CN101218360A - 高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜 - Google Patents

高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜 Download PDF

Info

Publication number
CN101218360A
CN101218360A CNA2006800247262A CN200680024726A CN101218360A CN 101218360 A CN101218360 A CN 101218360A CN A2006800247262 A CNA2006800247262 A CN A2006800247262A CN 200680024726 A CN200680024726 A CN 200680024726A CN 101218360 A CN101218360 A CN 101218360A
Authority
CN
China
Prior art keywords
hafnium
purity
impurity
purity hafnium
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800247262A
Other languages
English (en)
Other versions
CN101218360B (zh
Inventor
新藤裕一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Publication of CN101218360A publication Critical patent/CN101218360A/zh
Application granted granted Critical
Publication of CN101218360B publication Critical patent/CN101218360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明涉及使用减少了锆的海绵铪作为原料,制造进一步分别减少了铪中含有的Fe、Cr、Ni杂质,Ca、Na、K杂质,Al、Co、Cu、Ti、W、Zn杂质,α射线的计数,U、Th杂质,Pb、Bi杂质,气体成分的含C量的高纯度铪的方法,提供有效且稳定的制造技术及通过该技术得到的高纯度铪材料、由该材料构成的溅射用靶及栅绝缘膜或金属栅用薄膜。一种高纯度铪,其特征在于,除Zr和气体成分外纯度在6N以上,Fe、Cr、Ni分别在0.2ppm以下,Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下。

