CN100359707C - 氮化镓系发光器件 - Google Patents

氮化镓系发光器件 Download PDF

Info

Publication number
CN100359707C
CN100359707C CNB2004800004844A CN200480000484A CN100359707C CN 100359707 C CN100359707 C CN 100359707C CN B2004800004844 A CNB2004800004844 A CN B2004800004844A CN 200480000484 A CN200480000484 A CN 200480000484A CN 100359707 C CN100359707 C CN 100359707C
Authority
CN
China
Prior art keywords
layer
barrier layer
type
mentioned
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800004844A
Other languages
English (en)
Other versions
CN1698215A (zh
Inventor
佐藤寿朗
和田直树
酒井士郎
木村真大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitride Semiconductors Co Ltd
Original Assignee
Nitride Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitride Semiconductors Co Ltd filed Critical Nitride Semiconductors Co Ltd
Publication of CN1698215A publication Critical patent/CN1698215A/zh
Application granted granted Critical
Publication of CN100359707C publication Critical patent/CN100359707C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明是使用了GaN系半导体的发光器件。发光器件具有n型包层(124)、由n型第1势垒层(126)、阱层(128)和第2势垒层(130)构成的有源层(129)、p型阻挡层(132)、p型包层(134)。在p型阻挡层(132)的带隙能量Egb、第2势垒层(130)的带隙能量Eg2、第1势垒层(126)的带隙能量Eg1、n型及p型包层(124)、(134)的带隙能量Egc方面,通过使Egb>Eg2>Eg1≥Egc,能够有效地封闭载流子,增大发光强度。

Description

氮化镓系发光器件
技术领域
本发明涉及氮化镓系发光器件,特别是涉及在380nm以下的短波长波段进行发光的发光二极管(LED)和半导体激光器(LD)等的发光器件。
背景技术
历来,使用了氮化镓(GaN)系化合物半导体的LED和LD等发光器件为人们熟知。在380nm以下波段的发光和振荡通过改变构成有源层的含In的GaN系化合物半导体中的In组分比,改变其发光波长,具体地说,通过减小In组分比,使波长变短。
图9及图10表示下述的专利文献所示的发光器件(半导体激光器)的结构。在图9中,(a)是发光器件的剖面结构,(b)表示该剖面结构中A1的组分比。该发光器件具有在衬底21及缓冲层22上层叠了第1导电型层11、有源层12、第2导电型层13的结构。
第1导电型层11由接触层23、包层25、第1光导层26构成,有源层12由有源层27构成,第2导电型层13由载流子封闭层28、第2光导层29、包层30及接触层31构成。在用第1及第2光导层26、29夹持有源层12(或者有源层27)的结构中,用第1及第2光导层和它们之间的有源层形成导光路径。
在图10中,表示在有源层12(或者有源层27)附近的层结构及其带隙。有源层12(27)具有多个阱层1a、1b和多个势垒层2a、2b、2c交互层叠的结构,进而,在有源层27内部或者有源层附近形成载流子封闭层28。载流子封闭层28将来自第1导电型层的载流子封闭在有源层或者阱层内。在将第1导电型层为n型、第2导电型层为p型的元件中,载流子封闭层28将电子封闭在有源层内。在p层一侧设置载流子封闭层28是由于在氮化物半导体中电子的扩散长度比空穴的扩散长度长,电子容易溢出有源层的缘故。
此外,记述了在n层一侧设置载流子封闭层的情况下,没有必要像p层侧的载流子封闭层那样在有源层-势垒层之间设置大的偏移,在有源层内配置在最n侧的n侧势垒层2a具有作为空穴封闭层的功能,还记述了通过使n侧势垒层2a比其他的势垒层增加膜厚,能够最佳地引出载流子封闭的功能。
专利文献:特开2003-115642号公报
发明内容
这样,作为用势垒层和阱层构成了有源层的多量子阱(MQW)结构,通过在p层侧配置封闭电子的载流子封闭层及在n层侧配置封闭空穴的载流子封闭层,能够促进载流子复合。但是,使用了GaN系化合物半导体的发光器件近年来其用途越来越扩大,特别是作为照明用光源希望其发光强度进一步提高。
本发明的目的在于:在使用了发出紫外光的GaN系化合物半导体的发光器件中,提供具有更大发光强度的发光器件。
本发明是具有:衬底、在上述衬底上形成的第1导电型的包层、在上述包层上形成的有源层、在上述有源层上形成的第2导电型的包层,上述有源层具有由氮化镓系化合物半导体层构成的势垒层及阱层的氮化镓系发光器件,其特征在于:上述有源层的上述势垒层具有被在上述第1导电型的包层侧形成的第1势垒层及上述阱层夹持的第2势垒层,在上述有源层与上述第2导电型的包层之间具有第2导电型的载流子阻挡层,上述载流子阻挡层的带隙Egb、第2势垒层的带隙Eg2、第1势垒层的带隙Eg1、包层的带隙Egc满足Egb>Eg2>Eg1≥Egc。
在本发明中,利用载流子阻挡层阻挡来自第1导电型层的载流子,同时利用第1势垒层,阻挡来自第2导电型层的载流子。通过将各层的带隙能量的大小关系设定为上述那样,更有效地封闭载流子,促进在有源层的复合,增大发光强度。例如,能够将第1导电型设定为n型、将第2导电型设定为p型,第1势垒层具有作为空穴封闭层的功能,载流子阻挡层具有作为电子封闭层的功能。
按照本发明,能够有效地封闭载流子,提高发光强度。
附图说明
图1是实施形态的发光器件的结构图。
图2是实施形态的带隙大小的说明图。
图3是表示第1势垒层相对于第2势垒层的带隙与发光强度的关系的图。
图4是表示第1势垒层相对于包层的带隙与发光强度的关系的说明图。
图5是表示p型阻挡层相对于第2势垒层的带隙与发光强度的关系的图。
图6是表示第1势垒层的膜厚与发光强度的关系的图。
图7是表示阱层的有无与发光强度的关系的图。
图8是表示阱层的膜厚与发光强度的关系的图。
图9是现有器件的结构图,图9(a)是发光器件的剖面结构图,图9(b)是表示A1组分比的图。
图10是表示现有器件的带隙能量的大小的说明图,图10(a)是表示层结构的图,图10(b)是表示图10(a)的层结构中的带隙能量的大小的图。
具体实施方式
以下,根据附图说明本发明的实施形态。
图1表示使用了本实施例的GaN系化合物半导体器件的发光器件的剖面结构图。
发光器件是在蓝宝石衬底110上,依次形成低温(LT)SiN缓冲层112、低温(LT)GaN缓冲层114、未掺杂GaN缓冲层116、高温SiN缓冲层118、未掺杂GaN缓冲层120作为基底层,在该基底层上层叠n型接触层122、n型超晶格包层124、含n型第1势垒层126的有源层129、p型阻挡层132、p型超晶格包层134、p型接触层136的结构。在该结构中,没有特别设定光导层,在插入光导层的情况下,可以在n型超晶格包层124与n型第1势垒层126之间插入n侧光导层,在p型阻挡层132与p型超晶格包层134之间插入p侧光导层。
有源层129除n型第1势垒层126外,包含交互层叠了n型阱层128与n型第2势垒层130的多量子阱(MQW)结构。n型第1势垒层126及p型阻挡层132分别发挥作为载流子封闭层的功能。亦即,n型第1势垒层126具有封闭来自p型层的空穴的功能,p型阻挡层132具有封闭来自n型层的电子的功能。
各层的材料及厚度如下:
n型接触层122:掺Si的GaN(2μm)
n型超晶格包层124:Al0.2Ga0.8N势垒层(2nm)/GaN阱层(2nm),计50层
n型第1势垒层126:Al0.13Ga0.87N(26nm)
有源层129:In0.05Ga0.95N阱层128(2nm)/Al0.19Ga0.81N第2势垒层130(13nm),计3层
p型阻挡层132:掺Mg的Al0.27Ga0.73N(25nm)
p型超晶格包层134:掺Mg的Al0.2Ga0.8N势垒层(2nm)/掺Mg的Ga N阱层(2nm),计30层
p型接触层136:掺Mg的GaN(20nm)
此外,在图1中虽然没有表示,但通过在n型接触层122上形成n电极、在p型接触层136上形成p电极,发挥作为发光器件的功能。低温SiN缓冲层112、高温SiN缓冲层118不是必须的,也可以不形成。
图1所示的发光器件用下述工艺制造。
(1)将蓝宝石C面衬底110放置在MOCVD装置内的感应器上,在1150℃下在氢气氛中对衬底110进行十分钟的热处理。
(2)接着,降温到500℃,将氨气和硅烷气作为原料气体供给装置内,生长低温SiN缓冲层112。
(3)接着,将三甲基镓(TMG)和氨气作为原料气体供给装置内,生长低温GaN缓冲层114。
(4)接着,升温到1075℃,将三甲基镓(TMG)及氨气作为原料气体供给装置内,生长未掺杂n型Ga N缓冲层116。
(5)接着,维持在1075℃,供给氨气和硅烷气作为原料气体,生长一薄层高温SiN缓冲层118。
(6)接着,维持在1075℃,供给三甲基镓(TMG)及氨气作为原料气体,生长未掺杂n型GaN层120。用以上处理,形成作为基底层的缓冲层。
(7)接着,在1075℃下,供给含硅气体,生长掺Si的n型GaN接触层122。
(8)接着,供给三甲基铝(TNA)、三甲基镓、氨气、硅烷气作为原料气体,交互生长n型AlGaN势垒层与n型GaN阱层合计50层,以生长n型超晶格包层124。
(9)接着,降温到850℃,供给TMG、TMA及氨气作为原料气体,生长n型AlGaN第1势垒层126。
(10)接着,在850℃下,交互生长n型InGaN阱层与n型AlGaN第2势垒层130合计3层,以生长有源层129。
(11)接着,升温到1025℃,生长掺Mg的p型AlGaN阻挡层132。
(12)接着,在相同的1025℃下,交互生长掺Mg的p型AlGaN势垒层和掺Mg的p型GaN阱层合计30层,以生长p型超晶格包层134。
(13)最后,在1025℃下,生长掺Mg的p型GaN接触层136。
经以上生长形成层叠结构后,从MOCVD装置中取出晶片,形成电极。具体地说,在晶片表面上依次真空蒸发Ni(10nm)、Au(10nm),在含5%氧的氧气氛中,在520℃下进行热处理,形成p型透明电极。接着,在整个面上涂敷光致抗蚀剂,作为刻蚀掩模使用,进行刻蚀直到n型接触层122的一部分露出表面为止。而且,在露出的n型接触层122上形成n电极。具体地说,依次真空蒸发Ti(5nm)、Al(5nm),在氮气中在450℃下,进行30分钟热处理,形成n电极。在P型透明电极及n型电极的一部分上,形成引线键合用的金焊区,研磨衬底背面,通过划片切出LED芯片,进行安装,得到LED。
上述各层的材料和厚度是一个例子,具体地能够用以下条件制作LED。
表1
Figure C20048000048400081
n型第1势垒层126也能够不用AlGaN,而用AlxInyGa1-x-yN构成,组分比x及y的范围是0≤x≤0.3、0≤y≤0.05。在表中,将这些条件表示为Al≤0.3、In≤0.05。
另外,有源层129的阱层128及n型第2势垒层130也能够分别用AlxInyGa1-x-yN构成,各自的阱层128是0≤x≤0.01、0=≤y≤0.1,n型第2势垒层130是0≤x≤0.3、0≤y≤0.05。在表中,将这些表示为n型阱层128:Al≤0.01、In≤ 0.1、n型第2势垒层130:Al≤0.3、In≤0.05。对n型第1势垒层126、n型阱层128、n型第2势垒层130、p型阻挡层132、超晶格包层124及134的材料归纳如下。
n型第1势垒层126及n型第2势垒层130:AlxInyGa1-x-yN(其中,0≤x≤0.3、0≤y≤0.05)
n型阱层128:AlaInbGa1-a-bN(其中,0≤a≤0.01、0≤b≤0.1)
p型载流子阻挡层:AlpInqGa1-p-qN(其中,0≤p≤0.5、0≤q≤0.1)
超晶格包层(势垒层):AlαInyGa1-α-yN(其中,0≤α≤0.2、0≤γ≤0.1)
超晶格包层(阱层):AlβInηGa1-β-ηN(其中,0≤β≤0.05、0≤η≤0.1)
图1所示的结构与图9及图10所示的现有器件的不同点在于:通过控制n型超晶格包层124、p型超晶格包层134、p型阻挡层132、n型第2势垒层130及n型第1势垒层126的组分比,将它们的带隙能量设定为满足规定的关系。具体地说,在p型阻挡层132的带隙能量为Egb、有源层129中的n型第2势垒层130的带隙能量为Eg2、n型第1势垒层126的带隙能量为Eg1、n型包层124及p型包层134的带隙能量为Egc的情况下,满足Egb>Eg2>Eg1≥EgC。
在图2中,表示各层的带隙能量的大小关系。n型包层124及p型包层134是超晶格结构,当设它们的有效带隙能量为Egc时,为了封闭作为载流子的电子,p型阻挡层132的带隙能量Egb变得大于Egc、Eg2。亦即,Egb>Eg2。此外,关于Eg1与Eg2的大小关系,没有必要如上述专利文献所示的那样在有源层-势垒层之间设置能带偏移,虽然也能够使Eg2=Eg1,但如后面所述,从本专利申请人的种种实验结果发现,通过使Eg1<Eg2,发光强度更加增大。
在图3中,表示设n型第2势垒层130的带隙能量Eg2为1,使n型第1势垒层126的带隙能量Eg1变化时发光强度的变化。发光强度是将制成的LED器件放入积分球中,注入电流,测量并比较从器件发射出的总的光输出。发光波长在370nm附近。在图中,横轴是Eg1/Eg2,纵轴是电致发光强度(相对强度)。为了使n型第1势垒层126的带隙能量Eg1变化,通过改变三甲基铝(TMA)的供给量以改变AlxGa1-xN的Al组分比x来实现。越增大TMA的供给量以增大Al的组分比x,带隙能量就越增大。Eg1以外的带隙能量,例如Egc和Egb为恒定值。由图可知,在Eg1与Eg2相等(Eg1/Eg2=1)的情况下的发光强度是0.08,而在Eg1比Eg2小的Eg1/Eg2=0.96情况下,发光强度增大到0.18附近。由此可知,通过使Eg2>Eg1,发光强度增大。
此外,在图3中,使Eg1更小,在Eg1/Eg2=0.92的情况下,发光强度反而变小到0.07,这是由于Eg1比n型超晶格包层124的有效带隙Egc小,空穴封闭效应减小的缘故。在图4中,表示设n型包层126及p型包层134的有效带隙Egc为1,使n型第1势垒层126的带隙Eg1变化时的发光强度的变化。与图3的情况相同,通过改变构成第1势垒层的AlxGa1-xN中的Al组分比x,改变n型第1势垒层126的带隙能量。由图可知,在Eg1与Egc相等、Eg1/Egc=1的情况下的发光强度为0.16,而在Eg1/Egc=1.3时发光强度增大到0.18,在Eg1/Egc=0.6时发光强度反而降低到0.07,可知为了增大发光强度,必须有Eg1≥Egc。
此外,在图中使Eg1更大、Eg1/Egc=1.9的情况下发光强度降低到0.08,这是由于Eg 1设定过大时,成为Eg1>Eg2的缘故。
在图5中,表示设n型第2势垒层130的带隙能量Eg2为1,使p型阻挡层132的带隙能量Egb变化时的发光强度的变化。P型阻挡层132的带隙能量Egb越增大,发光强度就越单调地增加。这是由于Egb越增大,电子封闭效应越大的缘故。
从以上结果可知,如图2所示,通过使Egb>Eg2>Eg1≥Egc,能够比现有器件增大发光强度。
另一方面,关于n型第1势垒层126的厚度,在上述专利文献中记述了形成得比其他的势垒层厚。但是,在用未掺杂AlGaN或者未掺杂AlInGa N构成n型第1势垒层126的情况下,由于该层具有作为电阻层的功能,当形成得太厚时,反而使发光强度降低。
在图6中,表示将n型第2势垒层130的厚度固定在13nm,使n型第1势垒层126的厚度变化时的发光强度的变化。n型第1势垒层126的厚度越增大,发光强度越增大,厚度在25nm附近得到发光强度0.18。但是,当以超过这一厚度形成时,发光强度反而降低下去。因此,在设n型第1势垒层126的厚度为d1、n型第2势垒层130的厚度为d 2的情况下,必须有d1>d2,但是,必须将d1的上限抑制在50nm左右以下。
在本实施例中,在n型第1势垒层126上层叠n型阱层128及n型第2势垒层130,在n型第1势垒层126和n型第2势垒层130之间也形成n型阱层128。从提高发光强度的观点考虑,该阱层的存在也是合适的。在图7中,表示在n型第1势垒层126与n型第2势垒层130之间形成阱层的情况下和没有形成的情况下的发光强度的变化。在没有形成阱层的情况下的发光强度是0.16,而形成阱层的情况下发光强度增大到0.2。
进而,在本实施例中,由n型第1势垒层126、n型阱层128、n型第2势垒层130的MQW构成有源层129,但要尽量薄地形成n型阱层128的厚度,使量子效应显著地显现出来是合适的。在图8中,表示设n型第2势垒层130的厚度为恒定,使n型阱层128的厚度变化时的发光强度的变化。n型阱层128越薄,发光强度越增大。因此,使阱层128在5nm以下为宜,在4nm以下更佳。

Claims (7)

1.一种氮化镓系发光器件,它具有:
衬底;
在上述衬底上形成的第1导电型的包层;
在上述包层上形成的有源层;以及
在上述有源层上形成的第2导电型包层,
上述有源层具有由氮化镓系化合物半导体层构成的势垒层及阱层,其特征在于:
上述有源层的上述势垒层具有被在上述第1导电型的包层侧形成的第1势垒层及上述阱层夹持的第2势垒层;
在上述有源层与上述第2导电型的包层之间具有第2导电型的载流子阻挡层;
上述载流子阻挡层的带隙Egb、第2势垒层的带隙Eg2、第1势垒层的带隙Eg1、包层的带隙Egc满足Egb>Eg2>Eg1≥Egc。
2.如权利要求1所述的氮化镓系发光器件,其特征在于:
上述第1势垒层的厚度d1及上述第2势垒层的厚度d2满足d1>d2。
3.如权利要求2所述的氮化镓系发光器件,其特征在于:
上述第1势垒层的厚度d1满足d1≤50nm。
4.如权利要求1或2所述的氮化镓系发光器件,其特征在于:
上述阱层的厚度d3满足d3≤4nm。
5.如权利要求1所述的氮化镓系发光器件,其特征在于:
上述第1势垒层及上述第2势垒层由AlxInyGa1-x-yN构成,其中0≤x≤0.3、0≤y≤0.05,上述阱层由AlaInbGa1-a-bN构成,其中0≤a≤0.01、0≤b≤0.1。
6.如权利要求1所述的氮化镓系发光器件,其特征在于:
上述载流子阻挡层由AlpInqGa1-p-qN构成,其中0≤p≤0.5、0≤q≤0.1。
7.如权利要求1所述的氮化镓系发光器件,其特征在于:
上述包层由层叠了AlαInγGa1-α-γN和AlβInηGa1-β-ηN的超晶格结构构成,其中0≤α≤0.、0≤γ≤0.1,0≤β≤0.05、0≤η≤0.1。
CNB2004800004844A 2004-04-16 2004-04-16 氮化镓系发光器件 Expired - Lifetime CN100359707C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005475 WO2005101532A1 (ja) 2004-04-16 2004-04-16 窒化ガリウム系発光装置

Publications (2)

Publication Number Publication Date
CN1698215A CN1698215A (zh) 2005-11-16
CN100359707C true CN100359707C (zh) 2008-01-02

Family

ID=35150265

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800004844A Expired - Lifetime CN100359707C (zh) 2004-04-16 2004-04-16 氮化镓系发光器件

Country Status (6)

Country Link
US (1) US7067838B1 (zh)
EP (1) EP1619729B1 (zh)
JP (1) JP3863177B2 (zh)
CN (1) CN100359707C (zh)
DE (1) DE602004025461D1 (zh)
WO (1) WO2005101532A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738340A (zh) * 2011-04-01 2012-10-17 山东华光光电子有限公司 一种采用AlInN量子垒提高GaN基LED内量子效率的LED结构及制备方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI224877B (en) * 2003-12-25 2004-12-01 Super Nova Optoelectronics Cor Gallium nitride series light-emitting diode structure and its manufacturing method
US8174037B2 (en) 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
JP5191650B2 (ja) * 2005-12-16 2013-05-08 シャープ株式会社 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
KR101199176B1 (ko) 2005-12-27 2012-11-07 엘지이노텍 주식회사 발광 소자
JP4948134B2 (ja) * 2006-11-22 2012-06-06 シャープ株式会社 窒化物半導体発光素子
KR100920915B1 (ko) * 2006-12-28 2009-10-12 서울옵토디바이스주식회사 초격자 구조의 장벽층을 갖는 발광 다이오드
EP1976031A3 (en) 2007-03-29 2010-09-08 Seoul Opto Device Co., Ltd. Light emitting diode having well and/or barrier layers with superlattice structure
KR101316492B1 (ko) 2007-04-23 2013-10-10 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조 방법
KR101459752B1 (ko) * 2007-06-22 2014-11-13 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
TWI341600B (en) * 2007-08-31 2011-05-01 Huga Optotech Inc Light optoelectronic device and forming method thereof
KR100877774B1 (ko) 2007-09-10 2009-01-16 서울옵토디바이스주식회사 개선된 구조의 발광다이오드
TWI466314B (zh) * 2008-03-05 2014-12-21 Advanced Optoelectronic Tech 三族氮化合物半導體發光二極體
CN101527341B (zh) * 2008-03-07 2013-04-24 展晶科技(深圳)有限公司 三族氮化合物半导体发光二极管
TWI566431B (zh) * 2008-07-24 2017-01-11 榮創能源科技股份有限公司 組合式電子阻擋層發光元件
CN101640236A (zh) * 2008-07-29 2010-02-03 先进开发光电股份有限公司 组合式电子阻挡层发光元件
TW201007981A (en) * 2008-08-11 2010-02-16 Advanced Optoelectronic Tech Light emitting device and reduced polarization interlayer thereof
JP5641173B2 (ja) * 2009-02-27 2014-12-17 独立行政法人理化学研究所 光半導体素子及びその製造方法
KR101754900B1 (ko) * 2010-04-09 2017-07-06 엘지이노텍 주식회사 발광 소자
EP2408028B1 (en) * 2010-07-16 2015-04-08 LG Innotek Co., Ltd. Light emitting device
CN102104097A (zh) * 2011-01-14 2011-06-22 映瑞光电科技(上海)有限公司 多量子阱结构、发光二极管和发光二极管封装件
FR2973946B1 (fr) * 2011-04-08 2013-03-22 Saint Gobain Dispositif électronique a couches
US8748919B2 (en) 2011-04-28 2014-06-10 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporating optically absorbing layers
JP5545272B2 (ja) * 2011-06-21 2014-07-09 豊田合成株式会社 Iii族窒化物半導体発光素子
JP2013008803A (ja) 2011-06-23 2013-01-10 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子の製造方法
JP5996846B2 (ja) 2011-06-30 2016-09-21 シャープ株式会社 窒化物半導体発光素子およびその製造方法
JP5543946B2 (ja) * 2011-08-26 2014-07-09 株式会社東芝 半導体発光素子および発光装置
JP5668647B2 (ja) * 2011-09-06 2015-02-12 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
EP2823515A4 (en) 2012-03-06 2015-08-19 Soraa Inc LIGHT-EMITTING DIODES WITH MATERIAL LAYERS WITH LOW BREAKING INDEX TO REDUCE LIGHT PIPE EFFECTS
KR102246648B1 (ko) * 2014-07-29 2021-04-30 서울바이오시스 주식회사 자외선 발광 다이오드
KR20140019635A (ko) * 2012-08-06 2014-02-17 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
US9087946B2 (en) * 2012-10-26 2015-07-21 Epistar Corporation Light emitting device
JP2014192274A (ja) * 2013-03-27 2014-10-06 Stanley Electric Co Ltd 高出力GaN系半導体発光素子
JP2015119171A (ja) * 2013-11-13 2015-06-25 スタンレー電気株式会社 多重量子井戸半導体発光素子
TWI577046B (zh) * 2014-12-23 2017-04-01 錼創科技股份有限公司 半導體發光元件及其製作方法
TWI568016B (zh) * 2014-12-23 2017-01-21 錼創科技股份有限公司 半導體發光元件
DE102015100029A1 (de) * 2015-01-05 2016-07-07 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
US10490691B2 (en) 2015-07-31 2019-11-26 Apple Inc. Light emitting diode with displaced P-type doping
JP6327323B2 (ja) * 2015-11-30 2018-05-23 日亜化学工業株式会社 半導体レーザ素子及びその製造方法
JP6387978B2 (ja) * 2016-02-09 2018-09-12 日亜化学工業株式会社 窒化物半導体発光素子
CN114093994A (zh) 2016-06-20 2022-02-25 苏州乐琻半导体有限公司 半导体器件以及半导体器件封装
US10340415B2 (en) 2016-09-01 2019-07-02 Lg Innotek Co., Ltd. Semiconductor device and semiconductor device package including the same
EP3511990B1 (en) 2016-09-10 2023-12-13 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device
CN115763652A (zh) 2016-09-13 2023-03-07 苏州立琻半导体有限公司 半导体器件和包括该半导体器件的半导体器件封装
US10903395B2 (en) 2016-11-24 2021-01-26 Lg Innotek Co., Ltd. Semiconductor device having varying concentrations of aluminum
JP6486401B2 (ja) 2017-03-08 2019-03-20 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
CN107302043A (zh) * 2017-07-11 2017-10-27 安徽三安光电有限公司 一种具有量子阱保护层的发光二极管及其制备方法
KR102390828B1 (ko) 2017-08-14 2022-04-26 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자
US20190103509A1 (en) * 2017-09-30 2019-04-04 Sensor Electronic Technology, Inc. Semiconductor Heterostructure with P-type Superlattice
WO2019069834A1 (ja) * 2017-10-02 2019-04-11 Dowaエレクトロニクス株式会社 深紫外発光素子およびその製造方法
CN107819058B (zh) * 2017-11-28 2019-07-23 厦门三安光电有限公司 发光二极管
CN109103311A (zh) * 2018-09-03 2018-12-28 淮安澳洋顺昌光电技术有限公司 一种降低氮化镓基led发光二极管工作电压的外延片及生长方法
US11139342B2 (en) * 2018-09-26 2021-10-05 Nitride Semiconductors Co., Ltd. UV-LED and display
JP6829235B2 (ja) * 2018-11-01 2021-02-10 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
WO2023243518A1 (ja) * 2022-06-13 2023-12-21 ヌヴォトンテクノロジージャパン株式会社 窒化物系半導体発光素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544188A (en) * 1993-12-16 1996-08-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device having a high emission efficiency and a large modulation bandwidth
US5959307A (en) * 1995-11-06 1999-09-28 Nichia Chemical Industries Ltd. Nitride semiconductor device
JP2000196194A (ja) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd 半導体発光素子
US6472683B1 (en) * 1997-04-10 2002-10-29 Binghui Li Semiconductor quantum oscillation device
CN1409875A (zh) * 1999-12-13 2003-04-09 日亚化学工业株式会社 发光元件
JP2003115642A (ja) * 2001-03-28 2003-04-18 Nichia Chem Ind Ltd 窒化物半導体素子
US20030168653A1 (en) * 1999-01-07 2003-09-11 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and optical disk apparatus
JP2004087908A (ja) * 2002-08-28 2004-03-18 Sharp Corp 窒化物半導体発光素子、その製造方法、それを搭載した光学装置
CN1484880A (zh) * 2001-11-05 2004-03-24 ���ǻ�ѧ��ҵ��ʽ���� 氮化物半导体元件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658112B2 (ja) 1995-11-06 2005-06-08 日亜化学工業株式会社 窒化物半導体レーザダイオード
JP4304750B2 (ja) 1998-12-08 2009-07-29 日亜化学工業株式会社 窒化物半導体の成長方法及び窒化物半導体素子
GB2344932A (en) * 1998-12-15 2000-06-21 Sharp Kk Semiconductor Laser with gamma and X electron barriers
JP2002314204A (ja) 2001-04-16 2002-10-25 Ricoh Co Ltd p型超格子構造とその作製方法、III族窒化物半導体素子及びIII族窒化物半導体発光素子
JP2003289176A (ja) * 2002-01-24 2003-10-10 Sony Corp 半導体発光素子およびその製造方法
US7058105B2 (en) * 2002-10-17 2006-06-06 Samsung Electro-Mechanics Co., Ltd. Semiconductor optoelectronic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544188A (en) * 1993-12-16 1996-08-06 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device having a high emission efficiency and a large modulation bandwidth
US5959307A (en) * 1995-11-06 1999-09-28 Nichia Chemical Industries Ltd. Nitride semiconductor device
US6472683B1 (en) * 1997-04-10 2002-10-29 Binghui Li Semiconductor quantum oscillation device
JP2000196194A (ja) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd 半導体発光素子
US20030168653A1 (en) * 1999-01-07 2003-09-11 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and optical disk apparatus
CN1409875A (zh) * 1999-12-13 2003-04-09 日亚化学工业株式会社 发光元件
JP2003115642A (ja) * 2001-03-28 2003-04-18 Nichia Chem Ind Ltd 窒化物半導体素子
CN1484880A (zh) * 2001-11-05 2004-03-24 ���ǻ�ѧ��ҵ��ʽ���� 氮化物半导体元件
JP2004087908A (ja) * 2002-08-28 2004-03-18 Sharp Corp 窒化物半導体発光素子、その製造方法、それを搭載した光学装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738340A (zh) * 2011-04-01 2012-10-17 山东华光光电子有限公司 一种采用AlInN量子垒提高GaN基LED内量子效率的LED结构及制备方法
CN102738340B (zh) * 2011-04-01 2015-07-22 山东华光光电子有限公司 一种采用AlInN量子垒提高GaN基LED内量子效率的LED结构及制备方法

Also Published As

Publication number Publication date
US20060131558A1 (en) 2006-06-22
DE602004025461D1 (de) 2010-03-25
CN1698215A (zh) 2005-11-16
EP1619729B1 (en) 2010-02-10
EP1619729A4 (en) 2006-09-27
JP3863177B2 (ja) 2006-12-27
WO2005101532A1 (ja) 2005-10-27
EP1619729A1 (en) 2006-01-25
US7067838B1 (en) 2006-06-27
JPWO2005101532A1 (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
CN100359707C (zh) 氮化镓系发光器件
US7482641B2 (en) White light emitting element and white light source
US7795610B2 (en) Semiconductor light emitting device
CN100466307C (zh) 氮化物半导体发光器件
CN101540364B (zh) 一种氮化物发光器件及其制备方法
US9911898B2 (en) Ultraviolet light-emitting device
KR101611412B1 (ko) 발광 소자
US8525203B2 (en) Semiconductor light emitting device
US20080169482A1 (en) Semiconductor light emitting device and a method for manufacturing the same
TWI569467B (zh) 半導體發光元件
KR20080010136A (ko) 질화물계 발광 소자
US20160276530A1 (en) Semiconductor structures having active regions comprising ingan and methods of forming such semiconductor structures
KR101389348B1 (ko) 질화갈륨계 반도체 발광소자
US8502265B2 (en) Light emitting device having different multi-quantum well materials
JP2007088481A (ja) 窒化物半導体素子
US20070252135A1 (en) Nitride Semiconductor Light Emitting Device and Fabrication Method Thereof
KR101335945B1 (ko) 반도체 발광소자
KR20090084583A (ko) 질화물 반도체 발광소자
JP4501194B2 (ja) 窒化物半導体発光素子
KR101945808B1 (ko) 발광 소자 및 발광 소자 패키지
JP2016526801A (ja) 窒化物半導体紫外線発光素子
KR20170059243A (ko) 질화물 양자점을 갖는 발광 소자 및 그 제조방법
KR100643262B1 (ko) 질화갈륨계 발광장치
JP2004186509A (ja) 窒化ガリウム系化合物半導体装置
JPH08130327A (ja) Iii−v族窒化物半導体発光素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080102

CX01 Expiry of patent term