WO2023179051A1 - 一种预锂化包覆钴酸锂正极材料及其制备方法 - Google Patents

一种预锂化包覆钴酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2023179051A1
WO2023179051A1 PCT/CN2022/131697 CN2022131697W WO2023179051A1 WO 2023179051 A1 WO2023179051 A1 WO 2023179051A1 CN 2022131697 W CN2022131697 W CN 2022131697W WO 2023179051 A1 WO2023179051 A1 WO 2023179051A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt oxide
lithium cobalt
cathode material
prelithiated
coated lithium
Prior art date
Application number
PCT/CN2022/131697
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023179051A1 publication Critical patent/WO2023179051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Definitions

  • the invention belongs to the technical field of lithium battery cathode materials, and particularly relates to a prelithiated coated lithium cobalt oxide cathode material and a preparation method thereof.
  • Lithium-ion secondary batteries have the characteristics of high energy density, light weight, no environmental pollution, no memory effect, stable working performance, safety and reliability. They have been widely used since their inception and have become the main portable power source and the first choice for high-power mobile batteries. Development focus.
  • the cathode material In lithium-ion batteries, the cathode material is its most important component and the key to determining the performance of lithium-ion batteries.
  • Layered lithium-ion battery cathode materials are a hot research topic in the field. In theory, materials with layered structure and spinel structure can be used as cathode materials for lithium-ion batteries.
  • Lithium cobalt oxide has the following characteristics when used as cathode materials for lithium-ion batteries: 1. Good safety; 2. Average capacity; 3. The cycle performance is average. Lithium cobalt oxide has been widely used as a cathode material and has been industrialized. The research is relatively mature and the overall performance is excellent.
  • the synthesis temperature is as high as 900°C. Therefore, the traditional method of realizing carbon coating through organic carbon decomposition is difficult to achieve in lithium cobalt oxide: first, carbon coating must be in an inert atmosphere, which is inconsistent with the oxygen atmosphere required for the synthesis of lithium cobalt oxide; secondly, the temperature of carbon decomposition and graphitization must be achieved As high as 700°C-900°C, it is easy to reduce cobalt metal ions into elemental substances or CoO or Co 3 O 4 . Therefore, it is urgent to develop a method that can achieve carbon coating of lithium cobalt oxide to prepare cathode materials with excellent electrochemical properties. .
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a prelithiated coated lithium cobalt oxide cathode material and a preparation method thereof.
  • the cathode material prepared by this method has excellent electrochemical properties.
  • a method for preparing prelithiated coated lithium cobalt oxide cathode material including the following steps: (1) adding lithium cobalt oxide to absolute ethanol and mixing; (2) adding tin tetrachloride and lithium hydroxide to into the mixed solution of step (1), and add a carbon source to mix; (3) evaporate the mixed solution obtained in step (2) to dryness; (4) calcine the material evaporated to dryness in step (3) in an oxygen-containing atmosphere. , after cooling, washing and drying.
  • the mass ratio of lithium cobalt oxide and absolute ethanol in step (1) is 1:(1-3).
  • the molar ratio of tin tetrachloride, lithium hydroxide and lithium cobalt oxide in step (2) is 1:6: (80-100).
  • the mass of the carbon source added in step (2) is 10-30% of the mass of lithium cobalt oxide.
  • the carbon source is at least one of polyacrylic acid, polyethylene oxide, and polypropylene alcohol.
  • the evaporation temperature in step (3) is 75-85°C.
  • the oxygen-containing atmosphere in step (4) is a mixed gas of nitrogen and oxygen, and the volume ratio of nitrogen and oxygen is 10: (1-3).
  • the calcination temperature in step (4) is 300-450°C, and the calcination time is 3-6 hours.
  • the washing in step (4) is to use absolute ethanol to wash the material after cooling to room temperature.
  • the drying temperature in step (4) is 80-120°C, and the drying time is 1-3 hours.
  • a method for preparing prelithiated coated lithium cobalt oxide cathode material includes the following steps:
  • step (1) According to the molar ratio of tin tetrachloride, lithium hydroxide and lithium cobalt oxide described in step (1): 1:6: (80-100), add tin tetrachloride and lithium hydroxide to In the mixed solution of step (1), add a polymer carbon source of 10-30% of the mass of lithium cobalt oxide into the mixed solution, stir for 1-2 hours, and mix evenly; the polymer carbon source is polyacrylic acid, polyethylene oxide , at least one of polypropylene alcohols;
  • a prelithiated coated lithium cobalt oxide cathode material is prepared by the preparation method as described above.
  • the polymer carbon source easily generates hydrogen radicals during the carbonization process, and the tetravalent tin in lithium stannate (can be regarded as lithium oxide and tin dioxide) reacts with it.
  • Lithium cobalt oxide cathode material the obtained carbon-coated lithium cobalt oxide cathode material has excellent electrical conductivity and cycle performance.
  • the preparation method of the prelithiated coated lithium cobalt oxide cathode material of the present invention uses ethanol as the dissolving solvent, which can avoid the dissolution of lithium in the lithium cobalt oxide material.
  • tin tetrachloride is reacted with lithium hydroxide to generate lithium stannate and lithium chloride.
  • the tin in lithium stannate also acts as a flame retardant to prevent the complete combustion of the polymer carbon source, which is more conducive to its carbonization, thereby forming a carbon-coated lithium cobalt oxide cathode material, and at the same time during calcination
  • the process By controlling the nitrogen-oxygen ratio, the process, on the one hand, facilitates the carbonization of the polymer carbon source; on the other hand, it further prevents the polymer carbon source from reducing lithium cobalt oxide; finally, it uses lithium chloride to be easily soluble in ethanol while preventing lithium cobalt oxide from being dissolved. The lithium is dissolved and washed with absolute ethanol to remove the remaining lithium chloride
  • Figure 1 is an SEM image of the pre-lithiated coated lithium cobalt oxide cathode material prepared in Example 1 of the present invention.
  • a method for preparing prelithiated coated lithium cobalt oxide cathode material including the following steps:
  • step 2 (2) Add tin tetrachloride and lithium hydroxide to the mixed solution in step 1 according to the molar ratio of tin tetrachloride, lithium hydroxide and lithium cobalt oxide described in step 1: 1:6:80 , and add 30% of the polymer carbon source polyethylene oxide by mass of lithium cobalt oxide into the mixed solution, stir for 2 hours, and mix evenly;
  • a prelithiated coated lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing prelithiated coated lithium cobalt oxide cathode material including the following steps:
  • step 2 (2) Add tin tetrachloride and lithium hydroxide to the mixed solution in step 1 according to the molar ratio of tin tetrachloride, lithium hydroxide and lithium cobalt oxide described in step 1: 1:6:90 , and add 20% of the polymer carbon source polyacrylic acid by mass of lithium cobalt oxide into the mixed solution, stir for 1.5 hours, and mix evenly;
  • a prelithiated coated lithium cobalt oxide cathode material is prepared by the above preparation method.
  • a method for preparing prelithiated coated lithium cobalt oxide cathode material including the following steps:
  • step 2 (2) Add tin tetrachloride and lithium hydroxide to the mixed solution in step 1 according to the molar ratio of tin tetrachloride, lithium hydroxide and lithium cobalt oxide described in step 1: 1:6:100 , and add 10% of the polymer carbon source polypropylene alcohol by mass of lithium cobalt oxide into the mixed solution, stir for 1 hour, and mix evenly;
  • a prelithiated coated lithium cobalt oxide cathode material is prepared by the above preparation method.
  • the pre-lithiated coated lithium cobalt oxide cathode material prepared by the preparation method of the present invention has excellent electrical conductivity, and its electrical conductivity is 4.82 ⁇ 10 -2 s/cm and above, which is much greater than lithium cobalt oxide.
  • the conductivity and volume resistivity of the raw material are 83.6 ⁇ cm and below, which are much smaller than the volume resistivity of the lithium cobalt oxide raw material.
  • the pre-lithiated coated lithium cobalt oxide cathode material prepared by the preparation method of the present invention has a higher discharge capacity and better cycle stability, and its discharge capacity is 216.7mAh/g and above, which is far greater.
  • its capacity retention rate after 600 cycles is 85% and above, which is much greater than the capacity retention rate of lithium cobalt oxide raw material after 600 cycles.

Abstract

本发明公开了一种预锂化包覆钴酸锂正极材料及其制备方法,其中制备方法包括以下步骤:(1)将钴酸锂加入到无水乙醇中,混合;(2)将四氯化锡、氢氧化锂加入到步骤(1)的混合液中,并加入碳源混合;(3)将步骤(2)得到的混合液蒸干;(4)将步骤(3)中蒸干后的物料在含氧气氛中煅烧,冷却后,洗涤,烘干即得。该方法制备得到的正极材料具有优异的导电性能和循环性能。

Description

一种预锂化包覆钴酸锂正极材料及其制备方法 技术领域
本发明属于锂电池正极材料技术领域,特别涉及一种预锂化包覆钴酸锂正极材料及其制备方法。
背景技术
锂离子二次电池具有高能量密度、重量轻、不污染环境、无记忆效应、工作性能稳定、安全可靠等特点,自问世以来应用广泛,已成为目前主要的便携式电源,也是大功率动电池的开发重点。
在锂离子电池中,正极材料是其最重要的组成部分,也是决定锂离子电池性能的关键。层状锂离子电池正极材料是领域内研究的热点。理论上具有层状结构和尖晶石结构的材料,都可以作为锂离子电池的正极材料,其中钴酸锂用作锂离子电池正极材料具有如下特点:1、安全性好;2、容量一般;3、循环性能一般。钴酸锂作为正极材料已经得到大规模的应用,目前已产业化,研究比较成熟,综合性能优良。
随着人们对锂离子电池电极材料的了解,人们发现其表面结构对其电化学性能有着很大的影响。由于碳材料卓越的导电性、超高的化学和电化学稳定性、独特的物理属性和廉价的成本,碳包覆成为锂离子电池中应用最广泛的方法之一。用碳包覆可以有效地提高电极导电性、改善活性材料的表面化学、保护电极避免其直接接触电解液,从而可得到更好的循环寿命。碳包覆与纳米技术相结合,可提供更好的导电性、更快的锂离子扩散速度,从而得到更好的倍率性能。尤其是碳包覆磷酸铁锂促进了磷酸铁锂从实验室走向工业化,因此,对正极材料的碳包覆的研究具有十分重要的意义。
因为钴酸锂合成条件在空气或氧气气氛下,合成温度高达900℃。因此传统的通过有机碳分解的实现碳包覆的方法在钴酸锂很难实现:首先碳包覆必须在惰性气氛,与钴酸锂合成需要氧气气氛矛盾,其次,实现碳分解和石墨化温度高达700℃-900℃,很容易将钴金属离子还原成单质或者CoO或者Co 3O 4,因此急需开发一种能对钴酸锂实现碳包覆的方法来制备具有优良电化学性能的正极材料。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种预锂化包 覆钴酸锂正极材料及其制备方法,该方法制备得到的正极材料具有优良电化学性能。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种预锂化包覆钴酸锂正极材料的制备方法,包括以下步骤:(1)将钴酸锂加入到无水乙醇中,混合;(2)将四氯化锡、氢氧化锂加入到步骤(1)的混合液中,并加入碳源混合;(3)将步骤(2)得到的混合液蒸干;(4)将步骤(3)中蒸干后的物料在含氧气氛中煅烧,冷却后,洗涤,烘干即得。
优选的,步骤(1)中钴酸锂与无水乙醇的质量比1:(1-3)。
优选的,步骤(2)中四氯化锡、氢氧化锂及钴酸锂的摩尔比为1:6:(80-100)。
优选的,步骤(2)中加入碳源的质量为钴酸锂质量的10-30%。
优选的,所述碳源为聚丙烯酸、聚环氧乙烷、聚丙烯醇中的至少一种。
优选的,步骤(3)中蒸干的温度为75-85℃。
优选的,步骤(4)中含氧气氛为氮气和氧气的混合气体,且氮气和氧气的体积比为10:(1-3)。
优选的,步骤(4)中煅烧的温度为300-450℃,煅烧的时间为3-6h。
优选的,步骤(4)中洗涤是采用无水乙醇对冷却至室温后的物料进行洗涤。
优选的,步骤(4)中烘干的温度为80-120℃,烘干的时间为1-3h。
优选的,一种预锂化包覆钴酸锂正极材料的制备方法,包括以下步骤:
(1)按照质量比1:(1-3),将钴酸锂加入到无水乙醇中,混合均匀;
(2)按照四氯化锡、氢氧化锂和步骤(1)中所述的钴酸锂三者的摩尔比1:6:(80-100),将四氯化锡、氢氧化锂加入到步骤(1)的混合液中,并向混合液中加入钴酸锂质量10-30%的高分子碳源,搅拌1-2h,均匀混合;高分子碳源为聚丙烯酸、聚环氧乙烷、聚丙烯醇中的至少一种;
(3)在75-85℃下,将混合液蒸干,并回收乙醇;
(4)将蒸干后的物料置于管式炉中,并通入氮气和氧气的混合气,在300-450℃下煅烧3-6h,混合气中氮氧体积比为10:(1-3);
(5)将煅烧料冷却至室温后,采用无水乙醇对煅烧料进行洗涤;
(6)将洗涤后的物料在80-120℃下烘干1-3h,即得预锂化包覆的钴酸锂正极材料。
一种预锂化包覆钴酸锂正极材料,由如上所述的制备方法制备得到。
本发明的有益效果是:
(1)本发明的预锂化包覆钴酸锂正极材料的制备方法中以无水乙醇作溶剂,将钴酸锂、四氯化锡、氢氧化锂以及高分子碳源共混后,蒸发回收乙醇,并进一步煅烧,使高分子聚合物碳化,从而得到碳包覆的钴酸锂正极材料,本发明的预锂化包覆钴酸锂正极材料的制备方法碳化反应机理如下:首先,6LiOH+SnCl 4=4LiCl+Li 2Sn(OH) 6,生成的Li 2Sn(OH) 6即为Li 2SnO 3·3H 2O,包覆在钴酸锂表面,在进一步补充锂源的同时,形成了与高分子碳源共混的包覆面,高分子碳源在碳化过程中极易产生氢自由基,锡酸锂(可看成氧化锂与二氧化锡)中的四价锡与其反应,防止表面钴酸锂被还原:SnO 2+2H·=SnO+H 2O,2SnO+O 2=2SnO 2,从而使高分子中的碳链固化稳定,从而得到锡和碳双重包覆的钴酸锂正极材料,得到的碳包覆的钴酸锂正极材料具有优异的导电性能和循环性能。
(2)本发明的预锂化包覆钴酸锂正极材料的制备方法采用乙醇作为溶解溶剂,可避免钴酸锂材料中的锂溶出。
(3)本发明的预锂化包覆钴酸锂正极材料的制备方法中利用四氯化锡与氢氧化锂反应生成锡酸锂和氯化锂,在煅烧时,除进一步对钴酸锂材料进行预锂化之外,锡酸锂中的锡还起到阻燃剂的作用,防止高分子碳源完全燃烧,更利于其碳化,从而形成碳包覆的钴酸锂正极材料,同时在煅烧过程通过控制氮氧比,一方面,利于高分子碳源的碳化,另一方面,进一步防止高分子碳源将钴酸锂还原,最后,利用氯化锂易溶于乙醇同时防止钴酸锂中的锂溶出,采用无水乙醇洗涤,将残留的氯化锂去除。
附图说明
图1为本发明实施例1制备得到的预锂化包覆钴酸锂正极材料的SEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种预锂化包覆钴酸锂正极材料的制备方法,包括如下步骤:
(1)按照质量比1:3,将钴酸锂加入到无水乙醇中,混合均匀;
(2)按照四氯化锡、氢氧化锂和步骤1中所述的钴酸锂三者的摩尔比1:6:80,将四氯化锡、氢氧化锂加入到步骤1的混合液中,并向混合液中加入钴酸锂质量30%的高分子碳源聚环氧乙烷,搅拌2h,混合均匀;
(3)在85℃下,将混合液蒸干,并回收乙醇;
(4)将蒸干后的物料置于管式炉中,并通入氮气和氧气的混合气,混合气中氮氧体积比为10:3,在450℃下煅烧3h,;
(5)将煅烧料冷却至室温后,采用无水乙醇对煅烧料进行洗涤;
(6)将洗涤后的物料在80℃下烘干3h,即得预锂化包覆的钴酸锂正极材料。
一种预锂化包覆钴酸锂正极材料,由上述制备方法制备得到。
制备得到的预锂化包覆的钴酸锂正极材料的SEM图如图1所示。
实施例2:
一种预锂化包覆钴酸锂正极材料的制备方法,包括如下步骤:
(1)按照质量比1:2,将钴酸锂加入到无水乙醇中,混合均匀;
(2)按照四氯化锡、氢氧化锂和步骤1中所述的钴酸锂三者的摩尔比1:6:90,将四氯化锡、氢氧化锂加入到步骤1的混合液中,并向混合液中加入钴酸锂质量20%的高分子碳源聚丙烯酸,搅拌1.5h,混合均匀;
(3)在80℃下,将混合液蒸干,并回收乙醇;
(4)将蒸干后的物料置于管式炉中,并通入氮气和氧气的混合气,在400℃下煅烧4h,混合气中氮氧体积比为10:2;
(5)将煅烧料冷却至室温后,采用无水乙醇对煅烧料进行洗涤;
(6)将洗涤后的物料在100℃下烘干2h,即得预锂化包覆的钴酸锂正极材料。
一种预锂化包覆钴酸锂正极材料,由上述制备方法制备得到。
实施例3:
一种预锂化包覆钴酸锂正极材料的制备方法,包括如下步骤:
(1)按照质量比1:1,将钴酸锂加入到无水乙醇中,混合均匀;
(2)按照四氯化锡、氢氧化锂和步骤1中所述的钴酸锂三者的摩尔比1:6:100,将四氯化锡、氢氧化锂加入到步骤1的混合液中,并向混合液中加入钴酸锂质量10%的高分子碳源聚丙烯醇,搅拌1h,混合均匀;
(3)在75℃下,将混合液蒸干,并回收乙醇;
(4)将蒸干后的物料置于管式炉中,并通入氮气和氧气的混合气,在300℃下煅烧6h,混合气中氮氧体积比为10:1;
(5)将煅烧料冷却至室温后,采用无水乙醇对煅烧料进行洗涤;
(6)将洗涤后的物料在120℃下烘干1h,即得预锂化包覆的钴酸锂正极材料。
一种预锂化包覆钴酸锂正极材料,由上述制备方法制备得到。
试验例:
分别对实施例1-3制得的预锂化包覆的钴酸锂正极材料及实施例1-3用到的钴酸锂原料 进行导电性能测试,测试结果如表1所示。
表1:导电性能测试结果
  电导率(s/cm) 体积电阻率(Ω·cm)
实施例1 5.63×10 -2 83.6
实施例2 5.16×10 -2 80.1
实施例3 4.82×10 -2 76.5
钴酸锂原料 2.83×10 -3 373.1
由表1可知,本发明的制备方法制备得到的预锂化包覆的钴酸锂正极材料具有优异的导电性,其电导率在4.82×10 -2s/cm及以上,远大于钴酸锂原料的电导率,体积电阻率在83.6Ω·cm及以下,远小于钴酸锂原料的体积电阻率。
以实施例1-3制得的预锂化包覆的钴酸锂正极材料以及实施例1-3用到的钴酸锂原料作为活性材料,乙炔黑为导电剂,PVDF为粘结剂,以92:4:4的比例称取活性材料、导电剂、粘结剂,并加入一定量的有机溶剂NMP,搅拌后涂覆于铝箔上制成正极片,负极采用金属锂片,在充满氩气的手套箱内制成CR2430型纽扣电池。在CT2001A型蓝电测试系统进行电性能测试。测试条件:3.0-4.48V,电流密度1C=180mAh/g测试温度为25±1℃。测试结果如下表所示。
表2:电池电性能测试结果
Figure PCTCN2022131697-appb-000001
由表2可知,本发明的制备方法制备得到的预锂化包覆的钴酸锂正极材料具有较高的放电容量及较好的循环稳定性,其放电容量在216.7mAh/g及以上,远大于钴酸锂原料的放电容量,同时其循环600次容量保持率在85%及以上,远大于钴酸锂原料的循环600次容量保持率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:包括以下步骤:
    (1)将钴酸锂加入到无水乙醇中,混合;
    (2)将四氯化锡、氢氧化锂加入到步骤(1)的混合液中,并加入碳源混合;
    (3)将步骤(2)得到的混合液蒸干;
    (4)将步骤(3)中蒸干后的物料在含氧气氛中煅烧,冷却后,洗涤,烘干即得。
  2. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(1)中钴酸锂与无水乙醇的质量比1:(1-3)。
  3. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(2)中四氯化锡、氢氧化锂及钴酸锂的摩尔比为1:6:(80-100)。
  4. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(2)中加入碳源的质量为钴酸锂质量的10-30%。
  5. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:所述碳源为聚丙烯酸、聚环氧乙烷、聚丙烯醇中的至少一种。
  6. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(3)中蒸干的温度为75-85℃。
  7. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(4)中含氧气氛为氮气和氧气的混合气体,且氮气和氧气的体积比为10:(1-3)。
  8. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(4)中煅烧的温度为300-450℃,煅烧的时间为3-6h。
  9. 根据权利要求1所述的一种预锂化包覆钴酸锂正极材料的制备方法,其特征在于:步骤(4)中洗涤是采用无水乙醇对冷却至室温后的物料进行洗涤。
  10. 一种预锂化包覆钴酸锂正极材料,其特征在于:由权利要求1-9任一项所述的制备方法制备得到。
PCT/CN2022/131697 2022-03-25 2022-11-14 一种预锂化包覆钴酸锂正极材料及其制备方法 WO2023179051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210298894.1A CN114709387A (zh) 2022-03-25 2022-03-25 一种预锂化包覆钴酸锂正极材料及其制备方法
CN202210298894.1 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023179051A1 true WO2023179051A1 (zh) 2023-09-28

Family

ID=82171142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131697 WO2023179051A1 (zh) 2022-03-25 2022-11-14 一种预锂化包覆钴酸锂正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114709387A (zh)
WO (1) WO2023179051A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709387A (zh) * 2022-03-25 2022-07-05 广东邦普循环科技有限公司 一种预锂化包覆钴酸锂正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567539A (en) * 1994-05-23 1996-10-22 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
CN102623694A (zh) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 一种高电压锂离子电池及其正极材料
JP2014099295A (ja) * 2012-11-13 2014-05-29 Nippon Chemicon Corp リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
CN104112854A (zh) * 2014-06-30 2014-10-22 陕西师范大学 一种大比表面积SnO2纳米晶/C片状复合材料的制备方法
CN113299915A (zh) * 2021-04-12 2021-08-24 深圳大学 由正硅酸锂和碳包覆的钴酸锂复合材料、制备方法、应用
CN114709387A (zh) * 2022-03-25 2022-07-05 广东邦普循环科技有限公司 一种预锂化包覆钴酸锂正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567539A (en) * 1994-05-23 1996-10-22 Fuji Photo Film Co., Ltd. Non-aqueous secondary cell
CN102623694A (zh) * 2012-03-19 2012-08-01 宁德新能源科技有限公司 一种高电压锂离子电池及其正极材料
JP2014099295A (ja) * 2012-11-13 2014-05-29 Nippon Chemicon Corp リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
CN104112854A (zh) * 2014-06-30 2014-10-22 陕西师范大学 一种大比表面积SnO2纳米晶/C片状复合材料的制备方法
CN113299915A (zh) * 2021-04-12 2021-08-24 深圳大学 由正硅酸锂和碳包覆的钴酸锂复合材料、制备方法、应用
CN114709387A (zh) * 2022-03-25 2022-07-05 广东邦普循环科技有限公司 一种预锂化包覆钴酸锂正极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, Q. ET AL.: "A novel carbon-coated LiCoO2 as cathode material for lithium ion battery", ELECTROCHEMISTRY COMMUNICATIONS, vol. 9, no. 5, 17 January 2007 (2007-01-17), XP022047135, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2007.01.017 *
HU GUORONG, ZHANG MANFANG, WU LILI, PENG ZHONGDONG, DU, CAO YANBING: "Enhanced Electrochemical Performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathodes Produced via Nanoscale Coating of Li + -Conductive Li 2 SnO 3", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 213, 1 September 2016 (2016-09-01), AMSTERDAM, NL , pages 547 - 556, XP009549320, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2016.07.154 *

Also Published As

Publication number Publication date
CN114709387A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN106450265B (zh) 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN106299282B (zh) 一种氮掺杂碳纳米管硫复合材料及制备方法
CN110993949A (zh) 一种具有多重包覆结构的负极材料、其制备方法和用途
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
CN110380043A (zh) 氟-磷掺杂氧化锡包覆改性的正极材料及其制备方法
WO2023179051A1 (zh) 一种预锂化包覆钴酸锂正极材料及其制备方法
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
CN113451570A (zh) 一种mof衍生核壳结构锂离子电池负极材料及制备方法
CN113659143A (zh) 钠离子电池负极材料的制备方法及负极材料,钠离子电池
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN115064665A (zh) 掺杂改性的碳包覆的磷酸钛钠复合材料及其制备方法和应用
CN112786881A (zh) 一种固态锂电池及其制备方法
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
WO2024066186A1 (zh) 二元高镍钠离子电池正极材料、制备方法及应用
CN113745504A (zh) 一种铌钨钛氧化物负极材料及其制备方法与应用
CN111082162B (zh) 一种水系钠离子电池
WO2023226550A1 (zh) 高导电性磷酸铁锂的制备方法及其应用
WO2023231448A1 (zh) 一种正、负极材料的制备方法及锂离子电池
CN108565410B (zh) 锂离子电池二氧化锡/石墨烯复合负极材料及其制备方法
CN111682178A (zh) 一种氮掺杂氧化石墨烯/三氧化二锰锌离子电池正极材料的制备方法
CN115832309A (zh) 一种改性三元正极材料及其制备方法和应用
CN114792788A (zh) 一种钠离子全电池及其制备方法
CN109119607B (zh) 一种聚吡咯纳米管包覆镍锰酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933102

Country of ref document: EP

Kind code of ref document: A1