Description

高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜
技术领域
本发明涉及分别减少了铪中含有的Fe、Cr、Ni杂质含量,Ca、Na、K杂质含量,Al、Co、Cu、Ti、W、Zn杂质含量,α射线的计数,U、Th杂质含量,Pb、Bi杂质含量,气体成分的含C量的高纯度铪材料、由该材料构成的溅射用靶及栅绝缘膜或金属栅用薄膜和高纯度铪的制造方法。
背景技术
以往,关于铪的制造,有大量的文献。铪具有耐热性、耐腐蚀性优良,与氧、氮等的亲和力大的特性。而且,它们的氧化物或氮化物在高温下的稳定性更加优良,因此在原子能用陶瓷或钢铁、铸件的制造领域中用作耐火材料。并且,近来又作为电子材料或光材料被利用起来。
所提出的金属铪的制造方法是与金属锆的制造方法相同的制造方法。其例子列举如下:在惰性气体、还原性气体或真空中、400℃以上的温度下,使含氟的锆或铪化合物与金属铝或镁反应的方法(例如,参照专利文献1);特征在于将氯化锆、氯化铪或氯化钛还原从而分别制造其相应金属的密封金属的制造方法(例如,参照专利文献2);特征在于通过镁将四氯化锆或四氯化铪进行镁还原时反应容器的构造和其制造技术的铪或锆的制造方法(例如,参照专利文献3);将氯、溴、碘的锆、铪、钽、钒以及铌化合物蒸汽导入坩锅而进行制造的方法(例如,参照专利文献4);使用强碱性阴离子交换树脂纯化锆或铪氯化物或酸性氯化物水溶液的方法(例如,参照专利文献5);通过溶剂萃取进行锆回收的方法(例如,参照专利文献6);特征在于供电部分的铪晶棒的制造装置(例如,参照专利文献7)。
专利文献1:日本特开昭60-17027号公报
专利文献2:日本特开昭61-279641号公报
专利文献3:日本特开昭62-103328号公报
专利文献4:日本特表平3-501630号公报
专利文献5:日本特开平10-204554号公报
专利文献6:日本特开昭60-255621号公报
专利文献7:日本特开昭61-242993号公报
如上述文献所示,铪的纯化方法或萃取方法有很多。近来,越来越要求利用铪对电子零件的成膜。特别是希望作为栅绝缘膜、金属栅膜使用。由于这些膜在紧邻Si基板的上面,故而纯度的影响较大。特别是对半导体基板的污染成为了问题。
但是,以往存在铪中含有大量锆的问题,而且不能容易地达到高纯度化。而且,作为电子材料,特别是在作为邻接硅基板所设置的栅绝缘膜或金属栅膜使用的情况下,不知道铪中含有的杂质会导致怎样的性能(不良影响),因此默许了铪中含有杂质。
认为这主要是因为,以铪作为栅绝缘膜、金属栅膜等电子零件材料使用是非常新的技术。
发明内容
本发明涉及使用减少了锆的海绵铪作为原料,进一步分别减少了铪中含有的Fe、Cr、Ni杂质,Ca、Na、K杂质,Al、Co、Cu、Ti、W、Zn杂质,α射线的计数,U、Th杂质,Pb、Bi杂质,气体成分的含C量的高纯度铪的制造方法,以提供有效且稳定的制造技术及通过该技术得到的高纯度铪材料、由该材料构成的溅射用靶及栅绝缘膜或金属栅用薄膜为课题。
为了解决上述课题,本发明人进行了深入研究,结果是提供除Zr和气体成分之外具有6N以上纯度的高纯度铪,这样的高纯度铪,特别是作为邻接硅基板所设置的电子材料,不会降低或扰乱电子设备的功能,而且作为栅绝缘膜或金属栅用薄膜等材料具有优良的特性。高纯度铪中含有的杂质Fe、Cr、Ni分别在0.2ppm以下,Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下。另外,本申请中所表示的纯度(%、ppm、ppb)全部指重量(重量%、重量ppm、重量ppb)。
铪中含有的杂质Zr被排除在外是因为,在制造高纯度铪时,Zr本身与铪的化学特性相似,故而去除Zr在技术上非常困难,而且从该特性的近似性出发,即使作为杂质混入也不会导致较大的特性改变。从这样的情况出发,默许混入某种程度的Zr,但是不用说,在想要提高铪自身特性的情况下,优选混入较少的Zr。
而且,本发明的除Zr和气体成分之外具有6N以上纯度的高纯度铪,优选α射线的计数在0.01cph/cm2以下,U、Th分别不足1ppb,Pb、Bi分别不足0.1ppm。本发明包括降低了该α射线的计数、U、Th含量、Pb、Bi含量的高纯度铪。而且,本发明的除Zr和气体成分之外具有6N以上纯度的高纯度铪,优选气体成分的C含量在50ppm以下,本发明包括降低了该C含量的高纯度铪。
在形成栅绝缘膜或金属栅用薄膜等电子材料的薄膜时,多数是通过溅射进行,该方法作为薄膜形成方法是优良的方法。因此,上述除Zr和气体成分之外具有6N以上纯度的高纯度铪能直接形成高纯度铪靶材料。
由本发明的高纯度铪构成的溅射靶,能通过溅射直接在成膜后的薄膜中反映材料所具有的高纯度,形成除Zr和气体成分之外具有6N以上纯度的栅绝缘膜或金属栅用薄膜。
而且,具有6N以上纯度的靶及栅绝缘膜或金属栅用薄膜中含有的前述杂质,与上述杂质Fe、Cr、Ni,杂质Ca、Na、K,杂质Al、Co、Cu、Ti、W、Zn,还有α射线的计数,杂质U、Th,杂质Pb、Bi,还有气体成分的C以及它们的含量全都相同。本发明将它们全部包含在内。
在制造除Zr和气体成分之外具有6N以上纯度的高纯度铪时,首先蒸馏纯化粗HfCl4,还原该纯化HfCl4,从而得到海绵铪。然后,将该海绵铪作为阳极进行熔盐电解,得到通过电解所形成的电沉积物。进而,通过电子束熔炼该电沉积物,能够得到除Zr和气体成分外纯度在6N以上的高纯度铪。
这样得到的除Zr和气体成分外纯度在6N以上的高纯度铪中,可以达到所含有的上述杂质Fe、Cr、Ni分别在0.2ppm以下,杂质Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下,并且α射线的计数在0.01cph/cm2以下,杂质U、Th分别不足1ppb,杂质Pb、Bi分别不足0.1ppm,而且气体成分的C在50ppm以下。
杂质Ca、Na、K等碱金属或碱土类金属是易迁移的元素,容易在元件中迁移,使元件的特性不稳定,因此优选其含量较少的情况。另外,由于杂质Fe、Cr、Ni、Al、Co、Cu、Ti、W、Zn等过渡金属、重金属等引起泄漏电流增加,成为耐压降低的原因,因此优选其含量较少的情况。杂质U、Th、Pb、Bi会导致存储单元的蓄积电荷反向的软错误发生。因此,必须在减少它们的量的同时,限制由这些元素产生的α射线的计数。
而且,由于含C量的增加成为溅射时颗粒产生的原因,故而必须减少其含量。Zr含量虽然不会成为特别的问题,但是可以使其在2500ppm以下,进一步使其在1000ppm以下。
杂质的含量虽然根据原材料中含有的杂质量而变化,但通过采用上述方法,可以调节各杂质到上述数值范围内。本发明提供上述高纯度铪、由高纯度铪构成的靶及薄膜、和高纯度铪的制造方法。
发明效果
本发明的除Zr和气体成分外具有6N以上纯度的高纯度铪,杂质Fe、Cr、Ni分别在0.2ppm以下,杂质Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下,并且α射线的计数在0.01cph/cm2以下,杂质U、Th分别不足1ppb,杂质Pb、Bi分别不足0.1ppm,而且气体成分的C在50ppm以下,特别是作为邻接硅基板所设置的电子材料,不会降低或扰乱电子设备的功能,而且作为栅绝缘膜或金属栅用薄膜等材料具有优良的效果。
而且,本发明的制造方法具有能够稳定制造除Zr和气体成分外具有6N以上纯度的高纯度铪的效果。
具体实施方式
本发明以除去了Zr的海绵铪为原料。作为原料,使用四氯化铪(HfCl4)。四氯化铪可以使用市售的材料。该市售的四氯化铪含有5重量%左右的Zr。另外,作为原料也可以使用铪(Hf)金属、氧化铪(HfO2)。这些原料除Zr外纯度为3N水平,作为除Zr以外的主要杂质,含有Fe、Cr、Ni等。
首先,将该四氯化铪原料溶解于纯净水中。然后,对其进行多级有机溶剂萃取。通常进行1~10级的溶剂萃取。作为萃取剂,可以使用TBP。这样可以使Zr在5000重量ppm以下。
然后,进行中和处理,从而得到氧化铪(HfO2)。氯化该氧化铪,得到高纯度四氯化铪(HfCl4)。
对于以上步骤,已经是公知的技术,本发明从高纯度四氯化铪(HfCl4)原料出发。
蒸馏纯化该HfCl4。使用具有强氯化能力的Mg等金属还原这样得到的HfCl4,得到纯度3N水平的海绵铪。将该纯度为3N的海绵铪作为阳极,在700~1000℃下使用NaCl-KCl-HfCl4等电解浴进行电解,从而得到电沉积铪,用纯净水洗涤该电沉积铪,用氟代硝酸进行轻度腐蚀。
将这样得到的电沉积物导入Cu坩锅中,进行一次电子束熔炼(炉床熔炼),并逐渐向其中投入电沉积铪。从金属池上部溢出的铪熔液流入铸锭上部。在这里仍然是金属熔液状态,当这样进行炉床熔炼和铸锭化时,通过一系列的电子束操作进行2次熔炼,可以提高纯度。
这样除碳、氧、氮等气体成分及锆外,通过上述操作可以得到除Zr和气体成分外纯度在6N(99.9999%)以上的高纯度铪铸锭。而且,使用该高纯度铪能够制造高纯度铪靶。使用气流式比例计数器测定装置测定靶的α射线量,结果为α射线量在0.01cph/cm2以下。
而且,可以通过使用该高纯度靶溅射,使高纯度铪在基板上成膜。
靶的制造可以通过锻造、轧制、切削、最终加工(研磨)等通常的加工来制造。特别是其制造工序中没有限制,可以任意选择。
实施例
接下来,对实施例进行说明。另外,本实施例是为了使发明易于理解,对本发明没有限制。即,在本发明的技术思想范围内的其他实施例及变形都包含在本发明中。
(实施例1)
在约320℃的温度下蒸馏纯化粗HfCl4。使用具有强氯化能力的Mg金属还原该纯化HfCl4,从而得到纯度3N的海绵铪。在蒸馏纯化阶段,Zr杂质从5000ppm水平减少到800ppm水平。
将该纯度3N的海绵铪作为阳极,在720℃下使用NaCl-KCl-HfCl4电解浴进行电解,从而得到电沉积铪,用纯净水洗涤该电沉积铪,并用氟代硝酸进行轻度腐蚀。这样,可以除去Fe、Cr、Ni、Al、Co、Cu、Ti、W、Zn、U、Th及C。特别是W、C、U、Th的减少效果显著。
将这样得到电沉积物导入Cu坩锅中,进行一次电子束熔炼(炉床熔炼),并逐渐向其中投入铪。从金属池上部溢出的铪熔液流入铸锭上部。在这里仍然是金属熔液状态,当这样进行炉床熔炼和铸锭化时,通过一系列的电子束操作进行2次熔炼,可以提高纯度。这样,也可以有效地除去W、C、U、Th以外的上述杂质及Ca、Na、K。
通过上述操作,可以得到除锆外,纯度为6N(99.9999%)水平的高纯度铪铸锭。铸锭的顶部(上部,TOP)和底部(下部,BTM)的化学分析值(GDMS分析)如表1所示。
杂质分别为Fe<0.01ppm、Cr<0.01ppm、Ni:0.04~0.08ppm,Ca<0.01ppm、Na<0.01ppm、K<0.01ppm,Al<0.01ppm、Co<0.01ppm、Cu<0.05ppm、Ti<0.01ppm、W:0.01ppm、Zn<0.01ppm,并且α射线的计数<0.004cph/cm2、U<0.001ppm、Th<0.001ppm、Pb<0.01ppm、Bi<0.01ppm,而且含C量为10ppm。
这些表示铸锭顶部的分析值,虽有少许的不同,但底部也有基本相同的杂质量。均满足本发明的条件。
由该铸锭得到的溅射靶同样能保持高纯度,通过溅射该溅射靶,能在基板上形成具有均匀特性的高纯度铪薄膜。
表1                                                            (ppm)
    实施例1     实施例2
    top     BTM     top     BTM
    Fe     <0.01     <0.01     0.01     0.05
    Cr     <0.01     <0.01     <0.01     <0.01
    Ni     0.04     0.08     0.10     0.18
    Ca     <0.01     <0.01     <0.01     <0.01
    Na     <0.01     <0.01     <0.01     <0.01
    K     <0.01     <0.01     <0.01     <0.01
    Al     <0.01     <0.01     <0.01     <0.01
    Co     <0.01     <0.01     <0.01     <0.01
    Cu     <0.05     <0.05     <0.05     <0.05
    Ti     <0.01     <0.01     0.03     0.05
    W     0.01     0.01     <0.01     <0.01
    Zn     <0.01     <0.01     <0.01     <0.01
    U     <0.001     <0.001     <0.001     <0.001
    Th     <0.001     <0.001     <0.001     <0.001
    Pb     <0.01     <0.01     <0.01     <0.01
    Bi     <0.01     <0.01     <0.01     <0.01
    C     10     10     30     10
    α射线量(cph/cm2)     <0.004     <0.004     0.004     0.004
(实施例2)
与实施例1同样地,在约320℃的温度下蒸馏纯化粗HfCl4。使用具有强氯化能力的Mg金属还原该纯化HfCl4,从而得到纯度3N的海绵铪。在此阶段,Zr杂质从5000ppm水平减少到800ppm水平。将该纯度3N的海绵铪作为阳极,在720℃下使用NaCl-KCl-HfCl4电解浴进行电解,从而得到电沉积铪。用纯净水洗涤该电沉积铪,并用氟代硝酸进行轻度腐蚀。这样,可以除去Fe、Cr、Ni、Al、Co、Cu、Ti、W、Zn、U、Th及C。特别是W、C、U、Th的减少效果显著。
将这样得到电沉积物导入Cu坩锅中,并进行电子束熔炼。本实施例2与实施例1的不同之处在于,本实施例2不实施炉床熔炼。这样,可以得到除锆外,纯度为6N(99.9999%)水平的高纯度铪铸锭。铸锭的顶部(上部)和底部(下部)的化学分析值(GDMS分析)同样如表1所示。
杂质分别为Fe:0.01~0.05ppm、Cr<0.01ppm、Ni:0.10~0.18ppm,Ca<0.01ppm、Na<0.01ppm、K<0.01ppm,Al<0.01ppm、Co<0.01ppm、Cu<0.05ppm、Ti:0.03~0.05ppm、W<0.01ppm、Zn<0.01ppm,并且α射线的计数为0.004cph/cm2、U<0.001ppm、Th<0.001ppm、Pb<0.01ppm、Bi<0.01ppm,而且含C量为10~30ppm。
这些表示铸锭顶部的分析值,虽有少许的不同,但底部也有基本相同的杂质量。均满足本发明的条件。由该铸锭得到的溅射靶同样能保持高纯度,通过溅射该溅射靶,能在基板上形成具有均匀特性的高纯度铪薄膜。
产业上的利用可能性
本发明的除Zr和气体成分外具有6N以上纯度的高纯度铪,杂质Fe、Cr、Ni分别在0.2ppm以下,杂质Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下,并且α射线的计数在0.01cph/cm2以下,杂质U、Th分别不足1ppb,杂质Pb、Bi分别不足0.1ppm,而且气体成分的C在50ppm以下,特别是作为邻接硅基板所设置的电子材料,不会降低或扰乱电子设备的功能,因此可以作为栅绝缘膜或金属栅用薄膜等材料使用。

Claims (6)

1.一种高纯度铪,其特征在于,除Zr和气体成分外具有6N以上的纯度,而且Fe、Cr、Ni分别在0.2ppm以下,Ca、Na、K分别在0.1ppm以下,Al、Co、Cu、Ti、W、Zn分别在0.1ppm以下。
2.根据权利要求1所述的高纯度铪,其中,α射线的计数为0.01cph/cm2以下,U、Th分别不足1ppb,Pb、Bi分别不足0.1ppm。
3.根据权利要求1或2所述的高纯度铪,其中,气体成分的C含量为50ppm以下。
4.一种溅射用靶,由权利要求1~3中任一项所述的高纯度铪构成。
5.一种栅绝缘膜或金属栅用薄膜,由权利要求1~3中任一项所述的高纯度铪构成。
6.一种高纯度铪的制造方法,其特征在于,蒸馏纯化粗HfCl4,还原该纯化HfCl4,从而得到海绵铪,进而将该海绵铪作为阳极进行熔盐电解,电子束熔炼通过电解形成的电沉积物,由此得到除Zr和气体成分外纯度在6N以上的高纯度铪。
CN2006800247262A 2005-07-07 2006-06-12 高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜 Active CN101218360B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005198901 2005-07-07
JP198901/2005 2005-07-07
PCT/JP2006/311722 WO2007007498A1 (ja) 2005-07-07 2006-06-12 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法

Publications (2)

Publication Number Publication Date
CN101218360A true CN101218360A (zh) 2008-07-09
CN101218360B CN101218360B (zh) 2010-06-16

Family

ID=37636897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800247262A Active CN101218360B (zh) 2005-07-07 2006-06-12 高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜

Country Status (8)

Country Link
US (1) US8277723B2 (zh)
EP (1) EP1930451B9 (zh)
JP (1) JP5032316B2 (zh)
KR (1) KR100968396B1 (zh)
CN (1) CN101218360B (zh)
DE (1) DE602006019454D1 (zh)
TW (1) TW200706666A (zh)
WO (1) WO2007007498A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096847A (zh) * 2013-04-03 2014-10-15 北京有色金属研究总院 一种低氧、大尺寸高纯铪粉的制备方法
CN108611502A (zh) * 2018-04-12 2018-10-02 北京金铂宇金属科技有限公司 一种降低镁还原法制备海绵铪中氧含量的方法
CN109551134A (zh) * 2012-12-06 2019-04-02 千住金属工业株式会社 铜球

