WO2023231448A1 - 一种正、负极材料的制备方法及锂离子电池 - Google Patents

一种正、负极材料的制备方法及锂离子电池 Download PDF

Info

Publication number
WO2023231448A1
WO2023231448A1 PCT/CN2023/075458 CN2023075458W WO2023231448A1 WO 2023231448 A1 WO2023231448 A1 WO 2023231448A1 CN 2023075458 W CN2023075458 W CN 2023075458W WO 2023231448 A1 WO2023231448 A1 WO 2023231448A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
solution
positive electrode
preparation
Prior art date
Application number
PCT/CN2023/075458
Other languages
English (en)
French (fr)
Inventor
张江涛
刘明义
徐若晨
曹传钊
刘大为
曹曦
朱勇
李�昊
裴杰
孙周婷
雷浩东
王佳运
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023231448A1 publication Critical patent/WO2023231448A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • ternary cathode materials Compared with lithium iron phosphate cathode materials, ternary cathode materials have higher gravimetric energy density, but their safety performance is worse.
  • the storage of ternary cathode materials requires a low-humidity environment to prevent water in the air from reacting with the cathode materials to form lithium hydroxide residues, which may cause safety hazards during use.
  • the existing method to prevent the formation of lithium hydroxide on the surface of the ternary cathode material is mainly divided into two steps. The first is to provide an oxygen atmosphere when the ternary cathode material is sintering, and the second is to strictly control the humidity of the storage environment.
  • Shenzhen BAK Company s patent application document with publication number CN 102148401 A It is pointed out in the article that the negative electrode sheet is immersed in the electrolyte under dry conditions, and an external circuit is passed to form an SEI film on the surface. After cleaning and drying, the negative electrode sheet is assembled into a battery with other components, thereby avoiding SEI during the initial formation. generation to improve first-time efficiency.
  • this solution has harsh process conditions, cumbersome processes, and high costs. Huawei Technologies Co., Ltd.
  • the ratio of the ternary cathode material to the organic solvent is 10g:50ml, and the organic solvent is ethyl acetate solution or ethanol.
  • the vacuum degree is less than or equal to -0.06MPa
  • the drying temperature is 50°C ⁇ 80°C
  • the drying time is 1h ⁇ 2h.
  • a method for preparing negative electrode materials Commercial graphite, sodium carboxymethylcellulose, styrene-butadiene rubber and water are stirred and mixed at a mass ratio of 90:5:5:82 to obtain negative electrode slurry; the negative electrode slurry is coated, Dry post roller Press the slices to obtain the negative electrode piece; spray the negative electrode piece with lithium ion solution and dry it to obtain the negative electrode piece.
  • the negative electrode piece is sprayed with a lithium hydroxide solution, a lithium nitrate solution, or a mixed solution of the two using a spray method.
  • the drying temperature is 80°C ⁇ 100°C, and the drying time is 6h ⁇ 12h.
  • a lithium electronic battery including a positive electrode sheet prepared by a preparation method of a positive electrode material, a negative electrode sheet prepared by a preparation method of a negative electrode material, an isolation film, a packaging film and an activated electrolyte, the positive electrode sheet, isolation film and negative electrode sheets are arranged inside the packaging film in sequence, and the activated electrolyte is filled inside the packaging film.
  • ethyl acetate is non-toxic and volatile.
  • the used ethyl acetate can be recycled after distillation and condensation, which reduces the cost of use and is conducive to large-scale production and application.
  • the negative electrode piece is sprayed with lithium ions to supplement the lithium ion content of the negative electrode piece, and the drying treatment can promote the formation of a lithium-containing protective layer on the surface of the negative electrode piece.
  • the advantage of using the spray method is that it is simple, is conducive to large-scale industrial application, has no impact on the environment, and meets environmental protection requirements.
  • a lithium-ion battery of the present application is composed of the above-mentioned positive electrode sheet and negative electrode sheet.
  • the positive electrode sheet is formed by ultrasonic treatment of a ternary positive electrode material to remove surface residue lithium hydroxide, thereby improving the electrochemical performance and safety performance of the battery.
  • a preparation method of cathode material including the following steps:
  • the drying temperature is 80°C ⁇ 100°C, and the drying time is 6h ⁇ 12h.
  • a lithium electronic battery includes a positive electrode sheet prepared by a preparation method of a positive electrode material, a negative electrode sheet prepared by a preparation method of a negative electrode material, an isolation film, a packaging film and an activated electrolyte.
  • the positive electrode The film, isolation film and negative electrode film are arranged inside the packaging film in sequence, and the activated electrolyte is filled in the packaging inside the membrane.
  • the activation electrolyte is an EC+DMC+EMC mixed solution of 1 mol/L LiPF6.
  • the volume ratio of EC solution, DMC solution and EMC solution in the EC+DMC+EMC mixed solution is 1:1:1.
  • the packaging film is an aluminum-plastic film.
  • the lithium-ion battery assembled thereafter had a 1C discharge capacity of 154.08mAh g -1 in the first cycle, a 1C discharge capacity of 114.55mAh g -1 in 100 cycles, and a capacity retention rate of 74.34%.
  • the lithium-ion battery assembled thereafter had a 1C discharge capacity of 162.48mAh g -1 in the first cycle, a 1C discharge capacity of 122.53mAh g -1 in 100 cycles, and a capacity retention rate of 75.41%.
  • the lithium-ion battery assembled thereafter had a 1C discharge capacity of 159.86mAh g -1 in the first cycle, a 1C discharge capacity of 120.33mAh g -1 in 100 cycles, and a capacity retention rate of 75.27%.

Abstract

本申请涉及锂电池制造技术领域,尤其涉及一种正、负极材料的制备方法及锂离子电池,该锂离子电池包括经过超声处理的三元正极粉末制备的正极片、进行锂离子喷涂处理的负极片、隔离膜、封装膜和活化电解液,正极片、隔离膜和负极片依次排列于封装膜内部,所述活化电解液填充于封装膜内部。本申请对正极的粉末进行处理,除去三元正极材料表面残留物氢氧化锂,提高电池电化学性能及安全性能。

Description

一种正、负极材料的制备方法及锂离子电池
相关申请的交叉引用
本申请要求在2022年5月31日提交中国专利局、申请号为202210611707.0、发明名称为“一种正、负极材料的制备方法及锂离子电池”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及锂电池制造技术领域,具体为一种正、负极材料的制备方法及锂离子电池。
背景技术
锂离子电池相对于铅酸蓄电池而言,由于其循环寿命长、工作电压高、能量密度大等优点,已经广泛应用于手机、笔记本电脑、动力汽车、大型储能电站等领域。但是,随着应用领域的发展,对电池性能的需求越来越高,例如电池的高安全性,高能量密度,长寿命等等,目前的锂离子电池在其安全性、寿命及能量密度上难以满足储能电站、动力汽车日益发展的需求。
三元正极材料相对于磷酸铁锂正极材料,重量能量密度更高,但是其安全性能更差。在电池制备过程中,三元正极材料的存储要求为低湿的环境,防止空气中的水与正极材料发生反应形成氢氧化锂残留物,导致使用过程中存在安全隐患。现有的防止三元正极材料表面形成氢氧化锂的方法主要分为两步,第一是在三元正极材料烧结的时候提供氧气气氛,第二是存储环境严格控制湿度。
负极材料是锂离子电池重要组成之一,对电池的性能也至关重要,锂离子电池长期使用过程中,负极表面会形成SEI(Solid Electrolyte Interface)膜,SEI的形成使得锂离子不断消耗,导致电池容量不断衰减。为了解决这一问题,主要有两种思路,一是在负极片表面先形成SEI膜,二是在负极中加入多余的锂,以补充被消耗的锂。深圳比克公司在公开号为CN 102148401 A的专利申请文件 中指出,在干燥的条件下将负极片浸润在电解液中,通外电路使其表面形成SEI膜,待清洗干燥后,将该负极片与其他组件组装成电池,从而在初次化成时避免SEI的生成,提升首次效率。但是该方案工艺条件苛刻,流程繁琐,成本高。华为技术有限公司在公开号为CN 103779572 A专利申请文件中指出负极添加剂可作为锂源加入锂离子电池负极材料中,用以补偿锂离子电池负极在首次充放电过程中出现的锂消耗;但是该方案流程复杂,成本高,而且大量的有机溶剂的使用,不利于工业化大规模生产,有机溶剂挥发也对环境不利。
发明内容
针对现有技术中存在三元正极材料易与空气中的水反应,在材料表面形成氢氧化锂,使得材料性能恶化,降低锂离子电池安全性能的问题,本申请提供一种正、负极材料的制备方法及锂离子电池。
本申请是通过以下技术方案来实现:
一种正极材料的制备方法,包括以下步骤:
S1,将三元正极粉末LiNixMnyCozO2加入有机溶剂中,其中x+y+z=1,x≥0.5,经超声处理和真空干燥处理,获得干燥的正极材料;
S2,将干燥的正极材料、聚偏氟乙酸、乙炔黑和N-甲基-2吡咯烷酮溶液以质量比为90:5:5:82搅拌混合,得到正极浆料;
S3,将正极浆料涂覆,干燥后辊压切片,得到正极片。
可选的,所述三元正极材料与有机溶剂的配比为10g:50ml,所述有机溶剂为乙酸乙酯溶液或者乙醇。
可选的,超声处理时,超声时间为0.5h~2h,超声频率为60kHZ~100kHZ。
可选的,真空干燥处理时,真空度小于或者等于-0.06MPa,干燥温度为50℃~80℃,干燥时间为1h~2h。
一种负极材料的制备方法,将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82进行搅拌混合,得到负极浆料;将负极浆料涂覆,干燥后辊 压切片,得到负极极片;对负极极片进行锂离子溶液喷涂和烘干处理,获取负极片。
可选的,在锂离子溶液喷涂过程中,利用喷雾法对负极极片喷涂氢氧化锂溶液、硝酸锂溶液或者二者的混合溶液。
可选的,氢氧化锂溶液的浓度和硝酸钾溶液的浓度均为0.1mol/L~1mol/L。
可选的,烘干处理过程中,烘干温度为80℃~100℃,烘干时间为6h~12h。
一种锂电子电池,包括由一种正极材料的制备方法制备的正极片、由一种负极材料的制备方法制备的负极片、隔离膜、封装膜和活化电解液,所述正极片、隔离膜和负极片依次排列于封装膜内部,所述活化电解液填充于封装膜内部。
可选的,所述活化电解液为1mol/L LiPF6的EC+DMC+EMC混合溶液,EC+DMC+EMC混合溶液中EC溶液、DMC溶液和EMC溶液的体积比为1:1:1。
与现有技术相比,本申请具有以下有益效果:
本申请一种正极材料的制备方法中利用把三元正极材料放入有机溶剂中进行超声处理,可以除去表面残留的氢氧化锂,
进一步的,乙酸乙酯无毒且易挥发的特点,使用过后的乙酸乙酯经过蒸馏冷凝还可循环使用,降低了使用成本,利于规模化生产应用。
本申请一种负极材料的制备方法中对负极极片进行锂离子喷涂,以补充负极极片的锂离子的含量,烘干处理则是可以促使在负极极片表面形成含锂保护层。
进一步的,采用喷雾法的优点在于方法简单,有利于大规模工业化应用,同时对环境没有影响,符合环保的要求。
本申请一种锂离子电池采用上述的正极片和负极片组成,正极片为由三元正极材料进过超声处理除去表面残留物氢氧化锂后形成,提高电池电化学性能及安全性能。
附图说明
图1为本申请一种锂离子电池制备流程图;
具体实施方式
下面结合具体的实施例对本申请做进一步的详细说明,所述是对本申请的解释而不是限定。
一种正极材料的制备方法,包括以下步骤:
S1,将三元正极粉末LiNixMnyCozO2加入有机溶剂中,其中x+y+z=1,x≥0.5,在超声频率为60kHZ~100kHZ下超声处理0.5h~2h,过滤后在真空度小于或者等于-0.06MPa、50℃~80℃下干燥处理1h~2h,获得干燥的正极材料;三元正极材料与有机溶剂的配比为10g:50ml,有机溶剂为乙酸乙酯溶液或者乙醇。
S2,将干燥的正极材料、聚偏氟乙酸、乙炔黑和N-甲基-2吡咯烷酮荣溶液以质量比为90:5:5:82放入搅拌罐搅拌混合,先低速200r/min搅拌10min后,再高速500r/min搅拌40min,得到正极浆料;
S3,将正极浆料涂覆,干燥后辊压切片,得到正极片。
一种负极材料的制备方法,将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82加入搅拌罐进行搅拌混合,先低速搅拌200r/min搅拌10min后,再高速速500r/min搅拌40min,得到负极浆料;将负极浆料涂覆,干燥后辊压切片,得到负极极片;对负极极片进行锂离子溶液喷涂和烘干处理,获取负极片。
在锂离子溶液喷涂过程中,利用喷雾法对负极极片喷涂浓度为0.1mol/L~1mol/L氢氧化锂溶液、硝酸锂溶液或者二者的混合溶液。
烘干处理过程中,烘干温度为80℃~100℃,烘干时间为6h~12h。
一种锂电子电池,参照图1,包括由一种正极材料的制备方法制备的正极片、由一种负极材料的制备方法制备的负极片、隔离膜、封装膜和活化电解液,所述正极片、隔离膜和负极片依次排列于封装膜内部,活化电解液填充于封装 膜内部。活化电解液为1mol/L LiPF6的EC+DMC+EMC混合溶液,EC+DMC+EMC混合溶液中EC溶液、DMC溶液和EMC溶液的体积比为1:1:1。本实施例中封装膜为铝塑膜。
实施例1
10g商用NCM811放入50mL乙酸乙酯溶液中,进行超声(频率80kHZ)处理0.5h,取出过滤后,80℃真空(真空度-0.08Mpa)干燥1小时,经过辊压切片后获取正极极片。
将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82进行搅拌混合,得到负极浆料;将负极浆料涂覆,干燥后辊压切片,得到负极极片;对负极极片进行0.1mol/L硝酸锂溶液喷涂和80℃烘干处理6h,获取负极片。
之后组装而成的锂离子电池首次循环中1C放电容量为154.08mAh g-1,百次循环时1C放电容量为114.55mAh g-1,容量保持率为74.34%。
实施例2
10g商用NCM811放入50mL乙酸乙酯溶液中,进行超声(频率80kHZ)处理1h,取出过滤后,80℃真空(真空度-0.08Mpa)干燥1小时。其余步骤同上。
将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82进行搅拌混合,得到负极浆料;将负极浆料涂覆,干燥后辊压切片,得到负极极片;对负极极片进行0.5mol/L硝酸锂溶液喷涂和90℃烘干处理8h,获取负极片。
之后组装而成的锂离子电池首次循环中1C放电容量为162.48mAh g-1,百次循环时1C放电容量为122.53mAh g-1,容量保持率为75.41%。
实施例3
10g商用NCM811放入50mL乙酸乙酯溶液中,进行超声(频率80kHZ)处理2h,取出过滤后,80℃真空(真空度-0.08Mpa)干燥1小时。其余步骤同上。
将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82进行搅拌 混合,得到负极浆料;将负极浆料涂覆,干燥后辊压切片,得到负极极片;对负极极片进行1mol/L硝酸锂溶液喷涂和100℃烘干处理12h,获取负极片。
之后组装而成的锂离子电池首次循环中1C放电容量为159.86mAh g-1,百次循环时1C放电容量为120.33mAh g-1,容量保持率为75.27%。
表1不同锂离子电池的相关参数情况

Claims (10)

  1. 一种正极材料的制备方法,其特征在于,包括以下步骤:
    S1,将三元正极粉末LiNixMnyCozO2加入有机溶剂中,其中x+y+z=1,x≥0.5,经超声处理和真空干燥处理,获得干燥的正极材料;
    S2,将干燥的正极材料、聚偏氟乙酸、乙炔黑和N-甲基-2吡咯烷酮溶液以质量比为90:5:5:82搅拌混合,得到正极浆料;
    S3,将正极浆料涂覆,干燥后辊压切片,得到正极片。
  2. 根据权利要求1所述的正极材料的制备方法,其特征在于,所述三元正极材料与有机溶剂的配比为10g:50ml,所述有机溶剂为乙酸乙酯溶液或者乙醇。
  3. 根据权利要求1所述的正极材料的制备方法,其特征在于,超声处理时,超声时间为0.5~2h,超声频率为60kHZ~100kHZ。
  4. 根据权利要求1所述的正极材料的制备方法,其特征在于,真空干燥处理时,真空度小于或者等于-0.06MPa,干燥温度为50℃~80℃,干燥时间为1h~2h。
  5. 一种负极材料的制备方法,其特征在于,将商用石墨、羧甲基纤维素钠、丁苯橡胶和水以质量比90:5:5:82进行搅拌混合,得到负极浆料;将负极浆料涂覆,干燥后辊压切片,得到负极极片;对负极极片进行锂离子溶液喷涂和烘干处理,获取负极片。
  6. 根据权利要求5所述的负极材料的制备方法,其特征在于,在锂离子溶液喷涂过程中,利用喷雾法对负极极片喷涂氢氧化锂溶液、硝酸锂溶液或者二者的混合溶液。
  7. 根据权利要求6所述的负极材料的制备方法,其特征在于,氢氧化锂溶液的浓度和硝酸钾溶液的浓度均为0.1mol/L~1mol/L。
  8. 根据权利要求6所述的负极材料的制备方法,其特征在于,烘干处理过程中,烘干温度为80℃~100℃,烘干时间为6h~12h。
  9. 一种锂电子电池,其特征在于,包括由权利要求1~4所述的任一项正极材料的制备方法制备的正极片和由权利要求5~8所述的负极材料的制备方法制备的负极片、隔离膜、封装膜和活化电解液,所述正极片、隔离膜和负极片依次排列于封装膜内部,所述活化电解液填充于封装膜内部。
  10. 根据权利要求9所述的锂电子电池,其特征在于,所述活化电解液为1mol/L LiPF6的EC+DMC+EMC混合溶液,EC+DMC+EMC混合溶液中EC溶液、DMC溶液和EMC溶液的体积比为1:1:1。
PCT/CN2023/075458 2022-05-31 2023-02-10 一种正、负极材料的制备方法及锂离子电池 WO2023231448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210611707.0A CN114927647A (zh) 2022-05-31 2022-05-31 一种正、负极材料的制备方法及锂离子电池
CN202210611707.0 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023231448A1 true WO2023231448A1 (zh) 2023-12-07

Family

ID=82812001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075458 WO2023231448A1 (zh) 2022-05-31 2023-02-10 一种正、负极材料的制备方法及锂离子电池

Country Status (2)

Country Link
CN (1) CN114927647A (zh)
WO (1) WO2023231448A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927647A (zh) * 2022-05-31 2022-08-19 中国华能集团清洁能源技术研究院有限公司 一种正、负极材料的制备方法及锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
CN105810929A (zh) * 2014-12-31 2016-07-27 北京当升材料科技股份有限公司 一种降低高镍材料表面残碱的处理方法
CN109390631A (zh) * 2018-09-30 2019-02-26 东莞东阳光科研发有限公司 一种高镍三元正极材料电解液
CN109888192A (zh) * 2019-03-04 2019-06-14 沁新集团(天津)新能源技术研究院有限公司 锂离子电池负极片补锂的方法、补锂负极片及锂离子电池
CN111082139A (zh) * 2019-12-13 2020-04-28 东莞东阳光科研发有限公司 非水电解液及锂离子电池
CN113666431A (zh) * 2021-07-30 2021-11-19 蜂巢能源科技有限公司 高镍三元正极材料中残碱的去除方法、高镍三元正极材料及锂离子电池
CN114927647A (zh) * 2022-05-31 2022-08-19 中国华能集团清洁能源技术研究院有限公司 一种正、负极材料的制备方法及锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165156A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd リチウム二次電池用正極活物質の製造方法及びこれを用いた正極活物質並びに非水系リチウム二次電池
CN101863092B (zh) * 2010-06-11 2013-02-27 常州工程职业技术学院 一种除去聚酯薄膜表面不干胶的方法
CN103021675B (zh) * 2012-12-30 2015-08-19 万裕三信电子(东莞)有限公司 锂离子电容器及其负极极片及制备方法
CN106159208A (zh) * 2016-06-29 2016-11-23 珠海光宇电池有限公司 提高锂电池首次充放电效率的方法及锂电池负极

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
CN105810929A (zh) * 2014-12-31 2016-07-27 北京当升材料科技股份有限公司 一种降低高镍材料表面残碱的处理方法
CN109390631A (zh) * 2018-09-30 2019-02-26 东莞东阳光科研发有限公司 一种高镍三元正极材料电解液
CN109888192A (zh) * 2019-03-04 2019-06-14 沁新集团(天津)新能源技术研究院有限公司 锂离子电池负极片补锂的方法、补锂负极片及锂离子电池
CN111082139A (zh) * 2019-12-13 2020-04-28 东莞东阳光科研发有限公司 非水电解液及锂离子电池
CN113666431A (zh) * 2021-07-30 2021-11-19 蜂巢能源科技有限公司 高镍三元正极材料中残碱的去除方法、高镍三元正极材料及锂离子电池
CN114927647A (zh) * 2022-05-31 2022-08-19 中国华能集团清洁能源技术研究院有限公司 一种正、负极材料的制备方法及锂离子电池

Also Published As

Publication number Publication date
CN114927647A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
CN108807886A (zh) 双层包覆锂离子电池正极材料LiNi0.6Co0.2Mn0.2O2及其制备方法
CN105870452A (zh) 一种正极材料,含有该正极材料的锂离子电池及制备方法
CN111211305B (zh) 一种pda辅助金属氧化物包覆的高镍三元层状正极材料及其制备方法
CN110429268A (zh) 一种改性硼掺杂富锂锰基正极材料及其制备方法与应用
CN103050694B (zh) 一种正极活性材料及其制备方法、电池
CN110233261B (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
CN102394298A (zh) 一种LiNi0.133Co0.133Mn0.544O2材料的包覆方法
WO2023151459A1 (zh) 补锂添加剂及其制备方法和应用
CN108807912B (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用
CN108155360A (zh) 一种制备碳包覆镍钴锰酸锂正极材料的方法
CN111916701B (zh) 一种包覆型正极材料及其制备方法和用途
CN111600006B (zh) 一种锂离子电池负极材料棒状锡锑合金的制备方法
WO2023231448A1 (zh) 一种正、负极材料的制备方法及锂离子电池
CN113264560A (zh) 一种双重包覆ncm811正极材料及其制备方法
CN110112387B (zh) 一种亚氧化钛包覆改性的正极材料及其制备方法
CN115064665A (zh) 掺杂改性的碳包覆的磷酸钛钠复合材料及其制备方法和应用
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
CN107226454B (zh) 一种钛酸锂-石墨烯复合负极材料的制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN102394299A (zh) 一种包覆有保护层的正极材料
CN104466163A (zh) 碳包覆的锂离子电池正极材料的制备方法
CN114678494A (zh) 一种负极预锂化及同时得到sei膜的方法、负极和锂离子电池
CN114639812A (zh) 一种补锂材料和正极极片及其制备方法
CN108110253B (zh) 快离子导体、由其包覆的正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814647

Country of ref document: EP

Kind code of ref document: A1