶硅24趋向于获得与外延生长硅延伸体22的结晶取向类似的结晶取向。优选地,非晶硅24采取有序结晶图案。此类转换是一类称为外延横向增生(ELO)的固相外延法。
最后,如图5所示,可移除硬掩模岛14,且可凹陷硅层24(优选地现在已结晶)。在优选实施例中,可使用选择性蚀刻,其对硅24和硬掩模层14的蚀刻要比对绝缘体层18的蚀刻有效得多,进而暴露硅柱16以进行进一步的处理步骤。可接着进行进一步选择性外延沉积,以获得所需厚度。或者,可平面化整个晶片。
根据上述过程,可使用相对较廉价的制作技术来在常规多晶硅衬底上形成局部化绝缘体上硅。图6和7展示两个存储器单元共享单个晶体管源极的布置。具体地说,这些图式说明在这个SOI衬底上和内部形成的无电容器DRAM。当然,在其它实施例中,还预期其它DRAM方案。
在图6中,展示完成的无电容器DRAM结构,其形成于根据上文陈述的步骤而形成的局部SOI上方。如所说明的,硅柱16保留在共用源极下方,且通过接点26连接到传导数字或位线28。漏极30位于结晶硅层24的最远端处,且也通过接点32与读出线34电连接。在优选实施例中,浮体36形成沟道的分离漏极30与源极(在柱16顶部处)的部分,且这些浮体36直接邻近于内侧对字线38。此内侧对字线38优选地分离源极16与漏极30,如图6中可见,从而充当双栅极。尽管上文中称为漏极30和源极16,但将了解这些仅仅是出于方便起见且出于易于与传统基于电容器的DRAM设计进行比较起见所使用的标号。可颠倒所述标号;电压在源极处还是在漏极处具有较高电平取决于正在执行读取操作还是写入操作,如下文中更详细描述。
图6所示的结构可根据所属领域的技术人员众所周知的许多沉积、图案化和蚀刻步骤来形成。尽管是针对无电容器DRAM操作来配置的,但所说明的方案(其中两个存储器单元共享共用位线28和位线接点26)另外方面类似于颁予Tran的第6,660,584号美国专利中的方案,所述美国专利的揭示内容以全文引用的方式并入本文中。′584专利描述一种“6F2”布置,其中多对存储器单元共享共用位线和源极区且具有多个独立对字线、漏极和电容器。用以形成图6所示结构的工艺将当然不同于第6,660,584号美国专利中的工艺,因为图6的结构缺少电容器。
优选地,首先在硅层上方生长栅极氧化物,随后进行栅极堆叠沉积和蚀刻。接着可形成必要的掺杂植入物来界定源极、漏极和沟道区。在某些掺杂步骤之前,可用所属领域的技术人员众所周知的典型间隔物制作工艺来沉积和蚀刻间隔物40。接着形成位线和单元侧结,随后形成金属接点和位线。接着还可形成读出区和其它金属接点。可用许多方式进行此类过程,但由此形成的无电容器DRAM特别有效,因为其形成于局部SOI上方。由于SOI的缘故,浮体36能特别好地起作用且隔离,因为它们位于绝缘体层18内,且阵列周围的外围的装置可系结到块衬底10。
在优选实施例中,图6所示的无电容器DRAM使用栅极引发漏极泄漏(GIDL)电流来操作,但在其它实施例中还可使用碰撞电离电流。如所属领域的技术人员将众所周知的,无电容器DRAM使用浮体36来存储关于晶体管状态的信息。具体地说,为了将逻辑“1”值写入到图6所示的晶体管,相对于邻近栅极(例如,字线38中的一者)将“漏极”30置于升高电压。漏极30和栅极38的电压分别由读出线34和字线38控制。由于电子穿隧的缘故,电子流动到漏极30,而所产生的空穴流动到下伏于栅极下方的浮体36。
随着空穴在浮体36中积累,晶体管的阈值电压降低,且源极电流进而增加。因此,通常在设计无电容器DRAM期间可使用数字示波器来测量源极电流且进而测量晶体管状态。在所说明的实施例中,可沿着升高位线28检测此源极电流。为了将逻辑“0”值写入到所述晶体管中的一者,邻近栅极相对于漏极30采取升高电压。因此,将浮体36中的空穴挤出,阈值电压再次增加,且源极电流降低。再次,可使用数字示波器来检测源极电流的此变化以确定恰当的操作阈值。关于此类无电容器DRAM如何起作用的更多信息可在上文引用且并入的由Eijiag Yoshida和Tetsu Tanaka撰写的文章中找到。
如所说明的,无电容器DRAM的每一有源区域形成存储器单元对的一部分,所述存储器单元对包含两个浮体36和具有由存储器单元共享的单个源极16、两个栅极和两个漏极30的晶体管。所述存储器单元对因此具有两个可寻址位置(即,浮体36),其每一者可存储一个数据位。此优选实施例大体上如上文描述那样起作用。然而,在一种应用中,存储器单元对可提供冗余性,因为如果浮体36中的任一者正存储“1”位,那么位线28处的源极电流被升高。因此,在一个实施例中,使用所说明的存储器单元对的读取和写入操作将同时对所述两个浮体36发生,进而减少错误。
或者,存储器单元对可具有三种可能状态。在一种状态中,所述两个浮体36存储“0”位,且穿过导线28的源极电流处于其最低电平。在第二状态中,一个且只有一个浮体36存储“1”位,且穿过位线28的源极电流处于较高电平。请注意,在此第二状态中,穿过位线28的升高源极电流仅产生关于一个浮体36正存储“1”位的信息,且不会指示哪个浮体36处于此升高状态。在第三状态中,所述两个浮体36均存储“1”位,且穿过位线28的源极电流处于其最高电平。因此,灵敏的示波器(举例来说)将能够区分这三种状态。
图7中展示此无电容器DRAM的示意性平面图。当然,仅以实例方式展示此无电容器DRAM设计,且上文参看图1到5描述的局部SOI方法可在任何数目的半导体环境下使用。
尽管已经描述了本发明的某些实施例,但仅以实例方式呈现这些实施例,且不希望这些实施例限制本发明的范围。实际上,本文所描述的新颖方法和装置可以各种其它形式实施;另外,可在不脱离本发明精神的情况下对本文描述的方法和装置的形式作出各种省略、替代和改变。希望所附权利要求书和其等效物涵盖将属于本发明范围和精神的形式或修改。

Claims (32)

1.一种在局部化绝缘体上硅上方形成无电容器DRAM的方法,所述方法包含:
提供硅衬底;
在所述硅衬底内界定硅柱阵列;
在所述硅衬底的一部分顶部且在所述硅柱之间界定绝缘体层;
在所述绝缘体层顶部所述硅柱周围界定绝缘体上硅层,其中所述硅柱通过所述绝缘体层从所述硅衬底延伸至所述绝缘体上硅层;以及
在所述绝缘体上硅层内部和上方形成无电容器DRAM单元。
2.根据权利要求1所述的方法,其中界定所述硅柱阵列包含使用光刻技术蚀刻所述硅衬底。
3.根据权利要求1所述的方法,其中界定所述绝缘体层包含:
在所述硅衬底上方沉积绝缘体材料以达到至少等于所述硅柱的高度的高度;以及
平面化所述绝缘体材料和硅衬底。
4.根据权利要求3所述的方法,其中界定所述绝缘体上硅层包含:
蚀刻所述绝缘体层在所述硅柱周围的至少一部分以在所述硅柱周围界定沟槽;以及
暴露至少一些包含所述硅柱的硅材料。
5.根据权利要求4所述的方法,其中界定所述绝缘体上硅层进一步包含:
通过选择性外延法在邻近于所述硅柱的侧壁处沉积硅延伸体。
6.根据权利要求5所述的方法,其中界定所述绝缘体上硅层进一步包含:
通过横向外延过度生长在所述沟槽内沉积额外的硅且转换所述额外的硅。
7.根据权利要求4所述的方法,其中界定所述绝缘体上硅层进一步包含:
通过横向外延过度生长在所述沟槽内沉积硅且转换所述硅。
8.根据权利要求1所述的方法,其中形成所述无电容器DRAM包含:
形成由一对存储器单元共享的共用源极,所述存储器单元进一步包含两个浮体、两个栅极和两个漏极。
9.根据权利要求8所述的方法,其中形成所述无电容器DRAM进一步包含:
在所述绝缘体上硅层内形成所述两个浮体。
10.根据权利要求1所述的方法,其进一步包含:
在所述存储器芯片上界定外围区和存储器阵列区;以及
在所述存储器阵列区中界定所述绝缘体上硅层,而不在所述外围区的至少一部分中形成绝缘体上硅区。
11.根据权利要求10所述的方法,其中形成所述至少一个无电容器DRAM单元进一步包含在所述至少一个绝缘体上硅层内界定至少一个浮体。
12.根据权利要求11所述的方法,其中形成所述无电容器DRAM包含针对每两个浮体在所述存储器阵列区中界定单个共享源极。
13.一种存储器装置,其包含:
硅衬底;
绝缘体层,其位于所述硅衬底的一部分上;
局部化绝缘体上硅层,其位于所述绝缘体层上,并横向地被所述绝缘体层包围;
半导体柱,其通过所述绝缘体层从所述硅衬底延伸至所述绝缘体上硅层;及
在所述绝缘体上硅层内部和上方的无电容器DRAM单元,其包括:
源极和漏极,所述半导体柱位于所述源级下方;
浮体,其形成在所述源极与所述漏极之间,所述浮体界定在所述局部化绝缘体上硅内;以及
栅极,其邻近于所述浮体。
14.根据权利要求13所述的存储器装置,其中所述浮体经配置以在相对于所述栅极将所述漏极置于第一升高电压时获得第一状态。
15.根据权利要求14所述的存储器装置,其中所述浮体经配置以在相对于所述漏极将所述栅极置于第二升高电压时获得第二状态。
16.根据权利要求15所述的存储器装置,其中所述第一状态导致所述源极处的源极电流增加,且所述第二状态导致所述源极处的源极电流减少。
17.根据权利要求13所述的存储器装置,其中所述浮体的存储位通过在所述源极处测得的电流来读取。
18.根据权利要求13所述的存储器装置,其进一步包含外围区和存储器阵列区,其中所述局部化绝缘体上硅、所述源极、所述漏极和所述浮体形成在所述存储器阵列区内。
19.根据权利要求18所述的存储器装置,其中所述外围区的至少一部分缺少绝缘体上硅区。
20.根据权利要求18所述的存储器装置,其中源极电流指示存储在所述浮体处的信息。
21.根据权利要求18所述的存储器装置,其中所述浮体由栅极引发漏极泄漏电流操作。
22.根据权利要求13所述的存储器装置,其进一步包含第二漏极、第二浮体和第二栅极,其中所述第二浮体界定在所述源极与所述第二漏极之间,且所述第二栅极邻近于所述第二浮体。
23.根据权利要求22所述的存储器装置,其中所述源极经配置以传导具有指示三种状态的值的电流,所述三种状态包含:
第一状态,其中所述浮体和所述第二浮体存储“0”位;
第二状态,其中所述浮体和所述第二浮体中的一者存储“0”位,且所述浮体和所述第二浮体中的另一者存储“1”位;以及
第三状态,其中所述浮体和所述第二浮体存储“1”位。
24.根据权利要求23所述的存储器装置,其中所述第二和第三状态不依据检测所述电流来区分。
25.根据权利要求22所述的存储器装置,其中所述浮体和所述第二浮体是冗余的。
26.一种系统,其包括根据权利要求13所述的存储器装置。
27.一种操作无电容器DRAM的方法,所述方法包含:
将浮体置于第一状态中;以及
通过测量所述无电容器DRAM的源极处的第一电流来检测所述第一状态;
其中所述浮体界定在局部化绝缘体上硅内,且其中硅柱通过位于所述绝缘体上硅层下方的所述绝缘体层从所述硅衬底延伸至所述绝缘体上硅层。
28.根据权利要求27所述的方法,其中将所述浮体置于所述第一状态中包含:
相对于栅极处的栅极电压来升高漏极处的漏极电压。
29.根据权利要求28所述的方法,其进一步包含:
将所述浮体置于第二状态中;以及
通过测量所述源极处的第二电流来检测所述第二状态。
30.根据权利要求29所述的方法,其中将所述浮体置于所述第二状态中包含:
相对于所述漏极电压来升高所述栅极电压。
31.根据权利要求30所述的方法,其中所述第一电流高于所述第二电流。
32.根据权利要求29所述的方法,其中所述第一状态代表“1”位,且所述第二状态代表“0”位。
CN2006800203457A 2005-06-08 2006-05-05 局部化soi上方的无电容器dram Active CN101253622B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/148,853 2005-06-08
US11/148,853 US7538389B2 (en) 2005-06-08 2005-06-08 Capacitorless DRAM on bulk silicon
PCT/US2006/017493 WO2006135505A2 (en) 2005-06-08 2006-05-05 Capacitorless dram over localized soi

Publications (2)

Publication Number Publication Date
CN101253622A CN101253622A (zh) 2008-08-27
CN101253622B true CN101253622B (zh) 2010-07-28

Family

ID=37440749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800203457A Active CN101253622B (zh) 2005-06-08 2006-05-05 局部化soi上方的无电容器dram

Country Status (7)

Country Link
US (6) US7538389B2 (zh)
EP (1) EP1897135A2 (zh)
JP (1) JP5035637B2 (zh)
KR (1) KR101262417B1 (zh)
CN (1) CN101253622B (zh)
TW (1) TWI329910B (zh)
WO (1) WO2006135505A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538389B2 (en) * 2005-06-08 2009-05-26 Micron Technology, Inc. Capacitorless DRAM on bulk silicon
US7606066B2 (en) 2005-09-07 2009-10-20 Innovative Silicon Isi Sa Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
KR100660910B1 (ko) * 2006-01-09 2006-12-26 삼성전자주식회사 원통형 보조 게이트를 포함하는 커패시터리스 디램 및 그제조 방법
US7492632B2 (en) * 2006-04-07 2009-02-17 Innovative Silicon Isi Sa Memory array having a programmable word length, and method of operating same
US7933142B2 (en) * 2006-05-02 2011-04-26 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
KR100713001B1 (ko) * 2006-05-02 2007-05-02 주식회사 하이닉스반도체 리세스 게이트를 갖는 반도체 소자의 제조방법
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US7542340B2 (en) * 2006-07-11 2009-06-02 Innovative Silicon Isi Sa Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
KR101277402B1 (ko) 2007-01-26 2013-06-20 마이크론 테크놀로지, 인코포레이티드 게이트형 바디 영역으로부터 격리되는 소스/드레인 영역을 포함하는 플로팅-바디 dram 트랜지스터
KR101320517B1 (ko) 2007-03-13 2013-10-22 삼성전자주식회사 커패시터리스 디램 및 그의 제조 및 동작방법
US8518774B2 (en) * 2007-03-29 2013-08-27 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
KR100944352B1 (ko) * 2007-09-18 2010-03-02 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8349662B2 (en) * 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
US8773933B2 (en) 2012-03-16 2014-07-08 Micron Technology, Inc. Techniques for accessing memory cells
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8189376B2 (en) * 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
KR20090092103A (ko) * 2008-02-26 2009-08-31 삼성전자주식회사 반도체 기판과 반도체 기판 제조 방법