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027052D1 (de) * 2003-07-25 2010-06-17 Nikko Materials Co Ltd Hochreines hafniummaterial, targetdünnfilm daraus und verfahren zur herstellung von hochreinem hafnium
WO2005049882A1 (ja) * 2003-11-19 2005-06-02 Nikko Materials Co., Ltd. 高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法
US7871942B2 (en) * 2008-03-27 2011-01-18 Applied Materials, Inc. Methods for manufacturing high dielectric constant film
US9553160B2 (en) * 2013-10-09 2017-01-24 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for monitoring impurity in high-K dielectric film
RU2687113C2 (ru) 2014-06-30 2019-05-07 Тохо Титаниум Ко., Лтд. Способ получения металла и способ получения тугоплавкого металла
CN113584446A (zh) * 2021-07-23 2021-11-02 中国科学院半导体研究所 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782116A (en) * 1946-09-06 1957-02-19 Frank H Spedding Method of preparing metals from their halides
GB771144A (en) * 1954-04-16 1957-03-27 Nat Lead Co Improvements in or relating to the purification of zirconium tetrachloride
US2837478A (en) * 1954-12-17 1958-06-03 Norton Co Apparatus for the production of metal
DE1152268B (de) * 1960-12-28 1963-08-01 Euratom Rotationskathode fuer die Schmelzflusselektrolyse zur Abscheidung von hochschmelzenden Metallen, insbesondere Tantal
EP0134643A3 (en) 1983-07-08 1986-12-30 Solex Research Corporation of Japan Preparing metallic zirconium, hafnium or titanium
JPS6017027A (ja) 1983-07-08 1985-01-28 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk 金属ジルコニウム及び金属ハフニウムの製造方法
NO850670L (no) 1984-02-22 1985-08-23 Canada Iron Ore Co Fremgangsmaate til gjenvinning av zirkonium ved opploesningsmiddelekstrasjon
JPS61242993A (ja) 1985-04-19 1986-10-29 Toshiba Corp クリスタルバ−ハフニウム製造用装置
US4637831A (en) 1985-05-30 1987-01-20 Westinghouse Electric Corp. Process for reduction of zirconium, hafnium or titanium using a zinc or tin seal
US4668287A (en) * 1985-09-26 1987-05-26 Westinghouse Electric Corp. Process for producing high purity zirconium and hafnium
US4897116A (en) 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
KR940008936B1 (ko) * 1990-02-15 1994-09-28 가부시끼가이샤 도시바 고순도 금속재와 그 성질을 이용한 반도체 장치 및 그 제조방법
JP2921799B2 (ja) * 1990-02-15 1999-07-19 株式会社 東芝 半導体素子形成用高純度スパッタターゲットの製造方法
US5112493A (en) * 1990-12-10 1992-05-12 Westinghouse Electric Corp. Zirconium-hafnium production in a zero liquid discharge process
JP2794382B2 (ja) * 1993-05-07 1998-09-03 株式会社ジャパンエナジー スパッタリング用シリサイドターゲット及びその製造方法
EP1118690A3 (en) * 1993-07-27 2001-09-26 Kabushiki Kaisha Toshiba Refractory metal silicide target
JPH07316681A (ja) * 1994-05-25 1995-12-05 Japan Energy Corp 金属材料又は合金材料の製造方法及び精製剤、並びに耐食性に優れた金属材料又は合金材料
JP3674732B2 (ja) 1997-01-22 2005-07-20 同和鉱業株式会社 ジルコニウムおよび/またはハフニウム化合物の精製方法
US6309595B1 (en) * 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JP4501250B2 (ja) * 2000-06-19 2010-07-14 日鉱金属株式会社 耐脆化性に優れたゲート酸化膜形成用シリサイドターゲット
JP3566641B2 (ja) 2000-09-11 2004-09-15 住友チタニウム株式会社 高融点活性金属製造用真空排気装置の真空排気方法
EP1743949B1 (en) * 2000-10-02 2012-02-15 JX Nippon Mining & Metals Corporation High-purity zirconium or hafnium metal for sputter targets and thin film applications
JP4104039B2 (ja) * 2000-10-02 2008-06-18 日鉱金属株式会社 高純度ジルコニウム又はハフニウムの製造方法
JP2002206103A (ja) * 2000-11-09 2002-07-26 Nikko Materials Co Ltd 高純度ジルコニウム若しくはハフニウム粉の製造方法
JP4596379B2 (ja) * 2001-07-09 2010-12-08 Jx日鉱日石金属株式会社 ゲート酸化膜形成用ハフニウムシリサイドターゲット
JP3995082B2 (ja) * 2001-07-18 2007-10-24 日鉱金属株式会社 ゲート酸化膜形成用ハフニウムシリサイドターゲット及びその製造方法
US6737030B2 (en) * 2002-01-29 2004-05-18 Ati Properties, Inc. Method for separating hafnium from zirconium
EP1528120B1 (en) * 2002-08-06 2011-04-13 Nippon Mining & Metals Co., Ltd. Hafnium silicide target and method for preparation thereof
WO2004079039A1 (ja) * 2003-03-07 2004-09-16 Nikko Materials Co., Ltd. ハフニウム合金ターゲット及びその製造方法
JP2005045166A (ja) * 2003-07-25 2005-02-17 Toshiba Corp 半導体装置及びその製造方法
DE602004027052D1 (de) * 2003-07-25 2010-06-17 Nikko Materials Co Ltd Hochreines hafniummaterial, targetdünnfilm daraus und verfahren zur herstellung von hochreinem hafnium
WO2005049882A1 (ja) * 2003-11-19 2005-06-02 Nikko Materials Co., Ltd. 高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法
US20060062910A1 (en) * 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
JP2006037133A (ja) 2004-07-23 2006-02-09 Toho Titanium Co Ltd 高純度ハフニウム材の製造方法及びこの方法により得られた高純度ハフニウム材、並びにスパッタリングターゲット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109551134A (zh) * 2012-12-06 2019-04-02 千住金属工业株式会社 铜球
CN104096847A (zh) * 2013-04-03 2014-10-15 北京有色金属研究总院 一种低氧、大尺寸高纯铪粉的制备方法
CN108611502A (zh) * 2018-04-12 2018-10-02 北京金铂宇金属科技有限公司 一种降低镁还原法制备海绵铪中氧含量的方法

Also Published As

Publication number Publication date
TW200706666A (en) 2007-02-16
WO2007007498A1 (ja) 2007-01-18
EP1930451B9 (en) 2011-10-26
CN101218360B (zh) 2010-06-16
US20090226341A1 (en) 2009-09-10
TWI356852B (zh) 2012-01-21
KR100968396B1 (ko) 2010-07-07
DE602006019454D1 (de) 2011-02-17
EP1930451B1 (en) 2011-01-05
EP1930451A4 (en) 2009-08-19
JPWO2007007498A1 (ja) 2009-01-29
JP5032316B2 (ja) 2012-09-26
KR20080017439A (ko) 2008-02-26
EP1930451A1 (en) 2008-06-11
US8277723B2 (en) 2012-10-02

Similar Documents

Publication Publication Date Title
CN101218360B (zh) 高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜
JP5406104B2 (ja) 高純度ハフニウムの製造方法
US7674441B2 (en) Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
EP2666877B1 (en) Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having high-purity lanthanum as main component
US20050284546A1 (en) Tantalum sputtering target and method of manufacture
TWI485263B (zh) High purity erbium, a high purity erbium, a sputtering target composed of high purity erbium, and a metal gate film containing high purity erbium as the main component
KR101512949B1 (ko) 고순도 칼슘 및 이의 제조 방법
KR101547051B1 (ko) 고순도 에르븀, 고순도 에르븀으로 이루어지는 스퍼터링 타깃, 고순도 에르븀을 주성분으로 하는 메탈 게이트막 및 고순도 에르븀의 제조 방법
CN114262800A (zh) 一种金属纯化方法
JP2000204494A (ja) 高純度チタン及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: JX NIPPON MINING + METALS CORPORATION

Free format text: FORMER NAME: NIPPON MINING + METALS CO., LTD.

CP03 Change of name, title or address

Address after: Tokyo, Japan

Patentee after: JX Nippon Mining & Metals Corporation

Address before: Tokyo, Japan, Japan

Patentee before: Nippon Mining & Metals Co., Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: JX NIPPON MINING & METALS CORPORATION

Address before: Tokyo, Japan

Patentee before: JX Nippon Mining & Metals Corporation