WO2007007498A1 - 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法 - Google Patents

高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法 Download PDF

Info

Publication number
WO2007007498A1
WO2007007498A1 PCT/JP2006/311722 JP2006311722W WO2007007498A1 WO 2007007498 A1 WO2007007498 A1 WO 2007007498A1 JP 2006311722 W JP2006311722 W JP 2006311722W WO 2007007498 A1 WO2007007498 A1 WO 2007007498A1
Authority
WO
WIPO (PCT)
Prior art keywords
hafnium
purity
less
impurities
ppm
Prior art date
Application number
PCT/JP2006/311722
Other languages
English (en)
French (fr)
Inventor
Yuichiro Shindo
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to CN2006800247262A priority Critical patent/CN101218360B/zh
Priority to JP2007524546A priority patent/JP5032316B2/ja
Priority to US11/994,167 priority patent/US8277723B2/en
Priority to EP06766584A priority patent/EP1930451B9/en
Priority to DE602006019454T priority patent/DE602006019454D1/de
Publication of WO2007007498A1 publication Critical patent/WO2007007498A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28079Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a single metal, e.g. Ta, W, Mo, Al
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium

Definitions

  • the present invention relates to an impurity content of Fe, Cr, Ni, an impurity content of Ca, Na, an impurity content of Al, Co, Cu, Ti, W, Zn contained in hafnium, and ⁇ High-purity hafnium material with a reduced number of wires, U and Th impurity content, Pb and Bi impurity content, and also C as a gas component, sputtering target with the same material strength, and
  • the present invention relates to a gate insulating film or a metal gate thin film and a method for producing high-purity hafnium.
  • NO and FUNIUM have excellent heat resistance and corrosion resistance, and have a high affinity with oxygen and nitrogen. Since these oxides or nitrides are further excellent in stability at high temperatures, they are used as refractory materials in the field of production of steel ceramics. Furthermore, recently it has come to be used as an electronic material or an optical material.
  • a method for producing metal hafnium has been proposed as the same production method as that for metal zirconium.
  • a method of reacting a fluorine-containing zirconium or hafnium compound with metal aluminum or magnesium at a temperature of 400 ° C. or higher in an inert gas, a reducing gas, or a vacuum for example, see Patent Document 1
  • Zirconium, hafnium chloride, or titanium salt is produced by reducing each metal to produce each metal (see, for example, Patent Document 2).
  • Hafnium or zirconium production method (see, for example, Patent Document 3) characterized by the structure of the reaction vessel and its production method when reducing magnesium hafnium to magnesium, for example, black mouth, bromo, iodine zirconium, hafnium, tantalum, vanadium and Niobium compound
  • a method for producing steam by introducing it into a crucible (see, for example, Patent Document 4) Zirconium or using hafnium Shioi ⁇ or Sanshioi ⁇ aqueous solution strongly basic anion exchange ⁇ seminal
  • a method for producing zirconium see, for example, Patent Document 5
  • a method for recovering zirconium by solvent extraction for example, see Patent Document 6
  • an apparatus for producing crystal bar hafnium (see, for example, Patent Document 7) characterized by a feeding portion. is there.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-17027
  • Patent Document 2 JP-A 61-279641
  • Patent Document 3 Japanese Patent Application Laid-Open No. 62-103328
  • Patent Document 4 Japanese Patent Publication No. 3-501630
  • Patent Document 5 JP-A-10-204554
  • Patent Document 6 Japanese Patent Laid-Open No. 60-255621
  • Patent Document 7 JP-A 61-242993
  • hafnium contains a large amount of zirconium, and high purity cannot be easily achieved.
  • hafnium contains a large amount of zirconium, and high purity cannot be easily achieved.
  • an electronic material especially as a gate insulating film or metal gate film placed close to a silicon substrate, what behavior (adverse effects) are caused by impurities contained in hafnium. Because of the lack of knowledge, the inclusion of impurities in hafnium is sometimes tolerated!
  • hafnium as an electronic component material such as a gate insulating film and a metal gate film is a very recent technology.
  • the present invention uses a hafnium sponge with reduced zirconium as a raw material, and further contains Fe, Cr, Ni impurities, Ca, Na, K impurities, Al, Co, Cu, Ti, contained in hafnium. Improve the production method of high-purity hafnium by reducing the W and Zn impurities, the ⁇ -ray count, the U and Th impurities, the Pb and Bi impurities, and the amount of gas C. It is an object of the present invention to provide an efficient and stable manufacturing technique and a high-purity hafnium material obtained thereby, a sputtering target and a gate insulating film or a metal gate thin film having the same material strength.
  • High-purity hafnium having a purity of 6N or more excluding Zr and gas components.
  • High-purity hafnium has excellent characteristics as a material such as a gate insulating film or a thin film for a metal gate, which does not deteriorate or disturb the function of an electronic device, particularly as an electronic material disposed close to a silicon substrate.
  • Fe, Cr and Ni impurities contained in high-purity hafnium are each 0.2 ppm or less, Ca, Na and K are each 0.1 ppm or less, and Al, Co, Cu, Ti, W and Zn are each 0.1 ppm or less. It is. Purity of displaying herein (%, ppm, ppb), all by weight (wt%, wtppm, wtppb) means 0
  • high purity hafnium having a purity of 6N or more excluding Zr and gas components of the present invention has an ⁇ -ray count of 0. OlcphZcm 2 or less, U and Th are less than lppb, Pb, Bi Is preferably less than 0.1 ppm.
  • the present invention includes high-purity hafnium in which the count number, U, Th content, and Pb, Bi content of the wire are reduced.
  • the high purity hafnium having a purity of 6N or more excluding Zr and gas components of the present invention desirably has a C content of 50 ppm or less as a gas component, and the present invention reduces the C content. High purity hafnium.
  • the sputtering target with high purity hafnium power of the present invention is a gate insulating film having a purity of 6 N or more excluding Zr and gas components as it is reflected in the thin film on which the high purity of the material is formed by sputtering.
  • a metal gate thin film can be formed.
  • the impurities contained in the target having a purity of 6N or more and the gate insulating film or metal gate thin film are all the impurities Fe, Cr, Ni, impurities Ca, Na, K, impurities Al, Co, It is equivalent to Cu, Ti, W, Zn, ⁇ -ray count, impurities U, Th, impurities Pb, Bi, gas component C, and their contents.
  • the present invention includes all of these.
  • molten salt electrolysis is performed using the hafnium sponge as an anode to obtain an electrodeposit by electrolysis. Furthermore, high purity hafnium having a purity of 6N or more can be obtained by dissolving this electrodeposit by electron beam melting, excluding Zr and gas components.
  • the impurities Fe, Cr, Ni contained in high-purity hafnium of purity 6N or more are each 0.2 ppm or less, and impurities Ca, Na, K are respectively contained.
  • impurities U, Th less than lppb, impurities Pb, Bi Each can be less than 0.1 ppm, and the gas component C can be 50 ppm or less.
  • Alkali metals or alkaline earth metals such as Ca, Na, and K, which are impurities, are easily movable elements and move easily through the device, making the device characteristics unstable. Is desirable.
  • impurities such as Fe, Cr, Ni, Al, Co, Cu, Ti, W, Zn and other transition metals, heavy metals, etc. cause an increase in leakage current and cause a decrease in breakdown voltage. I want it.
  • Impurities such as U, Th, Pb, and Bi generate soft errors when the stored charge in the memory cell is inverted. Therefore, it is necessary to reduce these amounts and limit the alpha dose generated from these elements.
  • an increase in the amount of c causes generation of particles during sputtering, so it is necessary to reduce it.
  • the Zr content is not particularly problematic, but can be 2500 ppm or less, and further lOOOppm or less.
  • the content of impurities varies depending on the amount of impurities contained in the raw material, but by adopting the above method, it is possible to adjust each impurity within the above numerical range.
  • the present invention provides the above-described high-purity hafnium, a target and thin film having high-purity hafnium power, and a method for producing high-purity hafnium.
  • High purity hafnium having a purity of 6N or more excluding Zr and gas components of the present invention has impurities Fe, Cr and Ni of 0.2 ppm or less, impurities Ca, Na and K of 0.1 lppm or less, Al , Co, Cu, Ti, W, Zn each is 0.1 lppm or less, and the alpha ray count is 0.01 cphZcm 2 or less, impurities U and Th are each less than lppb, and impurities Pb and Bi are each less than 0.1 ppm
  • the gas component C is 50 ppm or less, and particularly as an electronic material disposed close to the silicon substrate, the function of the electronic device is not deteriorated or disturbed, and the gate insulating film or metal It has excellent effects as a material for gate thin films and the like.
  • the production method of the present invention has the effect of stably producing high-purity hafnium having a purity of 6N or more excluding Zr and gas components.
  • the present invention uses a hafnium sponge from which Zr is removed as a raw material.
  • a raw material use is made of haf-um tetrachloride (HfCl).
  • Tetrahyalha hafnium can use commercially available materials
  • hafnium (Hf) metal or hafnium oxide (HfO) may be used as a raw material. These ingredients are Zr
  • this tetra-salt hafnium raw material is dissolved in pure water.
  • this is subjected to multistage organic solvent extraction. Usually 1 to 10 stages of solvent extraction are performed. TBP can be used as an extractant. As a result, Zr can be reduced to 5000 wtppm or less.
  • hafnium oxide HfO
  • HfCl 3 high purity tetrasalt hafnium
  • This HfCl is distilled and purified. HfCl obtained in this way can be used for Mg
  • the electrodeposit obtained in this manner is introduced into a Cu crucible—and then melted with an electron beam (nose melting). Hough-hum molten metal overflowing from the upper part of the pool flows into the upper part of the ingot. Again, this is a molten state, and the purity can be increased by performing a series of electron beam operations during the hearth and the ingot.
  • a high-purity hafnium ingot having a purity of 6N (99.9999%) or more can be obtained by removing gas components such as carbon, oxygen, and nitrogen and zirconium, thereby removing Zr and gas components.
  • a high purity hafnium target can be produced using this high purity hafnium.
  • Result of alpha dose of the target was measured using a measuring device of the gas follow proportional counter type, alpha dose is 0. OlcphZcm 2 below.
  • high-purity hafnium can be deposited on the substrate by sputtering using this high-purity target.
  • the target can be manufactured by normal processing such as forging, rolling and cutting 1 finishing (polishing).
  • the manufacturing process can be arbitrarily selected without any restrictions.
  • Reduction using Mg metal gave a hafnium sponge with a purity of 3N.
  • the Zr impurity level was reduced to 5000 ppm level and 800 ppm level.
  • This 3N hafnium sponge is used as an anode, and an NaCl-KCl-HfCl electrolytic bath is used.
  • Electrolysis was performed at 720 ° C to obtain electrodeposited hafnium.
  • This electrodeposited hafnium is washed with pure water and lightly etched with hydrofluoric acid.
  • Fe, Cr, Ni, Al, Co, Cu, Ti, W, Zn, U, Th, and C could be removed.
  • the reduction effect of W, C, U, and Th is remarkable.
  • the electrodeposit obtained in this manner is introduced into a Cu crucible-and then electron beam melting (nose melting) is performed, and hafnium is sequentially added thereto. Hafnium overflowing from the top of the pool Molten metal S Flows into the top of the S ingot. Again, it is in a molten state, and the purity can be increased by carrying out a series of electron beam operations at the hearth and ingot soot. As a result, the impurities other than W, C, U, and Th, and Ca, Na, and K were also effectively removed.
  • Table 1 shows the (GDMS analysis).
  • Impurities are Fe, 0. Olppm, Cr ⁇ 0. Olppm, Ni: 0.04 to 0.08 ppm, Ca: 0. Olppm, Na: 0. 01ppm, K ⁇ 0. Olppm, Al. : 0 0 Olppm, Co 0 0. Olppm, Cu ⁇ 0. 05 ppm, Ti 0. Olppm, W: 0. Olppm, Zn ⁇ 0. Olpp m, and the alpha ray count is low.
  • 0 004 cphZcm 2 U: 0.001 ppm, Th: 0.001 ppm, Pb ⁇ 0. Olppm, Bi ⁇ 0. Olppm, and the C content was lOppm.
  • the Zr impurity was reduced from 800 ppm level to 800 ppm level.
  • This hafnium sponge with a purity of 3N is used as an anode and a NaCl-KCl-HfCl electrolytic bath is used.
  • Electrolysis was performed at 720 ° C. to obtain electrodeposited hafnium.
  • This electrodeposited hafnium is washed with pure water and lightly etched with hydrofluoric acid.
  • Fe, Cr, Ni, Al, Co, Cu, Ti, W, Zn, U, Th, and C could be removed.
  • the effect of reducing W, C, U, and Th is remarkable.
  • Example 2 The electrodeposit thus obtained was introduced into a Cu crucible and melted by an electron beam.
  • Example 2 does not perform Hearth melting. It is.
  • a high-purity haf-mu ingot having a purity level of 6N 99. 9999%
  • Table 1 shows the chemical analysis values (GDMS analysis) of the top (top) and bottom (low) of the ingot.
  • Impurities are Fe: 0.01 to 0.05 ppm, Cr: 0.01 ppm, Ni: 0.1 to 0.18 ppm, Ca ⁇ 0.01 ppm, Na: ⁇ 0.01 ppm, K ⁇ 0. Olppm A1 ⁇ 0. Olp pm, Co 0. Olppm, Cu ⁇ 0.05 ppm, Ti: 0.03 to 0.05 ppm, W: ⁇ 0. Olppm, Zn ⁇ 0. Olppm, and ⁇ -ray count 004 cph / cm 2 , U ⁇ 0. OOlp pm, Th ⁇ 0.001 ppm, Pb ⁇ 0. Olppm, Bi ⁇ 0. Olppm, and C content power ⁇ 30 ppm.
  • High purity hafnium having a purity of 6N or more excluding Zr and gas components of the present invention has impurities Fe, Cr and Ni of 0.2 ppm or less, impurities Ca, Na and K of 0.1 ppm or less, Al, Co, Cu, Ti, W, and Zn are each 0.1 ppm or less, ⁇ -ray count is 0.01 cphZcm 2 or less, impurities U and Th are each less than lppb, impurities Pb and Bi are each less than 0.1 ppm, and C, which is a gas component, is 50 ppm or less.
  • an electronic material placed close to a silicon substrate it does not deteriorate or disturb the function of electronic equipment. It is useful as a material for thin films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】 ジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらにハフニウム中に含まれるFe,Cr,Niの不純物、Ca,Na,Kの不純物、Al,Co,Cu,Ti,W,Znの不純物、さらにα線のカウント数、U,Thの不純物、Pb,Biの不純物、さらにはガス成分であるC量を、それぞれ低減させた高純度ハフニウムの製造方法に関し、効率的かつ安定した製造技術及びそれによって得られた高純度ハフニウム材料、同材料からなるスパッタリング用ターゲット及びゲート絶縁膜又はメタルゲート用薄膜を提供する。 【解決手段】 Zrとガス成分を除き純度6N以上であって、Fe,Cr,Niがそれぞれ0.2ppm以下、Ca,Na,Kがそれぞれ0.1ppm以下、Al,Co,Cu,Ti,W,Znがそれぞれ0.1ppm以下であることを特徴とする高純度ハフニウム。