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7933140B2 (en) * 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US7924630B2 (en) * 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US8067803B2 (en) * 2008-10-16 2011-11-29 Micron Technology, Inc. Memory devices, transistor devices and related methods
US8223574B2 (en) * 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8319294B2 (en) * 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
US8710566B2 (en) * 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
KR20120006516A (ko) 2009-03-31 2012-01-18 마이크론 테크놀로지, 인크. 반도체 메모리 디바이스를 제공하기 위한 기술들
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8508994B2 (en) * 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8803213B2 (en) * 2009-06-25 2014-08-12 Micron Technology, Inc. Floating body memory cell apparatus and methods
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9076543B2 (en) * 2009-07-27 2015-07-07 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8199595B2 (en) * 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8416636B2 (en) * 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8576631B2 (en) 2010-03-04 2013-11-05 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8411513B2 (en) * 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8369177B2 (en) * 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
EP3511982A1 (en) 2010-03-15 2019-07-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8062963B1 (en) * 2010-10-08 2011-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a semiconductor device having an epitaxy region
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
US8648414B2 (en) 2011-07-01 2014-02-11 Micron Technology, Inc. Semiconductor structures including bodies of semiconductor material, devices including such structures and related methods
CN104124249A (zh) * 2013-04-25 2014-10-29 苏州东微半导体有限公司 一种鳍型半导体器件
WO2018063207A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Resistive random access memory cell
US11063081B2 (en) * 2018-11-29 2021-07-13 Taiwan Semiconductor Manufacturing Company, Ltd. Device over photodetector pixel sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948162A (en) * 1991-10-24 1999-09-07 Rohm Co., Ltd. Method for forming SOI structure
CN1430272A (zh) * 2001-12-26 2003-07-16 株式会社日立制作所 半导体装置及其制造方法
US6599789B1 (en) * 2000-11-15 2003-07-29 Micron Technology, Inc. Method of forming a field effect transistor

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296458A (ja) 1986-06-16 1987-12-23 Nec Corp 半導体記憶装置の製造方法
US5465249A (en) * 1991-11-26 1995-11-07 Cree Research, Inc. Nonvolatile random access memory device having transistor and capacitor made in silicon carbide substrate
JPH06268173A (ja) * 1993-03-15 1994-09-22 Toshiba Corp 半導体記憶装置
US5510630A (en) * 1993-10-18 1996-04-23 Westinghouse Electric Corporation Non-volatile random access memory cell constructed of silicon carbide
US5448513A (en) 1993-12-02 1995-09-05 Regents Of The University Of California Capacitorless DRAM device on silicon-on-insulator substrate
US5414287A (en) * 1994-04-25 1995-05-09 United Microelectronics Corporation Process for high density split-gate memory cell for flash or EPROM
US6455916B1 (en) * 1996-04-08 2002-09-24 Micron Technology, Inc. Integrated circuit devices containing isolated dielectric material
US5732014A (en) * 1997-02-20 1998-03-24 Micron Technology, Inc. Merged transistor structure for gain memory cell
US6072209A (en) * 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US5973356A (en) * 1997-07-08 1999-10-26 Micron Technology, Inc. Ultra high density flash memory
US5936274A (en) * 1997-07-08 1999-08-10 Micron Technology, Inc. High density flash memory
US6150687A (en) * 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US5972758A (en) * 1997-12-04 1999-10-26 Intel Corporation Pedestal isolated junction structure and method of manufacture
KR100261221B1 (ko) * 1997-12-31 2000-07-01 윤종용 단일 트랜지스터 셀 및 이를 제조하는 방법 및 이 소자로 구성된 메모리 회로와 이를 구동하는 방법
US6246083B1 (en) * 1998-02-24 2001-06-12 Micron Technology, Inc. Vertical gain cell and array for a dynamic random access memory
US5991225A (en) * 1998-02-27 1999-11-23 Micron Technology, Inc. Programmable memory address decode array with vertical transistors
US6124729A (en) * 1998-02-27 2000-09-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6097065A (en) * 1998-03-30 2000-08-01 Micron Technology, Inc. Circuits and methods for dual-gated transistors
US6274913B1 (en) * 1998-10-05 2001-08-14 Intel Corporation Shielded channel transistor structure with embedded source/drain junctions
KR100290787B1 (ko) * 1998-12-26 2001-07-12 박종섭 반도체 메모리 소자의 제조방법
US6339550B1 (en) 1998-12-29 2002-01-15 Frank M. Wanlass Soft error immune dynamic random access memory
JP2000269460A (ja) 1999-03-18 2000-09-29 Toshiba Corp 半導体記憶装置及びその製造方法
US6316806B1 (en) * 1999-03-31 2001-11-13 Fairfield Semiconductor Corporation Trench transistor with a self-aligned source
US6245636B1 (en) * 1999-10-20 2001-06-12 Advanced Micro Devices, Inc. Method of formation of pseudo-SOI structures with direct contact of transistor body to the substrate
US6465852B1 (en) * 1999-10-20 2002-10-15 Advanced Micro Devices, Inc. Silicon wafer including both bulk and SOI regions and method for forming same on a bulk silicon wafer
US6376286B1 (en) * 1999-10-20 2002-04-23 Advanced Micro Devices, Inc. Field effect transistor with non-floating body and method for forming same on a bulk silicon wafer
US6465846B1 (en) * 2000-03-22 2002-10-15 Seiko Instruments Inc. Semiconductor integrated circuit device having trench-type photodiode
JP5792918B2 (ja) * 2000-08-14 2015-10-14 サンディスク・スリー・ディ・リミテッド・ライアビリティ・カンパニーSandisk 3D Llc 高集積メモリデバイス
DE10041749A1 (de) * 2000-08-27 2002-03-14 Infineon Technologies Ag Vertikale nichtflüchtige Halbleiter-Speicherzelle sowie Verfahren zu deren Herstellung
JP4216483B2 (ja) * 2001-02-15 2009-01-28 株式会社東芝 半導体メモリ装置
JP2002260381A (ja) * 2001-02-28 2002-09-13 Toshiba Corp 半導体メモリ装置
JP2003031693A (ja) * 2001-07-19 2003-01-31 Toshiba Corp 半導体メモリ装置
JP2003209228A (ja) * 2001-11-07 2003-07-25 Toshiba Corp 磁気記憶装置及びその製造方法
US6946712B2 (en) 2001-11-07 2005-09-20 Kabushiki Kaisha Toshiba Magnetic memory device using SOI substrate
DE10204871A1 (de) 2002-02-06 2003-08-21 Infineon Technologies Ag Kondensatorlose 1-Transistor-DRAM-Zelle und Herstellungsverfahren
US6661042B2 (en) * 2002-03-11 2003-12-09 Monolithic System Technology, Inc. One-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region
JP3934507B2 (ja) * 2002-08-08 2007-06-20 株式会社東芝 半導体記憶装置および半導体記憶装置の製造方法
US7224024B2 (en) * 2002-08-29 2007-05-29 Micron Technology, Inc. Single transistor vertical memory gain cell
US7030436B2 (en) * 2002-12-04 2006-04-18 Micron Technology, Inc. Embedded DRAM gain memory cell having MOS transistor body provided with a bi-polar transistor charge injecting means
US6956256B2 (en) * 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
US6714436B1 (en) * 2003-03-20 2004-03-30 Motorola, Inc. Write operation for capacitorless RAM
US7184298B2 (en) * 2003-09-24 2007-02-27 Innovative Silicon S.A. Low power programming technique for a floating body memory transistor, memory cell, and memory array
JP2005142451A (ja) * 2003-11-07 2005-06-02 Oki Electric Ind Co Ltd 半導体メモリ装置及び半導体メモリ装置の製造方法
US7157769B2 (en) * 2003-12-18 2007-01-02 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
JP4342970B2 (ja) * 2004-02-02 2009-10-14 株式会社東芝 半導体メモリ装置及びその製造方法
US7102191B2 (en) * 2004-03-24 2006-09-05 Micron Technologies, Inc. Memory device with high dielectric constant gate dielectrics and metal floating gates
US7538389B2 (en) * 2005-06-08 2009-05-26 Micron Technology, Inc. Capacitorless DRAM on bulk silicon
KR100703033B1 (ko) * 2006-03-22 2007-04-09 삼성전자주식회사 반도체 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948162A (en) * 1991-10-24 1999-09-07 Rohm Co., Ltd. Method for forming SOI structure
US6599789B1 (en) * 2000-11-15 2003-07-29 Micron Technology, Inc. Method of forming a field effect transistor
CN1430272A (zh) * 2001-12-26 2003-07-16 株式会社日立制作所 半导体装置及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP昭62-296458A 1987.12.23
JP特开2000-269460A 2000.09.29

Also Published As

Publication number Publication date
US7517744B2 (en) 2009-04-14
KR20080018255A (ko) 2008-02-27
CN101253622A (zh) 2008-08-27
US20120199908A1 (en) 2012-08-09
US20110020988A1 (en) 2011-01-27
WO2006135505A2 (en) 2006-12-21
EP1897135A2 (en) 2008-03-12
US8158471B2 (en) 2012-04-17
KR101262417B1 (ko) 2013-05-08
JP2008544490A (ja) 2008-12-04
US20130279277A1 (en) 2013-10-24
JP5035637B2 (ja) 2012-09-26
US7829399B2 (en) 2010-11-09
US7538389B2 (en) 2009-05-26
US8971086B2 (en) 2015-03-03
WO2006135505A3 (en) 2008-01-31
TWI329910B (en) 2010-09-01
US20090190394A1 (en) 2009-07-30
US8466517B2 (en) 2013-06-18
TW200703574A (en) 2007-01-16
US20060284210A1 (en) 2006-12-21
US20060278926A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
CN101253622B (zh) 局部化soi上方的无电容器dram
US6764901B2 (en) Circuit and method for a folded bit line memory cell with vertical transistor and trench capacitor
JP2703234B2 (ja) 半導体メモリ・セルとその製法
US6156604A (en) Method for making an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US7265419B2 (en) Semiconductor memory device with cell transistors having electrically floating channel bodies to store data
TWI570782B (zh) 金屬氧化半導體電容器、製造其之方法以及使用其之半導體裝置
JP2000196045A (ja) ダイナミックランダムアクセスメモリ及びその製造方法
JP2005175090A (ja) 半導体メモリ装置及びその製造方法
JPS5919366A (ja) 半導体記憶装置
CN101506964A (zh) 半导体装置、组合件和构造以及形成半导体装置、组合件和构造的方法
JP2007329489A (ja) 集積回路装置およびその製造方法
WO2019203896A1 (en) Integrated assemblies, and methods of forming integrated assemblies
TWI453868B (zh) 記憶體陣列、半導體結構與電子系統,以及形成記憶體陣列、半導體結構與電子系統之方法
CN115568215A (zh) 半导体存储结构及其制备方法以及半导体存储器
TWI830455B (zh) 半導體記憶體裝置
US20070190773A1 (en) Method of fabricating a semiconductor device
KR20240049225A (ko) 반도체 소자의 제조 방법
KR20230165567A (ko) 반도체 메모리 소자 및 그 제조방법
CN114388503A (zh) 半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant