WO2023243518A1 - 窒化物系半導体発光素子 - Google Patents

窒化物系半導体発光素子 Download PDF

Info

Publication number
WO2023243518A1
WO2023243518A1 PCT/JP2023/021208 JP2023021208W WO2023243518A1 WO 2023243518 A1 WO2023243518 A1 WO 2023243518A1 JP 2023021208 W JP2023021208 W JP 2023021208W WO 2023243518 A1 WO2023243518 A1 WO 2023243518A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
side guide
nitride
emitting device
semiconductor light
Prior art date
Application number
PCT/JP2023/021208
Other languages
English (en)
French (fr)
Inventor
貴大 岡口
徹 高山
真治 吉田
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2023243518A1 publication Critical patent/WO2023243518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present disclosure relates to a nitride-based semiconductor light emitting device.
  • nitride-based semiconductor light-emitting devices that emit light such as ultraviolet light have been known (for example, see Patent Document 1).
  • a watt-class ultraviolet laser light source can be realized using a nitride-based semiconductor light emitting device, it can be used as an exposure light source, a processing light source, and the like.
  • an active layer having a quantum well structure is used as a light-emitting layer of a nitride-based semiconductor light-emitting device that emits ultraviolet light.
  • Such an active layer includes one or more well layers and multiple barrier layers. Since ultraviolet light has a shorter wavelength (that is, higher energy) than visible light, the bandgap energy of the well layer that emits ultraviolet light is greater than the bandgap energy of the well layer that emits visible light. Therefore, the difference between the conduction band potential energy of the barrier layer and the electron quantum level energy becomes small. In this case, since electrons tend to leak from the well layer to the P-side guide layer over the barrier layer, the operating carrier density in the well layer (that is, the carrier density during operation of the nitride-based semiconductor light-emitting device) increases.
  • the nitride-based semiconductor light emitting device is a laser device having a ridge that is a current injection region
  • the amplification gain of the well layer in the current injection region increases.
  • the refractive index of the well layer decreases. do.
  • the carrier density of the well layer in the current injection region increases, the refractive index of the well layer in the current injection region decreases due to the plasma effect.
  • the effective refractive index of the current injection region may be lower than the effective refractive index outside the current injection region.
  • the waveguide mechanism for the laser light propagating through the waveguide including the ridge of the laser element is a gain waveguide mechanism of anti-refractive index waveguide type. Therefore, the proportion of the laser beam that propagates outside the current injection region of the well layer increases, and absorption loss in the well layer increases. Therefore, the oscillation threshold current value of the laser element increases and the thermal saturation level decreases. In other words, the temperature characteristics of the laser element deteriorate.
  • the present disclosure aims to solve such problems, and to provide a nitride-based semiconductor light-emitting device with excellent temperature characteristics.
  • one embodiment of a nitride-based semiconductor light-emitting device includes an N-type cladding layer, an N-side guide layer disposed above the N-type cladding layer, and an N-side guide layer disposed above the N-type cladding layer. an active layer disposed above the layer, a P-type cladding layer disposed above the active layer, a P-side guide layer disposed between the active layer and the P-type cladding layer, and an electron barrier.
  • the N-type cladding layer, the N-side guide layer, the P-side guide layer, the electron barrier layer, and the P-type cladding layer contain Al
  • the active layer includes an N-side barrier layer and , has a well layer disposed above the N-side barrier layer and a P-side barrier layer disposed above the well layer, and the average band gap energy of the P-side barrier layer is greater than that of the N-side barrier layer.
  • the thickness of the P-side barrier layer is larger than the average bandgap energy of the layer, and the thickness of the P-side barrier layer is smaller than the thickness of the N-side barrier layer.
  • a nitride-based semiconductor light-emitting device with excellent temperature characteristics can be provided.
  • FIG. 1 is a schematic plan view showing the overall configuration of a nitride-based semiconductor light emitting device according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing the overall configuration of a nitride-based semiconductor light emitting device according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing the structure of an active layer included in the nitride-based semiconductor light emitting device according to Embodiment 1.
  • FIG. 2 is a graph showing the distribution of band gap energy and refractive index in a well layer and a barrier layer of a 405 nm band semiconductor light emitting device in the stacking direction.
  • FIG. 3 is a graph showing the distribution of bandgap energy and refractive index in a well layer and a barrier layer of a 375 nm band semiconductor light emitting device in the stacking direction.
  • 2 is a graph showing the effective refractive index and gain distribution in the horizontal direction of a 375 nm band semiconductor light emitting device.
  • FIG. 2 is a diagram showing a far-field pattern in the horizontal direction of a conventional ultraviolet semiconductor light emitting device.
  • 2 is a graph schematically showing a light intensity distribution, a bandgap energy distribution, and an impurity concentration distribution in the stacking direction of a semiconductor stacked body according to a comparative example.
  • 3 is a graph schematically showing a light intensity distribution, a bandgap energy distribution, and an impurity concentration distribution of the semiconductor stack according to the first embodiment.
  • 7 is a graph showing the relationship between the optical confinement coefficient of a nitride-based semiconductor light emitting device and the film thickness of a P-side barrier layer.
  • 7 is a graph showing the relationship between the effective refractive index difference ⁇ N of a nitride-based semiconductor light emitting device and the thickness of a P-side barrier layer.
  • 7 is a graph showing the relationship between the waveguide loss of a nitride-based semiconductor light emitting device and the thickness of a P-side barrier layer.
  • FIG. 7 is a graph showing the relationship between the light intensity distribution peak position in the stacking direction of a nitride-based semiconductor light emitting device and the film thickness of a P-side barrier layer.
  • 2 is a graph showing coordinates of positions in a stacking direction of a nitride-based semiconductor light emitting device.
  • 7 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 1 of Embodiment 1.
  • FIG. 7 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 2 of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing the overall configuration of a nitride-based semiconductor light emitting device according to a second embodiment.
  • 7 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to a second embodiment.
  • 7 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 1 of Embodiment 2.
  • FIG. 7 is a graph schematically showing a band gap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 2 of Embodiment 2.
  • FIG. 3 is a schematic cross-sectional view showing the overall configuration of a nitride-based semiconductor light emitting device according to a third embodiment.
  • 12 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to a third embodiment.
  • 12 is a graph schematically showing the bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 1 of Embodiment 3.
  • 7 is a graph schematically showing a bandgap energy distribution of a semiconductor stack of a nitride-based semiconductor light emitting device according to Modification 2 of Embodiment 3.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scale etc. in each figure are not necessarily the same.
  • symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
  • the terms “upper” and “lower” do not refer to vertically above and vertically downward in absolute spatial recognition, but are defined by relative positional relationships based on the order of stacking in a stacked structure. This term is used as a term that refers to Additionally, the terms “above” and “below” are used not only when two components are spaced apart and there is another component between them; This also applies when they are placed in contact with each other.
  • Embodiment 1 A nitride-based semiconductor light emitting device according to Embodiment 1 will be described.
  • FIGS. 1, 2A, and 2B are a schematic plan view and a cross-sectional view, respectively, showing the overall configuration of a nitride-based semiconductor light emitting device 100 according to this embodiment.
  • FIG. 2A shows a cross section taken along line II-II in FIG.
  • FIG. 2B is a schematic cross-sectional view showing the configuration of the active layer 104 included in the nitride-based semiconductor light emitting device 100 according to this embodiment. Note that each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the X, Y, and Z axes are a right-handed Cartesian coordinate system.
  • the stacking direction of the nitride-based semiconductor light emitting device 100 is parallel to the Z-axis direction, and the main emission direction of light (laser light) is parallel to the Y-axis direction.
  • the nitride-based semiconductor light-emitting device 100 includes a semiconductor stack 100S including a nitride-based semiconductor layer, and includes a semiconductor stack 100S in a direction perpendicular to the stacking direction (that is, the Z-axis direction) of the semiconductor stack 100S.
  • Light is emitted from the end face 100F (see FIG. 1).
  • nitride-based semiconductor light emitting device 100 is a semiconductor laser device having two end faces 100F and 100R forming a resonator.
  • the end surface 100F is a front end surface that emits laser light
  • the end surface 100R is a rear end surface that has a higher reflectance than the end surface 100F.
  • the nitride-based semiconductor light emitting device 100 has a waveguide formed between the end surface 100F and the end surface 100R.
  • the reflectances of end faces 100F and 100R are 5% or more and 30% or less and 95% or more, respectively.
  • the cavity length (that is, the distance between end face 100F and end face 100R) of nitride-based semiconductor light emitting device 100 according to this embodiment is 500 ⁇ m or more and 2000 ⁇ m or less.
  • the nitride-based semiconductor light emitting device 100 emits ultraviolet light having a peak wavelength in the 375 nm band, for example. Note that the nitride-based semiconductor light emitting device 100 may emit ultraviolet light having a peak wavelength outside the 375 nm band, or may emit light having a peak wavelength within a wavelength band other than ultraviolet light.
  • the nitride-based semiconductor light emitting device 100 includes a substrate 101, a semiconductor stack 100S, a current blocking layer 110, a P-side electrode 111, and an N-side electrode 112.
  • the semiconductor stack 100S includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, an electron barrier layer 106, an upper P-side guide layer 107, a P-type cladding layer 108, and a contact layer 109. has.
  • the substrate 101 is a plate-like member that serves as a base for the nitride semiconductor light emitting device 100.
  • substrate 101 is placed below N-type cladding layer 102 and is made of N-type GaN. More specifically, the substrate 101 is an 85 ⁇ m thick GaN substrate doped with Si at an average concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the N-type cladding layer 102 is an N-type nitride semiconductor layer placed above the substrate 101.
  • the N-type cladding layer 102 has a lower average refractive index and a higher average band gap energy than the active layer 104.
  • N-type cladding layer 102 contains Al.
  • the N-type cladding layer 102 is an N-type Al 0.065 Ga 0.935 N layer with a thickness of 800 nm.
  • the N-type cladding layer 102 is doped with Si at an average concentration of 1 ⁇ 10 18 cm ⁇ 3 as an impurity.
  • the average band gap energy of a certain layer refers to the magnitude of the band gap energy at a certain position in the stacking direction of the layer from the position of the interface on the substrate side in the stacking direction of the layer. It is the value of band gap energy that is integrated in the stacking direction up to the position of the interface on the far side and divided by the film thickness of that layer (distance between the interface on the substrate side and the interface on the side far from the substrate).
  • the average refractive index of a certain layer is the magnitude of the refractive index at a certain position in the lamination direction of that layer, from the position of the interface on the substrate side in the lamination direction of that layer to the position of the interface on the side far from the substrate. It is the value of the refractive index that is calculated by integrating the refractive index and dividing it by the thickness of the layer (distance between the interface on the substrate side and the interface on the side far from the substrate).
  • the average impurity concentration of a certain layer is the magnitude of the impurity concentration at a certain position in the stacking direction of that layer, from the position of the interface on the substrate side in the stacking direction of that layer to the position of the interface on the side far from the substrate. This is the value of the impurity concentration, which is calculated by integrating the value of 0 and dividing by the film thickness of the layer (distance between the interface on the substrate side and the interface on the side far from the substrate).
  • the impurity refers to an impurity doped to obtain an N-type conductivity type
  • a P-type semiconductor layer it refers to an impurity doped to obtain a P-type conductivity type.
  • the N-side guide layer 103 is an optical guide layer disposed above the N-type cladding layer 102 and made of a nitride-based semiconductor.
  • the N-side guide layer 103 has a higher average refractive index and a lower average band gap energy than the N-type cladding layer 102.
  • N-side guide layer 103 contains Al.
  • the N-side guide layer 103 includes a first N-side guide layer 103a and a second N-side guide layer 103b disposed above the first N-side guide layer 103a. and has.
  • the first N-side guide layer 103a is an N-type Al 0.03 Ga 0.97 N layer with a thickness of 127 nm.
  • the first N-side guide layer 103a is doped with Si as an N-type impurity at an average concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the second N-side guide layer 103b is an undoped Al 0.03 Ga 0.97 N layer with a thickness of 60 nm.
  • the average N-type impurity concentration of the second N-side guide layer 103b is 1 ⁇ 10 18 cm ⁇ 3 or less. Note that, hereinafter, the N-type impurity concentration in each layer on the N-side and the P-type impurity concentration in each layer on the P-side are also simply referred to as impurity concentration.
  • the active layer 104 is a light emitting layer disposed above the N-side guide layer 103 and made of a nitride semiconductor.
  • the active layer 104 has a quantum well structure and emits ultraviolet light.
  • the active layer 104 includes an N-side barrier layer 104a, a well layer 104b disposed above the N-side barrier layer 104a, and a well layer 104b disposed above the well layer 104b. and a P-side barrier layer 104c.
  • Each of the N-side barrier layer 104a and the P-side barrier layer 104c is a nitride-based semiconductor layer that is disposed above the N-side guide layer 103 and functions as a barrier of the quantum well structure.
  • the well layer 104b is a nitride-based semiconductor layer that functions as a well in a quantum well structure.
  • the average bandgap energy of the P-side barrier layer 104c is greater than the average bandgap energy of the N-side barrier layer 104a, and the thickness of the P-side barrier layer 104c is smaller than the thickness of the N-side barrier layer 104a.
  • the average bandgap energy of the N-side barrier layer 104a is smaller than the average bandgap energy of the N-type cladding layer 102. That is, the average refractive index of the N-side barrier layer 104a is larger than the average refractive index of the N-type cladding layer 102. Thereby, it is possible to suppress the peak of the light intensity distribution in the stacking direction from shifting from the active layer 104 toward the N-type cladding layer 102.
  • the N-side barrier layer 104a is an undoped Al 0.04 Ga 0.96 N layer with a thickness of 18 nm.
  • the well layer 104b is an undoped In 0.01 Ga 0.99 N layer with a thickness of 17.5 nm.
  • the P-side barrier layer 104c is an undoped Al 0.12 Ga 0.88 N layer with a thickness of 10 nm.
  • the electron barrier layer 106 is a nitride-based semiconductor layer disposed between the active layer 104 and the P-type cladding layer 108.
  • the average bandgap energy of the electron barrier layer 106 is larger than the average bandgap energy of the P-side barrier layer 104c. Thereby, leakage of electrons from the active layer 104 to the P-type cladding layer 108 can be suppressed.
  • the electron barrier layer 106 contains Al. In this embodiment, the average bandgap energy of electron barrier layer 106 is larger than the average bandgap energy of P-type cladding layer 108.
  • the electron barrier layer 106 is a P-type Al 0.36 Ga 0.64 N layer with a thickness of 5 nm.
  • the electron barrier layer 106 is doped with Mg as a P-type impurity at an average concentration of 1 ⁇ 10 19 cm ⁇ 3 .
  • the upper P-side guide layer 107 is an example of a light guide layer included in the P-side guide layer disposed between the active layer 104 and the P-type cladding layer 108.
  • the upper P-side guide layer 107 is a nitride-based semiconductor layer containing Al.
  • the light guide layer has an upper P-side guide layer 107 disposed above the electron barrier layer 106.
  • the average bandgap energy of the upper P-side guide layer 107 is smaller than the average bandgap energy of the P-type cladding layer 108.
  • the average refractive index of the upper P-side guide layer 107 is larger than the average refractive index of the P-type cladding layer 108.
  • the upper P-side guide layer 107 is a P-type Al 0.03 Ga 0.97 N layer with a thickness of 40 nm.
  • Mg is added to the upper P-side guide layer 107 as a P-type impurity, and the Mg concentration in the upper P-side guide layer 107 decreases as it approaches the P-type cladding layer 108.
  • the Mg concentration near the interface near the electron barrier layer 106 of the upper P-side guide layer 107 is 4 ⁇ 10 18 cm ⁇ 3
  • the Mg concentration near the interface near the P-type cladding layer 108 is 3 .2 ⁇ 10 18 cm ⁇ 3 .
  • P-type cladding layer 108 is disposed above active layer 104 and is a P-type nitride-based semiconductor layer.
  • the P-type cladding layer 108 has a lower average refractive index and a higher average band gap energy than the active layer 104.
  • P-type cladding layer 108 contains Al.
  • the P-type cladding layer 108 is arranged above the upper P-side guide layer 107.
  • the P-type cladding layer 108 is a P-type Al 0.065 Ga 0.935 N layer with a thickness of 450 nm. Mg is added to the P-type cladding layer 108 as a P-type impurity.
  • the P-type cladding layer 108 includes a first region with a film thickness of 60 nm, a second region with a film thickness of 180 nm located on the first region, a third region with a film thickness of 100 nm located on the second region, and a third region with a film thickness of 100 nm located on the second region. and a fourth region with a film thickness of 110 nm located above the region.
  • the Mg concentration decreases from 3.2 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 18 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the Mg concentration increases from 2.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 1.0 ⁇ 10 19 cm ⁇ 3 .
  • a ridge 108R is formed in the P-type cladding layer 108, as shown in FIGS. 1 and 2A. Furthermore, two grooves 108T are formed in the P-type cladding layer 108, which are arranged along the ridge 108R and extend in the Y-axis direction. In this embodiment, the ridge width W is approximately 30 ⁇ m. Further, as shown in FIG. 2A, the distance between the lower end of the ridge 108R (that is, the bottom of the groove 108T) and the active layer 104 is defined as dp. Further, the distance between the lower end of the ridge 108R and the electron barrier layer 106 is set to dc.
  • Contact layer 109 is a nitride-based semiconductor layer disposed above P-type cladding layer 108 and in contact with P-side electrode 111 .
  • contact layer 109 is a P-type GaN layer with a thickness of 100 nm.
  • the contact layer 109 is doped with Mg as an impurity at an average concentration of 1 ⁇ 10 20 cm ⁇ 3 .
  • the current blocking layer 110 is an insulating layer that is disposed above the P-type cladding layer 108 and is transparent to light from the active layer 104.
  • the current blocking layer 110 is arranged in a region other than the upper surface of the ridge 108R among the upper surfaces of the P-type cladding layer 108 and the contact layer 109.
  • the current blocking layer 110 may also be arranged in a part of the upper surface of the ridge 108R.
  • the current blocking layer 110 may be placed in an edge region of the upper surface of the ridge 108R.
  • current blocking layer 110 is a SiO 2 layer.
  • the P-side electrode 111 is a conductive layer placed above the P-type cladding layer 108. In this embodiment, P-side electrode 111 is arranged above contact layer 109 and current blocking layer 110.
  • the P-side electrode 111 is, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, Pt, Ag, and Au.
  • Ag which has a low refractive index for light from the ultraviolet region to the infrared region, for at least a portion of the P-side electrode 111 on the contact layer 109, light propagating through the waveguide can be directed to the P-side electrode 111. Since seepage can be reduced, waveguide loss occurring at the P-side electrode 111 can be reduced.
  • Ag has a refractive index of 0.5 or less in the wavelength range of 325 nm or more and 1500 nm or less, and a refractive index of 0.2 or less in the wavelength range of 360 nm or more and 950 nm or less.
  • optical loss in the P-side electrode 111 can be reduced because the P-side electrode 111 contains Ag in a wide wavelength range from 325 nm to 950 nm.
  • the thickness of the P-type cladding layer 108 is 0.4 ⁇ m or less, the seepage of light propagating through the waveguide to the P-side electrode 111 can be reduced, so that the nitride-based semiconductor light-emitting device 100 can be reduced. It is possible to suppress an increase in waveguide loss while reducing the series resistance of the waveguide. As a result, the operating voltage and operating current can be reduced.
  • the effective refractive index of the inner region of the ridge 108R must be larger than the effective refractive index of the outer region. It is necessary to form an effective refractive index difference ( ⁇ N) such that Specifically, it is necessary to form SiO 2 having a refractive index lower than that of the P-type cladding layer 108 on the sidewalls of the ridge 108R to reduce the effective refractive index of the outer region of the ridge 108R.
  • the thickness of the P-type cladding layer 108 may be 150 nm or more.
  • the thickness of the P-type cladding layer 108 is determined by the total thickness of the P-side light guide layers (in this embodiment, the thickness of the upper P-side guide layer 107), and the total thickness of the N-side light guide layers ( In this embodiment, the film thickness may be larger than that of the N-side guide layer 103. This allows the P-type cladding layer 108 to have a thickness sufficient to confine light below the P-side electrode 111, thereby suppressing waveguide loss. Further, when the P-side electrode 111 contains Ag, the thickness of the P-type cladding layer 108 may be, for example, 200 nm or more and 400 nm or less. Thereby, the operating voltage and operating current can be reduced while suppressing waveguide loss.
  • a layer with a high Al composition ratio such as the P-type cladding layer 108
  • the thickness of the P-type cladding layer 108 By reducing the thickness of the P-type cladding layer 108, the total Al content in the P-type cladding layer 108 can be reduced, so that the strain on the substrate 101 in the P-type cladding layer 108 can be reduced. Therefore, cracking of the nitride-based semiconductor light emitting device 100 due to distortion of the P-type cladding layer 108 can be suppressed.
  • Ag included in the P-side electrode 111 may be in ohmic contact with the contact layer 109. That is, the P-side electrode 111 may include an Ag film that is in ohmic contact with the contact layer 109. This allows light to be confined below the contact layer 109, thereby further reducing optical loss at the P-side electrode 111.
  • the N-side electrode 112 is a conductive layer arranged below the substrate 101 (that is, on the main surface of the substrate 101 opposite to the main surface on which the N-type cladding layer 102 and the like are arranged).
  • the N-side electrode 112 is, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, Pt, and Au.
  • the nitride-based semiconductor light-emitting device 100 has the above configuration, so that as shown in FIG. 2A, there is a gap between the inner part of the ridge 108R and the outer part (groove 108T part) of the ridge 108R.
  • An effective refractive index difference ⁇ N is generated.
  • the light generated in the lower part of the ridge 108R of the active layer 104 can be confined in the horizontal direction (that is, the X-axis direction).
  • FIG. 3 is a graph showing the distribution of band gap energy (Eg) and refractive index in the well layer and barrier layer of a semiconductor light emitting device in the 405 nm band, which has a longer wavelength than ultraviolet light, and in the stacking direction.
  • FIG. 4 is a graph showing the distribution of bandgap energy (Eg) and refractive index in the well layer and barrier layer of a semiconductor light emitting device in the 375 nm band, which is an ultraviolet region, in the stacking direction.
  • FIG. 3 is a graph showing the distribution of band gap energy (Eg) and refractive index in the well layer and barrier layer of a semiconductor light emitting device in the 405 nm band, which has a longer wavelength than ultraviolet light, and in the stacking direction.
  • FIG. 4 is a graph showing the distribution of bandgap energy (Eg) and refractive index in the well layer and barrier layer of a semiconductor light emitting device in the 375 nm band, which is an ultraviolet region, in the stacking
  • FIG. 5 is a graph showing the effective refractive index and gain distribution in the horizontal direction (corresponding to the X-axis direction in FIGS. 1 to 2B) of a 375 nm band semiconductor light emitting device.
  • FIG. 6 is a diagram showing a far field pattern in the horizontal direction of a conventional ultraviolet semiconductor light emitting device. The horizontal axis in FIG. 6 indicates the radiation angle in the horizontal direction, and the vertical axis indicates the intensity of light.
  • the bandgap energy of the well layer is relatively small, so the difference ⁇ Ec between the conduction band potential energy of the barrier layer and the electron quantum level energy is relatively large. (198 meV).
  • the Fermi energy Ef of electrons is sufficiently smaller than the conduction band potential energy of the barrier layer, leakage of electrons from the well layer to the P-side semiconductor layer beyond the barrier layer can be suppressed.
  • the bandgap energy of the well layer is relatively large, so the difference ⁇ Ec between the conduction band potential energy of the barrier layer and the electron quantum level energy is a small value ( 67meV).
  • the Fermi energy Ef of electrons can be larger than the conduction band potential energy of the barrier layer, electrons tend to leak from the well layer, beyond the barrier layer, to the P-side semiconductor layer.
  • the number of carriers that cannot contribute to light emission in the well layer increases, so that the operating carrier density in the well layer increases.
  • the optical amplification gain in the well layer increases.
  • the refractive index of the well layer decreases.
  • the refractive index of the well layer in the current injection region decreases due to the plasma effect.
  • the effective refractive index of the current injection region may be lower than the effective refractive index outside the current injection region.
  • the semiconductor light emitting device is a laser device having a ridge and a current is injected into the ridge
  • the effective refractive index at the ridge which is the current injection region, is lower than that outside the current injection region, as shown in FIG. obtain.
  • the waveguide mechanism for laser light propagating through the waveguide corresponding to the ridge of the semiconductor light emitting element becomes a gain waveguide mechanism of anti-refractive index waveguide type.
  • the proportion of the laser light that propagates outside the current injection region (region located below the ridge) in the well layer increases, and as shown in FIG. A peak occurs as shown.
  • the oscillation threshold current value of the semiconductor light emitting device increases and the thermal saturation level decreases.
  • the temperature characteristics of the laser element deteriorate.
  • a nonlinear bend may occur in a graph showing the current-light output (IL) characteristics of a semiconductor light emitting device. In other words, the stability of the light output of the semiconductor light emitting device decreases.
  • the nitride-based semiconductor light emitting device 100 solves the problems of such ultraviolet semiconductor light emitting devices.
  • FIG. 7 is a graph schematically showing a light intensity distribution, a bandgap energy distribution, and an impurity concentration distribution in the stacking direction of a semiconductor stacked body according to a comparative example.
  • FIG. 8 is a graph schematically showing the light intensity distribution, bandgap energy distribution, and impurity concentration distribution of the semiconductor stacked body 100S according to the present embodiment.
  • the semiconductor stack according to the comparative example shown in FIG. 7 corresponds to the semiconductor stack described in Patent Document 1.
  • the semiconductor stack according to the comparative example includes an N-type cladding layer 902, an N-side guide layer 903, an active layer (an N-side barrier layer 904a, a well layer 904b, and a P-side barrier layer 904c), and an electron barrier layer 906. , an upper P-side guide layer 907 and a P-type cladding layer 908.
  • the semiconductor stacked body according to the comparative example differs from the semiconductor stacked body 100S according to the present embodiment mainly in that the band gap energies of the N-side barrier layer 904a and the P-side barrier layer 904c are equal.
  • the P-type cladding layer 908 has more N-type cladding.
  • the refractive index is higher than that of the cladding layer 902.
  • the ionization energy of Mg which is a P-type impurity
  • Si which is an N-type impurity
  • the relatively deep energy This is thought to be because the P-type layer that forms the level absorbs more light than the N-type layer, resulting in a higher refractive index. Therefore, as shown in FIG. 7, the peak position of the light intensity distribution is biased toward the P-type cladding layer 908 from the center of the well layer 904b of the active layer (see the dashed line shown in FIG. 7).
  • the light confinement coefficient in the active layer becomes smaller, and the operating carrier density increases. Therefore, the refractive index of the well layer 904b decreases.
  • the average bandgap energy of the P-side barrier layer 104c is larger than the average bandgap energy of the N-side barrier layer 104a. That is, the average refractive index of the P-side barrier layer 104c is smaller than the average refractive index of the N-side barrier layer 104a.
  • the controllability of the peak position of the light intensity distribution can be improved.
  • the nitride-based semiconductor light emitting device 100 by moving the peak position of the light intensity distribution closer to the active layer 104, that is, by moving the peak position of the light intensity distribution away from the upper P-side guide layer 107 and the P-type cladding layer 108, the upper P-side guide Free carrier loss caused by impurities in the layer 107 and the P-type cladding layer 108 can be reduced. Thereby, the oscillation threshold current value can be reduced and the thermal saturation level can be improved. In other words, it is possible to realize the nitride-based semiconductor light emitting device 100 with excellent temperature characteristics and high slope efficiency. This allows the nitride-based semiconductor light emitting device 100 to operate at high temperature and high output.
  • the thickness of the P-side barrier layer 104c is smaller than the thickness of the N-side barrier layer 104a.
  • the distance from the well layer 104b to the lower end of the ridge 108R can be reduced.
  • the region with a low refractive index within the groove 108T can be brought close to the well layer.
  • the effective refractive index difference ⁇ N can be increased. Therefore, the optical confinement coefficient in the waveguide of the nitride-based semiconductor light emitting device 100 can be increased.
  • the horizontal transverse mode of the laser beam can be stably confined in the waveguide, thereby suppressing the occurrence of kinks in the current-light output characteristics.
  • the average bandgap energy of the upper P-side guide layer 107 is smaller than the average bandgap energy of the P-type cladding layer 108. That is, the average refractive index of the upper P-side guide layer 107 is larger than the average refractive index of the P-type cladding layer 108. Thereby, the peak position of the light intensity distribution in the stacking direction can be suppressed from approaching the P-type cladding layer 108. Thereby, free carrier loss caused by impurities in the P-type cladding layer 108 can be reduced.
  • the average bandgap energy of the P-side barrier layer 104c is smaller than the average bandgap energy of the electron barrier layer 106.
  • the electron barrier layer 106 can block electrons traveling beyond the P-side barrier layer 104c toward the P-type cladding layer 108, and the electrons can be returned to the active layer 104. Therefore, since electrons that cause heat generation can be reduced without contributing to light emission, the oscillation threshold current value can be reduced and the thermal saturation level can be improved. In other words, it is possible to realize the nitride-based semiconductor light emitting device 100 with excellent temperature characteristics and high slope efficiency.
  • the upper P-side guide layer 107 used in this simulation is a P-type Al 0.03 Ga 0.97 N layer with a thickness of 60 nm.
  • Mg is added to the upper P-side guide layer 107 as a P-type impurity, and the Mg concentration in the upper P-side guide layer 107 decreases as it approaches the P-type cladding layer 108.
  • the Mg concentration near the interface near the electron barrier layer 106 of the upper P-side guide layer 107 is 4 ⁇ 10 18 cm ⁇ 3
  • the Mg concentration near the interface near the P-type cladding layer 108 is 2 .8 ⁇ 10 18 cm ⁇ 3 .
  • the P-type cladding layer 108 used in this simulation is a P-type Al 0.065 Ga 0.935 N layer with a film thickness of 450 nm. Mg is added to the P-type cladding layer 108 as a P-type impurity.
  • the P-type cladding layer 108 includes a first region with a thickness of 40 nm, a second region with a thickness of 180 nm located on the first region, a third region with a thickness of 100 nm located on the second region, and a third region with a thickness of 100 nm located on the second region. and a fourth region with a film thickness of 130 nm located above the region.
  • the Mg concentration decreases from 2.8 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 18 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the Mg concentration increases from 2.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 1.0 ⁇ 10 19 cm ⁇ 3 .
  • FIGS. 9 to 12. 9, 10, 11, and 12 respectively show the optical confinement coefficient, effective refractive index difference ⁇ N, waveguide loss, light intensity distribution peak position in the stacking direction, and P of the nitride-based semiconductor light emitting device. It is a graph showing the relationship with the film thickness of the side barrier layer 104c.
  • the total thickness (Tb1+Tb2) of the thickness Tb2 of the P-side barrier layer 104c and the thickness Tb1 of the N-side barrier layer 104a is 28 nm. That is, when the thickness Tb2 of the P-side barrier layer 104c is 2 nm, the thickness Tb1 of the N-side barrier layer 104a is 26 nm. That is, the left half of the graph in each figure shows the case where Tb1>Tb2, and the right half shows the case where Tb1 ⁇ Tb2.
  • each figure shows each relationship when the Al composition ratio Xb2 of the P-side barrier layer 104c and the Al composition ratio Xb1 of the N-side barrier layer 104a are changed.
  • Xb2
  • the thickness Tb2 of the P-side barrier layer 104c is smaller than the thickness Tb1 of the N-side barrier layer 104a, and the Al composition ratio Xb2 of the P-side barrier layer 104c is lower than that of the N-side barrier layer 104a.
  • the Al composition ratio is larger than Xb1 (that is, the average bandgap energy of the P-side barrier layer 104c is larger than the average bandgap energy of the N-side barrier layer 104a)
  • the optical confinement coefficient to increase.
  • the average band gap energy of the P-side barrier layer 104c is made larger than the average band gap energy of the N-side barrier layer 104a, and the P-side barrier layer
  • the film thickness Tb2 of the N-side barrier layer 104c is made smaller than the film thickness Tb1 of the N-side barrier layer 104a.
  • the thickness Tb2 of the P-side barrier layer 104c is smaller than the thickness Tb1 of the N-side barrier layer 104a, and the Al composition ratio Xb2 of the P-side barrier layer 104c is lower than that of the N-side barrier layer 104a.
  • the Al composition ratio is larger than Xb1, the effective refractive index difference ⁇ N tends to increase.
  • the average band gap energy of the P-side barrier layer 104c is made larger than the average band gap energy of the N-side barrier layer 104a, and the P-side barrier layer
  • the thickness Tb2 of the N-side barrier layer 104c is made smaller than the thickness Tb1 of the N-side barrier layer 104a.
  • the thickness Tb2 of the P-side barrier layer 104c is smaller than the thickness Tb1 of the N-side barrier layer 104a, and the Al composition ratio Xb2 of the P-side barrier layer 104c is lower than that of the N-side barrier layer 104a.
  • the Al composition ratio is larger than Xb1, the waveguide loss tends to decrease.
  • the average band gap energy of the P-side barrier layer 104c is made larger than the average band gap energy of the N-side barrier layer 104a, and the P-side barrier layer By making the film thickness Tb2 of the N-side barrier layer 104c smaller than the film thickness Tb1 of the N-side barrier layer 104a, waveguide loss can be reduced.
  • FIG. 13 is a graph showing the coordinates of the position of the nitride-based semiconductor light emitting device in the stacking direction.
  • the coordinates of the position in the stacking direction of the N-side end surface of the well layer 104b of the active layer 104 that is, the interface between the well layer 104b and the N-side barrier layer 104a, are set to zero, and the lower (N The direction toward the P-type cladding layer 102) is the negative direction of the coordinates, and the upward direction (the direction toward the P-type cladding layer 108) is the positive direction of the coordinates.
  • the thickness Tb2 of the P-side barrier layer 104c is smaller than the thickness Tb1 of the N-side barrier layer 104a, and the Al composition ratio Xb2 of the P-side barrier layer 104c is lower than that of the N-side barrier layer 104a.
  • the Al composition ratio is larger than Xb1, there is a tendency for the peak position of the light intensity distribution to approach the well layer 104b.
  • the average band gap energy of the P-side barrier layer 104c is made larger than the average band gap energy of the N-side barrier layer 104a, and the P-side barrier layer
  • the film thickness Tb2 of the N-side barrier layer 104c is made smaller than the film thickness Tb1 of the N-side barrier layer 104a, the peak position of the light intensity distribution in the stacking direction can be brought closer to the well layer 104b of the active layer 104.
  • the optical confinement coefficient is 3.85% and the effective refractive index difference ⁇ N is . 22.9 ⁇ 10 ⁇ 3
  • the waveguide loss is 22.8 cm ⁇ 1
  • the light intensity distribution peak position in the stacking direction is 1.81 nm (that is, the peak position is within the well layer 104b). It was confirmed that the physical semiconductor light emitting device 100 could be realized.
  • FIG. 14 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 124, an electron barrier layer 106, It has an upper P-side guide layer 107 and a P-type cladding layer 108.
  • the semiconductor stack according to this modification further includes a contact layer 109 similarly to the semiconductor stack 100S according to the present embodiment.
  • the active layer 124 includes an N-side barrier layer 104a, a well layer 104b, and a P-side barrier layer 124c.
  • the P-side barrier layer 124c includes a first P-side barrier layer 124ca and a second P-side barrier layer 124cb arranged above the first P-side barrier layer 124ca.
  • the average bandgap energy of the P-side barrier layer 124c is N
  • the average bandgap energy of the side barrier layer 104a is greater than the average band gap energy
  • the (total) film thickness of the P-side barrier layer 124c is smaller than the film thickness of the N-side barrier layer 104a.
  • the average bandgap energy of the second P-side barrier layer 124cb is larger than the average bandgap energy of the first P-side barrier layer 124ca. This makes it possible to reduce band spikes formed between the P-side barrier layer 124c and the electron barrier layer 106. Therefore, the electrical resistance of the nitride-based semiconductor light-emitting device caused by band spikes can be reduced, so the operating voltage of the nitride-based semiconductor light-emitting device can be reduced.
  • the average bandgap energy of the second P-side barrier layer 124cb is smaller than the average bandgap energy of the electron barrier layer 106. Thereby, electrons traveling from the well layer 104b toward the upper P-side guide layer 107 can be suppressed from exceeding the electron barrier layer 106.
  • the first P-side barrier layer 124ca is a nitride-based semiconductor layer containing Al.
  • the first P-side barrier layer 124ca is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the first P-side barrier layer 124ca is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the second P-side barrier layer 124cb is a nitride-based semiconductor layer containing Al.
  • the second P-side barrier layer 124cb is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the second P-side barrier layer 124cb is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • FIG. 15 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 124, and an upper P-side guide layer 107a. , an electron barrier layer 106, and a P-type cladding layer 108.
  • the semiconductor stack according to this modification further includes a contact layer 109 similarly to the semiconductor stack 100S according to the present embodiment.
  • the upper P-side guide layer 107a is an example of a light guide layer included in the P-side guide layer disposed between the active layer 104 and the P-type cladding layer 108.
  • the upper P-side guide layer 107a is a nitride-based semiconductor layer containing Al.
  • the upper P-side guide layer 107a is arranged above the active layer 124.
  • the electron barrier layer 106 is arranged above the upper P-side guide layer 107a. That is, the upper P-side guide layer 107a is arranged between the active layer 124 and the electron barrier layer 106.
  • the average bandgap energy of the upper P-side guide layer 107a is smaller than the average bandgap energy of the P-type cladding layer 108. Further, the average refractive index of the upper P-side guide layer 107a is larger than the average refractive index of the P-type cladding layer 108.
  • the upper P-side guide layer 107a is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the upper P-side guide layer 107a is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the upper P-side guide layer 107a is, for example, a P-type Al 0.02 Ga 0.98 N layer with a thickness of 60 nm.
  • the nitride-based semiconductor light emitting device includes a P-side electrode 111 disposed above the contact layer 109.
  • the P-side electrode 111 may contain Ag. More specifically, the P-side electrode 111 may include an Ag film that is in ohmic contact with the contact layer 109.
  • the total Al content in the P-type cladding layer 108 can be reduced, so that the strain on the substrate 101 in the P-type cladding layer 108 can be reduced. Therefore, cracking of the nitride-based semiconductor light emitting device 100 due to distortion of the P-type cladding layer 108 can be suppressed.
  • the nitride-based semiconductor light-emitting device according to the present embodiment differs from the nitride-based semiconductor light-emitting device 100 according to the first embodiment mainly in the configuration of the P-side light guide layer.
  • the nitride-based semiconductor light-emitting device according to the present embodiment will be described below, focusing on the differences from the nitride-based semiconductor light-emitting device 100 according to the first embodiment.
  • FIG. 16 is a schematic cross-sectional view showing the overall configuration of a nitride-based semiconductor light emitting device 200 according to this embodiment.
  • FIG. 17 is a graph schematically showing the bandgap energy distribution of the semiconductor stack 200S of the nitride-based semiconductor light emitting device 200 according to the present embodiment.
  • the nitride-based semiconductor light emitting device 200 includes a substrate 101, a semiconductor stack 200S, a current blocking layer 110, a P-side electrode 111, and an N-side electrode 112. Equipped with The semiconductor stack 200S includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, a P-side guide layer 250, an electron barrier layer 106, a P-type cladding layer 208, and a contact layer 109.
  • the P-side guide layer 250 is an optical guide layer disposed between the active layer 104 and the P-type cladding layer 208.
  • P-side guide layer 250 includes an upper P-side guide layer 207 and a lower P-side guide layer 205.
  • the upper P-side guide layer 207 is an optical guide layer disposed above the electron barrier layer 106, and is different from the upper P-side guide layer 107 according to the first embodiment in film thickness and impurity concentration distribution.
  • the upper P-side guide layer 207 is a P-type Al 0.03 Ga 0.97 N layer with a thickness of 130 nm.
  • Mg is added to the upper P-side guide layer 207 as a P-type impurity.
  • the upper P-side guide layer 207 has a first region with a thickness of 100 nm and a second region with a thickness of 30 nm located on the first region. In the first region, the Mg concentration decreases from 4.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 18 cm ⁇ 3 as the distance from the active layer 104 increases. In the second region, the Mg concentration is constant at 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the lower P-side guide layer 205 is a light guide layer disposed between the active layer 104 and the electron barrier layer 106. In this embodiment, as shown in FIG. 17, the average bandgap energy of the lower P-side guide layer 205 is less than or equal to the average bandgap energy of the upper P-side guide layer 207.
  • the lower P-side guide layer 205 is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the lower P-side guide layer 205 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the lower P-side guide layer 205 is, for example, a P-type Al 0.03 Ga 0.97 N layer with a thickness of 60 nm or a P-type Al 0.02 Ga 0.98 N layer with a thickness of 60 nm. Note that FIG. 17 shows the band gap energy distribution when the lower P-side guide layer 205 is a P-type Al 0.03 Ga 0.97 N layer.
  • the P-type cladding layer 208 differs from P-type cladding layer 108 according to the first embodiment in impurity concentration distribution.
  • the P-type cladding layer 208 is a P-type Al 0.065 Ga 0.935 N layer with a thickness of 450 nm.
  • Mg is added to the P-type cladding layer 208 as a P-type impurity.
  • the P-type cladding layer 208 has a first region with a thickness of 150 nm, a second region with a thickness of 100 nm located on the first region, and a third region with a thickness of 200 nm located on the second region.
  • the Mg concentration is constant at 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the Mg concentration increases from 2.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 1.0 ⁇ 10 19 cm ⁇ 3 .
  • a ridge 208R and a groove 208T are formed in the P-type cladding layer 208.
  • the P-side guide layer 250 has the lower P-side guide layer 205 disposed between the active layer 104 and the electron barrier layer 106, so that the electron barrier layer 106 with a high impurity concentration can be used as the active layer. 104. Therefore, since free carrier loss in the electron barrier layer 106 can be reduced, waveguide loss of the nitride-based semiconductor light emitting device 200 can be reduced.
  • the average bandgap energy of the lower P-side guide layer 205 is less than or equal to the average bandgap energy of the upper P-side guide layer 207. That is, the average refractive index of the lower P-side guide layer 205 is greater than or equal to the average refractive index of the upper P-side guide layer 207.
  • the lower P-side guide layer 205 having a higher refractive index than the upper P-side guide layer 207 can be arranged near the active layer 104, so that the peak position of the light intensity distribution in the stacking direction can be adjusted to be more active than the upper P-side guide layer 207. It becomes possible to approach the position close to the layer 104. Therefore, it becomes possible to increase the optical confinement coefficient.
  • the average impurity concentration of the lower P-side guide layer 205 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the lower P-side guide layer 205 is a P-type Al 0.03 Ga 0.97 N layer with a film thickness of 60 nm (that is, the lower P-side
  • the optical confinement coefficient is 3.35% and the effective refractive index difference ⁇ N is . 19.2 ⁇ 10 ⁇ 3
  • the waveguide loss is 13.3 cm ⁇ 1
  • the light intensity distribution peak position in the stacking direction is 5.68 nm (that is, the peak position is within the well layer 104b). It was confirmed that the physical semiconductor light emitting device 200 could be realized.
  • the lower P-side guide layer 205 is a P-type Al 0.02 Ga 0.98 N layer with a film thickness of 60 nm (that is, the average band gap energy of the lower P-side guide layer 205 is higher than that of the upper P-side guide layer). 207), the optical confinement coefficient is 3.76%, and the effective refractive index difference ⁇ N is . It was confirmed that it was possible to realize a nitride-based semiconductor light emitting device 200 with a wavelength of 20.4 ⁇ 10 ⁇ 3 , a waveguide loss of 10.6 cm ⁇ 1 , and a light intensity distribution peak position of 56.1 nm in the stacking direction. .
  • the lower P-side guide layer is a 60 nm thick P-type Al 0.04 Ga 0.96 N layer (average Mg concentration 1 ⁇ 10 18 cm -3 ), and the upper P-side guide layer is 130 nm thick.
  • the optical confinement coefficient is 2.94%
  • the effective refractive index difference ⁇ N is . 18.1 ⁇ 10 ⁇ 3
  • the waveguide loss is 16.9 cm ⁇ 1
  • the light intensity distribution peak position in the stacking direction is 142.6 nm.
  • FIG. 18 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, an electron barrier layer 106, It has a P-side guide layer 251 and a P-type cladding layer 208.
  • the semiconductor stack according to this modification further includes a contact layer 109, similar to the semiconductor stack 200S according to the present embodiment.
  • the P-side guide layer 251 is an optical guide layer disposed between the active layer 104 and the P-type cladding layer 208, and includes the upper P-side guide layer 207 and the lower P-side guide layer 225.
  • the lower P-side guide layer 225 includes a first lower P-side guide layer 225a and a second lower P-side guide layer 225b arranged above the first lower P-side guide layer 225a.
  • the average bandgap energy of the first lower P-side guide layer 225a is smaller than the average bandgap energy of the second lower P-side guide layer 225b. That is, the average refractive index of the first lower P-side guide layer 225a is larger than the average refractive index of the second lower P-side guide layer 225b.
  • the first lower P-side guide layer 225a is, for example, a GaN layer, an AlGaN layer, or an AlInGaN layer.
  • the second lower P-side guide layer 225b is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the first lower P-side guide layer 225a and the second lower P-side guide layer 225b is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the lower P-side guide layer 225 has the first lower P-side guide layer 225a with a large refractive index in the region close to the active layer 104. Thereby, the peak position of the light intensity distribution can be brought closer to the active layer 104. Therefore, a high optical confinement coefficient and low waveguide loss can be achieved.
  • the lattice misalignment between the first lower P-side guide layer 225a and the substrate 101 is reduced. It is possible to increase the refractive index while reducing tensile strain. As a result, the peak position of the light intensity distribution can be brought closer to the active layer 104 while suppressing the occurrence of lattice defects.
  • the tensile strength due to the lattice misalignment between the first lower P-side guide layer 225a and the substrate 101 is improved compared to the case where an AlGaN layer is used. It is possible to increase the refractive index while reducing the distortion. As a result, the peak position of the light intensity distribution can be brought closer to the active layer 104 while suppressing the occurrence of lattice defects.
  • the average impurity concentration of the first lower P-side guide layer 225a and the second lower P-side guide layer 225b can be set to 1 ⁇ 10 18 cm ⁇ 3 or less.
  • free carrier loss in the lower P-side guide layer 225 can be reduced. Can be reduced. Therefore, the waveguide loss of the nitride-based semiconductor light emitting device can be reduced.
  • FIG. 19 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, an electron barrier layer 106, It has a P-side guide layer 252 and a P-type cladding layer 208.
  • the semiconductor stack according to this modification further includes a contact layer 109 similarly to the semiconductor stack 200S according to the present embodiment.
  • the P-side guide layer 252 is an optical guide layer disposed between the active layer 104 and the P-type cladding layer 208, and includes the upper P-side guide layer 207 and the lower P-side guide layer 235.
  • the lower P-side guide layer 235 is a light guide layer disposed between the active layer 104 and the electron barrier layer 106.
  • the bandgap energy of the lower P-side guide layer 235 increases as it approaches the electron barrier layer 106. That is, the refractive index of the lower P-side guide layer 235 decreases as it approaches the electron barrier layer 106.
  • the lower P-side guide layer 235 is, for example, a GaN layer, an AlGaN layer, or an AlInGaN layer.
  • the Al composition ratio of the lower P-side guide layer 235 may increase as it approaches the electron barrier layer 106.
  • the average impurity concentration of the lower P-side guide layer 235 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the refractive index of the lower P-side guide layer 235 increases as it approaches the active layer 104.
  • the peak position of the light intensity distribution can be brought closer to the active layer 104. Therefore, a high optical confinement coefficient and low waveguide loss can be achieved.
  • the average impurity concentration of the lower P-side guide layer 235 is 1 ⁇ 10 18 cm ⁇ 3 or less. Therefore, free carrier loss in the lower P-side guide layer 235 can be reduced. Therefore, the waveguide loss of the nitride-based semiconductor light emitting device can be reduced.
  • Embodiment 3 A nitride-based semiconductor light emitting device according to Embodiment 3 will be described.
  • the nitride-based semiconductor light-emitting device according to the present embodiment differs from the nitride-based semiconductor light-emitting device 100 according to the first embodiment mainly in the configuration of the P-side light guide layer.
  • the nitride-based semiconductor light-emitting device according to the present embodiment will be described below, focusing on the differences from the nitride-based semiconductor light-emitting device 100 according to the first embodiment.
  • FIG. 20 is a schematic cross-sectional view showing the overall configuration of a nitride-based semiconductor light emitting device 300 according to this embodiment.
  • FIG. 21 is a graph schematically showing the bandgap energy distribution of the semiconductor stack 300S of the nitride-based semiconductor light emitting device 300 according to this embodiment.
  • the nitride-based semiconductor light emitting device 300 includes a substrate 101, a semiconductor stack 300S, a current blocking layer 110, a P-side electrode 111, and an N-side electrode 112. Equipped with The semiconductor stack 300S includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, a lower P-side guide layer 305, an electron barrier layer 106, a P-type cladding layer 308, and a contact layer 109. has.
  • the lower P-side guide layer 305 is an example of a light guide layer included in the P-side guide layer disposed between the active layer 104 and the P-type cladding layer 308.
  • the lower P-side guide layer 305 is a nitride-based semiconductor layer containing Al.
  • the P-side guide layer includes a lower P-side guide layer 305 disposed between the active layer 104 and the electron barrier layer 106.
  • the average bandgap energy of the lower P-side guide layer 305 is smaller than the average bandgap energy of the P-type cladding layer 308.
  • the lower P-side guide layer 305 is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the lower P-side guide layer 305 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the lower P-side guide layer 305 is, for example, a P-type Al 0.02 Ga 0.98 N layer with a thickness of 60 nm.
  • P-type cladding layer 308 is different from P-type cladding layer 108 according to the first embodiment in impurity concentration distribution.
  • the P-type cladding layer 308 is a P-type Al 0.065 Ga 0.935 N layer with a thickness of 450 nm.
  • Mg is added to the P-type cladding layer 308 as a P-type impurity.
  • the P-type cladding layer 308 includes a first region with a thickness of 100 nm, a second region with a thickness of 180 nm located on the first region, a third region with a thickness of 100 nm located on the second region, and a third region with a thickness of 100 nm located on the second region.
  • the Mg concentration decreases from 4.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 18 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 2.0 ⁇ 10 18 cm ⁇ 3 .
  • the Mg concentration increases from 2.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 as the distance from the active layer 104 increases.
  • the Mg concentration is constant at 1.0 ⁇ 10 19 cm ⁇ 3 .
  • a ridge 308R and a groove 308T are formed in the P-type cladding layer 308.
  • the P-side guide layer has the lower P-side guide layer 305 disposed between the active layer 104 and the electron barrier layer 106, so that the electron barrier layer 106 with a high impurity concentration is connected to the active layer 104. can be kept away from. Therefore, since free carrier loss in the electron barrier layer 106 can be reduced, waveguide loss of the nitride-based semiconductor light emitting device 300 can be reduced.
  • the average impurity concentration of the lower P-side guide layer 305 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the optical confinement coefficient is 3.84%
  • the effective refractive index difference ⁇ N is . 18.8 ⁇ 10 -3
  • the waveguide loss is 18.8 cm -1
  • the light intensity distribution peak position in the stacking direction is -0.16 nm (that is, the peak position is within the N-side barrier layer 104a). It was confirmed that a nitride-based semiconductor light emitting device 300 can be realized.
  • FIG. 22 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, and a lower P-side guide layer 325. , an electron barrier layer 106, and a P-type cladding layer 308.
  • the semiconductor stack according to this modification further includes a contact layer 109, similar to the semiconductor stack 300S according to the present embodiment.
  • the lower P-side guide layer 325 includes a first lower P-side guide layer 325a and a second lower P-side guide layer 325b arranged above the first lower P-side guide layer 325a.
  • the average bandgap energy of the first lower P-side guide layer 325a is smaller than the average bandgap energy of the second lower P-side guide layer 325b. That is, the average refractive index of the first lower P-side guide layer 325a is larger than the average refractive index of the second lower P-side guide layer 325b.
  • the first lower P-side guide layer 325a is, for example, a GaN layer, an AlGaN layer, or an AlInGaN layer.
  • the second lower P-side guide layer 325b is, for example, an AlGaN layer or an AlInGaN layer.
  • the average impurity concentration of the first lower P-side guide layer 325a and the second lower P-side guide layer 325b is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the lower P-side guide layer 325 has the first lower P-side guide layer 325a with a large refractive index in the region close to the active layer 104. Thereby, the peak position of the light intensity distribution can be brought closer to the active layer 104. Therefore, a high optical confinement coefficient and low waveguide loss can be achieved.
  • the existence of an interface between the first lower P-side guide layer 325a and the second lower P-side guide layer 325b, which have different compositions, can suppress the diffusion of impurities from the P-type layer to the active layer 104. Deterioration of the layer 104 can be suppressed.
  • the lattice misalignment between the first lower P-side guide layer 325a and the substrate 101 is reduced. It is possible to increase the refractive index while reducing tensile strain. As a result, the peak position of the light intensity distribution can be brought closer to the active layer 104 while suppressing the occurrence of lattice defects.
  • the tension caused by the lattice misalignment between the first lower P-side guide layer 325a and the substrate 101 is increased. It is possible to increase the refractive index while reducing the optical distortion. As a result, the peak position of the light intensity distribution can be brought closer to the active layer 104 while suppressing the occurrence of lattice defects.
  • the average impurity concentration of the first lower P-side guide layer 325a and the second lower P-side guide layer 325b can be 1 ⁇ 10 18 cm ⁇ 3 or less.
  • free carrier loss in the lower P-side guide layer 325 can be reduced. Can be reduced. Therefore, the waveguide loss of the nitride-based semiconductor light emitting device can be reduced.
  • FIG. 23 is a graph schematically showing the bandgap energy distribution of the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification.
  • the semiconductor stack of the nitride-based semiconductor light emitting device according to this modification includes an N-type cladding layer 102, an N-side guide layer 103, an active layer 104, and a lower P-side guide layer 335. , an electron barrier layer 106, and a P-type cladding layer 308.
  • the semiconductor stack according to this modification further includes a contact layer 109 similarly to the semiconductor stack 300S according to the present embodiment.
  • the lower P-side guide layer 335 is a light guide layer disposed between the active layer 104 and the electron barrier layer 106.
  • the bandgap energy of the lower P-side guide layer 335 increases as it approaches the electron barrier layer 106. That is, the refractive index of the lower P-side guide layer 335 decreases as it approaches the electron barrier layer 106.
  • the lower P-side guide layer 335 is, for example, a GaN layer, an AlGaN layer, or an AlInGaN layer.
  • the Al composition ratio of the lower P-side guide layer 335 may increase as it approaches the electron barrier layer 106.
  • the average impurity concentration of the lower P-side guide layer 335 is 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the refractive index of the lower P-side guide layer 335 increases as it approaches the active layer 104.
  • the peak position of the light intensity distribution can be brought closer to the active layer 104. Therefore, a high optical confinement coefficient and low waveguide loss can be achieved.
  • the average impurity concentration of the lower P-side guide layer 335 is 1 ⁇ 10 18 cm ⁇ 3 or less. Therefore, free carrier loss in the lower P-side guide layer 335 can be reduced. Therefore, the waveguide loss of the nitride-based semiconductor light emitting device can be reduced.
  • nitride-based semiconductor light-emitting device has been described above based on the embodiments and modifications thereof, but the present disclosure is not limited to the embodiments and modifications thereof.
  • the semiconductor light emitting element according to the present disclosure is not limited to a semiconductor light emitting element that emits ultraviolet light.
  • the characteristic configuration of the semiconductor light emitting device according to the present disclosure can be applied, for example, to a semiconductor light emitting device that emits light in wavelength bands such as visible light and infrared light, and is similar to the above embodiments and modifications thereof. It has the effect of
  • the nitride-based semiconductor light-emitting device is a semiconductor laser device, but the nitride-based semiconductor light-emitting device is not limited to a semiconductor laser device.
  • the nitride-based semiconductor light emitting device may be a superluminescent diode.
  • the reflectance of the end face of the semiconductor stack included in the nitride-based semiconductor light emitting device with respect to the light emitted from the semiconductor stack may be 0.1% or less. Such reflectance can be achieved, for example, by forming an antireflection film made of a dielectric multilayer film on the end face.
  • the guided light reflected from the front end face will combine with the waveguide again and become the guided light.
  • the ratio can be set to a small value of 0.1% or less.
  • each P-type cladding layer is a layer with a uniform Al composition ratio, but the structure of the P-type cladding layer is not limited to this.
  • the P-type cladding layer may have a superlattice structure in which each of a plurality of AlGaN layers and each of a plurality of GaN layers are alternately stacked.
  • the active layer has a single quantum well structure, but may have a multiple quantum well structure.
  • the structure of the N-side barrier layer according to each of the above embodiments and variations thereof is applied to the barrier layer closest to the N-type cladding layer among the barrier layers of the multi-quantum well structure.
  • the configuration of the P-side barrier layer 124c according to the modification of Embodiment 1 may be applied to Embodiment 2, Embodiment 3, and each P-side barrier layer of these modifications.
  • the nitride-based semiconductor light-emitting device of the present disclosure can be applied, for example, as a high-output and highly efficient light source, particularly as a light source for exposure apparatuses and processing machines.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

窒化物系半導体発光素子(100)は、N型クラッド層(102)と、N側ガイド層(103)と、活性層(104)と、P型クラッド層(108)と、活性層(104)とP型クラッド層(108)との間に配置されるP側ガイド層(上方P側ガイド層(107))、及び電子障壁層(106)とを備え、N型クラッド層(102)、N側ガイド層(103)、P側ガイド層、電子障壁層(106)、及びP型クラッド層(108)は、Alを含み、活性層(104)は、N側障壁層(104a)と、N側障壁層(104a)の上方に配置される井戸層(104b)と、井戸層(104b)の上方に配置されるP側障壁層(104c)とを有し、P側障壁層(104c)の平均バンドギャップエネルギーは、N側障壁層(104a)の平均バンドギャップエネルギーより大きく、P側障壁層(104c)の膜厚は、N側障壁層(104a)の膜厚より小さい。

Description

窒化物系半導体発光素子
 本開示は、窒化物系半導体発光素子に関する。
 従来、紫外光などの光を出射する窒化物系半導体発光素子が知られている(例えば、特許文献1など参照)。例えば、窒化物系半導体発光素子によって、ワット級の紫外レーザ光源を実現できれば、露光用光源、加工用光源などに用いることができる。
特開2010-258363号公報
 紫外光を出射する窒化物系半導体発光素子の発光層として、例えば、量子井戸構造を有する活性層が用いられる。このような活性層は、1以上の井戸層と、複数の障壁層とを含む。紫外光は、可視光より波長が短い(つまり、エネルギーが大きい)ため、紫外光を出射する井戸層のバンドギャップエネルギーは、可視光を出射する井戸層のバンドギャップエネルギーより大きい。このため、障壁層の伝導帯ポテンシャルエネルギーと、電子量子準位エネルギーとの差が小さくなる。この場合、井戸層から障壁層を超えてP側ガイド層へ電子が漏れやすくなるため、井戸層における動作キャリア密度(つまり、窒化物系半導体発光素子の動作時におけるキャリア密度)が高くなる。
 例えば、窒化物系半導体発光素子が、電流注入領域であるリッジを有するレーザ素子である場合、動作キャリア密度が高くなるにしたがって、電流注入領域における井戸層の増幅利得が高くなる。一方、電流注入領域における井戸層の複素屈折率の実部と虚部との関係(クラマース・クローニッヒの関係に対応)から、井戸層の増幅利得が高くなるにしたがって、井戸層の屈折率が低下する。さらに、電流注入領域における井戸層のキャリア密度が高くなるにしたがって、プラズマ効果により電流注入領域における井戸層の屈折率が低下する。その結果、電流注入領域の実効屈折率は、電流注入領域外の実効屈折率より低くなり得る。この場合、レーザ素子のリッジを含む導波路を伝搬するレーザ光の導波機構は、屈折率反導波型の利得導波機構となる。このため、レーザ光における、井戸層の電流注入領域の外部を伝搬する部分の割合が大きくなり、井戸層における吸収損失が増大する。したがって、レーザ素子の発振しきい電流値が増大し、熱飽和レベルが低下する。つまり、レーザ素子の温度特性が低下する。
 本開示は、このような課題を解決するものであり、温度特性に優れた窒化物系半導体発光素子を提供することを目的とする。
 上記課題を解決するために、本開示に係る窒化物系半導体発光素子の一態様は、N型クラッド層と、前記N型クラッド層の上方に配置されるN側ガイド層と、前記N側ガイド層の上方に配置される活性層と、前記活性層の上方に配置されるP型クラッド層と、前記活性層と前記P型クラッド層との間に配置されるP側ガイド層、及び電子障壁層とを備え、前記N型クラッド層、前記N側ガイド層、前記P側ガイド層、前記電子障壁層、及び前記P型クラッド層は、Alを含み、前記活性層は、N側障壁層と、前記N側障壁層の上方に配置される井戸層と、前記井戸層の上方に配置されるP側障壁層とを有し、前記P側障壁層の平均バンドギャップエネルギーは、前記N側障壁層の平均バンドギャップエネルギーより大きく、前記P側障壁層の膜厚は、前記N側障壁層の膜厚より小さい。
 本開示によれば、温度特性に優れた窒化物系半導体発光素子を提供できる。
実施の形態1に係る窒化物系半導体発光素子の全体構成を示す模式的な平面図である。 実施の形態1に係る窒化物系半導体発光素子の全体構成を示す模式的な断面図である。 実施の形態1に係る窒化物系半導体発光素子が備える活性層の構成を示す模式的な断面図である。 405nm帯の半導体発光素子の井戸層及び障壁層におけるバンドギャップエネルギー及び屈折率の積層方向における分布を示すグラフである。 375nm帯の半導体発光素子の井戸層及び障壁層におけるバンドギャップエネルギー及び屈折率の積層方向における分布を示すグラフである。 375nm帯の半導体発光素子の水平方向における実効屈折率及び利得の分布を示すグラフである。 従来の紫外半導体発光素子の水平方向におけるファーフィールドパターンを示す図である。 比較例に係る半導体積層体の積層方向における光強度分布、バンドギャップエネルギー分布、及び不純物濃度分布を模式的に示すグラフである。 実施の形態1に係る半導体積層体の光強度分布、バンドギャップエネルギー分布、及び不純物濃度分布を模式的に示すグラフである。 窒化物系半導体発光素子の光閉じ込め係数と、P側障壁層の膜厚との関係を示すグラフである。 窒化物系半導体発光素子の実効屈折率差ΔNと、P側障壁層の膜厚との関係を示すグラフである。 窒化物系半導体発光素子の導波路損失と、P側障壁層の膜厚との関係を示すグラフである。 窒化物系半導体発光素子の積層方向における光強度分布ピーク位置と、P側障壁層の膜厚との関係を示すグラフである。 窒化物系半導体発光素子の積層方向における位置の座標を示すグラフである。 実施の形態1の変形例1に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態1の変形例2に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態2に係る窒化物系半導体発光素子の全体構成を示す模式的な断面図である。 実施の形態2に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態2の変形例1に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態2の変形例2に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態3に係る窒化物系半導体発光素子の全体構成を示す模式的な断面図である。 実施の形態3に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態3の変形例1に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。 実施の形態3の変形例2に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における鉛直上方及び鉛直下方を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
 (実施の形態1)
 実施の形態1に係る窒化物系半導体発光素子について説明する。
 [1-1.全体構成]
 まず、本実施の形態に係る窒化物系半導体発光素子の全体構成について図1、図2A及び図2Bを用いて説明する。図1及び図2Aは、それぞれ本実施の形態に係る窒化物系半導体発光素子100の全体構成を示す模式的な平面図及び断面図である。図2Aには、図1のII-II線における断面が示されている。図2Bは、本実施の形態に係る窒化物系半導体発光素子100が備える活性層104の構成を示す模式的な断面図である。なお、各図には、互いに直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は、右手系の直交座標系である。窒化物系半導体発光素子100の積層方向は、Z軸方向に平行であり、光(レーザ光)の主な出射方向は、Y軸方向に平行である。
 窒化物系半導体発光素子100は、図2Aに示されるように、窒化物系半導体層を含む半導体積層体100Sを備え、半導体積層体100Sの積層方向(つまり、Z軸方向)に垂直な方向の端面100F(図1参照)から光を出射する。本実施の形態では、窒化物系半導体発光素子100は、共振器を形成する二つの端面100F及び100Rを有する半導体レーザ素子である。端面100Fは、レーザ光を出射するフロント端面であり、端面100Rは、端面100Fより反射率が高いリア端面である。また、窒化物系半導体発光素子100は、端面100Fと端面100Rとの間に形成された導波路を有する。本実施の形態では、端面100F及び100Rの反射率は、それぞれ、5%以上30%以下、及び95%以上である。本実施の形態に係る窒化物系半導体発光素子100の共振器長(つまり、端面100Fと端面100Rと間の距離)は500μm以上2000μm以下である。窒化物系半導体発光素子100は、例えば、375nm帯にピーク波長を有する紫外光を出射する。なお、窒化物系半導体発光素子100は、375nm帯以外にピーク波長を有する紫外光を出射してもよいし、紫外光以外の波長帯域にピーク波長を有する光を出射してもよい。
 図2Aに示されるように、窒化物系半導体発光素子100は、基板101と、半導体積層体100Sと、電流ブロック層110と、P側電極111と、N側電極112とを備える。半導体積層体100Sは、N型クラッド層102と、N側ガイド層103と、活性層104と、電子障壁層106と、上方P側ガイド層107と、P型クラッド層108と、コンタクト層109とを有する。
 基板101は、窒化物系半導体発光素子100の基台となる板状部材である。本実施の形態では、基板101は、N型クラッド層102の下方に配置され、N型GaNからなる。より具体的には、基板101は、平均濃度1×1018cm-3のSiが添加された厚さ85μmのGaN基板である。
 N型クラッド層102は、基板101の上方に配置されるN型の窒化物系半導体層である。N型クラッド層102は、活性層104より平均屈折率が小さく、かつ、平均バンドギャップエネルギーが大きい層である。本実施の形態では、N型クラッド層102は、Alを含む。具体的には、N型クラッド層102は、膜厚800nmのN型Al0.065Ga0.935N層である。N型クラッド層102には、不純物として平均濃度1×1018cm-3のSiが添加されている。
 ここで、本開示において、ある層の平均バンドギャップエネルギーとは、その層の積層方向のある位置でのバンドギャップエネルギーの大きさを、その層の積層方向の基板側の界面の位置から基板から遠い側の界面の位置まで積層方向に積分し、その層の膜厚(基板側界面と、基板から遠い側の界面間の距離)で割ったバンドギャップエネルギーの値のことである。
 ある層の平均屈折率とは、その層の積層方向のある位置での屈折率の大きさを、その層の積層方向の基板側の界面の位置から基板から遠い側の界面の位置まで積層方向に積分し、その層の膜厚(基板側界面と、基板から遠い側の界面間の距離)で割った屈折率の値のことである。
 ある層の平均不純物濃度とは、その層の積層方向のある位置での不純物濃度の大きさを、その層の積層方向の基板側の界面の位置から基板から遠い側の界面の位置まで積層方向に積分し、その層の膜厚(基板側界面と、基板から遠い側の界面間の距離)で割った不純物濃度の値のことである。不純物とは、N型半導体層では、N型の導電型を得るためにドーピングした不純物を指し、P型半導体層では、P型の導電型を得るためにドーピングした不純物を指す。
 N側ガイド層103は、N型クラッド層102の上方に配置され、窒化物系半導体からなる光ガイド層である。N側ガイド層103は、N型クラッド層102より平均屈折率が大きく、平均バンドギャップエネルギーが小さい。N側ガイド層103は、Alを含む。
 本実施の形態では、図2Aに示されるように、N側ガイド層103は、第一N側ガイド層103aと、第一N側ガイド層103aの上方に配置される第二N側ガイド層103bとを有する。第一N側ガイド層103aは、膜厚127nmのN型Al0.03Ga0.97N層である。第一N側ガイド層103aには、N型不純物として平均濃度1×1018cm-3のSiが添加されている。第二N側ガイド層103bは、膜厚60nmのアンドープAl0.03Ga0.97N層である。第二N側ガイド層103bの平均N型不純物濃度は、1×1018cm-3以下である。なお、以下では、N側の各層におけるN型不純物濃度、及び、P側の各層におけるP型不純物濃度を、いずれも単に不純物濃度とも称する。
 活性層104は、N側ガイド層103の上方に配置され、窒化物系半導体からなる発光層である。本実施の形態では、活性層104は、量子井戸構造を有し、紫外光を出射する。具体的には、図2Bに示されるように、活性層104は、N側障壁層104aと、N側障壁層104aの上方に配置される井戸層104bと、井戸層104bの上方に配置されるP側障壁層104cとを有する。N側障壁層104a、及びP側障壁層104cの各々は、N側ガイド層103の上方に配置され、量子井戸構造の障壁として機能する窒化物系半導体層である。井戸層104bは、量子井戸構造の井戸として機能する窒化物系半導体層である。P側障壁層104cの平均バンドギャップエネルギーは、N側障壁層104aの平均バンドギャップエネルギーより大きく、P側障壁層104cの膜厚は、N側障壁層104aの膜厚より小さい。
 N側障壁層104aの平均バンドギャップエネルギーは、N型クラッド層102の平均バンドギャップエネルギーより小さい。つまり、N側障壁層104aの平均屈折率は、N型クラッド層102の平均屈折率より大きい。これにより、積層方向における光強度分布のピークが活性層104からN型クラッド層102に近づく向きにシフトすることを抑制できる。
 本実施の形態では、N側障壁層104aは、膜厚18nmのアンドープAl0.04Ga0.96N層である。井戸層104bは、膜厚17.5nmのアンドープIn0.01Ga0.99N層である。P側障壁層104cは、膜厚10nmのアンドープAl0.12Ga0.88N層である。
 電子障壁層106は、活性層104とP型クラッド層108との間に配置される窒化物系半導体層である。電子障壁層106の平均バンドギャップエネルギーは、P側障壁層104cの平均バンドギャップエネルギーより大きい。これにより、電子が活性層104からP型クラッド層108へ漏れることを抑制できる。電子障壁層106は、Alを含む。本実施の形態では、電子障壁層106の平均バンドギャップエネルギーは、P型クラッド層108の平均バンドギャップエネルギーより大きい。電子障壁層106は、膜厚5nmのP型Al0.36Ga0.64N層である。電子障壁層106には、P型不純物として平均濃度1×1019cm-3のMgが添加されている。
 上方P側ガイド層107は、活性層104とP型クラッド層108との間に配置されるP側ガイド層が有する光ガイド層の一例である。上方P側ガイド層107は、Alを含む窒化物系半導体層である。本実施の形態では、光ガイド層は、電子障壁層106の上方に配置される上方P側ガイド層107を有する。上方P側ガイド層107の平均バンドギャップエネルギーは、P型クラッド層108の平均バンドギャップエネルギーより小さい。また、上方P側ガイド層107の平均屈折率は、P型クラッド層108の平均屈折率より大きい。上方P側ガイド層107は、膜厚40nmのP型Al0.03Ga0.97N層である。上方P側ガイド層107には、P型不純物としてMgが添加されており、上方P側ガイド層107におけるMg濃度は、P型クラッド層108に近づくにしたがって、減少する。上方P側ガイド層107の、電子障壁層106に近い方の界面付近におけるMg濃度は、4×1018cm-3であり、P型クラッド層108に近い方の界面付近におけるMg濃度は、3.2×1018cm-3である。
 P型クラッド層108は、活性層104の上方に配置され、P型の窒化物系半導体層である。P型クラッド層108は、活性層104より平均屈折率が小さく、かつ、平均バンドギャップエネルギーが大きい層である。P型クラッド層108は、Alを含む。本実施の形態では、P型クラッド層108は、上方P側ガイド層107の上方に配置される。P型クラッド層108は、膜厚450nmのP型Al0.065Ga0.935N層である。P型クラッド層108には、P型不純物としてMgが添加されている。P型クラッド層108は、膜厚60nmの第一領域と、第一領域上に位置する膜厚180nmの第二領域と、第二領域上に位置する膜厚100nmの第三領域と、第三領域上に位置する膜厚110nmの第四領域とを有する。第一領域においては、活性層104から遠ざかるにしたがって、Mg濃度は3.2×1018cm-3から2.0×1018cm-3まで減少する。第二領域においては、Mg濃度は2.0×1018cm-3で一定である。第三領域においては、活性層104から遠ざかるにしたがって、Mg濃度は2.0×1018cm-3から1.0×1019cm-3まで増大する。第四領域においては、Mg濃度は1.0×1019cm-3で一定である。
 P型クラッド層108には、図1及び図2Aに示されるように、リッジ108Rが形成されている。また、P型クラッド層108には、リッジ108Rに沿って配置され、Y軸方向に延びる二つの溝108Tが形成されている。本実施の形態では、リッジ幅Wは、30μm程度である。また、図2Aに示されるように、リッジ108Rの下端部(つまり、溝108Tの底部)と活性層104との間の距離をdpとしている。また、リッジ108Rの下端部と、電子障壁層106との間の距離をdcとしている。
 コンタクト層109は、P型クラッド層108の上方に配置され、P側電極111と接触する窒化物系半導体層である。本実施の形態では、コンタクト層109は、膜厚100nmのP型GaN層である。コンタクト層109には、不純物として平均濃度1×1020cm-3のMgが添加されている。
 電流ブロック層110は、P型クラッド層108の上方に配置され、活性層104からの光に対して透過性を有する絶縁層である。電流ブロック層110は、P型クラッド層108及びコンタクト層109の上面のうち、リッジ108Rの上面以外の領域に配置される。なお、電流ブロック層110は、リッジ108Rの上面の一部の領域にも配置されていてもよい。例えば、電流ブロック層110は、リッジ108Rの上面の端縁領域に配置されていてもよい。本実施の形態では、電流ブロック層110は、SiO層である。
 P側電極111は、P型クラッド層108の上方に配置される導電層である。本実施の形態では、P側電極111は、コンタクト層109及び電流ブロック層110の上方に配置される。P側電極111は、例えば、Cr、Ti、Ni、Pd、Pt、Ag及びAuの少なくとも一つで形成された単層膜又は多層膜である。
 また、コンタクト層109上のP側電極111の少なくとも一部に紫外域から赤外域までの光に対して屈折率の低いAgを用いることで、導波路を伝搬する光のP側電極111へのしみ出しを小さくすることができるため、P側電極111で発生する導波路損失を低減できる。Agは波長325nm以上1500nm以下の範囲で屈折率が0.5以下となり、波長360nm以上950nm以下の範囲で屈折率が0.2以下となる。この結果、波長325nm以上950nm以下の広い波長範囲において、P側電極111がAgを含むことで、P側電極111における光損失を低減できる。この場合、P型クラッド層108の膜厚が0.4μm以下であってもP側電極111への導波路を伝搬する光のしみ出しを低減することができるため、窒化物系半導体発光素子100の直列抵抗を低減しつつ、導波路損失の増大を抑制することが可能である。この結果、動作電圧と動作電流の低減を行うことができる。
 ここで、導波路を伝搬する光を安定してリッジ108R内に閉じ込めるためには、後述するように、リッジ108Rの内側領域の実効屈折率の方が、外側領域の実効屈折率の値より大きくなるように実効屈折率差(ΔN)を形成する必要がある。具体的には、リッジ108Rの側壁に屈折率がP型クラッド層108よりも低いSiOを形成し、リッジ108Rの外側領域の実効屈折率を小さくする必要がある。この場合、P型クラッド層108の膜厚が薄くなり過ぎるとリッジ108Rの側壁の厚さ方向にSiOが形成される領域が小さくなるために、リッジ108Rの外側領域の実効屈折率を低減する効果が小さくなってしまう。このため、P型クラッド層108の膜厚は、150nm以上であってもよい。
 P型クラッド層108の膜厚は、P側の光ガイド層の合計膜厚(本実施の形態では上方P側ガイド層107の膜厚)、並びに、N側の光ガイド層の合計膜厚(本実施の形態ではN側ガイド層103の膜厚)より大きくてもよい。これにより、P型クラッド層108の膜厚を、光をP側電極111より下方に光を閉じ込めるために十分な膜厚とすることができるため、導波路損失を抑制できる。また、P側電極111がAgを含む場合、例えば、P型クラッド層108の膜厚は、200nm以上400nm以下であってもよい。これにより、導波路損失を抑制しつつ、動作電圧及び動作電流を低減できる。
 また、P型クラッド層108のようにAl組成比が大きい層は、N型GaNからなる基板101に対する歪が大きい。P型クラッド層108の膜厚を低減することにより、P型クラッド層108における総Al含有量を低減することができるため、P型クラッド層108における基板101に対する歪を低減できる。したがって、P型クラッド層108の歪に起因する窒化物系半導体発光素子100の割れを抑制できる。
 P側電極111に含まれるAgは、例えば、コンタクト層109とオーミック接触してもよい。つまり、P側電極111は、コンタクト層109とオーミック接触するAg膜を含んでもよい。これにより、光をコンタクト層109より下方に閉じ込めることができるため、P側電極111における光損失をより一層低減できる。
 N側電極112は、基板101の下方に(つまり、基板101のN型クラッド層102などが配置された主面の反対側の主面に)配置される導電層である。N側電極112は、例えば、Cr、Ti、Ni、Pd、Pt及びAuの少なくとも一つで形成された単層膜又は多層膜である。
 窒化物系半導体発光素子100は、以上のような構成を有することにより、図2Aに示されるように、リッジ108Rの内側の部分と、リッジ108Rの外側の部分(溝108T部分)との間に実効屈折率差ΔNが生じる。これにより、活性層104のリッジ108Rの下方の部分で発生した光を水平方向(つまり、X軸方向)に閉じ込めることができる。
 [1-2.紫外半導体発光素子の課題]
 本開示の「発明が解決しようとする課題」において示した紫外半導体発光素子において生じ得る課題について、図3~図6を用いて詳細に説明する。以下では、図3は、紫外光より波長が長い405nm帯の半導体発光素子の井戸層及び障壁層におけるバンドギャップエネルギー(Eg)及び屈折率の積層方向における分布を示すグラフである。図4は、紫外域である375nm帯の半導体発光素子の井戸層及び障壁層におけるバンドギャップエネルギー(Eg)及び屈折率の積層方向における分布を示すグラフである。図5は、375nm帯の半導体発光素子の水平方向(図1~図2BのX軸方向に対応)における実効屈折率及び利得の分布を示すグラフである。図6は、従来の紫外半導体発光素子の水平方向におけるファーフィールドパターンを示す図である。図6の横軸は水平方向における放射角を示し、縦軸は光の強度を示す。
 図3に示されるように、405nm帯の半導体発光素子においては、井戸層のバンドギャップエネルギーが比較的小さいため、障壁層の伝導帯ポテンシャルエネルギーと電子量子準位エネルギーとの差ΔEcを比較的大きい値(198meV)とすることができる。この場合、電子のフェルミエネルギーEfが障壁層の伝導帯ポテンシャルエネルギーよりも十分小さくなるため、電子が、井戸層から、障壁層を超えて、P側半導体層へ漏れることを抑制できる。
 一方、紫外半導体発光素子においては、図4に示されるように、井戸層のバンドギャップエネルギーが比較的大きいため、障壁層の伝導帯ポテンシャルエネルギーと電子量子準位エネルギーとの差ΔEcが小さい値(67meV)となる。この場合、電子のフェルミエネルギーEfが障壁層の伝導帯ポテンシャルエネルギーよりも大きくなり得るため、電子が、井戸層から、障壁層を超えて、P側半導体層へ漏れ易くなる。これに伴い、井戸層における発光に寄与できないキャリアが多くなるため、井戸層における動作キャリア密度が高くなる。
 このように井戸層における動作キャリア密度が高くなることで、井戸層における光の増幅利得は高くなる。一方、電流注入領域における井戸層の複素屈折率の実部と虚部との関係から、井戸層における増幅利得が高くなるにしたがって、井戸層の屈折率が低下する。さらに、電流注入領域における井戸層のキャリア密度が高くなるにしたがって、プラズマ効果により電流注入領域における井戸層の屈折率が低下する。その結果、電流注入領域の実効屈折率は、電流注入領域外の実効屈折率より低くなり得る。例えば、半導体発光素子がリッジを有するレーザ素子であり、リッジに電流が注入される場合、図5に示されるように、電流注入領域であるリッジにおける実効屈折率が電流注入領域の外部より低下し得る。
 これにより、半導体発光素子のリッジに対応する導波路を伝搬するレーザ光の導波機構は、屈折率反導波型の利得導波機構となる。このため、レーザ光のうち、井戸層における電流注入領域(リッジの下方に位置する領域)の外部を伝搬する部分の割合が高くなり、半導体発光素子のファーフィールドパターンの裾野部に、図6に示されるような、ピークが生じる。この場合、井戸層における電流注入領域の外部においては、光が吸収されるため、井戸層における吸収損失が増大する。したがって、半導体発光素子の発振しきい電流値が増大し、熱飽和レベルが低下する。つまり、レーザ素子の温度特性が低下する。また、半導体発光素子の電流-光出力(IL)特性を示すグラフに、非線形に折れ曲がる部分(いわゆるキンク)が生じ得る。つまり、半導体発光素子の光出力の安定性が低下する。
 本実施の形態に係る窒化物系半導体発光素子100は、このような紫外半導体発光素子の課題を解決するものである。
 [1-3.光強度分布]
 本実施の形態に係る窒化物系半導体発光素子100の積層方向における光強度分布について、比較例と比較しながら図7及び図8を用いて説明する。図7は、比較例に係る半導体積層体の積層方向における光強度分布、バンドギャップエネルギー分布、及び不純物濃度分布を模式的に示すグラフである。図8は、本実施の形態に係る半導体積層体100Sの光強度分布、バンドギャップエネルギー分布、及び不純物濃度分布を模式的に示すグラフである。
 図7に示される比較例に係る半導体積層体は、特許文献1に記載された半導体積層体に相当する。比較例に係る半導体積層体は、N型クラッド層902と、N側ガイド層903と、活性層(N側障壁層904a、井戸層904b、及びP側障壁層904c)と、電子障壁層906と、上方P側ガイド層907と、P型クラッド層908とを有する。比較例に係る半導体積層体は、主に、N側障壁層904aとP側障壁層904cとのバンドギャップエネルギーが等しい点において、本実施の形態に係る半導体積層体100Sと相違する。
 このような比較例に係る半導体積層体において、N型クラッド層902と、P型クラッド層908とがAlGaNからなり、かつ、Al組成比が等しい場合、P型クラッド層908の方が、N型クラッド層902より屈折率が大きくなる。これは、P型不純物であるMgのイオン化エネルギーがN型不純物であるSiのイオン化エネルギーよりも大きいため、N型不純物濃度よりもP型不純物濃度を高く設定する必要があり、相対的に深いエネルギー準位を形成するP型層の方がN型層より光吸収が大きくなることで屈折率が高くなるためと考えられる。したがって、図7に示されるように、光強度分布のピーク位置が、活性層の井戸層904bの中心(図7に示される一点鎖線参照)からP型クラッド層908に近づく向きに偏る。この結果、比較例に係る半導体積層体においては、活性層への光閉じ込め係数が小さくなり、動作キャリア密度が増大する。このため、井戸層904bの屈折率が低下する。
 本実施の形態に係る半導体積層体100Sでは、図8に示されるように、P側障壁層104cの平均バンドギャップエネルギーは、N側障壁層104aの平均バンドギャップエネルギーより大きい。つまり、P側障壁層104cの平均屈折率は、N側障壁層104aの平均屈折率より小さい。このような構成により、積層方向における光強度分布のピーク位置を、N側障壁層104aに近づく向きにシフトすることが可能となる。言い換えると、本実施の形態に係る窒化物系半導体発光素子100によれば、光強度分布のピーク位置の制御性を高めることができる。
 このように、光強度分布のピーク位置を活性層104に近づけることで、つまり、光強度分布のピーク位置を、上方P側ガイド層107及びP型クラッド層108から遠ざけることで、上方P側ガイド層107、及びP型クラッド層108における不純物に起因するフリーキャリア損失を低減できる。これにより、発振しきい電流値を低減でき、かつ、熱飽和レベルを向上できる。つまり、温度特性に優れ、スロープ効率が高い窒化物系半導体発光素子100を実現できる。これにより、窒化物系半導体発光素子100において、高温高出力動作が可能となる。
 また、本実施の形態では、P側障壁層104cの膜厚は、N側障壁層104aの膜厚より小さい。これにより、井戸層104bから、リッジ108Rの下端までの距離を低減できる。つまり、溝108T内の屈折率が低い領域を井戸層に近づけることができる。これにより、実効屈折率差ΔNを増大させることができる。したがって、窒化物系半導体発光素子100の導波路への光閉じ込め係数を増大できる。これにより、窒化物系半導体発光素子100においては、レーザ光の水平横モードを導波路へ安定的に閉じ込めることができるため、電流-光出力特性におけるキンクの発生を抑制できる。
 また、本実施の形態では、上方P側ガイド層107の平均バンドギャップエネルギーは、P型クラッド層108の平均バンドギャップエネルギーより小さい。つまり、上方P側ガイド層107の平均屈折率は、P型クラッド層108の平均屈折率より大きい。これにより、積層方向における光強度分布のピーク位置が、P型クラッド層108に近づくことを抑制できる。これにより、P型クラッド層108における不純物に起因するフリーキャリア損失を低減できる。
 また、本実施の形態では、P側障壁層104cの平均バンドギャップエネルギーは、電子障壁層106の平均バンドギャップエネルギーより小さい。これにより、P側障壁層104cを超えてP型クラッド層108へ向かう電子を電子障壁層106でブロックし、活性層104へ電子を戻すことができる。したがって、発光に寄与せずに、発熱の原因となる電子を低減できるため、発振しきい電流値を低減でき、かつ、熱飽和レベルを向上できる。つまり、温度特性に優れ、スロープ効率が高い窒化物系半導体発光素子100を実現できる。
 [1-4.シミュレーション結果]
 本実施の形態に係る窒化物系半導体発光素子100の特性について、シミュレーション結果を用いて説明する。なお、本シミュレーションにおいて用いた窒化物系半導体発光素子のN側障壁層104a、P側障壁層104c、上方P側ガイド層107、及びP型クラッド層108以外の構成については、上述した本実施の形態に係る窒化物系半導体発光素子100と同じである。
 本シミュレーションにおいて用いた上方P側ガイド層107は、膜厚60nmのP型Al0.03Ga0.97N層である。上方P側ガイド層107には、P型不純物としてMgが添加されており、上方P側ガイド層107におけるMg濃度は、P型クラッド層108に近づくにしたがって、減少する。上方P側ガイド層107の、電子障壁層106に近い方の界面付近におけるMg濃度は、4×1018cm-3であり、P型クラッド層108に近い方の界面付近におけるMg濃度は、2.8×1018cm-3である。
 本シミュレーションにおいて用いたP型クラッド層108は、膜厚450nmのP型Al0.065Ga0.935N層である。P型クラッド層108には、P型不純物としてMgが添加されている。P型クラッド層108は、膜厚40nmの第一領域と、第一領域上に位置する膜厚180nmの第二領域と、第二領域上に位置する膜厚100nmの第三領域と、第三領域上に位置する膜厚130nmの第四領域とを有する。第一領域においては、活性層104から遠ざかるにしたがって、Mg濃度は2.8×1018cm-3から2.0×1018cm-3まで減少する。第二領域においては、Mg濃度は、2.0×1018cm-3で一定である。第三領域においては、活性層104から遠ざかるにしたがって、Mg濃度は2.0×1018cm-3から1.0×1019cm-3まで増大する。第四領域においては、Mg濃度は、1.0×1019cm-3で一定である。
 以下では、窒化物系半導体発光素子の光閉じ込め係数、実効屈折率差ΔN、導波路損失、及び、積層方向における光強度分布ピーク位置について、図9~図12を用いて説明する。図9、図10、図11、及び図12は、それぞれ、窒化物系半導体発光素子の光閉じ込め係数、実効屈折率差ΔN、導波路損失、及び、積層方向における光強度分布ピーク位置と、P側障壁層104cの膜厚との関係を示すグラフである。
 なお、本シミュレーションでは、P側障壁層104cの膜厚Tb2と、N側障壁層104aの膜厚Tb1との合計膜厚(Tb1+Tb2)を28nmとしている。つまり、P側障壁層104cの膜厚Tb2が、2nmである場合には、N側障壁層104aの膜厚Tb1は、26nmである。つまり、各図のグラフの左半分が、Tb1>Tb2である場合を示し、右半分が、Tb1<Tb2である場合を示す。
 また、各図には、P側障壁層104cのAl組成比Xb2と、N側障壁層104aのAl組成比Xb1とを変化させた場合の各関係が示されている。各図に示される曲線(折れ線)aは、Xb1=0.02、Xb2=0.14の場合の関係、曲線bは、Xb1=0.04、Xb2=0.12の場合の関係、曲線cは、Xb1=0.06、Xb2=0.10の場合の関係、曲線dは、Xb1=0.08、Xb2=0.08の場合の関係、曲線eは、Xb1=0.10、Xb2=0.06の場合の関係、曲線fは、Xb1=0.12、Xb2=0.04の場合の関係、曲線gは、Xb1=0.14、Xb2=0.02の場合の関係をそれぞれ示す。
 まず、窒化物系半導体発光素子の光閉じ込め係数と、P側障壁層104c(及びN側障壁層104a)の膜厚との関係について、図9を用いて説明する。
 図9に示されるように、P側障壁層104cの膜厚Tb2が、N側障壁層104aの膜厚Tb1より小さく、かつ、P側障壁層104cのAl組成比Xb2がN側障壁層104aのAl組成比Xb1より大きい(つまり、P側障壁層104cの平均バンドギャップエネルギーがN側障壁層104aの平均バンドギャップエネルギーより大きい)場合に、光閉じ込め係数が大きくなる傾向が見られる。したがって、本実施の形態に係る窒化物系半導体発光素子100のように、P側障壁層104cの平均バンドギャップエネルギーをN側障壁層104aの平均バンドギャップエネルギーより大きくし、かつ、P側障壁層104cの膜厚Tb2をN側障壁層104aの膜厚Tb1より小さくすることで、光閉じ込め係数を増大できる。
 次に、窒化物系半導体発光素子の実効屈折率差ΔNと、P側障壁層104c(及びN側障壁層104a)の膜厚との関係について、図10を用いて説明する。
 図10に示されるように、P側障壁層104cの膜厚Tb2が、N側障壁層104aの膜厚Tb1より小さく、かつ、P側障壁層104cのAl組成比Xb2がN側障壁層104aのAl組成比Xb1より大きい場合に、実効屈折率差ΔNが大きくなる傾向が見られる。したがって、本実施の形態に係る窒化物系半導体発光素子100のように、P側障壁層104cの平均バンドギャップエネルギーをN側障壁層104aの平均バンドギャップエネルギーより大きくし、かつ、P側障壁層104cの膜厚Tb2をN側障壁層104aの膜厚Tb1より小さくすることで、実効屈折率差ΔNを増大できる。
 次に、窒化物系半導体発光素子の導波路損失と、P側障壁層104c(及びN側障壁層104a)の膜厚との関係について、図11を用いて説明する。
 図11に示されるように、P側障壁層104cの膜厚Tb2が、N側障壁層104aの膜厚Tb1より小さく、かつ、P側障壁層104cのAl組成比Xb2がN側障壁層104aのAl組成比Xb1より大きい場合に、導波路損失が小さくなる傾向が見られる。したがって、本実施の形態に係る窒化物系半導体発光素子100のように、P側障壁層104cの平均バンドギャップエネルギーをN側障壁層104aの平均バンドギャップエネルギーより大きくし、かつ、P側障壁層104cの膜厚Tb2をN側障壁層104aの膜厚Tb1より小さくすることで、導波路損失を低減できる。
 次に、窒化物系半導体発光素子の積層方向における光強度分布のピーク位置と、P側障壁層104c(及びN側障壁層104a)の膜厚との関係について、図12を用いて説明する。ここで、積層方向における光強度分布の位置について、図13を用いて説明する。
 図13は、窒化物系半導体発光素子の積層方向における位置の座標を示すグラフである。図13に示されるように、活性層104の井戸層104bのN側の端面、つまり、井戸層104bとN側障壁層104aとの境界面の積層方向における位置の座標をゼロとし、下方(N型クラッド層102に向かう向き)を座標の負の向きとし、上方(P型クラッド層108に向かう向き)を座標の正の向きとする。
 図12に示されるように、P側障壁層104cの膜厚Tb2が、N側障壁層104aの膜厚Tb1より小さく、かつ、P側障壁層104cのAl組成比Xb2がN側障壁層104aのAl組成比Xb1より大きい場合に、光強度分布のピーク位置が井戸層104bに近づく傾向が見られる。したがって、本実施の形態に係る窒化物系半導体発光素子100のように、P側障壁層104cの平均バンドギャップエネルギーをN側障壁層104aの平均バンドギャップエネルギーより大きくし、かつ、P側障壁層104cの膜厚Tb2をN側障壁層104aの膜厚Tb1より小さくすることで、積層方向における光強度分布のピーク位置を活性層104の井戸層104bに近づけることができる。
 上記シミュレーションと同様のシミュレーション結果から、本実施の形態によれば、光閉じ込め係数が3.85%であり、実効屈折率差ΔNが.22.9×10-3であり、導波路損失が22.8cm-1であり、積層方向における光強度分布ピーク位置が1.81nmである(つまり、ピーク位置が井戸層104b内にある)窒化物系半導体発光素子100を実現できることが確認された。
 [1-5.変形例1]
 本実施の形態の変形例1に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、P側障壁層の構成において、本実施の形態に係る窒化物系半導体発光素子100と相違し、その他の構成において一致する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態に係る窒化物系半導体発光素子100との相違点を中心に図14を用いて説明する。図14は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図14に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層124と、電子障壁層106と、上方P側ガイド層107と、P型クラッド層108とを有する。なお、図14には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体100Sと同様に、コンタクト層109をさらに有する。
 本変形例に係る活性層124は、図14に示されるように、N側障壁層104aと、井戸層104bと、P側障壁層124cとを有する。P側障壁層124cは、第一P側障壁層124caと、第一P側障壁層124caの上方に配置される第二P側障壁層124cbとを有する。なお、このような構成を有する本変形例に係る窒化物系半導体発光素子においても、本実施の形態に係るP側障壁層104cと同様に、P側障壁層124cの平均バンドギャップエネルギーは、N側障壁層104aの平均バンドギャップエネルギーより大きく、P側障壁層124cの(合計)膜厚は、N側障壁層104aの膜厚より小さい。
 図14に示されるように、第二P側障壁層124cbの平均バンドギャップエネルギーは、第一P側障壁層124caの平均バンドギャップエネルギーより大きい。これにより、P側障壁層124cと、電子障壁層106との間に形成されるバンドのスパイクを低減できる。したがって、バンドのスパイクに起因する窒化物系半導体発光素子の電気抵抗を低減できるため、窒化物系半導体発光素子の動作電圧を低減できる。
 また、第二P側障壁層124cbの平均バンドギャップエネルギーは、電子障壁層106の平均バンドギャップエネルギーより小さい。これにより、井戸層104bから上方P側ガイド層107へ向かう電子が電子障壁層106を超えることを抑制できる。
 第一P側障壁層124caは、Alを含む窒化物系半導体層である。第一P側障壁層124caは、例えば、AlGaN層、又はAlInGaN層である。第一P側障壁層124caの平均不純物濃度は、1×1018cm-3以下である。
 第二P側障壁層124cbは、Alを含む窒化物系半導体層である。第二P側障壁層124cbは、例えば、AlGaN層、又はAlInGaN層である。第二P側障壁層124cbの平均不純物濃度は、1×1018cm-3以下である。これにより、第二P側障壁層124cbにおけるフリーキャリア損失を低減できるため、窒化物系半導体発光素子の導波路損失を低減できる。
 [1-6.変形例2]
 本実施の形態の変形例2に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、主に、電子障壁層と上方P側ガイド層との配置位置(つまり、積層順序)において、本実施の形態の変形性1に係る窒化物系半導体発光素子と相違する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態の変形例1に係る窒化物系半導体発光素子との相違点を中心に図15を用いて説明する。図15は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図15に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層124と、上方P側ガイド層107aと、電子障壁層106と、P型クラッド層108とを有する。なお、図15には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体100Sと同様に、コンタクト層109をさらに有する。
 本変形例に係る上方P側ガイド層107aは、活性層104とP型クラッド層108との間に配置されるP側ガイド層が有する光ガイド層の一例である。上方P側ガイド層107aは、Alを含む窒化物系半導体層である。本変形例に係る半導体積層体においては、上方P側ガイド層107aは、活性層124の上方に配置される。また、電子障壁層106は、上方P側ガイド層107aの上方に配置される。つまり、上方P側ガイド層107aは、活性層124と電子障壁層106との間に配置される。
 上方P側ガイド層107aの平均バンドギャップエネルギーは、P型クラッド層108の平均バンドギャップエネルギーより小さい。また、上方P側ガイド層107aの平均屈折率は、P型クラッド層108の平均屈折率より大きい。上方P側ガイド層107aは、例えば、AlGaN層、又はAlInGaN層である。上方P側ガイド層107aの平均不純物濃度は、1×1018cm-3以下である。上方P側ガイド層107aは、例えば、膜厚60nmのP型Al0.02Ga0.98N層である。
 このように、Mgの濃度が大きい電子障壁層106と活性層124との間に、電子障壁層106よりMgの濃度が小さい上方P側ガイド層107aを配置することで、活性層124へ熱拡散するMgを低減できる。したがって、活性層124におけるフリーキャリア損失をより一層低減できるため、窒化物系半導体発光素子の導波路損失をより一層低減できる。
 また、本変形例に係る窒化物系半導体発光素子は、コンタクト層109の上方に配置されるP側電極111を備える。本変形例では、P側電極111は、Agを含んでもよい。より詳しくは、P側電極111は、コンタクト層109とオーミック接触するAg膜を含んでもよい。窒化物系半導体発光素子がこのようなP側電極111を備えることにより、上述したように、導波路損失を抑制しつつ、動作電圧及び動作電流を低減することが可能となる。また、上述したとおり、P側電極111がAgを含むことで、導波路損失を抑制しつつ、P型クラッド層108の膜厚を低減できる。これにより、P型クラッド層108における総Al含有量を低減することができるため、P型クラッド層108における基板101に対する歪を低減できる。したがって、P型クラッド層108の歪に起因する窒化物系半導体発光素子100の割れを抑制できる。
 (実施の形態2)
 実施の形態2に係る窒化物系半導体発光素子について説明する。本実施の形態に係る窒化物系半導体発光素子は、主にP側光ガイド層の構成において、実施の形態1に係る窒化物系半導体発光素子100と相違する。以下、本実施の形態に係る窒化物系半導体発光素子について、実施の形態1に係る窒化物系半導体発光素子100との相違点を中心に説明する。
 [2-1.全体構成]
 本実施の形態に係る窒化物系半導体発光素子の全体構成について、図16、及び図17を用いて説明する。図16は、本実施の形態に係る窒化物系半導体発光素子200の全体構成を示す模式的な断面図である。図17は、本実施の形態に係る窒化物系半導体発光素子200の半導体積層体200Sのバンドギャップエネルギー分布を模式的に示すグラフである。
 図16に示されるように、本実施の形態に係る窒化物系半導体発光素子200は、基板101と、半導体積層体200Sと、電流ブロック層110と、P側電極111と、N側電極112とを備える。半導体積層体200Sは、N型クラッド層102と、N側ガイド層103と、活性層104と、P側ガイド層250と、電子障壁層106と、P型クラッド層208と、コンタクト層109とを有する。
 本実施の形態に係るP側ガイド層250は、活性層104とP型クラッド層208との間に配置される光ガイド層である。本実施の形態では、P側ガイド層250は、上方P側ガイド層207と、下方P側ガイド層205とを有する。
 上方P側ガイド層207は、電子障壁層106の上方に配置される光ガイド層であり、膜厚、及び不純物濃度分布において、実施の形態1に係る上方P側ガイド層107と相違する。本実施の形態では、上方P側ガイド層207は、膜厚130nmのP型Al0.03Ga0.97N層である。上方P側ガイド層207には、P型不純物としてMgが添加されている。上方P側ガイド層207は、膜厚100nmの第一領域と、第一領域上に位置する膜厚30nmの第二領域とを有する。第一領域においては、活性層104から遠ざかるにしたがって、Mg濃度は4.0×1018cm-3から2.0×1018cm-3まで減少する。第二領域においては、Mg濃度が2.0×1018cm-3で一定である。
 下方P側ガイド層205は、活性層104と電子障壁層106との間に配置される光ガイド層である。本実施の形態では、図17に示されるように、下方P側ガイド層205の平均バンドギャップエネルギーは、上方P側ガイド層207の平均バンドギャップエネルギー以下である。下方P側ガイド層205は、例えば、AlGaN層、又はAlInGaN層である。下方P側ガイド層205の平均不純物濃度は、1×1018cm-3以下である。下方P側ガイド層205は、例えば、膜厚60nmのP型Al0.03Ga0.97N層、又は、膜厚60nmのP型Al0.02Ga0.98N層である。なお、図17には、下方P側ガイド層205が、P型Al0.03Ga0.97N層である場合のバンドギャップエネルギー分布が示されている。
 P型クラッド層208は、不純物濃度分布において、実施の形態1に係るP型クラッド層108と相違する。本実施の形態では、P型クラッド層208は、膜厚450nmのP型Al0.065Ga0.935N層である。P型クラッド層208には、P型不純物としてMgが添加されている。P型クラッド層208は、膜厚150nmの第一領域と、第一領域上に位置する膜厚100nmの第二領域と、第二領域上に位置する膜厚200nmの第三領域とを有する。第一領域においては、Mg濃度は、2.0×1018cm-3で一定である。第二領域においては、活性層104から遠ざかるにしたがって、Mg濃度は2.0×1018cm-3から1.0×1019cm-3まで増大する。第三領域においては、Mg濃度が1.0×1019cm-3で一定である。
 P型クラッド層208には、実施の形態1に係るP型クラッド層108と同様に、リッジ208R、及び溝208Tが形成されている。
 本実施の形態では、P側ガイド層250が、活性層104と電子障壁層106との間に配置される下方P側ガイド層205を有することで、不純物濃度が大きい電子障壁層106を活性層104から遠ざけることができる。したがって、電子障壁層106におけるフリーキャリア損失を低減できるため、窒化物系半導体発光素子200の導波路損失を低減できる。
 また、本実施の形態では、下方P側ガイド層205の平均バンドギャップエネルギーは、上方P側ガイド層207の平均バンドギャップエネルギー以下である。つまり、下方P側ガイド層205の平均屈折率は、上方P側ガイド層207の平均屈折率以上である。これにより、活性層104の近傍に上方P側ガイド層207より屈折率が高い下方P側ガイド層205を配置できるため、積層方向における光強度分布のピーク位置を上方P側ガイド層207より、活性層104に近い位置に近づけることが可能となる。したがって、光閉じ込め係数を増大することが可能となる。
 また、本実施の形態では、下方P側ガイド層205の平均不純物濃度は、1×1018cm-3以下である。これにより、活性層104に近い下方P側ガイド層205におけるフリーキャリア損失を低減できるため、窒化物系半導体発光素子200の導波路損失を低減できる。
 上記シミュレーションと同様のシミュレーション結果から、本実施の形態によれば、下方P側ガイド層205が、膜厚60nmのP型Al0.03Ga0.97N層である場合(つまり、下方P側ガイド層205の平均バンドギャップエネルギーが、上方P側ガイド層207の平均バンドギャップエネルギーと等しい場合)、光閉じ込め係数が3.35%であり、実効屈折率差ΔNが.19.2×10-3であり、導波路損失が13.3cm-1であり、積層方向における光強度分布ピーク位置が5.68nmである(つまり、ピーク位置が井戸層104b内にある)窒化物系半導体発光素子200を実現できることが確認された。
 また、下方P側ガイド層205が、膜厚60nmのP型Al0.02Ga0.98N層である場合(つまり、下方P側ガイド層205の平均バンドギャップエネルギーが、上方P側ガイド層207の平均バンドギャップエネルギーより小さい場合)、光閉じ込め係数が3.76%であり、実効屈折率差ΔNが.20.4×10-3であり、導波路損失が10.6cm-1であり、積層方向における光強度分布ピーク位置が56.1nmである窒化物系半導体発光素子200を実現できることが確認された。
 なお、比較例として、下方P側ガイド層の平均バンドギャップエネルギーが、上方P側ガイド層の平均バンドギャップエネルギーより大きい窒化物系半導体発光素子についてもシミュレーションを行った。本シミュレーションでは、下方P側ガイド層が膜厚60nmのP型Al0.04Ga0.96N層(平均Mg濃度1×1018cm-3)であり、上方P側ガイド層が膜厚130nmのP型Al0.03Ga0.97N層(Mg濃度分布は、上方P側ガイド層207と同様)である窒化物系半導体発光素子のシミュレーションを行った。このような比較例の窒化物系半導体発光素子では、光閉じ込め係数が2.94%であり、実効屈折率差ΔNが.18.1×10-3であり、導波路損失が16.9cm-1であり、積層方向における光強度分布ピーク位置が142.6nmである。このように、本実施の形態に窒化物系半導体発光素子200では、いずれの特性においても、比較例の窒化物系半導体発光素子より改善されることが確認された。
 [2-2.変形例1]
 本実施の形態の変形例1に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、P側ガイド層の構成において、本実施の形態に係る窒化物系半導体発光素子200と相違し、その他の構成において一致する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態に係る窒化物系半導体発光素子200との相違点を中心に図18を用いて説明する。図18は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図18に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層104と、電子障壁層106と、P側ガイド層251と、P型クラッド層208とを有する。なお、図18には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体200Sと同様に、コンタクト層109をさらに有する。
 本変形例に係るP側ガイド層251は、活性層104とP型クラッド層208との間に配置される光ガイド層であり、上方P側ガイド層207と、下方P側ガイド層225とを有する。
 下方P側ガイド層225は、第一下方P側ガイド層225aと、第一下方P側ガイド層225aの上方に配置される第二下方P側ガイド層225bとを有する。第一下方P側ガイド層225aの平均バンドギャップエネルギーは、第二下方P側ガイド層225bの平均バンドギャップエネルギーより小さい。つまり、第一下方P側ガイド層225aの平均屈折率は、第二下方P側ガイド層225bの平均屈折率より大きい。第一下方P側ガイド層225aは、例えば、GaN層、AlGaN層、又はAlInGaN層である。第二下方P側ガイド層225bは、例えば、AlGaN層、又はAlInGaN層である。第一下方P側ガイド層225a、及び第二下方P側ガイド層225bの平均不純物濃度は、1×1018cm-3以下である。
 以上のように、本変形例に係る窒化物系半導体発光素子では、下方P側ガイド層225が、活性層104に近い領域に、屈折率が大きい第一下方P側ガイド層225aを有する。これにより、光強度分布のピーク位置を活性層104に近づけることができる。したがって、高い光閉じ込め係数、及び低い導波路損失を実現できる。
 また、互いに組成の異なる第一下方P側ガイド層225aと、第二下方P側ガイド層225bとの間の界面の存在により、P型層から活性層104への不純物拡散を抑制できるため、活性層104の劣化を抑制することができる。
 ここで、第一下方P側ガイド層225aとして、GaN層を用いることで、AlGaN層を用いた場合と比較して、第一下方P側ガイド層225aの基板101との格子不整に伴う引っ張り性の歪を小さくしつつ、屈折率を高めることができる。この結果、格子欠陥の発生を抑制しつつ光強度分布のピーク位置を活性層104に近づけることができる。
 また、第一下方P側ガイド層225aとして、AlInGaNを用いることで、AlGaN層を用いた場合と比較して、第一下方P側ガイド層225aの基板101との格子不整に伴う引っ張り性の歪を小さくしつつ、屈折率を高めることができる。この結果、格子欠陥の発生を抑制しつつ光強度分布のピーク位置を活性層104に近づけることができる。
 また、第一下方P側ガイド層225a、及び第二下方P側ガイド層225bの平均不純物濃度を1×1018cm-3以下とすることで、下方P側ガイド層225におけるフリーキャリア損失を低減できる。したがって、窒化物系半導体発光素子の導波路損失を低減できる。
 [2-3.変形例2]
 本実施の形態の変形例2に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、P側ガイド層の構成において、本実施の形態に係る窒化物系半導体発光素子200と相違し、その他の構成において一致する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態に係る窒化物系半導体発光素子200との相違点を中心に図19を用いて説明する。図19は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図19に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層104と、電子障壁層106と、P側ガイド層252と、P型クラッド層208とを有する。なお、図19には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体200Sと同様に、コンタクト層109をさらに有する。
 本変形例に係るP側ガイド層252は、活性層104とP型クラッド層208との間に配置される光ガイド層であり、上方P側ガイド層207と、下方P側ガイド層235とを有する。
 下方P側ガイド層235は、活性層104と電子障壁層106との間に配置される光ガイド層である。下方P側ガイド層235のバンドギャップエネルギーは、電子障壁層106に近づくにしたがって増大する。つまり、下方P側ガイド層235の屈折率は、電子障壁層106に近づくにしたがって減少する。下方P側ガイド層235は、例えば、GaN層、AlGaN層、又はAlInGaN層である。例えば、下方P側ガイド層235のAl組成比は、電子障壁層106に近づくにしたがって増大してもよい。下方P側ガイド層235の平均不純物濃度は、1×1018cm-3以下である。
 以上のように、本変形例に係る窒化物系半導体発光素子では、下方P側ガイド層235の屈折率が活性層104に近づくにしたがって大きくなる。このように下方P側ガイド層235の活性層104に近い領域における屈折率を高めることで、光強度分布のピーク位置を活性層104に近づけることができる。したがって、高い光閉じ込め係数、及び低い導波路損失を実現できる。
 また、下方P側ガイド層235の平均不純物濃度を、1×1018cm-3以下とすることで、下方P側ガイド層235におけるフリーキャリア損失を低減できる。したがって、窒化物系半導体発光素子の導波路損失を低減できる。
 (実施の形態3)
 実施の形態3に係る窒化物系半導体発光素子について説明する。本実施の形態に係る窒化物系半導体発光素子は、主にP側光ガイド層の構成において、実施の形態1に係る窒化物系半導体発光素子100と相違する。以下、本実施の形態に係る窒化物系半導体発光素子について、実施の形態1に係る窒化物系半導体発光素子100との相違点を中心に説明する。
 [3-1.全体構成]
 本実施の形態に係る窒化物系半導体発光素子の全体構成について、図20、及び図21を用いて説明する。図20は、本実施の形態に係る窒化物系半導体発光素子300の全体構成を示す模式的な断面図である。図21は、本実施の形態に係る窒化物系半導体発光素子300の半導体積層体300Sのバンドギャップエネルギー分布を模式的に示すグラフである。
 図20に示されるように、本実施の形態に係る窒化物系半導体発光素子300は、基板101と、半導体積層体300Sと、電流ブロック層110と、P側電極111と、N側電極112とを備える。半導体積層体300Sは、N型クラッド層102と、N側ガイド層103と、活性層104と、下方P側ガイド層305と、電子障壁層106と、P型クラッド層308と、コンタクト層109とを有する。
 本実施の形態に係る下方P側ガイド層305は、活性層104とP型クラッド層308との間に配置されるP側ガイド層が有する光ガイド層の一例である。下方P側ガイド層305は、Alを含む窒化物系半導体層である。本実施の形態では、P側ガイド層は、活性層104と電子障壁層106との間に配置される下方P側ガイド層305を有する。下方P側ガイド層305の平均バンドギャップエネルギーは、P型クラッド層308の平均バンドギャップエネルギーより小さい。
 下方P側ガイド層305は、例えば、AlGaN層、又はAlInGaN層である。下方P側ガイド層305の平均不純物濃度は、1×1018cm-3以下である。下方P側ガイド層305は、例えば、膜厚60nmのP型Al0.02Ga0.98N層である。
 P型クラッド層308は、不純物濃度分布において、実施の形態1に係るP型クラッド層108と相違する。本実施の形態では、P型クラッド層308は、膜厚450nmのP型Al0.065Ga0.935N層である。P型クラッド層308には、P型不純物としてMgが添加されている。P型クラッド層308は、膜厚100nmの第一領域と、第一領域上に位置する膜厚180nmの第二領域と、第二領域上に位置する膜厚100nmの第三領域と、第三領域上に位置する膜厚70nmの第四領域とを有する。第一領域においては、活性層104から遠ざかるにしたがって、Mg濃度は4.0×1018cm-3から2.0×1018cm-3まで減少する。第二領域においては、Mg濃度は、2.0×1018cm-3で一定である。第三領域においては、活性層104から遠ざかるにしたがって、Mg濃度は、2.0×1018cm-3から1.0×1019cm-3まで増大する。第四領域においては、Mg濃度が1.0×1019cm-3で一定である。
 P型クラッド層308には、実施の形態1に係るP型クラッド層108と同様に、リッジ308R、及び溝308Tが形成されている。
 本実施の形態では、P側ガイド層が、活性層104と電子障壁層106との間に配置される下方P側ガイド層305を有することで、不純物濃度が大きい電子障壁層106を活性層104から遠ざけることができる。したがって、電子障壁層106におけるフリーキャリア損失を低減できるため、窒化物系半導体発光素子300の導波路損失を低減できる。
 また、本実施の形態では、下方P側ガイド層305の平均不純物濃度は、1×1018cm-3以下である。これにより、活性層104に近い下方P側ガイド層305におけるフリーキャリア損失を低減できるため、窒化物系半導体発光素子300の導波路損失を低減できる。
 上記シミュレーションと同様のシミュレーション結果から、本実施の形態によれば、光閉じ込め係数が3.84%であり、実効屈折率差ΔNが.18.8×10-3であり、導波路損失が18.8cm-1であり、積層方向における光強度分布ピーク位置が-0.16nmである(つまり、ピーク位置がN側障壁層104a内にある)窒化物系半導体発光素子300を実現できることが確認された。
 [3-2.変形例1]
 本実施の形態の変形例1に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、P側ガイド層の構成において、本実施の形態に係る窒化物系半導体発光素子300と相違し、その他の構成において一致する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態に係る窒化物系半導体発光素子300との相違点を中心に図22を用いて説明する。図22は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図22に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層104と、下方P側ガイド層325と、電子障壁層106と、P型クラッド層308とを有する。なお、図22には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体300Sと同様に、コンタクト層109をさらに有する。
 下方P側ガイド層325は、第一下方P側ガイド層325aと、第一下方P側ガイド層325aの上方に配置される第二下方P側ガイド層325bとを有する。第一下方P側ガイド層325aの平均バンドギャップエネルギーは、第二下方P側ガイド層325bの平均バンドギャップエネルギーより小さい。つまり、第一下方P側ガイド層325aの平均屈折率は、第二下方P側ガイド層325bの平均屈折率より大きい。第一下方P側ガイド層325aは、例えば、GaN層、AlGaN層、又はAlInGaN層である。第二下方P側ガイド層325bは、例えば、AlGaN層、又はAlInGaN層である。第一下方P側ガイド層325a、及び第二下方P側ガイド層325bの平均不純物濃度は、1×1018cm-3以下である。
 以上のように、本変形例に係る窒化物系半導体発光素子では、下方P側ガイド層325が、活性層104に近い領域に、屈折率が大きい第一下方P側ガイド層325aを有する。これにより、光強度分布のピーク位置を活性層104に近づけることができる。したがって、高い光閉じ込め係数、及び低い導波路損失を実現できる。
 また、互いに組成の異なる第一下方P側ガイド層325aと、第二下方P側ガイド層325bとの間の界面の存在によりP型層から活性層104への不純物拡散を抑制できるため、活性層104の劣化を抑制することができる。
 ここで、第一下方P側ガイド層325aとして、GaN層を用いることで、AlGaN層を用いた場合と比較して、第一下方P側ガイド層325aの基板101との格子不整に伴う引っ張り性の歪を小さくしつつ、屈折率を高めることができる。この結果、格子欠陥の発生を抑制しつつ光強度分布のピーク位置を活性層104に近づけることができる。
 また、第一下方P側ガイド層325aとして、AlInGaN層を用いることで、AlGaN層を用いた場合と比較して、第一下方P側ガイド層325aの基板101との格子不整に伴う引っ張り性の歪を小さくしつつ、屈折率を高めることができる。この結果、格子欠陥の発生を抑制しつつ光強度分布のピーク位置を活性層104に近づけることができる。
 また、第一下方P側ガイド層325a、及び第二下方P側ガイド層325bの平均不純物濃度を1×1018cm-3以下とすることで、下方P側ガイド層325におけるフリーキャリア損失を低減できる。したがって、窒化物系半導体発光素子の導波路損失を低減できる。
 [3-3.変形例2]
 本実施の形態の変形例2に係る窒化物系半導体発光素子について説明する。本変形例に係る窒化物系半導体発光素子は、P側ガイド層の構成において、本実施の形態に係る窒化物系半導体発光素子300と相違し、その他の構成において一致する。以下、本変形例に係る窒化物系半導体発光素子について、本実施の形態に係る窒化物系半導体発光素子300との相違点を中心に図23を用いて説明する。図23は、本変形例に係る窒化物系半導体発光素子の半導体積層体のバンドギャップエネルギー分布を模式的に示すグラフである。
 図23に示されるように、本変形例に係る窒化物系半導体発光素子の半導体積層体は、N型クラッド層102と、N側ガイド層103と、活性層104と、下方P側ガイド層335と、電子障壁層106と、P型クラッド層308とを有する。なお、図23には示されないが、本変形例に係る半導体積層体は、本実施の形態に係る半導体積層体300Sと同様に、コンタクト層109をさらに有する。
 下方P側ガイド層335は、活性層104と電子障壁層106との間に配置される光ガイド層である。下方P側ガイド層335のバンドギャップエネルギーは、電子障壁層106に近づくにしたがって増大する。つまり、下方P側ガイド層335の屈折率は、電子障壁層106に近づくにしたがって減少する。下方P側ガイド層335は、例えば、GaN層、AlGaN層、又はAlInGaN層である。例えば、下方P側ガイド層335のAl組成比は、電子障壁層106に近づくにしたがって増大してもよい。下方P側ガイド層335の平均不純物濃度は、1×1018cm-3以下である。
 以上のように、本変形例に係る窒化物系半導体発光素子では、下方P側ガイド層335の屈折率が活性層104に近づくにしたがって大きくなる。このように下方P側ガイド層335の活性層104に近い領域における屈折率を高めることで、光強度分布のピーク位置を活性層104に近づけることができる。したがって、高い光閉じ込め係数、及び低い導波路損失を実現できる。
 また、下方P側ガイド層335の平均不純物濃度を、1×1018cm-3以下とすることで、下方P側ガイド層335におけるフリーキャリア損失を低減できる。したがって、窒化物系半導体発光素子の導波路損失を低減できる。
 (その他の変形例など)
 以上、本開示に係る窒化物系半導体発光素子について、各実施の形態及びその変形例に基づいて説明したが、本開示は、上記各実施の形態及びその変形例に限定されるものではない。
 例えば、上記各実施の形態及びその変形例においては、紫外光を出射する半導体発光素子について説明したが、本開示に係る半導体発光素子は、紫外光を出射する半導体発光素子に限定されない。本開示に係る半導体発光素子の特徴的な構成は、例えば、可視光、赤外光などの波長帯域の光を出射する半導体発光素子においても適用でき、上記各実施の形態及びその変形例と同様の効果を奏する。
 また、上記各実施の形態及びその変形例においては、窒化物系半導体発光素子が半導体レーザ素子である例を示したが、窒化物系半導体発光素子は、半導体レーザ素子に限定されない。例えば、窒化物系半導体発光素子は、スーパールミネッセントダイオードであってもよい。この場合、窒化物系半導体発光素子が備える半導体積層体の端面の半導体積層体からの出射光に対する反射率は、0.1%以下であってもよい。このような反射率は、例えば、端面に、誘電体多層膜などからなる反射防止膜を形成することによって実現できる。又は、導波路となるリッジがフロント端面の法線方向から5°以上傾いてフロント端面と交わる傾斜ストライプ構造とすれば、フロント端面で反射した導波光が再び導波路と結合し導波光となる成分の割合を0.1%以下の小さい値とすることができる。
 また、上記各実施の形態及びその変形例において、各P型クラッド層は、Al組成比が均一な層であったが、P型クラッド層の構成はこれに限定されない。例えば、P型クラッド層は、複数のAlGaN層の各々と、複数のGaN層の各々とが交互に積層された超格子構造を有してもよい。
 また、上記各実施の形態及びその変形例においては、活性層は、単一量子井戸構造を有したが、多重量子井戸構造を有してもよい。この場合、多重量子井戸構造の障壁層のうち、N型クラッド層に最も近い障壁層に、上記各実施の形態及びその変形例に係るN側障壁層の構成を適用し、多重量子井戸構造の障壁層のうち、P型クラッド層に最も近い障壁層に、上記各実施の形態及びその変形例に係るP側障壁層の構成を適用することで、上記各実施の形態及びその変形例と同様の効果を得ることができる。
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 例えば、実施の形態1の変形例に係るP側障壁層124cの構成を実施の形態2、及び実施の形態3、並びに、それらの変形例の各P側障壁層に適用してもよい。
 本開示の窒化物系半導体発光素子は、例えば、高出力かつ高効率な光源として、特に、露光装置及び加工機用の光源などに適用できる。
 100、200、300 窒化物系半導体発光素子
 100F、100R 端面
 100S、200S、300S 半導体積層体
 101 基板
 102、902 N型クラッド層
 103、903 N側ガイド層
 103a 第一N側ガイド層
 103b 第二N側ガイド層
 104、124 活性層
 104a、904a N側障壁層
 104b、904b 井戸層
 104c、124c、904c P側障壁層
 106、906 電子障壁層
 107、107a、207、907 上方P側ガイド層
 108、208、308、908 P型クラッド層
 108R、208R、308R リッジ
 108T、208T、308T 溝
 109 コンタクト層
 110 電流ブロック層
 111 P側電極
 112 N側電極
 124ca 第一P側障壁層
 124cb 第二P側障壁層
 205、225、235、305、325、335 下方P側ガイド層
 225a、325a 第一下方P側ガイド層
 225b、325b 第二下方P側ガイド層
 250、251、252 P側ガイド層

Claims (17)

  1.  N型クラッド層と、
     前記N型クラッド層の上方に配置されるN側ガイド層と、
     前記N側ガイド層の上方に配置される活性層と、
     前記活性層の上方に配置されるP型クラッド層と、
     前記活性層と前記P型クラッド層との間に配置されるP側ガイド層、及び電子障壁層とを備え、
     前記N型クラッド層、前記N側ガイド層、前記P側ガイド層、前記電子障壁層、及び前記P型クラッド層は、Alを含み、
     前記活性層は、N側障壁層と、前記N側障壁層の上方に配置される井戸層と、前記井戸層の上方に配置されるP側障壁層とを有し、
     前記P側障壁層の平均バンドギャップエネルギーは、前記N側障壁層の平均バンドギャップエネルギーより大きく、
     前記P側障壁層の膜厚は、前記N側障壁層の膜厚より小さい
     窒化物系半導体発光素子。
  2.  前記P側ガイド層は、前記電子障壁層の上方に配置される上方P側ガイド層を有する
     請求項1に記載の窒化物系半導体発光素子。
  3.  前記上方P側ガイド層の平均バンドギャップエネルギーは、前記P型クラッド層の平均バンドギャップエネルギーより小さい、
     請求項2に記載の窒化物系半導体発光素子。
  4.  前記P側ガイド層は、前記活性層と前記電子障壁層との間に配置される下方P側ガイド層を有し
     前記下方P側ガイド層の平均バンドギャップエネルギーは、前記上方P側ガイド層の平均バンドギャップエネルギー以下である
     請求項2又は3に記載の窒化物系半導体発光素子。
  5.  前記P側ガイド層は、前記活性層と前記電子障壁層との間に配置される下方P側ガイド層を有する
     請求項1に記載の窒化物系半導体発光素子。
  6.  前記下方P側ガイド層の平均バンドギャップエネルギーは、前記P型クラッド層の平均バンドギャップエネルギーより小さい、
     請求項5に記載の窒化物系半導体発光素子。
  7.  前記下方P側ガイド層は、第一下方P側ガイド層と、前記第一下方P側ガイド層の上方に配置される第二下方P側ガイド層とを有し、
     前記第一下方P側ガイド層の平均バンドギャップエネルギーは、前記第二下方P側ガイド層の平均バンドギャップエネルギーより小さい
     請求項4~6のいずれか1項に記載の窒化物系半導体発光素子。
  8.  前記下方P側ガイド層のバンドギャップエネルギーは、前記電子障壁層に近づくにしたがって増大する
     請求項4~6のいずれか1項に記載の窒化物系半導体発光素子。
  9.  前記下方P側ガイド層は、AlGaN層、又はAlInGaN層であり、
     前記下方P側ガイド層の平均不純物濃度は、1×1018cm-3以下である
     請求項4~7のいずれか1項に記載の窒化物系半導体発光素子。
  10.  前記第一下方P側ガイド層は、GaN層、AlGaN層、又はAlInGaN層であり、
     前記第二下方P側ガイド層は、AlGaN層、又はAlInGaN層であり、
     前記第一下方P側ガイド層、及び前記第二下方P側ガイド層の平均不純物濃度は、1×1018cm-3以下である
     請求項7に記載の窒化物系半導体発光素子。
  11.  前記下方P側ガイド層は、GaN層、AlGaN層、又はAlInGaN層であり、
     前記下方P側ガイド層の平均不純物濃度は、1×1018cm-3以下である
     請求項8に記載の窒化物系半導体発光素子。
  12.  前記N側障壁層の平均バンドギャップエネルギーは、前記N型クラッド層の平均バンドギャップエネルギーより小さい
     請求項1~11のいずれか1項に記載の窒化物系半導体発光素子。
  13.  前記P側障壁層の平均バンドギャップエネルギーは、前記電子障壁層の平均バンドギャップエネルギーより小さい
     請求項1~12のいずれか1項に記載の窒化物系半導体発光素子。
  14.  前記P側障壁層は、第一P側障壁層と、前記第一P側障壁層の上方に配置される第二P側障壁層とを有し、
     前記第二P側障壁層の平均バンドギャップエネルギーは、前記第一P側障壁層の平均バンドギャップエネルギーより大きい
     請求項1~13のいずれか1項に記載の窒化物系半導体発光素子。
  15.  前記第二P側障壁層の平均バンドギャップエネルギーは、前記電子障壁層の平均バンドギャップエネルギーより小さい
     請求項14に記載の窒化物系半導体発光素子。
  16.  前記第二P側障壁層は、AlGaN層、又はAlInGaN層であり、
     前記第二P側障壁層の平均不純物濃度は、1×1018cm-3以下である
     請求項14又は15に記載の窒化物系半導体発光素子。
  17.  前記P型クラッド層の上方に配置されるP側電極を備え、
     前記P側電極は、Agを含む
     請求項1~16のいずれか1項に記載の窒化物系半導体発光素子。
PCT/JP2023/021208 2022-06-13 2023-06-07 窒化物系半導体発光素子 WO2023243518A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-095006 2022-06-13
JP2022095006 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243518A1 true WO2023243518A1 (ja) 2023-12-21

Family

ID=89191185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021208 WO2023243518A1 (ja) 2022-06-13 2023-06-07 窒化物系半導体発光素子

Country Status (1)

Country Link
WO (1) WO2023243518A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261106A (ja) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 半導体発光素子、その製造方法及び光ディスク装置
WO2005101532A1 (ja) * 2004-04-16 2005-10-27 Nitride Semiconductors Co., Ltd. 窒化ガリウム系発光装置
JP2010177651A (ja) * 2009-02-02 2010-08-12 Rohm Co Ltd 半導体レーザ素子
JP2013093382A (ja) * 2011-10-24 2013-05-16 Sumitomo Electric Ind Ltd 窒化物半導体発光素子
US20150171265A1 (en) * 2012-07-03 2015-06-18 Invensas Corporation Quantum efficiency of multiple quantum wells
JP2016219587A (ja) * 2015-05-20 2016-12-22 ソニー株式会社 半導体光デバイス
WO2021107032A1 (ja) * 2019-11-27 2021-06-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び、半導体発光素子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261106A (ja) * 1999-01-07 2000-09-22 Matsushita Electric Ind Co Ltd 半導体発光素子、その製造方法及び光ディスク装置
WO2005101532A1 (ja) * 2004-04-16 2005-10-27 Nitride Semiconductors Co., Ltd. 窒化ガリウム系発光装置
JP2010177651A (ja) * 2009-02-02 2010-08-12 Rohm Co Ltd 半導体レーザ素子
JP2013093382A (ja) * 2011-10-24 2013-05-16 Sumitomo Electric Ind Ltd 窒化物半導体発光素子
US20150171265A1 (en) * 2012-07-03 2015-06-18 Invensas Corporation Quantum efficiency of multiple quantum wells
JP2016219587A (ja) * 2015-05-20 2016-12-22 ソニー株式会社 半導体光デバイス
WO2021107032A1 (ja) * 2019-11-27 2021-06-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び、半導体発光素子の製造方法

Similar Documents

Publication Publication Date Title
KR20110106879A (ko) 복수의 mqw 영역을 포함하는 mqw 레이저 구조
JP5170954B2 (ja) 半導体レーザ装置
JP7447028B2 (ja) 半導体発光素子
US11710941B2 (en) Semiconductor laser element
WO2015092992A1 (ja) 半導体発光素子
US7006545B2 (en) Semiconductor laser device and optical fiber amplifier using the same
JP3555727B2 (ja) 半導体レーザ素子
US10454249B2 (en) Semiconductor laser device
US8660160B2 (en) Semiconductor laser element and method of manufacturing the same
WO2023243518A1 (ja) 窒化物系半導体発光素子
JP2007220692A (ja) 半導体レーザ
WO2023153330A1 (ja) 窒化物系半導体発光素子
WO2022172797A1 (ja) 窒化物系半導体発光素子
WO2023153035A1 (ja) 窒化物系半導体発光素子
WO2024070351A1 (ja) 窒化物系半導体発光素子
US20230402821A1 (en) Nitride semiconductor light-emitting element
WO2023238655A1 (ja) 半導体発光素子
WO2023026858A1 (ja) 窒化物系半導体発光素子
WO2023281902A1 (ja) 窒化物系半導体発光素子
JP2019041102A (ja) レーザダイオード
JP5840893B2 (ja) 半導体レーザ装置
US11509117B2 (en) Light emitting element
JP2024075517A (ja) 窒化物系半導体発光素子
JP2023031164A5 (ja)
JP2011109148A (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823810

Country of ref document: EP

Kind code of ref document: A1