WO2023273367A1 - 一种高黏度羧甲基纤维素锂及其制备方法和应用 - Google Patents

一种高黏度羧甲基纤维素锂及其制备方法和应用 Download PDF

Info

Publication number
WO2023273367A1
WO2023273367A1 PCT/CN2022/078072 CN2022078072W WO2023273367A1 WO 2023273367 A1 WO2023273367 A1 WO 2023273367A1 CN 2022078072 W CN2022078072 W CN 2022078072W WO 2023273367 A1 WO2023273367 A1 WO 2023273367A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
lithium
reaction
viscosity
solution
Prior art date
Application number
PCT/CN2022/078072
Other languages
English (en)
French (fr)
Inventor
聂桢桢
夏银凤
李友琦
张海涛
杜琨
余庆
周子来
刘维
何玉明
张菁
Original Assignee
重庆力宏精细化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆力宏精细化工有限公司 filed Critical 重庆力宏精细化工有限公司
Publication of WO2023273367A1 publication Critical patent/WO2023273367A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/06Rendering cellulose suitable for etherification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B17/00Apparatus for esterification or etherification of cellulose
    • C08B17/06Apparatus for esterification or etherification of cellulose for making cellulose ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of modification of natural polymer materials, in particular to a high-viscosity lithium carboxymethyl cellulose and its preparation method and application.
  • 3C and new energy power products have higher requirements for the energy density and electrochemical performance of lithium-ion batteries.
  • energy density There are two directions to improve energy density.
  • One is to develop high-energy-density active materials such as high-nickel materials, silicon-carbon materials, and silicon-oxygen materials; the other is to reduce the amount of additives used in the slurry system to increase the amount of active materials added.
  • high-energy-density active materials such as high-nickel materials, silicon-carbon materials, and silicon-oxygen materials
  • additives used in the slurry system such as the use of conductive agents with high conductivity, high-viscosity binders, dispersants with good dispersion properties, etc.
  • Lithium carboxymethyl cellulose plays the roles of stabilizing the slurry, dispersing the active material and assisting the bonding in the slurry preparation of the negative electrode sheet of the lithium ion battery.
  • lithium carboxymethyl cellulose is a polymer material with poor electrical conductivity, and coating it on the active material will inhibit its electrochemical performance.
  • the viscosity of existing carboxymethyl cellulose lithium is limited, so the amount of addition is relatively large, usually 1.0-1.5%, which further increases the production cost. In addition, there is still a large room for improvement in the performance of carboxymethyl cellulose.
  • the application provides a high-viscosity carboxymethylcellulose lithium, which can reduce the amount of carboxymethylcellulose lithium used in the preparation of lithium-ion battery negative electrodes, and can improve the energy density of lithium-ion batteries and electrochemical performance.
  • the application firstly provides a method for preparing high-viscosity lithium carboxymethyl cellulose, comprising the following steps:
  • cross-linking agent is a polar solvent aqueous solution; further, the concentration of the cross-linking agent is 20-85%.
  • the concentration of the ethanol solution is 70-95%.
  • the concentration of the sodium hydroxide solution is 25-50%.
  • the raw materials are put into the reaction kettle according to the specified weight, and the vacuum is once evacuated to -10 ⁇ -25Kpa, and then nitrogen is filled to 3 ⁇ 10Kpa, and the second time is evacuated to -25 ⁇ -80Kpa, and then nitrogen is filled to 3 ⁇ 10Kpa. Alkalization reaction.
  • the nitrogen pressure is kept at 3-10KPa during the reaction process, and the alkalization reaction time is 30-70min.
  • the alkalization reaction product is added to the monochloroacetic acid-ethanol solution to carry out the etherification reaction under normal pressure; further, the mass concentration of monochloroacetic acid in the monochloroacetic acid-ethanol solution is 45 ⁇ 65%. The concentration of ethanol in the chloroacetic acid-ethanol solution is ⁇ 93%.
  • the etherification reaction time is 30-80 minutes.
  • the crude CMC-Na is added to the sulfuric acid solution to carry out the acidification reaction under normal pressure system; further, the concentration of the sulfuric acid solution is 10-40%.
  • the acidification reaction time is 60-180 minutes.
  • the lithium salt-ethanol solution is prepared by dissolving 0.5-3 parts of lithium salt in parts by weight in 1-5 parts of ethanol solution with a concentration of 65-95%.
  • substitution reaction time is 30-120 minutes.
  • cellulose, crosslinking agent, sodium hydroxide solution, ethanol solution, and monochloroacetic acid-ethanol solution are 3-10 parts, 2-15 parts, 1-8 parts, 5 parts by weight, respectively. ⁇ 25 servings and 2 ⁇ 10 servings.
  • the present application provides a high-viscosity carboxymethylcellulose lithium prepared by the above-mentioned preparation method of high-viscosity carboxymethylcellulose lithium.
  • the present application provides an application of high-viscosity carboxymethylcellulose lithium in the preparation of lithium-ion battery negative electrodes.
  • the high-viscosity lithium carboxymethyl cellulose provided by the application can be used as an additive for the negative electrode plate to reduce the dosage to 0.6%, which can be reduced by more than 0.4% compared with the dosage of 1.0-1.5% in the prior art, saving the production cost.
  • the high-viscosity carboxymethylcellulose lithium provided by the application can also increase the energy density and the migration rate of lithium ions in the battery, and reduce the discharge DC resistance of the lithium battery at -30°C by about 18%.
  • the capacity at high rates can be increased by about 15%, with excellent electrochemical performance.
  • a preparation method for high-viscosity carboxymethylcellulose lithium comprising the steps of:
  • cross-linking agent is a polar solvent aqueous solution; further, the concentration of the cross-linking agent is 20-85%.
  • cross-linking agent can be methanol or isopropanol.
  • the concentration of the ethanol solution is 70-95%.
  • the concentration of the sodium hydroxide solution is 25-50%.
  • the raw materials are put into the reaction kettle according to the specified weight, and the vacuum is once evacuated to -10 ⁇ -25Kpa, and then nitrogen is filled to 3 ⁇ 10Kpa, and the second time is evacuated to -25 ⁇ -80Kpa, and then nitrogen is filled to 3 ⁇ 10Kpa. Alkalization reaction.
  • the purpose of vacuuming is to get rid of the air and avoid the oxidation of cellulose by the oxygen in the air, so that the molecular chain becomes shorter and the viscosity is reduced.
  • Nitrogen filling after vacuuming to form an inert atmosphere is to prevent air from re-entering the reactor. Repeated vacuuming-nitrogen filling operations are all to ensure that the reactor is free of air and oxygen.
  • the final process of alkalization requires nitrogen pressure to be maintained at 3-10KPa , is a slightly positive pressure state filled with inert gas, the purpose is to prevent air from entering the reactor, thereby bringing in oxygen.
  • the alkalization reaction time is 30-70 minutes.
  • the alkalization reaction product is added to the monochloroacetic acid-ethanol solution to carry out the etherification reaction under normal pressure; further, the mass concentration of monochloroacetic acid in the monochloroacetic acid-ethanol solution is 45 ⁇ 65%. The concentration of ethanol in the chloroacetic acid-ethanol solution is ⁇ 93%.
  • the etherification reaction time is 30-80 minutes.
  • the reaction product is washed with ethanol solution and purified by centrifugation; further, the concentration of the ethanol solution used in the purification process is 50-80%, and the washing times are 3-4 times.
  • the crude CMC-Na is added to the sulfuric acid solution to carry out the acidification reaction under normal pressure system; further, the concentration of the sulfuric acid solution is 10-40%.
  • the acidification reaction time is 60-180 minutes.
  • the lithium salt-ethanol solution is prepared by dissolving 0.5 to 3 parts of lithium salt in parts by weight in 1 to 5 parts of ethanol solution with a concentration of 65 to 95%; further, the lithium salt can be lithium acetate .
  • the lithium salt can also be lithium hydroxide or lithium carbonate.
  • lithium hydroxide or lithium carbonate When lithium hydroxide or lithium carbonate is selected, add water to 0.5 to 3 parts by weight of lithium hydroxide or lithium carbonate until it dissolves, and the dissolution is complete. After that, it is mixed with 1-5 parts of ethanol solution with a concentration of 65-95% to obtain a lithium salt-ethanol solution.
  • substitution reaction time is 30-120 minutes.
  • cellulose, crosslinking agent, sodium hydroxide solution, ethanol solution, and monochloroacetic acid-ethanol solution are 3-10 parts, 2-15 parts, 1-8 parts, 5 parts by weight, respectively. ⁇ 25 servings and 2 ⁇ 10 servings.
  • the present application provides a high-viscosity carboxymethylcellulose lithium prepared by the above-mentioned preparation method of high-viscosity carboxymethylcellulose lithium.
  • the high-viscosity lithium carboxymethylcellulose provided by this application has the following physical and chemical properties:
  • the application provides an application of high-viscosity carboxymethylcellulose lithium in the preparation of lithium-ion battery negative electrodes.
  • a kind of carboxymethyl cellulose lithium of high viscosity is made by following steps:
  • a kind of carboxymethyl cellulose lithium of high viscosity is made by following steps:
  • a kind of carboxymethyl cellulose lithium of high viscosity is made by following steps:
  • a preparation method for a lithium-ion battery negative pole piece comprising the steps of:
  • step (3) After mixing graphite and conductive carbon black evenly, add the solution in step (2), and disperse at a high speed at 850 rpm for 3 hours.
  • a preparation method for a lithium-ion battery negative pole piece comprising the steps of:
  • step (3) After mixing graphite and conductive carbon black evenly, add the solution in step (2), and disperse at high speed for 1 hour at 1500 rpm.
  • a preparation method for a lithium-ion battery negative pole piece comprising the steps of:
  • Example 3 The high-viscosity carboxymethylcellulose lithium prepared in Example 3 is mixed with deionized water, sodium lignosulfonate and graphene are added in the process of mixing, and the high-viscosity carboxymethylcellulose lithium and wood Sodium sulfonate was dissolved and allowed to stand for 12 hours.
  • step (3) After mixing graphite and conductive carbon black evenly, add the solution in step (2), and disperse at high speed for 2 hours at 1000 rpm.
  • a preparation method for a lithium-ion battery negative pole piece comprising the steps of:
  • step (3) After mixing graphite and conductive carbon black evenly, add the solution in step (2), and disperse at a high speed at 850 rpm for 3 hours.
  • the lithium-ion battery negative pole pieces prepared in Examples 4-6 and the comparative example were respectively combined with the positive pole pieces of the lithium iron phosphate system to be wound into 500mAh batteries, and the electrochemical performance was tested. Performance test results are shown in Tables 1-5.
  • the combination of ultra-high viscosity lithium carboxymethyl and sodium lignosulfonate can disperse single-walled carbon nanotubes and graphene, and the combination of conductive carbon black and single-walled carbon nanotubes or graphene makes short
  • the combination of distance conduction and long-range conduction can improve the conductivity of the pole piece, thereby improving the kinetic performance of the battery.
  • the DCR at room temperature is reduced by 9%-16%
  • the DCR at low temperature is reduced by 13-17%
  • the capacity retention rate at high and low temperature is increased by about 3%
  • the capacity retention rate at high rate (3C) can be increased by 10-12%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本申请属于天然高分子材料改性技术领域,提供了一种高黏度羧甲基纤维素锂以及其制备方法和应用。将原料送入反应釜中经碱化反应、醚化反应、酸化反应以及取代反应后制得高黏度羧甲基纤维素锂,制得的高黏度羧甲基纤维素锂能够用于制备锂离子电池负极极片。本申请提供的高黏度羧甲基纤维素锂相较于现有羧甲基纤维素锂不仅能够减少在制备锂离子电池负极极片中的使用量节约使用成本,搭配木质素磺酸钠后还能够提升材料的电化学性能。

Description

一种高黏度羧甲基纤维素锂及其制备方法和应用 技术领域
本申请涉及天然高分子材料改性技术领域,尤其涉及一种高黏度羧甲基纤维素锂及其制备方法和应用。
背景技术
随着3C与新能源动力产品的迅速发展,3C与新能源动力产品对锂离子电池的能量密度和电化学性能有着更高需求。提高能量密度有两个方向,一是开发高能量密度的活性材料如高镍材料,硅碳材料,硅氧材料;二是减少浆料体系中添加剂的使用量,来提高活性材料的添加量,如使用高导电率的导电剂,高粘度粘结剂,分散性能好的分散剂等。
羧甲基纤维素锂在制备锂离子电池负极极片的浆料中起着稳定浆料、分散活性物质以及辅助粘结的作用。但是羧甲基纤维素锂属于高分子材料,导电性能较差,包覆在活性物质上会抑制其电化学性能的发挥。且现有羧甲基纤维素锂的黏度有限,故添加量较多,通常在1.0~1.5%,这进一步提高了生产成本,此外羧甲基纤维素里的性能还存在较大的提升空间。
发明内容
有鉴于此,本申请提供了一种高黏度的羧甲基纤维素锂,能够减少羧甲基纤维素锂在制备锂离子电池负极极片中的使用量,并能够提升锂离子电池的能量密度和电化学性能。
为了达到上述目的,本申请首先提供了一种高黏度羧甲基纤维素锂的制备方法,包含如下步骤:
将纤维素、交联剂、氢氧化钠溶液混合于乙醇溶液中,抽真空去除空气后 充入氮气形成惰性气氛,在惰性气氛下进行碱化反应,反应产物在常压下经醚化后得到粗制CMC-Na;将粗制CMC-Na酸化得到CMC-H;将制得的CMC-H加入至锂盐-乙醇溶液中进行取代反应,得到高黏度羧甲基纤维素锂。
进一步地,交联剂为极性溶剂水溶液;更进一步地,交联剂浓度为20~85%。
进一步地,乙醇溶液的浓度为70~95%。
进一步地,氢氧化钠溶液的浓度为25~50%。
进一步地,将原料按规定重量份投入反应釜中,一次抽真空至-10~-25Kpa,然后充氮3~10Kpa,二次抽真空至-25~-80Kpa,再充氮3~10Kpa,进行碱化反应。
进一步地,反应过程氮气压力保持在3~10KPa,碱化反应的时间为30~70min。
进一步地,将碱化反应产物加入至一氯乙酸-乙醇溶液中在常压下进行醚化反应;更进一步地,一氯乙酸-乙醇溶液中一氯乙酸的质量浓度为45~65%,一氯乙酸-乙醇溶液中乙醇浓度≥93%。
进一步地,醚化反应的时间为30~80min。
进一步地,将粗制CMC-Na加入至硫酸溶液中在常压体系下进行酸化反应;更进一步地,硫酸溶液浓度为10~40%。
进一步地,酸化反应时间为60~180min。
进一步地,锂盐-乙醇溶液由按重量份计的0.5~3份锂盐溶于1~5份的65~95%的浓度的乙醇溶液中制得。
进一步地,取代反应时间为30~120min。
进一步地,纤维素、交联剂、氢氧化钠溶液、乙醇溶液、以及一氯乙酸-乙醇溶液的加入量按照重量份计分别为3~10份、2~15份、1~8份、5~25份以 及2~10份。
其次,本申请提供了一种由上述高黏度羧甲基纤维素锂的制备方法所制得的高黏度羧甲基纤维素锂。
再次,本申请提供了一种高黏度羧甲基纤维素锂在制备锂离子电池负极极片中的应用。
具体的,包括如下步骤:
将高黏度羧甲基纤维素锂加入至水中搅拌2~4h,在混合的过程中加入木质素磺酸钠、单壁碳纳米管、石墨烯,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液6~24h,将石墨和导电炭黑混合后加入至溶液后,在850~1500rpm转速下分散1~3h,分散结束后降低转速至200~500rpm并加入丁苯乳胶,继续搅拌0.5~1h后得到浆料;调节浆料黏度至3000~7000mPa·s后,涂覆于负极集流体铜箔上,经烘干辊压后得到负极极片。
进一步地,按照重量份计包含如下原料:
石墨96~98份、导电炭黑1~2份、羧甲基纤维素锂0.6~1份、丁苯乳胶1~2份、木质素磺酸钠0.1~0.5份、单壁碳纳米管0~0.5份、石墨烯0~0.5份以及水20~70份。
本申请具有如下有益效果:
(1)本申请提供的高黏度羧甲基纤维素锂作为负极极片添加剂可降低用量至0.6%,较现有技术中1.0~1.5%的用量能够减少0.4%以上,节约了生产成本。
(2)本申请提供的高黏度羧甲基纤维素锂还可以提高能量密度以及锂离子在电池中的迁移速率,使锂电池在-30℃下的放电直流电阻降低18%左右。在高倍率下的容量可以提高15%左右,具有优异的电化学性能。
(3)木质素磺酸钠与高黏度羧甲基纤维素锂的组合使用能够进一步分散单壁碳纳米管以及石墨烯,提高极片的电导率,从而提高电池的动力学性能。
具体实施方式
一种高黏度羧甲基纤维素锂的制备方法,包含如下步骤:
将纤维素、交联剂、氢氧化钠溶液混合于乙醇溶液中,抽真空去除空气后充入氮气形成惰性气氛,在惰性气氛下进行碱化反应,反应产物在常压下经醚化后得到粗制CMC-Na;将粗制CMC-Na酸化得到CMC-H;将制得的CMC-H加入至锂盐-乙醇溶液中进行取代反应,得到高黏度羧甲基纤维素锂。
进一步地,交联剂为极性溶剂水溶液;更进一步地,交联剂浓度为20~85%。
本申请不对交联剂的种类做任何限定,满足极性溶剂的条件即可,交联剂可以为甲醇或异丙醇。
进一步地,乙醇溶液的浓度为70~95%。
进一步地,氢氧化钠溶液的浓度为25~50%。
进一步地,将原料按规定重量份投入反应釜中,一次抽真空至-10~-25Kpa,然后充氮3~10Kpa,二次抽真空至-25~-80Kpa,再充氮3~10Kpa,进行碱化反应。
抽真空目的是排除空气,避免空气中的氧氧化纤维素,使得分子链变短降低粘度。抽真空后充氮形成惰性气氛是为了不让空气再进入反应釜,重复抽真空-充氮操作均是为了确保反应釜无空气无氧环境,最后碱化反应整个过程要求氮气压力保持3~10KPa,是惰性气体充满的微正压状态,目的是为了不让空气进入反应釜,从而带入氧。
进一步地,碱化反应的时间为30~70min。
进一步地,将碱化反应产物加入至一氯乙酸-乙醇溶液中在常压下进行醚化 反应;更进一步地,一氯乙酸-乙醇溶液中一氯乙酸的质量浓度为45~65%,一氯乙酸-乙醇溶液中乙醇浓度≥93%。
进一步地,醚化反应的时间为30~80min。
进一步地,醚化反应结束后将反应产物用乙醇溶液洗涤、离心分离进行纯化;更进一步地,纯化过程中使用的乙醇溶液浓度为50~80%,洗涤次数为3~4次。
进一步地,将粗制CMC-Na加入至硫酸溶液中在常压体系下进行酸化反应;更进一步地,硫酸溶液浓度为10~40%。
进一步地,酸化反应时间为60~180min。
进一步地,锂盐-乙醇溶液由按重量份计的0.5~3份锂盐溶于1~5份的65~95%的浓度的乙醇溶液中制得;更进一步地,锂盐可为乙酸锂。
再进一步地,锂盐还可以为氢氧化锂或碳酸锂,当选用氢氧化锂或碳酸锂时,向重量份计的0.5~3份氢氧化锂或碳酸锂中加水至溶解即可,溶解完毕后与1~5份的65~95%的浓度的乙醇溶液混合后得到锂盐-乙醇溶液。
进一步地,取代反应时间为30~120min。
进一步地,纤维素、交联剂、氢氧化钠溶液、乙醇溶液、以及一氯乙酸-乙醇溶液的加入量按照重量份计分别为3~10份、2~15份、1~8份、5~25份以及2~10份。
其次,本申请提供了一种由上述高黏度羧甲基纤维素锂的制备方法所制得的高黏度羧甲基纤维素锂。
经检测,本申请提供的高黏度羧甲基纤维素锂具有如下理化性质:
取代度:0.6~1.0
1%黏度:>25000mPa·s
pH:6.5~9.5
纯度≥99.7%。
本申请提供了一种高黏度羧甲基纤维素锂在制备锂离子电池负极极片中的应用。
具体的,包括如下步骤:
将高黏度羧甲基纤维素锂加入至水中搅拌2~4h,在混合的过程中加入木质素磺酸钠、单壁碳纳米管、石墨烯,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液6~24h,将石墨和导电炭黑混合后加入至溶液后,在850~1500rpm转速下分散1~3h,分散结束后降低转速至200~500rpm并加入丁苯乳胶,继续搅拌0.5~1h后得到浆料;调节浆料黏度至3000~7000mPa·s后,涂覆于负极集流体铜箔上,经烘干辊压后得到负极极片。
进一步地,按照重量份计包含如下原料:
石墨96~98份、导电炭黑1~2份、羧甲基纤维素锂0.6~1份、丁苯乳胶1~2份、木质素磺酸钠0.1~0.5份、单壁碳纳米管0~0.5份、石墨烯0~0.5份以及水20~70份。
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
一种高黏度的羧甲基纤维素锂,由如下步骤制得:
(1)将3份纤维素、2份20%浓度的甲醇水溶液、1份25%浓度的氢氧化钠溶液以及5份70%浓度的乙醇溶液加入至反应釜中,一次抽真空至-20KPa,充 氮3KPa,二次抽真空至-25KPa,充氮3KPa,进行碱化反应,碱化反应过程的氮气压力保持在3KPa,碱化反应时间为30min。
(2)将碱化反应产物加入至2份45%质量浓度的一氯乙酸-乙醇溶液中,乙醇浓度为93%,加压至常压,进行醚化反应,醚化反应时间为30min,用50%浓度的乙醇洗涤醚化反应产物3次后得到粗制CMC-Na。
(3)将粗制CMC-Na加入至10%的硫酸溶液中,常压下进行酸化反应得到CMC-H,酸化反应时间为60min。
(4)将0.5份乙酸锂溶于1份65%浓度的乙醇溶液中制得锂盐-乙醇溶液,将CMC-H加入至锂盐-乙醇溶液中进行取代反应,控制取代反应的pH为6.5,取代反应时间为30min,即得高黏度羧甲基纤维素锂。
对制得的高黏度羧甲基纤维素锂进行理化性能检测,结果如下:
取代度:0.65
1%黏度:27580mPa·s
pH:6.9。
纯度:99.82%
实施例2
一种高黏度的羧甲基纤维素锂,由如下步骤制得:
(1)将10份纤维素、15份85%浓度的异丙醇水溶液、8份50%浓度的氢氧化钠溶液以及25份95%浓度的乙醇溶液加入至反应釜中,一次抽真空至-20KPa,充氮10KPa,二次抽真空至-80KPa,充氮10KPa,进行碱化反应,碱化反应过程的氮气压力保持在10KPa,碱化反应时间为70min。
(2)将碱化反应产物加入至10份65%质量浓度的一氯乙酸-乙醇溶液中,乙醇浓度为95%,加压至常压,进行醚化反应,醚化反应时间为80min,用50% 浓度的乙醇洗涤醚化反应产物3次后得到粗制CMC-Na。
(3)将粗制CMC-Na加入至40%的硫酸溶液中,常压下进行酸化反应得到CMC-H,酸化反应时间为180min。
(4)将3份乙酸锂溶于5份95%浓度的乙醇溶液中制得锂盐-乙醇溶液,将CMC-H加入至锂盐-乙醇溶液中进行取代反应,控制取代反应的pH为9.5,取代反应时间为120min,即得高黏度羧甲基纤维素锂。
对制得的高黏度羧甲基纤维素锂进行理化性能检测,结果如下:
取代度:0.70
1%黏度:30180mPa·s
pH:8.0。
纯度:99.97%
实施例3
一种高黏度的羧甲基纤维素锂,由如下步骤制得:
(1)将5份纤维素、7份45%浓度的异丙醇水溶液、5份40%浓度的氢氧化钠溶液以及15份80%浓度的乙醇溶液加入至反应釜中,一次抽真空至-20KPa,充氮8KPa,二次抽真空至-50KPa,充氮8KPa,进行碱化反应,碱化反应过程的氮气压力保持在8KPa,碱化反应时间为50min。
(2)将碱化反应产物加入至6份50%质量浓度的一氯乙酸-乙醇溶液中,乙醇浓度为93%,加压至常压,进行醚化反应,醚化反应时间为50min,用50%浓度的乙醇洗涤醚化反应产物3次后得到粗制CMC-Na。
(3)将粗制CMC-Na加入至20%的硫酸溶液中,常压下进行酸化反应得到CMC-H,酸化反应时间为120min。
(4)将2份乙酸锂溶于4份75%浓度的乙醇溶液中制得锂盐-乙醇溶液,将 CMC-H加入至锂盐-乙醇溶液中进行取代反应,控制取代反应的pH为8.0,取代反应时间为90min,即得高黏度羧甲基纤维素锂。
对制得的高黏度羧甲基纤维素锂进行理化性能检测,结果如下:
取代度:0.69
1%黏度:32905mPa·s
pH:7.8。
纯度:99.9%
实施例4
一种锂离子电池负极极片的制备方法,包含如下步骤:
(1)按照重量份计,称取石墨96份,导电炭黑1份,实施例3制得的高黏度羧甲基纤维素锂0.9份,丁苯胶乳2份,木质素磺酸钠0.1份,去离子水20份。
(2)将实施例3制得的高黏度羧甲基纤维素锂与去离子水混合,在混合的过程中加入木质素磺酸钠,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液12h。
(3)将石墨,导电炭黑混合均匀后加入步骤(2)中的溶液,850rpm下高速分散3h。
(4)高速分散结束后,降低转速至200rpm并加入丁苯胶乳份,继续搅拌1h后得到浆料。
(5)调节浆料黏度至4986mPa.s,浆料固的含量为48.3%。
(6)将浆料涂覆在负极集流体铜箔上,经过烘干,辊压得到负极极片。
实施例5
一种锂离子电池负极极片的制备方法,包含如下步骤:
(1)按照重量份计,称取石墨98份,导电炭黑2份,单壁碳纳米管0.5份、实施例3制得的高黏度羧甲基纤维素锂1份,丁苯胶乳1份,木质素磺酸钠0.5份,去离子水70份。
(2)将实施例3制得的高黏度羧甲基纤维素锂与去离子水混合,在混合的过程中加入木质素磺酸钠和单壁碳纳米管,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液8h。
(3)将石墨,导电炭黑混合均匀后加入步骤(2)中的溶液,1500rpm下高速分散1h。
(4)高速分散结束后,降低转速至500rpm并加入丁苯胶乳份,继续搅拌0.5h后得到浆料。
(5)调节浆料黏度至4830mPa.s,浆料固的含量为48.0%。
(6)将浆料涂覆在负极集流体铜箔上,经过烘干,辊压得到负极极片。
实施例6
一种锂离子电池负极极片的制备方法,包含如下步骤:
(1)按照重量份计,称取石墨96份,导电炭黑0.5份,石墨烯0.5份、实施例3制得的高黏度羧甲基纤维素锂0.6份,丁苯胶乳2份,木质素磺酸钠0.4份,去离子水50份。
(2)将实施例3制得的高黏度羧甲基纤维素锂与去离子水混合,在混合的过程中加入木质素磺酸钠和石墨烯,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液12h。
(3)将石墨,导电炭黑混合均匀后加入步骤(2)中的溶液,1000rpm下高速分散2h。
(4)高速分散结束后,降低转速至300rpm并加入丁苯胶乳份,继续搅拌0.5h 后得到浆料。
(5)调节浆料黏度至4880mPa.s,浆料固的含量为48.73%。
(6)将浆料涂覆在负极集流体铜箔上,经过烘干,辊压得到负极极片。
对比例
一种锂离子电池负极极片的制备方法,包含如下步骤:
(1)按照重量份计,称取石墨95.5份,导电炭黑1份,市售羧甲基纤维素锂1.5份,丁苯胶乳2份,去离子水50份。其中市售羧甲基纤维素锂的取代度为0.68,1%黏度为4950mPa·s,pH为7.6。
(2)将羧甲基纤维素锂与去离子水混合,待羧甲基纤维素锂溶解后静置溶液12h。
(3)将石墨,导电炭黑混合均匀后加入步骤(2)中的溶液,850rpm下高速分散3h。
(4)高速分散结束后,降低转速至200rpm并加入丁苯胶乳份,继续搅拌1h后得到浆料。
(5)调节浆料黏度至4770mPa.s,浆料固的含量为47.9%。
(6)将浆料涂覆在负极集流体铜箔上,经过烘干,辊压得到负极极片。
将实施例4~6以及对比例所制备的锂离子电池负极极片分别搭配磷酸铁锂体系的正极极片卷绕成500mAh电芯,并测试电化学性能。性能测试结果如表1~5所示。
表1实施例4~6以及对比例的首效测试结
Figure PCTCN2022078072-appb-000001
Figure PCTCN2022078072-appb-000002
表2实施例4~6以及对比例的常温DCR测试结果
Figure PCTCN2022078072-appb-000003
表3实施例4~6以及对比例的低温DCR测试结果
Figure PCTCN2022078072-appb-000004
表4实施例4~6以及对比例的高低温性能测试结果
Figure PCTCN2022078072-appb-000005
Figure PCTCN2022078072-appb-000006
表5实施例4~6以及对比例的倍率性能测试结果
Figure PCTCN2022078072-appb-000007
由表1可知,使用了超高粘羧甲基纤维素锂与木质素磺酸钠的组合作为负极浆料体系的分散剂和增稠剂可以降低0.5%的添加量,并提高活性物质的添加量,从而提高电池的容量以及首效。
由表2~5可知,超高粘羧甲基素锂与木质素磺酸钠的组合可以分散单壁碳纳米管以及石墨烯,导电炭黑与单壁碳纳米管或石墨烯的组合使短距离导电与长程导电结合起来,可以提高极片的电导率,从而提高电池的动力学性能。常 温DCR降低9%~16%,低温DCR降低13~17%,高低温下容量的保持率提高3%左右,高倍率下(3C)容量的保持率可以提高10~12%。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

  1. 一种高黏度羧甲基纤维素锂的制备方法,其特征在于,包括以下步骤:
    将纤维素、极性溶剂水溶液、氢氧化钠溶液混合于乙醇溶液中,抽真空去除空气后充入氮气形成惰性气氛,在惰性气氛下进行碱化反应,反应产物在常压下经醚化后得到粗制CMC-Na;将粗制CMC-Na酸化得到CMC-H;将制得的CMC-H加入至锂盐-乙醇溶液中进行取代反应,得到高黏度羧甲基纤维素锂;
    碱化反应中使用的纤维素、极性溶剂水溶液、氢氧化钠溶液、乙醇溶液的加入量按重量份数分别为3~10份、2~15份、1~8份、5~25份;
    所述碱化反应的具体步骤如下:
    将原料按规定重量份投入反应釜中,一次抽真空至-10~-25Kpa,然后充氮3~10Kpa,二次抽真空至-25~-80Kpa,再充氮3~10Kpa,进行碱化反应;反应过程氮气压力保持在3~10KPa,碱化反应的时间为30min;
    所述醚化反应的具体步骤如下:
    将碱化反应产物加入至一氯乙酸-乙醇溶液中在常压下进行醚化反应;所述一氯乙酸-乙醇溶液中一氯乙酸的质量浓度为45~65%,所述一氯乙酸-乙醇溶液中乙醇浓度≥93%,一氯乙酸-乙醇溶液加入量按重量份数计为2~10份,醚化反应时间为30~80min;
    所述酸化反应的具体步骤如下:
    将粗制CMC-Na加入至硫酸溶液中在常压体系下进行酸化反应;所述硫酸溶液浓度为10~40%,酸化时间为60~180min;
    所述取代反应的pH为6.5~10.0,取代反应时间为30~120min;
    所述极性溶剂水溶液为甲醇或者异丙醇;
    所述极性溶剂水溶液的浓度为20~85%;所述乙醇溶液的浓度为70~95%;所述氢氧化钠溶液浓度为25~50%。
  2. 由权利要求1所述的高黏度羧甲基纤维素锂的制备方法所制得的高黏度羧甲基纤维素锂。
  3. 如权利要求2所述的高黏度羧甲基纤维素锂在制备负极极片中的应用,其特征在于,包含如下步骤:
    将高黏度羧甲基纤维素锂加入至水中搅拌2~4h,在混合的过程中加入木质素磺酸钠、单壁碳纳米管、石墨烯,待高黏度羧甲基纤维素锂和木质素磺酸钠溶解后静置溶液6~24h,将石墨和导电炭黑混合后加入至溶液后,在850~1500rpm转速下分散1~3h,分散结束后降低转速至200~500rpm并加入丁苯乳胶,继续搅拌0.5~1h后得到浆料;调节浆料黏度至3000~7000mPa·s后,涂覆于负极集流体铜箔上,经烘干辊压后得到负极极片。
  4. 根据权利要求3所述的高黏度羧甲基纤维素锂在制备负极极片中的应用,其特征在于,制备负极极片的各原料配比如下:
    石墨96~98份、导电炭黑1~2份、羧甲基纤维素锂0.6~1份、丁苯乳胶1~2份、木质素磺酸钠0.1~0.5份、单壁碳纳米管0~0.5份、石墨烯0~0.5份以及水20~70份。
PCT/CN2022/078072 2021-07-02 2022-02-25 一种高黏度羧甲基纤维素锂及其制备方法和应用 WO2023273367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110753054.5 2021-07-02
CN202110753054.5A CN113265008B (zh) 2021-07-02 2021-07-02 一种高黏度羧甲基纤维素锂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023273367A1 true WO2023273367A1 (zh) 2023-01-05

Family

ID=77236427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078072 WO2023273367A1 (zh) 2021-07-02 2022-02-25 一种高黏度羧甲基纤维素锂及其制备方法和应用

Country Status (6)

Country Link
US (1) US11608387B2 (zh)
JP (1) JP7377897B2 (zh)
KR (1) KR102519907B1 (zh)
CN (1) CN113265008B (zh)
DE (1) DE102022104702A1 (zh)
WO (1) WO2023273367A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265008B (zh) * 2021-07-02 2022-03-01 重庆力宏精细化工有限公司 一种高黏度羧甲基纤维素锂及其制备方法和应用
CN113912742A (zh) * 2021-09-07 2022-01-11 重庆理工大学 一种超高取代度和超高粘度羧甲基纤维素锂的合成方法
CN114805614A (zh) * 2022-05-18 2022-07-29 向能新型材料科技(河北)有限公司 一种磺甲基纤维素锂作为锂电池粘结剂的制备方法
CN116207256A (zh) * 2022-09-23 2023-06-02 常熟威怡科技有限公司 一种电池的负极浆料及铜箔-石墨负极
CN115710318B (zh) * 2022-11-22 2024-02-02 安徽山河药用辅料股份有限公司 一种注射剂用高黏度羧甲纤维素钠的制备方法
CN116478305A (zh) * 2023-04-19 2023-07-25 绿能纤材(重庆)科技有限公司 一种高纯锂电池级羧甲基纤维素钠的合成制备方法
CN117164728A (zh) * 2023-09-06 2023-12-05 山东扬子生物科技有限公司 一种淤浆法制备锂电池用cmc的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197242A1 (en) * 2013-06-04 2014-12-11 Dow Global Technologies Llc Process for manufacturing lithium carboxymethyl cellulose
CN105330751A (zh) * 2015-11-05 2016-02-17 重庆力宏精细化工有限公司 锂电池用羧甲基纤维素锂的连续化生产方法
CN106496335A (zh) * 2016-11-24 2017-03-15 泸州北方化学工业有限公司 一种制备羧甲基纤维素锂的方法
CN109659564A (zh) * 2018-12-24 2019-04-19 珠海光宇电池有限公司 一种降低锂离子电池阻抗的负极片及其制备方法
US20190267609A1 (en) * 2018-02-26 2019-08-29 Ningde Amperex Technology Limited Negative electrode and lithium ion battery comprising negative electrode
CN113265008A (zh) * 2021-07-02 2021-08-17 重庆力宏精细化工有限公司 一种高黏度羧甲基纤维素锂及其制备方法和应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082472A (ja) 1998-09-03 2000-03-21 Dai Ichi Kogyo Seiyaku Co Ltd 非水電池用電極
KR100661918B1 (ko) * 1999-04-01 2006-12-28 다우 글로벌 테크놀로지스 인크. 겔 강도가 증가된 메틸셀룰로스, 이의 제조방법 및 이를 포함하는 식품 조성물
CN101641812B (zh) * 2007-03-23 2012-08-08 日本瑞翁株式会社 锂离子二次电池电极用浆料的制造方法
WO2011120533A1 (en) * 2010-03-30 2011-10-06 Dow Global Technologies Inc. New high viscosity carboxymethyl cellulose and method of preparation
CN102206286A (zh) * 2011-05-16 2011-10-05 北京理工大学 一种锂电池用羧甲基纤维素锂的制备方法
JP2014022039A (ja) * 2012-07-12 2014-02-03 Dai Ichi Kogyo Seiyaku Co Ltd リチウム二次電池用負極バインダー
CN103560247B (zh) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 一种车载与储能用锂离子电池负极材料及其制备方法
JP6669529B2 (ja) * 2016-02-26 2020-03-18 第一工業製薬株式会社 電極用結着剤
KR20170120973A (ko) * 2016-04-22 2017-11-01 주식회사 엘지화학 CMC-Li염을 포함하는 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN109546085B (zh) 2018-11-29 2020-12-04 瑞红锂电池材料(苏州)有限公司 一种使用高粘导锂粘结剂的碳硅负极极片及其制备方法
CN111423518B (zh) 2019-11-21 2022-04-19 瑞红锂电池材料(苏州)有限公司 一种锂电池粘结剂羧甲基纤维素盐的合成方法
CN111363049A (zh) * 2019-11-21 2020-07-03 重庆纤磊新材料科技有限公司 一种超低溶剂体系的超高粘度的羧甲基纤维素锂合成方法
CN112072110B (zh) 2020-09-16 2022-09-20 远景动力技术(江苏)有限公司 负极、其制备方法及使用了其的锂离子电池
WO2022116049A1 (zh) 2020-12-02 2022-06-09 宁德新能源科技有限公司 负极极片、电化学装置、电子装置及负极极片的制备方法
CN112724266A (zh) * 2020-12-28 2021-04-30 常熟威怡科技有限公司 一种锂电池用羧甲基纤维素锂的制备方法
CN112751034B (zh) 2020-12-31 2022-11-25 远景动力技术(江苏)有限公司 锂离子电池用负极浆料、负极以及锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197242A1 (en) * 2013-06-04 2014-12-11 Dow Global Technologies Llc Process for manufacturing lithium carboxymethyl cellulose
CN105330751A (zh) * 2015-11-05 2016-02-17 重庆力宏精细化工有限公司 锂电池用羧甲基纤维素锂的连续化生产方法
CN106496335A (zh) * 2016-11-24 2017-03-15 泸州北方化学工业有限公司 一种制备羧甲基纤维素锂的方法
US20190267609A1 (en) * 2018-02-26 2019-08-29 Ningde Amperex Technology Limited Negative electrode and lithium ion battery comprising negative electrode
CN109659564A (zh) * 2018-12-24 2019-04-19 珠海光宇电池有限公司 一种降低锂离子电池阻抗的负极片及其制备方法
CN113265008A (zh) * 2021-07-02 2021-08-17 重庆力宏精细化工有限公司 一种高黏度羧甲基纤维素锂及其制备方法和应用

Also Published As

Publication number Publication date
JP2023008785A (ja) 2023-01-19
KR20230006381A (ko) 2023-01-10
CN113265008B (zh) 2022-03-01
JP7377897B2 (ja) 2023-11-10
US20230002511A1 (en) 2023-01-05
DE102022104702A1 (de) 2023-01-05
US11608387B2 (en) 2023-03-21
CN113265008A (zh) 2021-08-17
KR102519907B1 (ko) 2023-04-10

Similar Documents

Publication Publication Date Title
WO2023273367A1 (zh) 一种高黏度羧甲基纤维素锂及其制备方法和应用
WO2017031885A1 (zh) 一种锂电池负极浆料的制备方法
CN101872856B (zh) 一种磷酸铁锂电池正极浆料、使用该正极浆料的磷酸铁锂电池及其制备方法
CN106848202B (zh) 一种锂离子电池负极片的制备方法
WO2014008761A1 (zh) 锂离子电池用新型壳聚糖及其衍生物水系粘结剂
TWI772337B (zh) 非水電解質二次電池負極及非水電解質二次電池
CN112151768B (zh) 一种挤出压延制备硅碳负极电极片的方法及电极片
CN113078322A (zh) 一种锂电池循环稳定性的石墨烯-硅负极材料及制备方法
CN111446423B (zh) 一种锂离子电池电极材料及其制备方法、锂离子电池
CN111969181A (zh) 基于成膜添加剂的锂离子电池负极片及其制备方法、应用
CN109411758A (zh) 一种锂离子电池负极用水系导电粘合剂的制备方法
CN115954458A (zh) 一种硅碳负极浆料及其制备方法和应用
WO2023179051A1 (zh) 一种预锂化包覆钴酸锂正极材料及其制备方法
CN113372456B (zh) 一种超低粘羧甲基纤维素锂及其制备方法与应用
CN116111091A (zh) 一种粘结剂组合物、钠离子电池正极浆料和钠离子电池
CN112234205B (zh) 一种用于锂硫电池的通用电极材料及其制备方法
CN113658743A (zh) 碳点复合导电剂及其制备方法与应用
CN113964309A (zh) 一种负极浆料及其制备方法、负极片以及二次电池
CN111900325A (zh) 一种锂离子电池用cmc快速溶解方法及负极片的制备方法
CN107732228B (zh) 高镍正极浆料及其合浆方法和涂布方法、电芯、锂电池
CN111682206B (zh) 一种基于石墨烯-二氧化硅复合气凝胶的锂离子电池负极浆料及其制备方法
CN115838445B (zh) 水溶性弹性多糖聚合物、电池粘结剂及其制备方法和应用
CN109546086B (zh) 使用高粘导锂粘结剂的磷酸铁锂正极极片及其制备方法
CN112349907B (zh) 一种复合粘结剂材料及其制备方法和用途
CN118099427A (zh) 一种固态锂电池用粘结剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE