CN100557817C - 具有镍锗硅化物栅极的mosfet及其形成方法 - Google Patents

具有镍锗硅化物栅极的mosfet及其形成方法 Download PDF

Info

Publication number
CN100557817C
CN100557817C CN03823253.7A CN03823253A CN100557817C CN 100557817 C CN100557817 C CN 100557817C CN 03823253 A CN03823253 A CN 03823253A CN 100557817 C CN100557817 C CN 100557817C
Authority
CN
China
Prior art keywords
nickel
silicon
germanium
grid
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN03823253.7A
Other languages
English (en)
Other versions
CN1685520A (zh
Inventor
E·N·佩顿
相奇
P·R·贝瑟
林明仁
M·V·恩戈
王海宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Publication of CN1685520A publication Critical patent/CN1685520A/zh
Application granted granted Critical
Publication of CN100557817C publication Critical patent/CN100557817C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L2029/7858Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET having contacts specially adapted to the FinFET geometry, e.g. wrap-around contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

MOSFET栅极或MOSFET源极或漏极区域包括硅锗或者多晶硅锗。以镍进行硅化,以形成镍锗硅化物(62,64),该镍锗硅化物较佳地包括镍硅化物的单硅化物相。硅化物中包含的锗在形成单硅化物相的期间内,提供了较宽的温度范围,而却实质地维持了镍单硅化物所呈现的较好薄层电阻。结果,在随后的处理期间,镍锗硅化物比镍单硅化物更能够抵挡较高的温度,而却仍能够提供与镍单硅化物大约相同的薄层电阻与其它有利特性。

Description

具有镍锗硅化物栅极的MOSFET及其形成方法
技术领域
本发明涉及金属氧化物半导体场效应晶体管(MOSFET),而且更具体的涉及形成与MOSFET源极和漏极区域以及栅极电极的接触所使用的硅金属化合物。
背景技术
金属氧化物半导体场效应晶体管(MOSFET)是大部分半导体器件的主要组件。图1显示了根据传统技术而形成的MOSFET。MOSFET包括半导体衬底10,其中形成有深的源极和漏极区域12以及浅的源极和漏极延伸14。多晶硅栅极16覆盖栅极氧化物18,并且由形成在其侧壁上的间隙壁20所保护。源极和漏极区域12连接到导电接触22,该些接触则嵌入于譬如硼磷硅酸盐玻璃(BPSG)的保护层24里。
传统的MOSFET利用硅化物区域26,以促进具有低接触电阻的与源极和漏极区域12的欧姆接触的形成。硅化物区域28也同样形成在栅极16上,以形成传统上称为多晶金属硅化物(Polycide)的结构。传统上,使用譬如钛、钨、钽或钼的难熔金属来形成栅极以及源极/漏极硅化物。近来,钴已经被采用作为形成硅化物的较佳金属。硅化物区域用作界面,该界面减少底层硅与譬如铝的其它材料之间的接触电阻,这些其它材料传统上被用作源极、漏极与栅极的第一连接层。
譬如显示在图1的硅化物区域一般经由自对准工艺而制造,其因而有时被称为″salicides″(自对准金属硅化物)。在自对准金属硅化的工艺中,使用单一掩膜以自对准方式将栅极与栅极氧化物一起图形化,进行低能量的掺杂注入以形成浅的源极和漏极延伸,随后在栅极与栅极氧化物的侧壁上形成间隙壁,进行高能量掺杂注入以形成深的源极和漏极区域,而且随后覆盖整个结构形成金属的共形层。随后进行热处理以促进硅化物化合物的形成,该硅化物化合物包括金属和源极和漏极区域的硅以及栅极的多晶硅。在执行了用于产生预期厚度硅化物的足够时间的热处理以后,去除残留的金属,而留下如图1所示的硅化物区域。
增加器件速度与性能的需求,已经驱使持续研究降低MOSFET尺寸和增加MOSFET操作速度的方法。同时,进一步的研究朝向确认可取代传统材料的新材料,以提供譬如更容易微型化和简化工艺整合的优点。
被视为取代传统难熔接触金属的一种材料是镍(Ni)。镍形成镍硅化物的三相:富含金属的硅化二镍(Ni2Si,di-nickel silicide)、单硅化镍(NiSi,nickel monosilicide)以及富含硅的二硅化镍(NiSi2,nickeldi-silicide)。因为与钛相比,单硅化镍具有低的电阻率,所以是特别优选的,其在硅化物形成期间内消耗较少的硅,因而提供了非常薄的有源区域的硅化。单硅化镍薄层电阻也没有不利的线宽依赖性,线宽依赖性经常是具有传统难熔硅化物的问题。因为对单硅化镍而言具体的边缘效应,所以发现单硅化镍薄层电阻在窄线中会减少。硅衬底上的单硅化镍的机械应力会小于钛的机械应力。此外,p型硅的接触电阻会低于硅化钛的接触电阻,而且就n型硅而言也很低。单硅化镍同样呈现出对硅的良好附着。因此,单硅化镍呈现出在具有超浅源极和漏极扩散部分的MOSFET中,传统难熔接触金属的期望的替代物。
单硅化镍的一个缺点在于,在MOSFET制造期间所通常遇到的温度上,它的热稳定性相当差。图2显示了硅化镍化合物三相的薄层电阻与它们所形成温度的关系的图式。如图2所示,单硅化镍最佳形成在300至600℃,而且当在该温度范围形成时,它提供了比每平方三欧姆还小的薄层电阻。反的,富含金属的硅化二镍与富含硅的二硅化镍是在此范围外的温度上形成,每个均在薄层电阻上有着明显的增加。结果,为了譬如源极/漏极注入退火的半导体工艺所基本使用的高工艺温度可引起硅化镍转变成二硅化镍,并因而增加了硅化物的薄层电阻。因此,使用单硅化镍的设计被限制在进一步工艺可用的热预算。
结果,现有技术并没有提供在不明显限制随后工艺可用的热预算的情况下,利用单硅化镍的有利特征的方式。
发明内容
有鉴于上述镍单硅化物的优点与缺点,本发明的目的是利用在MOSFET源极/漏极与栅极硅化物中作为接触金属的镍的优点,而减轻存在于已知镍单硅化物工艺的热预算的限制。
根据本发明的具体实施例,MOSFET的栅极覆盖以一层多晶硅锗。随后对镍进行硅化,以形成镍锗硅化物,该镍锗硅化物较佳地包括镍硅化物的单硅化物相。该源极和漏极区域也可采用镍锗硅化物。硅化物中包含的锗在形成单硅化物的期间内提供了较宽的温度范围,而却实质地维持了镍单硅化物所呈现的薄层电阻。结果,在随后的处理期间,镍锗硅化物比镍单硅化物更能够抵挡较高的温度,但却仍提供与镍单硅化物大约相同的薄层电阻与其它有利特性。
根据本发明的一个具体实施例,MOSFET由其上形成有栅极绝缘层的半导体衬底、形成在该栅极绝缘层上的多晶硅层、以及形成在该多晶硅层上的多晶硅锗层所形成。将该多晶硅锗层、多晶硅层与该栅极绝缘层图形化,以形成栅极绝缘体以及覆盖该栅极绝缘体的栅极,该栅极包括下部多晶硅部分与上部多晶硅锗部分。随后覆盖该栅极的至少上部多晶硅锗部分形成镍层,并且进行热处理,以在该栅极上形成镍锗硅化物。
根据本发明另一具体实施例,MOSFET包括源极和漏极区域,延伸在该源极和漏极区域之间的沟道区域,覆盖该沟道区域的栅极绝缘体,以及覆盖该栅极绝缘体的多晶金属硅化物(polycide)栅极。该多晶金属硅化物栅极具有下部多晶硅部分与上部多晶硅锗部分,以及形成在上部多晶硅锗部分上的镍锗硅化物。或者,多晶金属硅化物栅极以及源极和漏极区域的至少其中之一包括镍锗硅化物。
附图说明
结合附图来说明本发明的具体实施例,其中:
图1显示了采用传统的多晶硅栅极结构的传统MOSFET截面;
图2显示了硅化镍薄层电阻与其形成所使用的热处理温度的关系图;
图3显示了硅化镍与镍锗硅化物的薄层电阻与其形成所使用的热处理温度的关系图;
图4a、4b、4c、4d、4e和4f显示了根据本发明第一优选具体实施例的在制造MOSFET期间内所形成的结构;
图5显示了根据本发明第二优选具体实施例而制造的MOSFET;
图6显示了根据本发明第三优选具体实施例而制造的MOSFET;
图7显示了根据本发明第四优选具体实施例而制造的MOSFET;以及
图8显示了根据优选具体实施例和替代性具体实施例的用于制造器件的工艺流程图。
具体实施方式
图3显示了硅化镍与镍锗硅化物薄层电阻与其形成温度的关系图。图3的图式假定锗/硅合成物Si1-xGex,在此x是0.1-0.4。如图3中所见,图式的曲线类似硅化镍与镍锗硅化物,其在每平方三至十欧姆之间变化,不过,镍锗硅化物的富含硅相的形成温度范围会高于镍硅化物的富含硅相的形成温度范围。形成镍锗硅化物的单硅化物相的理想范围位于大约300℃至700℃的范围内。结果,这使镍锗硅化物能够禁得起较高的处理温度,而没有单硅化物相的明显劣化。
因此,第一优选具体实施例采用镍锗硅化物作为MOSFET的栅极接触层。在制造此器件期间内所形成的结构显示在图4a至4f中。
图4a显示了开始形成第一优选具体实施例的MOSFET的结构。该结构包括在其上形成有譬如氧化硅的栅极绝缘层42的硅半导体衬底40、多晶硅栅极导电层44以及多晶硅锗层46。多晶硅锗层46较佳地具有合成物Si1-xGex,在此x基本上在0.1至0.3的范围内,较佳地大约是0.2。栅极氧化物层42较佳地是10至30埃厚,多晶硅栅极导电层44较佳地是500至1000埃厚,而且硅锗层46较佳地是300至600埃厚。形成该栅极氧化物与多晶硅层的工艺众所皆知。多晶硅锗层可能经由以600至900℃的温度、30mPa的乙硅烷部分压力与60mPa的锗烷(germane)部分压力,使用Si2H6(乙硅烷)与GeH4(锗烷)当作源气体的化学气相沉积而形成。多晶硅锗材料的生长可能使用这些比例而开始,或者锗烷的部分压力可能从较低压力或零压力开始而逐渐地增加,以形成梯度的合成物。多晶硅44与多晶硅锗层46可能以清楚的工艺步骤来形成,不过,较佳地乃是在连续工艺中的适当位置中形成诸层,在该连续工艺中,将部分的锗源气体逐渐地引入,以形成分级的层。要注意的是,多晶硅锗可用比沉积多晶硅所需的更低的温度来沉积,而且当形成分级结构时,如此的温度控制可伴随源气体控制而实施。
图4b显示了在图形化该栅极绝缘层、栅极导电层与多晶硅锗层,以形成包括氧化物栅极绝缘体48的自对准栅极堆栈和包括下部多晶硅部分50与上部多晶硅锗部分52的栅极以后,图4a的结构。
图4c显示了在注入源极和漏极以及形成栅极间隙壁以后的图4b的结构。为了产生图4c的结构,在图4b的结构上执行低能量掺杂注入,以形成浅的源极和漏极延伸54。随后则通过沉积譬如氧化硅的保护性材料的共形层来形成栅极间隙壁56,接着各向异性地蚀刻以将沉积材料从该栅极顶部与该衬底表面去除。接着,进行高能量的掺杂注入,以形成深的源极和漏极区域58。在高能量注入期间,栅极间隙壁56用作保护底部浅的源极和漏极延伸的注入掩膜(implant mask)。
图4d显示了在将镍共形层60形成在衬底与栅极堆栈以后的图4c的结构,其包括源极和漏极区域58暴露出的表面以及栅极堆栈暴露出的表面。镍层较佳地由物理气相沉积(溅射)所形成,但是形成金属层的其它已知方法也可采用。
图4e显示了在图4d结构上进行热处理以后的图4d的结构,其促进在镍层60以及源极和漏极区域的硅与栅极上部分52的多晶硅锗之间形成硅化物。热处理较佳地使用350至700℃的温度范围来进行,以便形成主要包括单硅化物相的镍锗硅化物。因为硅化物形成工艺会消耗硅,所以镍锗硅化物层的厚度由进行热处理的时间数量所决定。最终的结构包括形成在该栅极的上部多晶硅锗部分52的镍锗硅化物区域62,以及形成在源极和漏极区域56表面的镍硅化物区域64。
虽然关于图4a至4f而说明的工艺过程代表制造一种包括镍锗硅化物栅极的MOSFET的较佳方式,但是也可采用其它的工艺方法来实施相同结构或者具有镍锗硅化物栅极的其它MOSFET结构。例如,虽然该优选具体实施例使用镍层沉积之后进行热处理的技术,但是可使用替代性的方法来形成镍锗硅化物层,譬如镍、硅与锗的同时蒸发,或者镍、硅与锗的共同溅射,或者来自镍硅锗靶的溅射。应该理解到的是,此替代性方法可能需要与图4a至4f的工艺不同并且可能配制成特定实施过程的掩膜、蚀刻与去除工艺,以在MOSFET的适当位置上形成镍锗硅化物区域。
图5显示了根据本发明第二优选具体实施例的结构。图5结构不同于图4f结构之处在于该衬底包括硅锗层70,在该硅锗层上形成有″应变的″(strained)薄硅层72。应变硅是由于硅晶格与所形成于其上的底层材料晶格的维度的差异结果而施加张力在硅晶格的硅型态。在所示的例子中,硅锗晶格比纯硅晶格的间隔还宽,而该间隔会随着锗比例的增加而变得更宽。因为在形成期间内,硅晶格会对准较大的硅锗晶格,所以张力则会被分到硅层。实际上,硅原子会彼此拉开。松散的硅具有包括六个相等价带的导带。施加到硅的张力会造成六个价带的其中四个价带能量的增加,以及其中两个价带能量的减少。由于量子效应,当电子通过较低的能带时,其有效重量会减少百分的三十。因此,较低能带会给电子流提供较少的阻力。此外,电子会偶然遇到来自硅原子核的较少振动能,其导致它们以小于松散硅中500至1000倍的速率来散射。结果,与松散的硅相比,载流子迁移率在应变硅中会剧烈地增加,其给电子提供80%或更多迁移率的潜在增加,以及给空穴提供20%或更多。已经发现迁移率的增加会一直持续到电流场增加到1.5百万伏特/公分。令人相信的是,这些因素会在器件尺寸没有进一步减少的情形下使器件速度增加35%,或者在性能没有减少的情形下,减少25%的功耗。
因此,图5的结构通过由使用硅锗层70所支撑的应变硅72的外延层而利用应变硅的有利特征。源极和漏极区域58以及沟道区域形成在应变硅72中。因此,以类似图4a至4f所示的方式形成图5的结构,差别是图4a所示的最初层结构有所改变,以致使在半导体衬底40与栅极绝缘层42之间具有硅锗层和应变硅层。硅锗层70较佳的具有合成物Si1-xGex,在此x大约是0.2,而更普遍的范围是0.1至0.3。例如通过使用Si2H6(乙硅烷)与GeH4(锗烷)为源气体的化学气相沉积,以衬底温度是600至900℃,Si2H6的部分压力是30mPa且GeH4的部分压力是60mPa,可以在硅晶片衬底上生长硅锗。硅锗材料的生长可能使用这些比例开始,或者GeH4的部分压力可以从较低压或零压开始逐渐地增加,以形成梯度合成物。然后,例如通过使用Si2H6(乙硅烷)为源气体的化学气相沉积(CVD),以30mPa的部分压力,大约是600至900℃的衬底温度,随后在硅锗层上生长应变硅层。
图6显示了根据第三较佳具体实施例而设计的结构。图6结构类似图5结构之处在于它利用形成在硅锗晶格上的应变硅。但是,图6结构的应变硅受限于栅极绝缘体48与间隙壁56下面的沟道区域74。在形成间隙壁56与注入深的源极和漏极区域58以前,可通过将通过蚀刻外延应变硅层替代具有硅锗的蚀刻应变硅而形成这样的结构。或者,在形成栅极绝缘层与覆盖层以前,可以镶嵌的方式形成应变硅沟道区域74。具有硅锗源极和漏极区域的结构(譬如图6结构)的优点在于应变硅的优点会并入于该器件内,而镍锗硅化物的优点则可同样地并入于源极和漏极区域中。此外,因为在硅锗中硼(B)掺杂物扩散的减少,所以就PMOS实施过程中提供源极和漏极几何结构的精确控制而言,此具体实施例可能特别令人希望。
图7显示了根据本发明第四较佳具体实施例而设计的结构。图7的结构为绝缘体上硅(SOI)结构,其通常被称为垂直的双栅极MOSFET或者FinFET。该结构包括形成在绝缘衬底78上的单片半导体体部76。该半导体体部包括源极和漏极区域80以及延伸于源极和漏极区域之间的沟道区域82。栅极84形成于沟道区域82上及其周围,并且通过栅极绝缘体(未显示)而与该沟道区域相隔并且由介质间隙壁(未显示)保护而免于接触源极和漏极区域。根据本发明,该栅极包括下部多晶硅部分86与上部多晶硅锗部分88,在该上部多晶硅锗部分形成有镍锗硅化物90。镍硅化物92也可形成在源极和漏极区域上。在一个具体实施例中,半导体体部76由硅组成。在替代性具体实施例中,半导体体部76可由硅锗形成,并且覆盖着层应变硅。在另一替代性具体实施例中,半导体体部76可由硅锗形成,并且仅在沟道区域中覆盖着一层应变硅,从而能够使镍锗硅化物形成在该源极和漏极区域80上。
虽然图4f、5、6和7的MOSFET结构代表目前较佳的具体实施例,但是镍锗硅化物却能相同的应用到其它类型的MOSFET结构。例如,譬如倒置或底部栅极MOSFETS的其它结构,其中该栅极置于该沟道区域下面,其也可以使用镍锗硅化物,以给源极和漏极区域以及栅极提供低的接触电阻。此替代性结构可将应变硅并入沟道区域以及源极和漏极区域。由于上述的较佳具体实施例,镍锗硅化物会尽可能较佳地由镍单硅化物相所包括。
因此应该理解的是,本发明范围内的具体实施例包括各种MOSFET结构,各个结构的特征在于使用镍锗硅化物作为栅极上的或者源极和漏极区域中的硅化物。
图8显示了制造包括前述较佳具体实施例与替代物以及未明确地说明于其中的额外替代性具体实施例的MOSFET的工艺流程。最初提供一半导体衬底(100)。该衬底具有形成于其上的栅极绝缘层,形成于该栅极绝缘层上的多晶硅层,以及形成于该多晶硅层上的多晶硅锗层。随后将该多晶硅锗层、该多晶硅层与该栅极绝缘层图形化,以形成栅极绝缘体和覆盖该栅极绝缘体的栅极(102)。该栅极因而包括下部多晶硅部分与上部多晶硅锗部分。在该栅极的至少该上部多晶硅锗部分上形成镍层(104)。随后进行热处理,以在该栅极上形成镍锗硅化物(106)。要注意的是,在此参考的衬底可能包括半导体衬底,如图4f、5与6中具体实施例所使用的,或者具有预先图形化在其上的半导体体部的绝缘衬底,其如图8具体实施例所使用的。
在进一步的具体实施例中,期望进行其它类型的工艺或者形成不同类型的结构。例如,可较佳地使镍层与譬如钒、钽或钨的其它金属成为合金,以改善锗硅化物的相稳定性。在锗硅化物形成以前,其它的金属可能被注入于镍层内或者可能作为分隔的CVD或PVD层而形成于镍层上。在其它具体实施例中,可能使用多晶硅锗栅极。在进一步具体实施例中,该栅极的多晶硅锗部分可能通过在锗环境中将多晶硅栅极退火或者将锗注入在多晶硅栅极内而形成。在其它的具体实施例中,期望在沉积镍层以前,在氢环境中进行还原以去除氧化物。
本领域普通技术人员应了解的是,以上工艺所说明的工作并不一定不包括其它工作,更确切地,进一步工作可能根据将要形成的特定结构而并入于上述工艺。例如,中间处理工作,譬如处理工作间的钝化层或者保护层的形成与去除、光刻胶掩膜与其它掩膜层的形成与去除、掺杂与反掺杂、清洁、平坦化以及其它工作,可连同以上具体说明的工作而进行。再者,该工艺不需要在譬如整个晶片的整个衬底上进行,但确切地可选择性地在部分衬底上进行。因此,虽然上述以图式表示并说明了具体实施例,但是应该理解到的是,这些具体实施例仅仅经由实例而提供。本发明并不受限于特定具体实施例,但却可延伸到在权利要求内的种种修改、合并与变更及其均等物。

Claims (14)

1.一种用于形成金属氧化物半导体场效应晶体管的方法,包括:
提供具有形成于其上的栅极绝缘层(42)的半导体衬底(40)、形成于该栅极绝缘层上的多晶硅层(44)以及形成于该多晶硅层(44)上的多晶硅锗层(46),该衬底(40)包括硅锗层(70)和覆盖在该硅锗层(70)上的应变硅(72)的表面层;
图形化该多晶硅锗层(46)和该多晶硅层(44),以形成覆盖该栅极绝缘层(42)的栅极,该栅极包括下部多晶硅部分(50)与上部多晶硅锗部分(52);
从该金属氧化物半导体场应效晶体管的该源极和漏极区域上去除该应变硅层(72),以形成该金属氧化物半导体场效应晶体管的应变硅沟道区域(74);
形成与该栅极的该上部多晶硅锗部分(52)和该源极和漏极区域中的该硅锗层(70)接触的镍层(60);以及
进行热处理,以在该栅极和该硅锗源极和漏极区域上形成镍锗硅接触。
2.如权利要求1所述的方法,其中该镍锗硅化物(62)包括镍单硅化物。
3.如权利要求2所述的方法,其中该多晶硅(44)与多晶硅锗(46)在原位置被形成。
4.如权利要求1所述的方法,其中该多晶硅(44)与多晶硅锗(46)在原位置被形成。
5.如权利要求1至4任一所述的方法,其中在形成该镍层(60)前先进行以下步骤:
注入浅的源极和漏极延伸(54);
在该栅极周围形成间隙壁(56);以及
注入深的源极和漏极区域(58)。
6.如权利要求1至4任一所述的方法,其中在形成镍层(60)前先在该栅极和该源极和漏极区域上形成保护性材料的共形层。
7.如权利要求5所述的方法,其中在形成镍层(60)前先在该栅极和该源极和漏极区域上形成保护性材料的共形层。
8.一种金属氧化物半导体场效应晶体管器件,包括:
含有硅锗层(70)的半导体衬底;
形成于该硅锗层(70)中的源极和漏极区域(58);
包括只形成在该硅锗层(70)上并延伸在该源极和漏极区域(58)之间的应变硅的应变硅沟道区域(74);
覆盖在该沟道区域上的栅极绝缘体(48);以及
形成在该源极和漏极区域(58)上的镍锗硅化物接触。
9.如权利要求8所述的器件,还包括:
覆盖在该栅极绝缘体(48)上的多晶栅极,该多晶栅极包括下部多晶硅部分(50)和上部多晶硅锗部分(52);以及
形成在该栅极的该上部多晶硅锗部分(62)上的镍锗硅化物(62)。
10.如权利要求8所述的器件,还包括:
形成在该多晶栅极侧壁上的保护间隙壁(56);以及
延伸在该间隙壁(56)下方的浅源极和漏极延伸。
11.如权利要求8至10任一所述的器件,其中该镍锗硅化物(62)包括镍单硅化物。
12.如权利要求8至10任一所述的器件,其中该源极和漏极区域以及该沟道区域包括形成在绝缘层(78)上的半导体体部(76),由此包括绝缘体上硅金属氧化物半导体场效应晶体管。
13.如权利要求11所述的器件,其中该源极和漏极区域以及该沟道区域包括形成在绝缘层(78)上的半导体体部(76),由此包括绝缘体上硅金属氧化物半导体场效应晶体管。
14.如权利要求8至10任一所述的器件,其中该镍锗硅化物接触形成在300℃至700℃之间的温度。
CN03823253.7A 2002-09-30 2003-09-12 具有镍锗硅化物栅极的mosfet及其形成方法 Expired - Lifetime CN100557817C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41517902P 2002-09-30 2002-09-30
US60/415,179 2002-09-30
US10/335,492 2002-12-31
US10/335,492 US6787864B2 (en) 2002-09-30 2002-12-31 Mosfets incorporating nickel germanosilicided gate and methods for their formation

Publications (2)

Publication Number Publication Date
CN1685520A CN1685520A (zh) 2005-10-19
CN100557817C true CN100557817C (zh) 2009-11-04

Family

ID=32033324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03823253.7A Expired - Lifetime CN100557817C (zh) 2002-09-30 2003-09-12 具有镍锗硅化物栅极的mosfet及其形成方法

Country Status (8)

Country Link
US (1) US6787864B2 (zh)
EP (1) EP1550164B1 (zh)
JP (1) JP4662772B2 (zh)
KR (1) KR101054057B1 (zh)
CN (1) CN100557817C (zh)
AU (1) AU2003270598A1 (zh)
TW (1) TWI338367B (zh)
WO (1) WO2004038807A1 (zh)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703688B1 (en) * 2001-03-02 2004-03-09 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6830976B2 (en) * 2001-03-02 2004-12-14 Amberwave Systems Corproation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US7074623B2 (en) * 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US6982474B2 (en) 2002-06-25 2006-01-03 Amberwave Systems Corporation Reacted conductive gate electrodes
JP3597831B2 (ja) * 2002-07-01 2004-12-08 株式会社東芝 電界効果トランジスタ及びその製造方法
US6746967B2 (en) * 2002-09-30 2004-06-08 Intel Corporation Etching metal using sonication
US6867428B1 (en) * 2002-10-29 2005-03-15 Advanced Micro Devices, Inc. Strained silicon NMOS having silicon source/drain extensions and method for its fabrication
JP4275395B2 (ja) * 2002-12-11 2009-06-10 株式会社ルネサステクノロジ 半導体装置の製造方法
US7304336B2 (en) 2003-02-13 2007-12-04 Massachusetts Institute Of Technology FinFET structure and method to make the same
TWI231994B (en) * 2003-04-04 2005-05-01 Univ Nat Taiwan Strained Si FinFET
US6905976B2 (en) * 2003-05-06 2005-06-14 International Business Machines Corporation Structure and method of forming a notched gate field effect transistor
US7192876B2 (en) * 2003-05-22 2007-03-20 Freescale Semiconductor, Inc. Transistor with independent gate structures
JP4008860B2 (ja) * 2003-07-11 2007-11-14 株式会社東芝 半導体装置の製造方法
US6921982B2 (en) * 2003-07-21 2005-07-26 International Business Machines Corporation FET channel having a strained lattice structure along multiple surfaces
KR100487566B1 (ko) * 2003-07-23 2005-05-03 삼성전자주식회사 핀 전계 효과 트랜지스터 및 그 형성 방법
JP2005086024A (ja) * 2003-09-09 2005-03-31 Toshiba Corp 半導体装置及びその製造方法
US7175966B2 (en) * 2003-09-19 2007-02-13 International Business Machines Corporation Water and aqueous base soluble antireflective coating/hardmask materials
US20050090082A1 (en) * 2003-10-28 2005-04-28 Texas Instruments Incorporated Method and system for improving performance of MOSFETs
KR100738066B1 (ko) * 2003-12-01 2007-07-12 삼성전자주식회사 열적 안정성이 우수한 실리사이드막 형성방법, 이방법으로 형성된 실리사이드막이 구비된 반도체 소자와반도체 메모리 소자 및 이들 소자의 제조 방법
US6949482B2 (en) 2003-12-08 2005-09-27 Intel Corporation Method for improving transistor performance through reducing the salicide interface resistance
JP3879003B2 (ja) * 2004-02-26 2007-02-07 国立大学法人名古屋大学 シリサイド膜の作製方法
US7009226B1 (en) * 2004-07-12 2006-03-07 Advanced Micro Devices, Inc. In-situ nitride/oxynitride processing with reduced deposition surface pattern sensitivity
JP2008508713A (ja) * 2004-07-27 2008-03-21 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 高信頼性コンタクト
US7435672B2 (en) * 2004-07-30 2008-10-14 Texas Instruments Incorporated Metal-germanium physical vapor deposition for semiconductor device defect reduction
US7166897B2 (en) * 2004-08-24 2007-01-23 Freescale Semiconductor, Inc. Method and apparatus for performance enhancement in an asymmetrical semiconductor device
US7288448B2 (en) * 2004-08-24 2007-10-30 Orlowski Marius K Method and apparatus for mobility enhancement in a semiconductor device
US7348641B2 (en) * 2004-08-31 2008-03-25 International Business Machines Corporation Structure and method of making double-gated self-aligned finFET having gates of different lengths
US7241649B2 (en) * 2004-10-29 2007-07-10 International Business Machines Corporation FinFET body contact structure
US7393733B2 (en) 2004-12-01 2008-07-01 Amberwave Systems Corporation Methods of forming hybrid fin field-effect transistor structures
KR100678314B1 (ko) 2004-12-15 2007-02-02 동부일렉트로닉스 주식회사 저접촉저항을 갖는 반도체 소자의 제조방법
JP4969779B2 (ja) 2004-12-28 2012-07-04 株式会社東芝 半導体装置の製造方法
JP5132934B2 (ja) * 2004-12-28 2013-01-30 パナソニック株式会社 半導体ナノワイヤ、および当該ナノワイヤを備えた半導体装置
US20060163670A1 (en) * 2005-01-27 2006-07-27 International Business Machines Corporation Dual silicide process to improve device performance
US7319063B2 (en) * 2005-02-02 2008-01-15 United Microelectronics Corp. Fin field effect transistor and method for manufacturing fin field effect transistor
US7348232B2 (en) * 2005-03-01 2008-03-25 Texas Instruments Incorporated Highly activated carbon selective epitaxial process for CMOS
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7902598B2 (en) 2005-06-24 2011-03-08 Micron Technology, Inc. Two-sided surround access transistor for a 4.5F2 DRAM cell
US7109116B1 (en) * 2005-07-21 2006-09-19 International Business Machines Corporation Method for reducing dendrite formation in nickel silicon salicide processes
KR100685898B1 (ko) 2005-07-27 2007-02-26 동부일렉트로닉스 주식회사 반도체 소자의 제조방법
US7696567B2 (en) 2005-08-31 2010-04-13 Micron Technology, Inc Semiconductor memory device
US7566609B2 (en) * 2005-11-29 2009-07-28 International Business Machines Corporation Method of manufacturing a semiconductor structure
US7777250B2 (en) 2006-03-24 2010-08-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US7459382B2 (en) 2006-03-24 2008-12-02 International Business Machines Corporation Field effect device with reduced thickness gate
US20070238236A1 (en) * 2006-03-28 2007-10-11 Cook Ted Jr Structure and fabrication method of a selectively deposited capping layer on an epitaxially grown source drain
US7618891B2 (en) * 2006-05-01 2009-11-17 International Business Machines Corporation Method for forming self-aligned metal silicide contacts
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
KR100798814B1 (ko) * 2006-09-20 2008-01-28 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 형성방법
US7875958B2 (en) 2006-09-27 2011-01-25 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
WO2008039495A1 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008051503A2 (en) 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
US7550796B2 (en) * 2006-12-06 2009-06-23 Electronics And Telecommunications Research Institute Germanium semiconductor device and method of manufacturing the same
KR20080062764A (ko) * 2006-12-29 2008-07-03 삼성전자주식회사 게르마늄실리사이드 형성방법 및 이를 적용하여 게르마늄실리사이드가 형성된 디바이스
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
KR100861211B1 (ko) * 2007-04-12 2008-09-30 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US20090065804A1 (en) 2007-09-10 2009-03-12 International Business Machines Corporation Bipolar transistor with low resistance base contact and method of making the same
JP5525127B2 (ja) * 2007-11-12 2014-06-18 ピーエスフォー ルクスコ エスエイアールエル 半導体装置及びその製造方法
KR101194843B1 (ko) 2007-12-07 2012-10-25 삼성전자주식회사 Ge 실리사이드층의 형성방법, Ge 실리사이드층을포함하는 반도체 소자 및 그의 제조방법
US20090152590A1 (en) * 2007-12-13 2009-06-18 International Business Machines Corporation Method and structure for semiconductor devices with silicon-germanium deposits
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
EP2335273A4 (en) 2008-09-19 2012-01-25 Taiwan Semiconductor Mfg FORMATION OF EQUIPMENT BY EXCESSIVE GROWTH OF THE EPITAXIAL LAYER
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
DE102008053955B4 (de) * 2008-10-31 2010-10-21 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Halbleiterbauelements als Transistor mit Verbesserung der Verspannungsübertragung durch eine späte Gaterekristallisierung und Transistor
KR101561059B1 (ko) * 2008-11-20 2015-10-16 삼성전자주식회사 반도체 소자 및 그 제조 방법
US9379011B2 (en) * 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
JP5705207B2 (ja) 2009-04-02 2015-04-22 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 結晶物質の非極性面から形成される装置とその製作方法
FR2953989B1 (fr) * 2009-12-10 2012-05-18 Commissariat Energie Atomique Procede de formation de materiaux metalliques comportant des semi-conducteurs
CN105702631B (zh) * 2009-12-28 2019-05-28 株式会社半导体能源研究所 半导体器件
US8729627B2 (en) 2010-05-14 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel integrated circuit devices
US20120139014A1 (en) * 2010-12-01 2012-06-07 International Business Machines Corporation Structure and method for low temperature gate stack for advanced substrates
WO2013070679A1 (en) 2011-11-08 2013-05-16 Tosoh Smd, Inc. Silicon sputtering target with special surface treatment and good particle performance and methods of making the same
US8580686B1 (en) * 2012-04-23 2013-11-12 Globalfoundries Inc. Silicidation and/or germanidation on SiGe or Ge by cosputtering Ni and Ge and using an intralayer for thermal stability
US8624324B1 (en) * 2012-08-10 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Connecting through vias to devices
US9377394B2 (en) 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
CN104425364B (zh) * 2013-09-09 2017-09-29 中芯国际集成电路制造(上海)有限公司 连接线的形成方法
US10032876B2 (en) * 2014-03-13 2018-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. Contact silicide having a non-angular profile
US9590105B2 (en) * 2014-04-07 2017-03-07 National Chiao-Tung University Semiconductor device with metal alloy over fin, conductive layer over channel region of fin, and semiconductive layer over conductive layer and formation thereof
KR20160058499A (ko) 2014-11-17 2016-05-25 삼성전자주식회사 반도체 소자, 및 그 반도체 소자의 제조방법과 제조장치
US9865466B2 (en) * 2015-09-25 2018-01-09 Applied Materials, Inc. Silicide phase control by confinement
CN109950151B (zh) * 2017-12-20 2022-02-15 中芯国际集成电路制造(上海)有限公司 Pmos晶体管及其形成方法
CN116632062A (zh) * 2022-02-14 2023-08-22 联华电子股份有限公司 中压晶体管及其制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183160A (ja) * 1991-12-26 1993-07-23 Toshiba Corp 半導体装置及びその製造方法
JPH07202178A (ja) * 1993-12-28 1995-08-04 Toshiba Corp 半導体装置およびその製造方法
JP3326427B2 (ja) * 1996-09-17 2002-09-24 松下電器産業株式会社 半導体装置及びその製造方法
JP4092766B2 (ja) * 1998-03-27 2008-05-28 富士通株式会社 半導体装置
KR20010080432A (ko) * 1998-11-12 2001-08-22 피터 엔. 데트킨 계단식 소스/드레인 접합을 갖는 전계 효과 트랜지스터 구조
KR100332108B1 (ko) 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
JP2002110989A (ja) * 2000-09-27 2002-04-12 Japan Science & Technology Corp 半導体集積回路装置およびその製造方法
US6724008B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
JP2004531054A (ja) * 2001-03-02 2004-10-07 アンバーウェーブ システムズ コーポレイション 高速cmos電子機器及び高速アナログ回路のための緩和シリコンゲルマニウムプラットフォーム
JP3547419B2 (ja) 2001-03-13 2004-07-28 株式会社東芝 半導体装置及びその製造方法
US6506637B2 (en) 2001-03-23 2003-01-14 Sharp Laboratories Of America, Inc. Method to form thermally stable nickel germanosilicide on SiGe
US6974735B2 (en) * 2001-08-09 2005-12-13 Amberwave Systems Corporation Dual layer Semiconductor Devices

Also Published As

Publication number Publication date
JP4662772B2 (ja) 2011-03-30
CN1685520A (zh) 2005-10-19
US6787864B2 (en) 2004-09-07
TWI338367B (en) 2011-03-01
KR20050070011A (ko) 2005-07-05
US20040061191A1 (en) 2004-04-01
TW200417029A (en) 2004-09-01
KR101054057B1 (ko) 2011-08-04
AU2003270598A1 (en) 2004-05-13
WO2004038807A1 (en) 2004-05-06
JP2006501685A (ja) 2006-01-12
EP1550164B1 (en) 2012-04-18
EP1550164A1 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
CN100557817C (zh) 具有镍锗硅化物栅极的mosfet及其形成方法
JP4515305B2 (ja) pチャネルMOSトランジスタおよびその製造方法、半導体集積回路装置の製造方法
JP2978736B2 (ja) 半導体装置の製造方法
US20070200176A1 (en) Formation of silicided surfaces for silicon/carbon source/drain regions
US8330235B2 (en) Method to reduce mol damage on NiSi
US20060151832A1 (en) Semiconductor transistor having a stressed channel
TWI387010B (zh) 用於製造電晶體之方法
JP5659416B2 (ja) 半導体素子の製造方法
KR20090073183A (ko) 스트레스형 전계효과 트랜지스터 및 그 제조방법
CN104425367A (zh) 硅化物形成中的双层金属沉积
US7279406B2 (en) Tailoring channel strain profile by recessed material composition control
US7960223B2 (en) Structure and method to integrate dual silicide with dual stress liner to improve CMOS performance
US8450171B2 (en) Strained semiconductor device and method of making same
US20220059659A1 (en) Semiconductor Device with Silicon Carbide Body and Method of Manufacturing
CN103762177A (zh) 具有嵌入式硅锗源漏区域的场效应晶体管中邻近效应的减少
US7332435B2 (en) Silicide structure for ultra-shallow junction for MOS devices
TWI241661B (en) Semiconductor device and manufacturing method therefor
US9048103B2 (en) Method for producing semiconductor device
US20080070360A1 (en) Method and structure for forming silicide contacts on embedded silicon germanium regions of cmos devices
CN103972090B (zh) 半导体器件及其制造方法
US9356136B2 (en) Engineered source/drain region for n-Type MOSFET
CN103972091B (zh) 半导体器件及其制造方法
US11610819B2 (en) Structures and methods of fabricating electronic devices using separation and charge depletion techniques
CN102832243B (zh) 半导体器件及其制造方法
KR20110021782A (ko) 컨택트 형성 방법, 반도체 장치의 제조 방법 및 반도체 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20091104

CX01 Expiry of patent term