Description

明 細 書
高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに 高純度ハフニウムの製造方法
技術分野
[0001] 本発明は、ハフニウム中に含まれる、 Fe, Cr, Niの不純物含有量、 Ca, Na, の 不純物含有量、 Al, Co, Cu, Ti, W, Znの不純物含有量、さらに α線のカウント数、 U, Thの不純物含有量、 Pb, Biの不純物含有量、さらにはガス成分である C量を、 それぞれ低減させた高純度ハフニウム材料、同材料力もなるスパッタリング用ターゲ ット及びゲート絶縁膜又はメタルゲート用薄膜並びに高純度ハフニウムの製造方法 に関する。
背景技術
[0002] 従来、ハフニウムの製造に関する多数の文献がある。ノ、フニゥムは耐熱性、耐食性 に優れており、酸素や窒素などとの親和力が大きいという特性を持っている。そして、 これらの酸ィ匕物あるいは窒化物は、さらに高温での安定性に優れているため、原子 力用セラミックスある 、は鉄鋼ゃ铸物の製造分野での耐火材として利用されて 、る。 さらに、最近では電子材料又は光材料として利用されるようになってきた。
[0003] 金属ハフニウムの製造法は、金属ジルコニウムの製造方法と同一の製造方法として 提案されている。その例を挙げると、フッ素含有ジルコニウム又はハフニウム化合物を 不活性ガス、還元ガス又は真空中 400° C以上の温度で金属アルミニウム又はマグ ネシゥムと反応させる方法 (例えば、特許文献 1参照)、塩ィ匕ジルコニウム、塩化ハフ ニゥム又は塩ィ匕チタンを還元してそれぞれの金属を製造するという、シール金属に特 徴のある製造方法 (例えば、特許文献 2参照)、マグネシウムで四塩ィ匕ジルコニウム又 は四塩ィヒハフニウムをマグネシウム還元する際の反応容器の構造とその製造手法に 特徴のあるハフニウム又はジルコニウムの製造法 (例えば、特許文献 3参照)、クロ口 、ブロモ、ョードのジルコニウム、ハフニウム、タンタル、バナジウム及びニオブ化合物 蒸気をるつぼに導入して製造する方法 (例えば、特許文献 4参照)、ジルコニウム又 はハフニウム塩ィ匕物又は酸塩ィ匕物水溶液を強塩基性陰イオン交換榭脂を用いて精 製する方法 (例えば、特許文献 5参照)、溶媒抽出によるジルコニウムの回収方法 (例 えば、特許文献 6参照)、給電部分に特徴を有するクリスタルバーハフニウムの製造 装置 (例えば、特許文献 7参照)がある。
特許文献 1:特開昭 60— 17027号公報
特許文献 2:特開昭 61— 279641号公報
特許文献 3 :特開昭 62— 103328号公報
特許文献 4:特表平 3— 501630号公報
特許文献 5:特開平 10— 204554号公報
特許文献 6:特開昭 60 - 255621号公報
特許文献 7:特開昭 61— 242993号公報
[0004] 上記の文献に示すように、ハフニウムの精製方法又は抽出方法が多数ある。最近ノ、 フニゥムを利用した電子部品への成膜が要求されるようになってきた。特にゲート絶 縁膜、メタルゲート膜として使用されようとしている。これらの膜は Si基板の直上である ため、純度の影響が大きい。特に半導体基板への汚染が問題となる。
し力し、従来はハフニウム中にジルコニウムが多量に含有されるという問題があり、ま た高純度化は容易には達成することができな力つた。また、電子材料として、特にシリ コン基板に近接して配置されるゲート絶縁膜又はメタルゲート膜として使用される場 合には、ハフニウム中に含まれる不純物がどのような挙動(悪影響)をもたらすのかと V、う知見がな 、ために、ハフニウム中の不純物の含有は黙認されて!ヽたと!/、うことが ある。
これは、ハフニウムをゲート絶縁膜、メタルゲート膜等の電子部品材料として使用す ることが、極めて最近の技術であることが大きな原因であると考えられる。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、ジルコニウムを低減させたハフニウムスポンジを原料として使用し、さらに ハフニウム中に含まれる Fe, Cr, Niの不純物、 Ca, Na, Kの不純物、 Al, Co, Cu, Ti, W, Znの不純物、さらに α線のカウント数、 U, Thの不純物、 Pb, Biの不純物、 さらにはガス成分である C量を、それぞれ低減させた高純度ハフニウムの製造方法に 関し、効率的かつ安定した製造技術及びそれによつて得られた高純度ハフニウム材 料、同材料力もなるスパッタリング用ターゲット及びゲート絶縁膜又はメタルゲート用 薄膜を提供することを課題とする。
課題を解決するための手段
[0006] 上記の課題を解決するために、本発明者らは鋭意研究を行った結果、 Zrとガス成 分を除き 6N以上の純度を有する高純度ハフニウムを提供するものであり、このような 高純度ハフニウムは、特にシリコン基板に近接して配置される電子材料として、電子 機器の機能を低下又は乱すことがなぐまたゲート絶縁膜又はメタルゲート用薄膜等 の材料として優れた特性を有する。高純度ハフニウムに含有される不純物の Fe, Cr , Niはそれぞれ 0. 2ppm以下、 Ca, Na, Kはそれぞれ 0. lppm以下、 Al, Co, Cu , Ti, W, Znはそれぞれ 0. lppm以下である。なお、本願で表示する純度(%、 ppm 、 ppb)は、全て重量(wt%、 wtppm、 wtppb)を意味する 0
[0007] ハフニウム中に含有される不純物の Zrを除外して!/、るのは、高純度ハフニウムの製 造の際に、 Zr自体がハフニウムと化学的特性が似ているために、除去することが技術 的に非常に難しいということ、さらにこの特性の近似性力もして、不純物として混入し ていても、大きな特性の異変にはならないということからである。このような事情力もあ る程度の Zrの混入は黙認されるが、ハフニウム自体の特性を向上させようとする場合 は、少ないことが望ましいことは、言うまでもない。
[0008] さらに、本発明の Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムは 、 α線のカウント数が 0. OlcphZcm2以下であり、 U, Thがそれぞれ lppb未満、 Pb , Biがそれぞれ 0. lppm未満であることが望ましい。本願発明はこのひ線のカウント 数、 U, Th含有量、 Pb, Bi含有量を低減させた高純度ハフニウムを含むものである。 さらに、本発明の Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムは、 ガス成分である C含有量が 50ppm以下であることが望ましぐ本願発明はこの C含 有量を低減させた高純度ハフニウムを含むものである。
[0009] ゲート絶縁膜又はメタルゲート用薄膜等の電子材料の薄膜を形成する場合には、そ の多くはスパッタリングによって行われ、薄膜の形成手段として優れた方法である。し たがって、上記 Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムは、そ のまま高純度ハフニウムターゲット材として形成することができる。
本発明の高純度ハフニウム力もなるスパッタリングターゲットは、スパッタリングによつ て、材料のもつ高純度が成膜された薄膜にそのまま反映され、 Zrとガス成分を除き 6 N以上の純度を有するゲート絶縁膜又はメタルゲート用薄膜を形成することができる
[0010] また、 6N以上の純度を有するターゲット及びゲート絶縁膜又はメタルゲート用薄膜 に含有する前記不純物は、全て上記不純物 Fe, Cr, Ni、不純物 Ca, Na, K、不純 物 Al, Co, Cu, Ti, W, Zn、さらに α線のカウント数、不純物 U, Th、不純物 Pb, Bi 、さらにはガス成分である C及びこれらの含有量と同等である。本願発明は、これらを 全て含むものである。
Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムの製造に際しては、ま ず粗 HfClを蒸留して精製し、この精製 HfClを還元してハフニウムスポンジを得る。
4 4
次に、このハフニウムスポンジをアノードとして溶融塩電解し、電解による電着物を得 る。さらに、この電着物を電子ビーム溶解することにより、 Zrとガス成分を除き純度 6N 以上の高純度ハフニウムとすることができる。
[0011] このようにして得た Zrとガス成分を除き純度 6N以上の高純度ハフニウム中に含有さ れる上記不純物 Fe, Cr, Niをそれぞれ 0. 2ppm以下、不純物 Ca, Na, Kをそれぞ れ 0. Ippm以下、 Al, Co, Cu, Ti, W, Znをそれぞれ 0. Ippm以下、さらに a線の カウント数 0. OlcphZcm2以下、不純物 U, Thをそれぞれ lppb未満、不純物 Pb, Biをそれぞれ 0. Ippm未満、さらにはガス成分である Cを 50ppm以下とすることがで きる。
[0012] 不純物である Ca, Na, K等のアルカリ金属又はアルカリ土類金属は、易移動性の元 素で、素子中を容易に移動し、素子の特性を不安定にするため、少ない方が望まし い。また、不純物である Fe, Cr, Ni、 Al, Co, Cu, Ti, W, Zn等の遷移金属、重金 属等は、リーク電流の増加を引き起こし、耐圧低下の原因となるので、少ない方が望 ましい。不純物である U, Th、 Pb, Biは、メモリーセルの蓄積電荷が反転するといぅソ フトエラーが発生する。したがって、これらの量を少なくすると共に、これらの元素から 発生する α線量を制限する必要がある。 さらに、 c量の増加は、スパッタリングの際にパーティクル発生の原因となるので、少 なくすることが必要である。 Zr含有量は、特に問題となるものではないが、 2500ppm 以下、さらには、 lOOOppm以下とすることができる。
不純物の含有量は、原材料に含まれる不純物量によって変動するが、上記の方法 を採用することにより、それぞれの不純物を上記数値の範囲に調節が可能である。本 願発明は、上記の高純度ハフニウム、高純度ハフニウム力 なるターゲット及び薄膜 並びに高純度ハフニウムの製造方法を提供するものである。
発明の効果
[0013] 本発明の Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムは、不純物 Fe, Cr, Niをそれぞれ 0. 2ppm以下、不純物 Ca, Na, Kをそれぞれ 0. lppm以下 、 Al, Co, Cu, Ti, W, Znをそれぞれ 0. lppm以下、さらに α線のカウント数 0. 01c phZcm2以下、不純物 U, Thをそれぞれ lppb未満、不純物 Pb, Biをそれぞれ 0. 1 ppm未満、さらにはガス成分である Cを 50ppm以下としたものであり、特にシリコン基 板に近接して配置される電子材料として、電子機器の機能を低下又は乱すことがなく 、またゲート絶縁膜又はメタルゲート用薄膜等の材料として優れた効果を有する。 さらに、本願発明の製造方法は、 Zrとガス成分を除き 6N以上の純度を有する高純 度ハフニウムを安定して製造できると 、う効果を有する。 発明を実施するための最良の形態
[0014] 本発明は、 Zrを除去したハフニウムスポンジを原料とする。原料として、四塩化ハフ -ゥム (HfCl )を使用する。四塩ィ匕ハフニウムは、市販の材料を使用することができ
4
る。この市販の四塩ィ匕ハフニウムは Zrを 5wt%程度含有している。なお、原料として ハフニウム(Hf)メタル、酸化ハフニウム(HfO )を用いても良い。これらの原料は、 Zr
2
を除き、純度 3Nレベルのものであり、 Zr以外の主な不純物として、 Fe、 Cr、 Ni等が 含有されている。
まず、この四塩ィ匕ハフニウム原料を純水に溶解する。次に、これを多段の有機溶媒 抽出を行う。通常 1〜10段の溶媒抽出を行う。抽出剤としては TBPを使用することが できる。これによつて Zrを 5000wtppm以下にすることができる。
次に、中和処理して酸化ハフニウム(HfO )を得る。この酸化ハフニウムを塩素化し て高純度四塩ィ匕ハフニウム (HfCl )を得る。
4
[0015] 以上については、すでに公知の技術であり、本願発明は、高純度四塩化ハフ-ゥ ム(HfCl )の原料から出発する。
4
この HfClを蒸留し、精製する。このようにして得た HfClを、塩ィ匕力の強い Mg等の
4 4
金属を使用して還元し、純度 3Nレベルのハフニウムスポンジを得る。この純度 3Nの ハフニウムスポンジをアノードとし、 NaCl-KCl-HfCl等の電解浴を用いて 700〜
4
1000° Cで電解して電析ハフニウムを得、この電析ハフニウムを純水で洗浄し、弗 硝酸で軽くエッチングする。
[0016] このようにして得られた電着物を、 Cuるつぼの中に導入しー且電子ビーム溶解 (ノヽ ース溶解)し、これに順次電析ノ、フニゥムを投入する。プール上部よりあふれたハフ -ゥム溶湯がインゴット上部に流れ込む。ここでも溶湯の状態であり、このようにハー スとインゴットィ匕時に、 2度の溶解を一連の電子ビーム操作で行うことにより、純度を上 げることができる。
[0017] このように炭素、酸素、窒素等のガス成分及びジルコニウムを除き、これによつて Zrと ガス成分を除き純度 6N (99. 9999%)以上の高純度ハフニウムインゴットを得ること ができる。また、この高純度ハフニウムを使用して高純度ハフニウムターゲットを製造 することができる。ターゲットの α線量をガスフォロー比例計数管方式の測定装置を 用いて測定した結果、 α線量は 0. OlcphZcm2以下である。
さらに、この高純度ターゲットを用いてスパッタリングすることにより高純度ハフニウム を基板上に成膜することができる。
ターゲットの製造は、鍛造'圧延 ·切肖 1 仕上げ加工 (研磨)等の、通常の加工により 製造することができる。特に、その製造工程に制限はなぐ任意に選択することができ る。
実施例
[0018] 次に、実施例について説明する。なお、この実施例は理解を容易にするためのもの であり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内に おける、他の実施例及び変形は、本発明に含まれるものである。
[0019] (実施例 1) 粗 HfClを約 320° Cの温度で蒸留して精製した。この精製 HfClを塩化力の強い
4 4
、 Mg金属を使用して還元し純度 3Nのハフニウムスポンジを得た。蒸留精製の段階 で、 Zr不純物 ίま、 5000ppmレべノレ力ら 800ppmレべノレに低減した。
この純度 3Nのハフニウムスポンジをアノードとし、 NaCl-KCl-HfClの電解浴を
4
用いて 720° Cで電解し、電析ハフニウムを得た。この電析ハフニウムを純水で洗浄 し、弗硝酸で軽くエッチングする。これによつて、 Fe, Cr, Ni, Al, Co, Cu, Ti, W, Zn, U, Th,及び Cを除去することができた。特に、 W, C, U, Thの低減効果が著し い。
[0020] このようにして得られた電着物を、 Cuるつぼの中に導入しー且電子ビーム溶解 (ノヽ ース溶解)し、これに順次ハフニウムを投入する。プール上部よりあふれたハフニウム 溶湯力 Sインゴット上部に流れ込む。ここでも溶湯の状態であり、このようにハースとイン ゴットイ匕時に、 2度の溶解を一連の電子ビーム操作で行うことにより、純度を上げるこ とができる。これによつて、 W, C, U, Th以外の上記不純物及び Ca, Na, Kも効果 的に除去することができた。
[0021] 以上により、ジルコニウムを除き、純度 6Ν (99. 9999%)レベルの高純度ハフニウム インゴットを得ることができた。インゴットのトップ (上部)とボトム (低部)との化学分析値
(GDMS分析)を表 1に示す。
不純物は、それぞれ Feく 0. Olppm, Cr< 0. Olppm, Ni: 0. 04〜0. 08ppmとな り、 Caく 0. Olppm, Na:く 0. 01ppm、K< 0. Olppmとなり、 Al:く 0. Olppm, C oく 0. Olppm, Cu< 0. 05ppm、 Tiく 0. Olppm, W: 0. Olppm, Zn< 0. Olpp mとなり、さらに α線のカウント数がく 0. 004cphZcm2、 Uく 0. 001ppm、Thく 0. 001ppm、 Pb< 0. Olppm, Bi< 0. Olppmとなり、さらには C量が lOppmとなった。 これらは、インゴットのトップの分析値を示したものであり、若干の相違があった力 ボ トム部も殆んど同様の不純物量であった。 V、ずれも本願発明の条件を満たして 、た。 このインゴットから得たスパッタリングターゲットは、同様に高純度を維持することがで き、これをスパッタすることにより均一な特性の高純度ハフニウムの薄膜を基板上に 形成することができた。
[0022] [表 1] (ppm)
Figure imgf000009_0001
[0023] (実施例 2)
実施例 1と同様に、粗 HfClを約 320° Cの温度で蒸留して精製した。この精製 Hf
4
C1を塩化力の強い、 Mg金属を使用して還元し純度 3Nのハフニウムスポンジを得た
4
oこの段階で、 Zr不純物は、 5000ppmレベル力ら 800ppmレベルに低減した。この 純度 3Nのハフニウムスポンジをアノードとし、 NaCl-KCl-HfClの電解浴を用い
4
て 720° Cで電解し、電析ハフニウムを得た。この電析ハフニウムを純水で洗浄し、 弗硝酸で軽くエッチングする。これによつて、 Fe, Cr, Ni, Al, Co, Cu, Ti, W, Zn, U, Th,及び Cを除去することができた。特に、 W, C, U, Thの低減効果が著しい。
[0024] このようにして得られた電着物を、 Cuるつぼの中に導入し電子ビーム溶解した。な お、本実施例 2と実施例 1との相異は、本実施例 2がハース溶解を実施していない点 である。これより、ジルコニウムを除き、純度 6N (99. 9999%)レベルの高純度ハフ -ゥムインゴットを得ることができた。インゴットのトップ (上部)とボトム (低部)との化学 分析値 (GDMS分析)を、同様に表 1に示す。
不純物は、それぞれ Fe : 0. 01〜0. 05ppm、 Crく 0. 01ppm、Ni: 0. 10〜0. 18p pmとなり、 Ca< 0. 01ppm、 Na: < 0. 01ppm、K< 0. Olppmとなり、 A1< 0. Olp pm、 Coく 0. Olppm, Cu< 0. 05ppm、 Ti: 0. 03〜0. 05ppm、 W: < 0. Olppm 、 Zn< 0. Olppmとなり、さらに α線のカウント数力^). 004cph/cm2、 U< 0. OOlp pm、 Th< 0. 001ppm、 Pb< 0. Olppm, Bi< 0. Olppmとなり、さらには C量力 〜30ppmとなった。
これらは、インゴットのトップの分析値を示したものであり、若干の相違があった力 ボ トム部も殆んど同様の不純物量であった。 V、ずれも本願発明の条件を満たして 、た。 このインゴットから得たスパッタリングターゲットは、同様に高純度を維持することがで き、これをスパッタすることにより均一な特性の高純度ハフニウムの薄膜を基板上に 形成することができた。
産業上の利用可能性
本発明の Zrとガス成分を除き 6N以上の純度を有する高純度ハフニウムは、不純物 Fe, Cr, Niをそれぞれ 0. 2ppm以下、不純物 Ca, Na, Kをそれぞれ 0. lppm以下 、 Al, Co, Cu, Ti, W, Znをそれぞれ 0. lppm以下、さらに α線のカウント数 0. 01c phZcm2以下、不純物 U, Thをそれぞれ lppb未満、不純物 Pb, Biをそれぞれ 0. 1 ppm未満、さらにはガス成分である Cを 50ppm以下としたものであり、特にシリコン基 板に近接して配置される電子材料として、電子機器の機能を低下又は乱すことがな いので、ゲート絶縁膜又はメタルゲート用薄膜等の材料として有用である。

Claims

請求の範囲
[1] Zrとガス成分を除き純度 6N以上であって、 Fe, Cr, Niがそれぞれ 0. 2ppm以下、
Ca, Na, Kがそれぞれ 0. Ippm以下、 Al, Co, Cu, Ti, W, Znがそれぞれ 0. Ipp m以下であることを特徴とする高純度ハフニウム。
[2] α線のカウント数が 0. OlcphZcm2以下であり、 U, Thがそれぞれ lppb未満、 Pb
, Biがそれぞれ 0. Ippm未満であることを特徴とする請求項 1記載の高純度ハフ-ゥ ム。
[3] ガス成分である C含有量が 50ppm以下であることを特徴とする請求項 1又は 2記載 の高純度ハフニウム。
[4] 請求項 1〜3のいずれかに記載の高純度ハフニウム力もなるスパッタリング用ターゲ ッ卜。
[5] 請求項 1〜3のいずれかに記載の高純度ハフニウム力もなるゲート絶縁膜又はメタ ルゲート用薄膜。
[6] 粗 HfClを蒸留して精製し、この精製 HfClを還元してハフニウムスポンジを得、さ
4 4
らにこのハフニウムスポンジをアノードとして溶融塩電解し、電解による電着物を電子 ビーム溶解することにより、 Zrとガス成分を除き純度 6N以上の高純度ハフニウムとす ることを特徴とする高純度ハフニウムの製造方法。
PCT/JP2006/311722 2005-07-07 2006-06-12 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法 WO2007007498A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800247262A CN101218360B (zh) 2005-07-07 2006-06-12 高纯度铪及其制造方法、由高纯度铪构成的靶及薄膜
JP2007524546A JP5032316B2 (ja) 2005-07-07 2006-06-12 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法
US11/994,167 US8277723B2 (en) 2005-07-07 2006-06-12 High-purity hafnium, target and thin film comprising high-purity hafnium, and process for producing high-purity hafnium
EP06766584A EP1930451B9 (en) 2005-07-07 2006-06-12 High-purity hafnium, target and thin film comprising high-purity hafnium, and process for producing high-purity hafnium
DE602006019454T DE602006019454D1 (de) 2005-07-07 2006-06-12 Hochreines hafnium, target und hochreines hafnium umfassender dünner film und verfahren zur herstellung von hochreinem hafnium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005198901 2005-07-07
JP2005-198901 2005-07-07

Publications (1)

Publication Number Publication Date
WO2007007498A1 true WO2007007498A1 (ja) 2007-01-18

Family

ID=37636897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311722 WO2007007498A1 (ja) 2005-07-07 2006-06-12 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法

Country Status (8)

Country Link
US (1) US8277723B2 (ja)
EP (1) EP1930451B9 (ja)
JP (1) JP5032316B2 (ja)
KR (1) KR100968396B1 (ja)
CN (1) CN101218360B (ja)
DE (1) DE602006019454D1 (ja)
TW (1) TW200706666A (ja)
WO (1) WO2007007498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002377A1 (ja) * 2014-06-30 2016-01-07 東邦チタニウム株式会社 金属の製造方法及び高融点金属の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964070B2 (en) * 2003-07-25 2011-06-21 Jx Nippon Mining & Metals Corporation Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
KR100766275B1 (ko) * 2003-11-19 2007-10-15 닛코킨조쿠 가부시키가이샤 고순도 하프늄, 동 고순도 하프늄으로 이루어진 타겟트 및박막과 고순도 하프늄의 제조방법
US7871942B2 (en) * 2008-03-27 2011-01-18 Applied Materials, Inc. Methods for manufacturing high dielectric constant film
KR102016864B1 (ko) * 2012-12-06 2019-08-30 센주긴조쿠고교 가부시키가이샤 Cu 볼
CN104096847A (zh) * 2013-04-03 2014-10-15 北京有色金属研究总院 一种低氧、大尺寸高纯铪粉的制备方法
US9553160B2 (en) * 2013-10-09 2017-01-24 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanisms for monitoring impurity in high-K dielectric film
CN108611502B (zh) * 2018-04-12 2020-07-31 北京金铂宇金属科技有限公司 一种降低镁还原法制备海绵铪中氧含量的方法
CN113584446A (zh) * 2021-07-23 2021-11-02 中国科学院半导体研究所 利用磁控溅射在硅衬底上制备的金属铪薄膜、方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017027A (ja) 1983-07-08 1985-01-28 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk 金属ジルコニウム及び金属ハフニウムの製造方法
JPS60255621A (ja) 1984-02-22 1985-12-17 アイアン・オア・カンパニ−・オブ・カナダ 溶媒抽出によるジルコニウムの回収法
JPS61242993A (ja) 1985-04-19 1986-10-29 Toshiba Corp クリスタルバ−ハフニウム製造用装置
JPS61279641A (ja) 1985-05-30 1986-12-10 ウエスチングハウス エレクトリック コ−ポレ−ション 塩化ジルコニウム、塩化ハフニウムまたは塩化チタンを還元して金属にする方法
JPS62103328A (ja) 1985-09-26 1987-05-13 ウエスチングハウス エレクトリック コ−ポレ−ション ジルコニウムまたはハフニウムの製造方法
JPH03501630A (ja) 1988-05-25 1991-04-11 シェール,ランダル リー 高純度のジルコニウム及びハフニウム、並びにそれらの製造
EP0442752A1 (en) * 1990-02-15 1991-08-21 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
JPH07316681A (ja) * 1994-05-25 1995-12-05 Japan Energy Corp 金属材料又は合金材料の製造方法及び精製剤、並びに耐食性に優れた金属材料又は合金材料
JPH10204554A (ja) 1997-01-22 1998-08-04 Dowa Mining Co Ltd ジルコニウムおよび/またはハフニウム化合物の精製方法
EP1329526A1 (en) * 2000-10-02 2003-07-23 Nikko Materials Company, Limited High purity zirconium or hafnium, sputtering target comprising the high purity zirconium or hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
JP2006037133A (ja) * 2004-07-23 2006-02-09 Toho Titanium Co Ltd 高純度ハフニウム材の製造方法及びこの方法により得られた高純度ハフニウム材、並びにスパッタリングターゲット

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782116A (en) 1946-09-06 1957-02-19 Frank H Spedding Method of preparing metals from their halides
GB771144A (en) * 1954-04-16 1957-03-27 Nat Lead Co Improvements in or relating to the purification of zirconium tetrachloride
US2837478A (en) * 1954-12-17 1958-06-03 Norton Co Apparatus for the production of metal
DE1152268B (de) * 1960-12-28 1963-08-01 Euratom Rotationskathode fuer die Schmelzflusselektrolyse zur Abscheidung von hochschmelzenden Metallen, insbesondere Tantal
EP0134643A3 (en) 1983-07-08 1986-12-30 Solex Research Corporation of Japan Preparing metallic zirconium, hafnium or titanium
JP2921799B2 (ja) * 1990-02-15 1999-07-19 株式会社 東芝 半導体素子形成用高純度スパッタターゲットの製造方法
US5112493A (en) 1990-12-10 1992-05-12 Westinghouse Electric Corp. Zirconium-hafnium production in a zero liquid discharge process
JP2794382B2 (ja) 1993-05-07 1998-09-03 株式会社ジャパンエナジー スパッタリング用シリサイドターゲット及びその製造方法
WO1995004167A1 (fr) 1993-07-27 1995-02-09 Kabushiki Kaisha Toshiba Cible en siliciure metallique a point de fusion eleve, son procede de production, couche en siliciure metallique a point de fusion eleve, et dispositif a semi-conducteurs
US6309595B1 (en) 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US20030052000A1 (en) 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JP4501250B2 (ja) 2000-06-19 2010-07-14 日鉱金属株式会社 耐脆化性に優れたゲート酸化膜形成用シリサイドターゲット
JP3566641B2 (ja) 2000-09-11 2004-09-15 住友チタニウム株式会社 高融点活性金属製造用真空排気装置の真空排気方法
JP4104039B2 (ja) * 2000-10-02 2008-06-18 日鉱金属株式会社 高純度ジルコニウム又はハフニウムの製造方法
JP2002206103A (ja) * 2000-11-09 2002-07-26 Nikko Materials Co Ltd 高純度ジルコニウム若しくはハフニウム粉の製造方法
JP4596379B2 (ja) 2001-07-09 2010-12-08 Jx日鉱日石金属株式会社 ゲート酸化膜形成用ハフニウムシリサイドターゲット
JP3995082B2 (ja) 2001-07-18 2007-10-24 日鉱金属株式会社 ゲート酸化膜形成用ハフニウムシリサイドターゲット及びその製造方法
US6737030B2 (en) 2002-01-29 2004-05-18 Ati Properties, Inc. Method for separating hafnium from zirconium
WO2004016825A1 (ja) 2002-08-06 2004-02-26 Nikko Materials Co., Ltd. ハフニウムシリサイドターゲット及びその製造方法
JP4203070B2 (ja) 2003-03-07 2008-12-24 日鉱金属株式会社 ハフニウム合金ターゲット及びその製造方法
US7964070B2 (en) * 2003-07-25 2011-06-21 Jx Nippon Mining & Metals Corporation Highly pure hafnium material, target thin film comprising the same and method for producing highly pure hafnium
JP2005045166A (ja) * 2003-07-25 2005-02-17 Toshiba Corp 半導体装置及びその製造方法
KR100766275B1 (ko) 2003-11-19 2007-10-15 닛코킨조쿠 가부시키가이샤 고순도 하프늄, 동 고순도 하프늄으로 이루어진 타겟트 및박막과 고순도 하프늄의 제조방법
US20060062910A1 (en) 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017027A (ja) 1983-07-08 1985-01-28 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk 金属ジルコニウム及び金属ハフニウムの製造方法
JPS60255621A (ja) 1984-02-22 1985-12-17 アイアン・オア・カンパニ−・オブ・カナダ 溶媒抽出によるジルコニウムの回収法
JPS61242993A (ja) 1985-04-19 1986-10-29 Toshiba Corp クリスタルバ−ハフニウム製造用装置
JPS61279641A (ja) 1985-05-30 1986-12-10 ウエスチングハウス エレクトリック コ−ポレ−ション 塩化ジルコニウム、塩化ハフニウムまたは塩化チタンを還元して金属にする方法
JPS62103328A (ja) 1985-09-26 1987-05-13 ウエスチングハウス エレクトリック コ−ポレ−ション ジルコニウムまたはハフニウムの製造方法
JPH03501630A (ja) 1988-05-25 1991-04-11 シェール,ランダル リー 高純度のジルコニウム及びハフニウム、並びにそれらの製造
EP0442752A1 (en) * 1990-02-15 1991-08-21 Kabushiki Kaisha Toshiba Highly purified metal material and sputtering target using the same
JPH07316681A (ja) * 1994-05-25 1995-12-05 Japan Energy Corp 金属材料又は合金材料の製造方法及び精製剤、並びに耐食性に優れた金属材料又は合金材料
JPH10204554A (ja) 1997-01-22 1998-08-04 Dowa Mining Co Ltd ジルコニウムおよび/またはハフニウム化合物の精製方法
EP1329526A1 (en) * 2000-10-02 2003-07-23 Nikko Materials Company, Limited High purity zirconium or hafnium, sputtering target comprising the high purity zirconium or hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
JP2006037133A (ja) * 2004-07-23 2006-02-09 Toho Titanium Co Ltd 高純度ハフニウム材の製造方法及びこの方法により得られた高純度ハフニウム材、並びにスパッタリングターゲット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930451A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002377A1 (ja) * 2014-06-30 2016-01-07 東邦チタニウム株式会社 金属の製造方法及び高融点金属の製造方法
JPWO2016002377A1 (ja) * 2014-06-30 2017-04-27 東邦チタニウム株式会社 金属の製造方法及び高融点金属の製造方法
US10072346B2 (en) 2014-06-30 2018-09-11 Toho Titanium Co., Ltd. Method for producing metal and method for producing refractory metal

Also Published As

Publication number Publication date
DE602006019454D1 (de) 2011-02-17
CN101218360B (zh) 2010-06-16
TW200706666A (en) 2007-02-16
KR100968396B1 (ko) 2010-07-07
EP1930451B9 (en) 2011-10-26
EP1930451A1 (en) 2008-06-11
TWI356852B (ja) 2012-01-21
EP1930451A4 (en) 2009-08-19
JP5032316B2 (ja) 2012-09-26
US8277723B2 (en) 2012-10-02
US20090226341A1 (en) 2009-09-10
EP1930451B1 (en) 2011-01-05
JPWO2007007498A1 (ja) 2009-01-29
KR20080017439A (ko) 2008-02-26
CN101218360A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2007007498A1 (ja) 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法
JP5406104B2 (ja) 高純度ハフニウムの製造方法
JP2010180480A (ja) 高純度ハフニウム、同ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法
US20130313659A1 (en) Method for Producing High-Purity Lanthanum, High-Purity Lanthanum, Sputtering Target Formed from High-Purity Lanthanum, and Metal Gate Film Having Highy-Purity Lanthanum as Main Component
KR101512949B1 (ko) 고순도 칼슘 및 이의 제조 방법
KR101547051B1 (ko) 고순도 에르븀, 고순도 에르븀으로 이루어지는 스퍼터링 타깃, 고순도 에르븀을 주성분으로 하는 메탈 게이트막 및 고순도 에르븀의 제조 방법
JP2013142184A (ja) 高純度マンガン及びその製造方法
JP2016180184A (ja) 高純度マンガン
JP2000219922A (ja) 高純度チタン及びその製造方法
JP2000212678A (ja) 薄膜形成用高純度タンタル及びその製造方法
US7219412B2 (en) Methods of forming titanium-containing superconducting compositions
WO2009108061A1 (en) Composition of an anode alloy and method for using said composition
JP2000204494A (ja) 高純度チタン及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024726.2

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524546

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006766584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11994167

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087000215

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE