WO2023138415A1 - 一种改性铜粉及其改性方法和导电浆料 - Google Patents

一种改性铜粉及其改性方法和导电浆料 Download PDF

Info

Publication number
WO2023138415A1
WO2023138415A1 PCT/CN2023/071049 CN2023071049W WO2023138415A1 WO 2023138415 A1 WO2023138415 A1 WO 2023138415A1 CN 2023071049 W CN2023071049 W CN 2023071049W WO 2023138415 A1 WO2023138415 A1 WO 2023138415A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
antioxidant
solution
speed
flux
Prior art date
Application number
PCT/CN2023/071049
Other languages
English (en)
French (fr)
Inventor
李鹏
何博
董鑫
李健
杨泽君
Original Assignee
西安隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基乐叶光伏科技有限公司 filed Critical 西安隆基乐叶光伏科技有限公司
Publication of WO2023138415A1 publication Critical patent/WO2023138415A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the invention relates to the technical field of solar cells, in particular to a modified copper powder, a modification method thereof, and a conductive paste.
  • the electrodes of heterojunction solar cells are usually prepared by using silver paste that can be cured at a temperature of about 200°C, which has the disadvantages of being expensive and easy to migrate.
  • metal copper is an ideal raw material for making electronic paste, which has good conductivity comparable to conductive silver paste, and is cheap.
  • metal copper belongs to the transition group metal, its chemical properties are very active, and it is easy to oxidize to form an insulating oxide film, but this oxide film is almost non-conductive, which greatly limits the application of copper powder in electronic paste.
  • copper is usually modified to protect its surface against oxidation.
  • An existing method uses benzotriazole as a corrosion inhibitor to coat the surface of nano-copper powder to prevent oxidation of nano-copper powder.
  • the viscosity of the slurry is too high, making it impossible to prepare heterojunction batteries with a certain aspect ratio by screen printing. Poor, under heating conditions, water vapor is easy to cause secondary oxidation and corrosion on the copper surface, which cannot meet the production requirements of heterojunction solar cells. Therefore, the research on the modification of copper powder still needs to be in-depth.
  • the present application provides a method for modifying copper powder, modified copper powder and conductive paste, so as to improve the oxidation resistance of copper powder.
  • the application proposes a method for modifying copper powder, which includes the following steps:
  • the copper powder after deoxidation treatment is contacted with an antioxidant to form a first coating film on the surface of the copper powder, wherein the antioxidant includes tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt.
  • the antioxidant also includes hydroquinone.
  • the copper powder after the deoxidation treatment is contacted with an antioxidant, so that the surface of the copper powder forms a first coating film, which specifically includes:
  • the copper powder and the antioxidant solution are mixed at a mass ratio of 1:1.2-2.5, stirred and reacted at 40-60° C. for 2-4 hours, washed and filtered, wherein the concentration of the antioxidant solution is 5-30 g/L.
  • the copper powder after the deoxidation treatment is contacted with an antioxidant, after the first coating film is formed on the surface of the copper powder, it also includes:
  • the copper powder is infiltrated by flux.
  • the copper powder is infiltrated by flux, which specifically includes:
  • the copper powder and flux solution are mixed at a mass ratio of 1:1.1-2.5, stirred and reacted at 20-40° C. for 2-4 hours, washed and filtered, wherein the mass concentration of the flux solution is 3-15%.
  • the copper powder after the copper powder is infiltrated by flux, it also includes:
  • the copper powder is brought into contact with a coating agent to form a second coating film on the surface of the copper powder.
  • the copper powder is contacted with a coating agent to form a second coating film on the surface of the copper powder, which specifically includes:
  • the coating agent is lauric acid and/or maleic acid, and the mass concentration of the coating agent solution is 1-5%.
  • the copper powder is subjected to deoxidation treatment, which specifically includes:
  • the inorganic acid is at least one of hydrochloric acid, sulfuric acid and phosphoric acid.
  • the present application provides a modified copper powder obtained by modifying the above-mentioned modification method provided by the present application.
  • the modified copper powder includes:
  • Copper powder and a first coating film formed on the surface of the copper powder the first coating film is formed by an antioxidant adsorbed on the surface of the copper powder, and the antioxidant includes tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt;
  • the copper powder is copper powder after deoxidation treatment.
  • the antioxidant is bound to the surface of the copper powder in an upright adsorption manner.
  • the antioxidant further includes hydroquinone, and the hydroquinone is intercalated and dissociated in the network voids of the first coating layer.
  • it further includes soldering flux embedded and dissociated in the mesh voids of the first cladding layer.
  • it further includes a second coating layer formed outside the first coating layer, and the second coating layer is formed of lauric acid and/or maleic acid.
  • the present application provides a conductive paste, including the above-mentioned modified copper powder provided in the present application.
  • the modification method described in this application forms a hydrophobic and dense coating layer on the surface of copper powder through the coordination of tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt with copper powder, which provides anti-oxidation and corrosion resistance protection for copper powder, increases the initial anti-oxidation temperature of copper powder under high-humidity conditions to 170-250 ° C, and enhances its stability in the environment.
  • the embodiment of the present application provides a kind of modification method of copper powder, comprises the steps:
  • the copper powder after deoxidation treatment is contacted with an antioxidant to form a first coating film on the surface of the copper powder
  • the antioxidant includes tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt.
  • the copper powder is deoxidized first to remove the oxide layer on the surface of the copper powder and improve the surface modification effect of the copper powder.
  • an antioxidant is used to carry out anti-oxidation treatment on the copper powder to make it have better anti-air oxidation performance.
  • the antioxidant includes tolyl benzotriazole and/or 2-mercaptobenzothiazole sodium salt;
  • TTA Tolylbenzotriazole
  • the nitrogen atom in the molecule can coordinate and cross-link with the copper ions on the surface of the copper powder and be upright adsorbed on the surface of the copper powder, that is, it can form a chain polymer of -Cu-TTA- with copper.
  • the chain polymer is oriented in parallel, so that the benzene ring is perpendicular to the surface of the copper powder in an upright manner, thereby forming a dense organic protective film on the surface of the copper powder.
  • N atom and S atom on the mercaptobenzothiazole (2-Mercaptobenzothiazole, MBT) sulfhydryl group can cross-link with copper ions through coordination bonds, and it can dissociate in aqueous solution to form thiol anions and H+, and thiol anions can form very stable complexes with Cu2+. Therefore, MBT can be upright adsorbed on the surface of copper powder in the form of exocyclic S, intracyclic N, and thiol ions to quickly form an organic protective film.
  • this upright adsorption method can absorb the largest amount of antioxidants on the surface of copper powder, increase the coverage of antioxidants on the surface of copper powder and help to form a dense coating layer.
  • the adsorption mode of antioxidants on the surface of copper powder can be measured by scanning tunneling microscope and Raman spectrometer.
  • tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt to coat the surface of copper powder not only has physical coating, but also N and S atoms coordinate with copper powder.
  • a large number of CH chains in the molecule extend to the surroundings of copper powder, forming a dense and effective first coating layer on the surface of copper powder. contact with the copper powder surface.
  • tolyltriazole and 2-mercaptobenzothiazole sodium salt have strong hydrophobicity, which can prevent water from existing in the first coating layer, thereby effectively avoiding the secondary oxidation of the copper surface by water vapor under heating conditions, making the copper powder formed with the first coating layer hydrophobic and has low-temperature oxidation resistance, and increasing the initial anti-oxidation temperature of the copper powder under high-humidity conditions (humidity reaches 85%) to 170-250 ° C.
  • the composite coated copper powder of tolylbenzotriazole and 2-mercaptobenzothiazole sodium salt has a certain anti-oxidation synergistic effect, and the film-forming speed of 2-mercaptobenzothiazole sodium salt is faster than that of tolylbenzotriazole.
  • the two exist in the same system, they can promote interfacial interaction and form a multi-layer protective film, so that the initial oxidation temperature of copper powder can reach 250 ° C, which has good air oxidation resistance.
  • the method of deoxidizing the copper powder there is no special limitation on the method of deoxidizing the copper powder, for example, it can be performed by mechanical polishing or chemical removal.
  • an acid solution is used to deoxidize the copper powder, and the copper powder after the deoxidation treatment is a copper powder slurry obtained by filtering out solids after soaking in the acid solution.
  • the present application has no special limitation on the source of the copper powder, which can be produced by, for example, atomization method, template method, chemical reduction method, mechanical ball milling method, vacuum deposition method, etc., or obtained commercially.
  • the shape of the copper powder of the present application is not particularly limited, and can be granular, flake, columnar, spherical, irregular, etc., and it can have an average particle size of 0.01 to 10 ⁇ m.
  • the copper powder has a particle size distribution of D10 of 0.3 to 0.5 ⁇ m, D50 of 0.7 to 1.2 ⁇ m, D90 of 1.5 to 1.9 ⁇ m, and D100 ⁇ 10 ⁇ m.
  • the specific surface area of the copper powder is preferably 0.6 -1.2m 2 /g, tap density>3.2g/mL.
  • the antioxidant also includes hydroquinone.
  • Hydroquinone can generate H+ and free radicals, and has excellent antioxidant capacity. Although the first coating layer is dense, it still inevitably has a network of voids. During the formation of the first coating layer, hydroquinone can be embedded and dissociated in the network voids of the first coating layer, further improving the oxidation resistance of copper powder.
  • the copper powder after the deoxidation treatment is contacted with an antioxidant, so that the surface of the copper powder forms a first coating film, specifically including:
  • the copper powder is mixed with the antioxidant solution at a mass ratio of 1:1.2-2.5, stirred and reacted at 40-60° C. for 2-4 hours, washed and filtered, wherein the concentration of the antioxidant solution is 5-30 g/L.
  • the copper powder with the first coating layer formed on the surface is obtained through stirring reaction, washing and filtering.
  • the purpose of the stirring is to promote the self-assembly of the antioxidant on the surface of the copper powder to form the first coating layer.
  • the purpose of filtering is to obtain solid copper powder in the mixed solution, which is not particularly limited in the present invention.
  • washing is to remove non-film-forming antioxidants, and the process of washing is preferably specifically:
  • the antioxidant liquid is obtained by dissolving tolylbenzotriazole, or 2-mercaptobenzothiazole sodium salt, or a combination of tolylbenzotriazole and 2-mercaptobenzothiazole sodium salt, or a combination of tolylbenzotriazole and hydroquinone, or a combination of 2-mercaptobenzothiazole sodium salt and hydroquinone, or a combination of tolylbenzotriazole, 2-mercaptobenzothiazole sodium salt and hydroquinone in deionized water, and the amount of each antioxidant in the antioxidant solution
  • the ratio is not limited in this application.
  • the copper powder after the deoxidation treatment is contacted with an antioxidant, after the first coating film is formed on the surface of the copper powder, it also includes:
  • the copper powder is infiltrated by flux.
  • the infiltration of the flux to the copper powder can be achieved by mixing the copper powder slurry obtained after the treatment with the antioxidant solution with the flux solution.
  • the flux can be embedded in the mesh gap of the first cladding layer.
  • it can ensure the sufficient wetting and bonding of the solder and copper, increase the interdiffusion of copper atoms at the copper powder interface, prevent the re-formation of oxides before and after the soldering operation, and reduce the occurrence of defects. antioxidant properties.
  • the flux that can be used in this application can be at least one of rosin and rosin-modified phenolic resin. Rosin/rosin-modified phenolic resin has strong corrosiveness to the metal oxide layer, and the rosin has a high volatilization point (400-450 ° C). During the curing process of the slurry under atmospheric conditions, if there is oxidation, the copper powder can be reduced to copper in time to prevent the oxidation of the copper powder.
  • the infiltration of the copper powder with flux specifically includes:
  • the mixed solution is stirred, reacted, washed and filtered to obtain the copper powder treated with the flux.
  • the purpose of the stirring is to promote the reaction between the flux and the copper powder, and there is no special limitation on the stirring. It is preferable to use a magnetic stirrer at a rotational speed of 600-1000 rpm/min to stir the reaction for 2-4 hours.
  • the purpose of filtering is to obtain solid copper powder in the mixed solution, which is not particularly limited in the present invention.
  • washing is to remove excess flux, and the process of washing is preferably specifically:
  • a low-boiling point solvent for washing, and the low-boiling point solvent is selected from at least one of petroleum ether, ethanol, n-butanol, and isobutanol.
  • the high boiling point solvent is preferably at least one of alcohol ester dodeca, butyl carbitol and butyl carbitol acetate.
  • the copper powder with flux after infiltrating the copper powder with flux, it also includes:
  • the copper powder is brought into contact with a coating agent to form a second coating film on the surface of the copper powder.
  • the coating agent can form a film on the surface of the copper powder to form a second coating film, so that the surface of the copper powder has a double film layer, which can further isolate oxygen and avoid the oxidation caused by the contact of the copper powder with air, and the second coating layer can prevent the copper powder from agglomerating during the vacuum drying process, so that the dispersion of the slurry prepared from the copper powder is better.
  • the contact between the copper powder and the coating agent can be carried out by various methods such as spraying and dipping, which are not limited in this application.
  • the copper powder is contacted with a coating agent to form a second coating film on the surface of the copper powder, specifically including:
  • Copper powder and coating agent solution are mixed at a mass ratio of 1:0.5-1.2, stirred and reacted at a temperature below 40°C for 2-4 hours, filtered, washed and dried, wherein the coating agent is lauric acid and/or maleic acid, and the mass concentration of the coating agent solution is 1-5%.
  • the mixed solution is stirred, reacted and filtered to obtain the copper powder with the second coating layer formed.
  • the purpose of stirring is to promote the self-assembly of the coating agent on the surface of the copper powder to form the second coating layer.
  • the purpose of filtering is to obtain solid copper powder in the mixed solution, which is not particularly limited in the present invention.
  • configuration process of the coating agent solution is preferably specifically:
  • the mass ratio of the coating agent to the low-boiling solvent is 0.01-0.05:1, stir at 60-80°C for 30-120min with a magnetic stirrer until the solution is transparent, and the stirring speed is 600-1200rpm/min.
  • the low boiling point solvent is preferably at least one of petroleum ether, ethanol, n-butanol, and isobutanol.
  • lauric acid and maleic acid are two common coating agents, and using them to passivate copper powder can make copper powder have better oxidation resistance and dispersibility.
  • the treatment with the coating agent can make the surface of the copper powder become lipophilic, thereby improving its affinity with organic matter, and improving its compatibility and dispersion when filling polymer-based composite materials such as plastics, rubber, and adhesives.
  • the filtered product is dried to obtain the modified copper powder.
  • the purpose of the drying is to dry the modified copper powder; the drying temperature is preferably 40-80° C., and the drying time is preferably 12-24 hours.
  • the present application has no special limitation on the drying equipment, and a vacuum oven well known to those skilled in the art is preferably used.
  • the deoxidation treatment of the copper powder specifically includes:
  • the inorganic acid is at least one of hydrochloric acid, sulfuric acid and phosphoric acid.
  • the oxide layer, oil stain and other impurities on the surface of the copper powder can be removed.
  • the continuous stirring during the soaking process can fully remove the impurities on the surface of the copper powder and improve the modification effect of the copper powder surface.
  • the mass ratio of the copper powder to the inorganic acid solution is 1:0.5-1.5.
  • Stirring equipment commonly used in the field is used for stirring at a stirring speed of 600-1000rpm/min. After stirring for 3-8h, put it into a centrifuge tube, centrifuge at 2500-40000rpm/min for 4-10min, use filter paper to filter the clear liquid, and wash and filter to obtain the copper powder slurry.
  • washing is to remove impurity and unnecessary inorganic acid, and the process of washing is preferably specifically:
  • the pure resistivity of the deionized water is above 10M ⁇
  • the embodiment of the present application also provides a modified copper powder, which is prepared by any of the above modification methods.
  • the modified copper powder includes copper powder and a first coating film formed on the surface of the copper powder, the first coating film is formed by an antioxidant adsorbed on the surface of the copper powder, and the antioxidant includes tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt;
  • the copper powder is copper powder after deoxidation treatment.
  • the surface of the copper powder of this embodiment forms a hydrophobic and dense coating layer through the coordination of tolylbenzotriazole and/or 2-mercaptobenzothiazole sodium salt with the copper powder, which provides anti-oxidation and corrosion resistance protection for the copper powder, increases the initial anti-oxidation temperature of the copper powder under high-humidity conditions to 170-250 ° C, and enhances its stability in the environment.
  • the antioxidant is bound to the surface of the copper powder in an upright adsorption manner.
  • the adsorption method of antioxidants can be measured by, for example, scanning tunneling microscope and Raman spectrometer. Compared with physical adsorption or horizontal adsorption, the upright adsorption method can adsorb the largest amount of antioxidants on the surface of copper powder, increase the coverage of antioxidants on the surface of copper powder and help form a dense coating layer, thereby significantly improving the antioxidant effect.
  • the antioxidant further includes hydroquinone, and the hydroquinone is intercalated and freed in the network voids of the first coating layer.
  • it also includes flux embedded and freed in the mesh voids of the first cladding layer.
  • it further includes a second coating layer formed outside the first coating layer, and the second coating layer is formed of lauric acid and/or maleic acid.
  • the surface of the copper powder in this embodiment has a double-layer protective layer, specifically including the first coating layer formed by the coordination reaction of the antioxidant and the copper powder and the second coating layer formed by the coating agent.
  • the coating layer is denser and more complete, which significantly isolates the contact between the copper powder and the air, and the copper powder is infiltrated with flux before the second coating layer coating, which can ensure sufficient wetting and bonding of the solder and copper while further improving the oxidation resistance of the copper powder.
  • an embodiment of the present application also provides a conductive paste, including the above-mentioned modified copper powder.
  • Copper powder is modified according to the following steps to obtain modified copper powder:
  • step 3 Add deionized water in step 2, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, filter the clear liquid with filter paper, repeat step 3 repeatedly until the pH value is 6.9, and the resistivity of the clear liquid is above 5M ⁇ .
  • step 5 pour the copper powder slurry treated in step 3 into the antioxidant solution in step 4.
  • the mass ratio of copper powder slurry to antioxidant solution is 1:1.8.
  • step 6 Add deionized water in step 5, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, use filter paper to filter the clear liquid, repeat step 6 repeatedly until the pH value is 6.9.
  • step 8 Mix the treated copper powder slurry in step 6 with the flux solution prepared in step 7 at a mass ratio of 1:1.7, use a magnetic stirrer at a speed of 800 rpm/min, stir for 4 hours, and keep the temperature at 40°C. After the reaction, put it into a centrifuge tube and add petroleum ether at a speed of 4000 rpm/min, centrifuge for 10 min, and filter the clear liquid with filter paper. Wash repeatedly 3 to 5 times until the pH value is 6.9.
  • step 10 Mix the copper powder slurry in step 8 and the coating agent solvent prepared in step 9 according to the mass ratio of 1:1.2, use a magnetic stirrer at a speed of 800 rpm/min, stir for 3 hours, and the temperature is ⁇ 40°C, and use filter paper to filter the clear liquid to obtain a copper powder slurry.
  • Copper powder is modified according to the following steps to obtain modified copper powder:
  • step 3 Add deionized water in step 2, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, filter the clear liquid with filter paper, repeat step 3 repeatedly until the pH value is 6.8, and the resistivity of the clear liquid is above 5M ⁇ .
  • step 5 pour the copper powder slurry treated in step 3 into the antioxidant solution in step 4.
  • the mass ratio of copper powder slurry to antioxidant solution is 1:1.9.
  • step 6 Add deionized water in step 5, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, use filter paper to filter the clear liquid, repeat step 6 repeatedly until the pH value is 6.8.
  • step 8 Mix the treated copper powder slurry in step 6 and the flux solution prepared in step 7 according to the mass ratio of 1:1.6, use a magnetic stirrer at a speed of 800 rpm/min, stir for 4 hours, and the temperature is at 40°C. After the reaction, put it into a centrifuge tube and add it into n-butanol at a speed of 4000 rpm/min, centrifuge for 10 min, and filter the clear liquid with filter paper. Wash repeatedly 3 to 5 times until the pH is at 6.8.
  • step 10 Mix the copper powder slurry in step 8 and the coating agent solvent prepared in step 9 according to the mass ratio of 1:1.2, use a magnetic stirrer at a speed of 800 rpm/min, stir for 3 hours, and the temperature is ⁇ 40°C, and use filter paper to filter the clear liquid to obtain a copper powder slurry.
  • Copper powder is modified according to the following steps to obtain modified copper powder:
  • step 3 Add deionized water in step 2, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, filter the clear liquid with filter paper, repeat step 3 repeatedly until the pH value is 6.9, and the resistivity of the clear liquid is above 5M ⁇ .
  • step 5 pour the copper powder slurry treated in step 3 into the antioxidant solution in step 4.
  • the mass ratio of copper powder slurry to antioxidant solution is 1:1.2.
  • step 6 Add deionized water in step 5, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, use filter paper to filter the clear liquid, repeat step 6 repeatedly until the pH value is 6.9.
  • step 8 Mix the treated copper powder slurry in step 6 and the flux solution prepared in step 7 at a mass ratio of 1:1.1, use a magnetic stirrer at a speed of 800 rpm/min, stir for 4 hours, and keep the temperature at 40°C. After the reaction, put it into a centrifuge tube and add petroleum ether at a speed of 4000 rpm/min, centrifuge for 10 min, and filter the clear liquid with filter paper. Wash repeatedly 3 to 5 times until the pH value is 6.9.
  • step 10 10. Mix the copper powder slurry in step 8 and the coating agent solvent prepared in step 9 according to the mass ratio of 1:0.5, use a magnetic stirrer at a speed of 800 rpm/min, stir for 3 hours, and the temperature is ⁇ 40°C, and use filter paper to filter the clear liquid to obtain a copper powder slurry.
  • Copper powder is modified according to the following steps to obtain modified copper powder:
  • step 3 Add deionized water in step 2, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, filter the clear liquid with filter paper, repeat step 3 repeatedly until the pH value is 6.9, and the resistivity of the clear liquid is above 5M ⁇ .
  • step 5 pour the copper powder slurry treated in step 3 into the antioxidant solution in step 4.
  • the mass ratio of copper powder slurry to antioxidant solution is 1:2.5.
  • step 6 Add deionized water in step 5, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, use filter paper to filter the clear liquid, repeat step 6 repeatedly until the pH value is 6.9.
  • step 8 Mix the treated copper powder slurry in step 6 with the flux solution prepared in step 7 at a mass ratio of 1:2.5, use a magnetic stirrer at a speed of 800 rpm/min, stir for 4 hours, and keep the temperature at 40°C. After the reaction, put it into a centrifuge tube and add petroleum ether at a speed of 4000 rpm/min, centrifuge for 10 min, and filter the clear liquid with filter paper. Wash repeatedly 3 to 5 times until the pH value is 6.9.
  • step 10 Mix the copper powder slurry in step 8 and the coating agent solvent prepared in step 9 according to the mass ratio of 1:1, use a magnetic stirrer at a speed of 800rpm/min, stir for 3h, and the temperature is ⁇ 40°C, and use filter paper to filter the clear liquid to obtain a copper powder slurry.
  • Copper powder is modified according to the following steps to obtain modified copper powder:
  • step 3 Add deionized water in step 2, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, filter the clear liquid with filter paper, repeat step 3 repeatedly until the pH value is 6.9, and the resistivity of the clear liquid is above 5M ⁇ .
  • step 5 pour the copper powder slurry treated in step 3 into the antioxidant solution in step 4.
  • the mass ratio of copper powder slurry to antioxidant solution is 1:1.8.
  • step 6 Add deionized water in step 5, use a magnetic stirrer at a speed of 800rpm/min, stir for 30min, then put it into a centrifuge tube at a speed of 4000rpm/min, centrifuge for 10min, use filter paper to filter the clear liquid, repeat step 6 repeatedly until the pH value is 6.9.
  • step 8 Mix the treated copper powder slurry in step 6 with the flux solution prepared in step 7 at a mass ratio of 1:1.7, use a magnetic stirrer at a speed of 800 rpm/min, stir for 4 hours, and keep the temperature at 40°C. After the reaction, put it into a centrifuge tube and add petroleum ether at a speed of 4000 rpm/min, centrifuge for 10 min, and filter the clear liquid with filter paper. Wash repeatedly 3 to 5 times until the pH value is 6.9.
  • step 10 Mix the copper powder slurry in step 8 and the coating agent solvent prepared in step 9 according to the mass ratio of 1:1.2, use a magnetic stirrer at a speed of 800 rpm/min, stir for 3 hours, and the temperature is ⁇ 40°C, and use filter paper to filter the clear liquid to obtain a copper powder slurry.
  • the oxygen content of the copper powder of Examples 1-5 placed at 200°C for different times was measured.
  • the oxygen content was measured using an oxygen content tester O-3000, and the copper powder without surface modification treatment was used as a control.
  • the measurement results are shown in the following table:
  • Example 1 0.0231 0.0241 0.0261 0.0265 0.0323
  • Example 2 0.0231 0.0234 0.0251 0.0255 0.0283
  • Example 3 0.0231 0.0247 0.0264 0.0271 0.0347
  • Example 4 0.0231 0.0249 0.0268 0.0273 0.0355
  • Example 5 0.0231 0.0236 0.0241 0.0245 0.0250 unprocessed 0.0231 0.792 0.813 0.821 0.831

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

一种改性铜粉及其改性方法和导电浆料,铜粉的改性方法包括:对铜粉进行去氧化处理;将去氧化处理后的铜粉与抗氧化剂接触,使铜粉的表面形成第一包覆膜,抗氧化剂包括甲基苯并三氮唑和/或2‑巯基苯并噻唑钠盐。改性方法通过甲基苯并三氮唑和/或2‑巯基苯并噻唑钠盐与铜粉的配位作用,在铜粉表面形成了疏水且致密的包覆层,为铜粉提供了抗氧化及耐腐蚀保护,使铜粉在高湿条件下的起始抗氧化温度提高到170‑250℃,增强了其在环境中的稳定性。

Description

一种改性铜粉及其改性方法和导电浆料
本申请要求在2022年1月24日提交中国专利局、申请号为202210083038.4、发明名称为“一种改性铜粉及其改性方法和导电浆料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能电池技术领域,具体涉及一种改性铜粉及其改性方法和导电浆料。
背景技术
异质结太阳电池的电极部多采用在200℃左右温度下可固化的银浆料制备,存在价格昂贵、易迁移的缺点。
在非贵金属中,铜是一种比较理想的制作电子浆料的原料,具有能够和导电性银浆料匹敌的良好导电性,且价格便宜。然而金属铜属于过渡族金属,其化学性质非常活泼,容易氧化形成一层绝缘的氧化膜,而这层氧化膜几乎不导电,大大限制了铜粉在电子浆料中的应用。
现有技术中通常通过对铜进行改性以对其表面进行抗氧化保护,现有的一种方法使用苯并三氮唑作为缓蚀剂包覆在纳米铜粉表面以防止纳米铜粉氧化,一方面,纳米铜粉因其比表面积大,造成浆料粘度过大,使其不能通过丝网印刷工艺制备具有一定高宽比的异质结电池,另一方面,苯并三氮唑的抗氧化性能有限,使得铜粉在110℃以上不具备抗氧化性能,且苯并三氮唑的疏水性较差,在加热条件下,水汽易对铜表面产生二次氧化腐蚀,无法满足异质结太阳电池生产要求。因此,对于铜粉的改性研究目前仍有待深入。
发明内容
鉴于现有技术中的上述缺陷或不足,本申请提供了一种铜粉的改性方法、改性铜粉以及导电浆料,以提高铜粉的抗氧化性能。
第一方面,根据本申请的实施例,本申请提出了一种铜粉的改性方法,其包括如下步骤:
对铜粉进行去氧化处理;
将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,其中所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐。
在其中的一个实施例中,所述抗氧化剂还包括对苯二酚。
在其中的一个实施例中,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,具体包括:
使所述铜粉与抗氧化剂溶液按质量比1:1.2-2.5混合,于40-60℃下搅拌反应2-4h后洗涤、过滤,其中所述抗氧化剂溶液的浓度为5-30g/L。
在其中的一个实施例中,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜之后,还包括:
通过助焊剂对所述铜粉进行浸润。
在其中的一个实施例中,通过助焊剂对所述铜粉进行浸润,具体包括:
使所述铜粉与助焊剂溶液按质量比1:1.1-2.5混合,于20-40℃下搅拌反应2-4h后洗涤、过滤,其中所述助焊剂溶液的质量浓度为3-15%。
在其中的一个实施例中,通过助焊剂对所述铜粉进行浸润之后,还包括:
将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜。
在其中的一个实施例中,将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜,具体包括:
使所述铜粉与包覆剂溶液按质量比1:0.5-1.2混合,于40℃以下温度下搅拌反应2-4h后过滤,其中所述包覆剂为月桂酸和/或马来酸,所述包覆剂溶液的质量浓度为1-5%。
在其中的一个实施例中,所述对铜粉进行去氧化处理,具体包括:
将所述铜粉于质量浓度为0.05-4%的无机酸溶液中搅拌反应3-8h后洗涤、滤出固体;
其中所述无机酸为盐酸、硫酸和磷酸中的至少一种。
第二方面,根据本申请的实施例,本申请提供一种改性铜粉,所述改性铜粉采用本申请提供的上述改性方法改性得到,具体地,所述改性铜粉包括:
铜粉以及形成于所述铜粉表面的第一包覆膜,所述第一包覆膜由抗氧化剂吸附于铜粉表面所形成,所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐;
其中所述铜粉为经去氧化处理后的铜粉。
在其中的一个实施例中,所述抗氧化剂以直立吸附的方式结合于所述铜粉的表面。
在其中的一个实施例中,所述抗氧化剂还包括对苯二酚,所述对苯二酚嵌入并游离在所述第一包覆层的网状空隙中。
在其中的一个实施例中,还包括嵌入并游离在所述第一包覆层的网状空隙中的助焊剂。
在其中的一个实施例中,还包括形成于所述第一包覆层外的第二包覆层,所述第二包覆层由月桂酸和/或马来酸形成。
第三方面,根据本申请的实施例,本申请提供一种导电浆料,包括本申请提供的上述改性铜粉。
本申请的实施例提供的技术方案可以包括以下有益效果:
本申请所述的改性方法通过甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐与铜粉的配位作用,在铜粉表面形成了疏水且致密的包覆层,为铜粉提供了抗氧化及耐腐蚀保护,使铜粉在高湿条件下的起始抗氧化温度提高到170-250℃,增强了其在环境中的稳定性。
具体实施例
下面结合实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本申请的实施例提供了一种铜粉的改性方法,包括如下步骤:
对铜粉进行去氧化处理;
将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐。
本申请首先对铜粉进行去氧化处理,以去除铜粉表面的氧化层,提高铜粉表面改性效果。
其次采用抗氧化剂对铜粉进行抗氧化处理,使其有较好的抗空气氧化性能,抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐;
甲基苯并三氮唑(TTA)属于有机杂环类化合物,具有在金属表面上强烈吸附络合的性质,其分子中的氮原子能够与铜粉表面铜离子配位交联而直立吸附于铜粉表面,即能与铜形成-Cu-TTA-的链状聚合物,该链状聚合物呈平行取向,使得苯环以直立方式垂直于铜粉表面,从而在铜粉表面形成致密的具有保护作用的有机保护膜。
巯基苯并噻唑(2-Mercaptobenzothiazole,MBT)巯基上的N原子和S原子能够与铜离子通过配位键交联,且其在水溶液中能够离解形成硫醇负离子和H+,硫醇负离子能和Cu2+生成十分稳定的配合物,因此,MBT可通过环外S、环内N以及硫醇离子形式在铜粉表面直立吸附,迅速形成有机保护膜。
采用这种直立吸附的方法相较于物理吸附或平伏吸附可以在铜粉表面最大量地吸附抗氧化剂,增加铜粉表面抗氧化剂覆盖度且有助于形成致密的包覆层,其中,抗氧化剂在铜粉表面的吸附方式可通过扫描隧道显微镜和拉曼光谱仪进行测定。
由此可见,采用甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐包覆在铜粉表面,不仅仅存在物理包覆,同时存在N和S原子与铜粉配位,分子中大量的CH链伸展向铜粉的四周,在铜粉表面形成致密且有效的第一包覆层,第一包覆层一方面可以对铜粉进行保护,有效避免铜表面的孔隙和晶格缺陷导致其易于氧化;另一方面该层对铜有较强的吸附,能有效的隔绝空气与铜粉表面的接触。并且,甲基苯并三氮唑和2-巯基苯并噻唑钠盐具有较强的疏水性,能防止水存在于第一包覆层中,从而有效避免加热条件下水气对铜表面的二次氧化,使得形成有第一包覆层的铜粉疏水且具有低温抗氧化性,使铜粉在高湿条件下(湿度达到85%)的起始抗氧化温度提高到170-250℃。
其中,甲基苯并三氮唑和2-巯基苯并噻唑钠盐复合包覆铜粉具有一定的抗氧化协同效应,2-巯基苯并噻唑钠盐相较于甲基苯并三氮唑成膜速度更快,两者存在同一体系时,能相互促进界面作用,形成多层保护膜,使铜粉得起始氧化温度达到250℃,具有较好的抗空气氧化性能。
本申请对铜粉进行去氧化处理的方法没有特殊限制,例如可通过机械抛光法、化学去除法进行。在本申请一些优选的实施例中,采用酸液对铜粉进行去氧化处理,去氧化处理后的铜粉为经酸液浸泡后滤出固体所得的铜粉浆液。
本申请对铜粉的来源没有特殊限制,可通过例如雾化法、模板法、化学还原法、机械球磨法、真空沉积法等来制造,或通过市售获得。另外,对于本申请的铜粉的形状不特别限定,可以为粒子状、片状、柱状、球状、无规则形状等,其可具有0.01~10μm的平均粒径,优选所述铜粉具有D10为0.3~0.5μm,D50为0.7~1.2μm,D90为1.5~1.9μm,D100≤10μm的粒度分布,优选铜粉的比表面积为0.6-1.2m 2/g,振实密度>3.2g/mL。
进一步地,在本申请一些优选的实施方式中,所述抗氧化剂还含包括对苯二酚。
对苯二酚能够产生H+与游离基,具有优异的抗氧化能力,其中第一包覆层虽然致密但仍不可避免地具有网状空隙,在形成第一包覆层的过程中对苯二酚能够嵌入并游离在第一包覆层的网状空隙中,进一步提高铜粉的抗氧化性。
进一步地,在本申请一些优选的实施方式中,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,具体包括:
使所述铜粉与所述抗氧化剂溶液按质量比1:1.2-2.5混合,于40-60℃下搅拌反应2-4h后洗涤、过滤,其中所述抗氧化剂溶液的浓度为5-30g/L。
具体地,铜粉与抗氧化剂溶液按比例混合得到混合溶液后,经搅拌反应、洗涤和过滤,得到表面形成有第一包覆层的铜粉。在本实施方式中中,搅拌的目的是促进抗氧化剂在铜粉表面自组装形成第一包覆层,对于搅拌没有特殊限制,优选使用磁力搅拌器在转速为600~1000rpm/min下搅拌反应2-4h。在本实施方式中,过滤的目的是得到混合溶液中的固体铜粉,本发明对此没有特殊限制。
洗涤的目的为去除未成膜的抗氧化剂,洗涤的过程优选具体为:
向反应后的产物中加水,使用磁力搅拌器搅拌20~50min,转速为600~1000rpm/min,然后于2500~40000rpm/min离心4~10min后,使用滤纸过滤清液,重复上述步骤至清液pH为5-8,完成所述洗涤过程。
其中,所述抗氧化剂液通过将甲基苯并三氮唑,或2-巯基苯并噻唑钠盐,或甲基苯并三氮唑与2-巯基苯并噻唑钠盐的组合,或甲基苯并三氮唑与对苯二酚的组合,或2-巯基苯并噻唑钠盐与对苯二酚的组合,或甲基苯并三氮唑与2-巯基苯并噻唑钠盐和对苯二酚的组合溶于去离子水中获得,抗氧化剂溶液中各抗氧化剂的占比本申请并不予以限制。
进一步地,在本申请一些优选的实施方式中,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜之后,还包括:
通过助焊剂对所述铜粉进行浸润。
具体地,可通过将经抗氧化剂溶液处理后获得的铜粉浆液与助焊剂溶液混合实现助焊剂对铜粉的浸润,助焊剂可以嵌入第一包覆层的网状空隙中,一方面,能够保证焊锡与铜的充分润湿和结合,增加铜粉界面铜原子互扩散,防止在焊接操作之前和之后重新形成氧化物,减少缺陷的产生,另一方面,助焊剂对金属氧化层具有腐蚀性,通过加热固化过程中如存在氧化能及时还原成铜,进一步保证铜粉的抗氧化性。
作为可用于本申请的助焊剂,可以为松香和松香改性酚醛树脂中的至少一种,松香/松香改性酚醛树脂对金属氧化层具有较强的腐蚀性,且松香挥发 点较高(400~450℃),在浆料大气条件下固化过程中铜粉如存在氧化能及时还原成铜,防止铜粉氧化。
进一步地,在本申请一些优选的实施方式中,所述通过助焊剂对铜粉进行浸润,具体包括:
使铜粉与助焊剂溶液按质量比1:1.1-2.5混合,于20-40℃下搅拌反应2-4h后洗涤、过滤,其中所述助焊剂溶液的质量浓度为3-15%。
具体地,将经抗氧化剂溶液处理后获得的铜粉浆液与助焊剂溶液按比例混合得到混合溶液后,经搅拌反应、洗涤和过滤,得到经助焊剂处理后的铜粉。在本实施方式中,搅拌的目的是促进助焊剂与铜粉的反应,对于搅拌没有特殊限制,优选使用磁力搅拌器在转速为600~1000rpm/min下搅拌反应2-4h。在本实施方式中,过滤的目的是得到混合溶液中的固体铜粉,本发明对此没有特殊限制。
其中洗涤的目的为去除多余的助焊剂,洗涤的过程优选具体为:
向反应后的产物中加水,使用磁力搅拌器搅拌20~50min,转速为600~1000rpm/min,然后于2500~40000rpm/min离心4~10min后,使用滤纸过滤清液,重复上述步骤至清液pH为5-8,完成所述洗涤过程。更优选采用低沸点溶剂进行洗涤,低沸点溶剂选自石油醚、乙醇、正丁醇、异丁醇中的至少一种。
其中所述助焊剂溶液的配置过程优选具体为:
将助焊剂加入到高沸点溶剂中,加入质量比例为3~15%,使用磁力搅拌器于60-80℃下搅拌30-120min,至溶液透明后使用300目网筛过滤待用,其中搅拌速度为600~1200rpm/min。
其中高沸点溶剂优选为醇酯十二、丁基卡必醇、丁基卡必醇醋酸酯中的至少一种。
进一步地,在本申请一些优选的实施方式中,通过助焊剂对所述铜粉进行浸润之后,还包括:
将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜。
具体地,包覆剂能够在铜粉表面成膜形成第二包覆膜,从而使得铜粉表面具有双膜层,能够进一步隔绝氧气,避免铜粉与空气接触所引发的氧化, 且第二包覆层能够防止铜粉在真空烘干过程中团聚,使铜粉制备成浆料分散性较好。
其中,所述铜粉与包覆剂的接触可通过喷涂、浸渍等多种方法进行,本申请并不予以限制。
进一步地,在本申请一些优选的实施方式中,将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜,具体包括:
使铜粉与包覆剂溶液按质量比1:0.5-1.2混合,于40℃以下温度下搅拌反应2-4h后过滤、洗涤和干燥,其中所述包覆剂为月桂酸和/或马来酸,所述包覆剂溶液的质量浓度为1-5%。
具体地,将经助焊剂处理后获得的铜粉浆液与包覆剂溶液按比例混合得到混合溶液后,经搅拌反应和过滤,得到形成有第二包覆层的铜粉。在本实施方式中,搅拌的目的是促进包覆剂在铜粉表面自组装形成第二包覆层,对于搅拌没有特殊限制,优选使用磁力搅拌器在转速为600~1000rpm/min下搅拌反应2-4h。在本实施方式中,过滤的目的是得到混合溶液中的固体铜粉,本发明对此没有特殊限制。
其中所述包覆剂溶液的配置过程优选具体为:
将包覆剂加入到低沸点溶剂中,包覆剂与低沸点溶剂的质量比为0.01-0.05:1,使用磁力搅拌器于60-80℃下搅拌30-120min,至溶液透明,其中搅拌速度为600~1200rpm/min。
其中低沸点溶剂优选为石油醚、乙醇、正丁醇、异丁醇中的至少一种。
其中,月桂酸和马来酸是两种常见的包覆剂,用它钝化铜粉可以使铜粉具备较好的抗氧化性和分散性。同时用该包覆剂处理可以让铜粉表面变为亲油性,从而改善其与有机物的亲和性,提高其在塑料、橡胶、胶粘剂等高聚物基复合材料填充时的相容性和分散性。
进一步地,在本申请一些优选的实施方式中,完成第二包覆层包覆后,对过滤后产物进行干燥,即得到改性铜粉。
在本申请中,所述干燥的目的是将改性后获得的铜粉烘干;所述干燥的温度优选为40-80℃,干燥时间优选为12-24h。本申请对所述干燥的设备没有特殊限制,优选采用本领域技术人员熟知的真空烘箱。
进一步地,在本申请一些优选的实施方式中,所述对铜粉进行去氧化处理,具体包括:
将铜粉于质量浓度为0.05-4%的无机酸溶液中搅拌反应3-8h后洗涤、滤出固体;
其中所述无机酸为盐酸、硫酸和磷酸中的至少一种。
铜粉经过上述无机酸溶液浸泡,能够除去铜粉表面的氧化层、油污及其它杂质,浸泡过程不断搅拌,能够充分除去铜粉表面杂质,提高铜粉表面的改性效果。
优选地,铜粉与无机酸溶液的质量比为1:0.5-1.5,搅拌采用本领域常用的搅拌设备,搅拌速度为600-1000rpm/min,搅拌反应3-8h后放入离心管中,于2500-40000rpm/min离心4-10min,使用滤纸过滤清液,并经洗涤、过滤获得铜粉浆料。
其中洗涤的目的为去除杂质及多余的无机酸,洗涤的过程优选具体为:
向反应后的产物中加水,使用磁力搅拌器搅拌20~50min,转速为600~1000rpm/min,然后于2500~40000rpm/min离心4~10min后,使用滤纸过滤清液,重复上述步骤至清液pH为5-8,清液电阻率在5MΩ以上,完成所述洗涤过程。
其中所述无机酸溶液的配置过程优选具体为:
将无机酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为0.05~4%的无机酸溶液,pH值为2~5,并使用磁力搅拌器在转速为200rmp/min,温度为25-45℃下搅拌5min。
基于同一发明构思,本申请实施例还提供了一种改性铜粉,该改性铜粉为采用上述任一的改性方法制备获得。
具体地,所述改性铜粉包括铜粉以及形成于所述铜粉表面的第一包覆膜,所述第一包覆膜由抗氧化剂吸附于铜粉表面所形成,所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐;
其中所述铜粉为经去氧化处理后的铜粉。
本实施方式的铜粉的表面通过甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐与铜粉的配位作用形成了疏水且致密的包覆层,为铜粉提供了抗氧化及耐 腐蚀保护,使铜粉在高湿条件下的起始抗氧化温度提高到170-250℃,增强了其在环境中的稳定性。
进一步地,在本申请一些优选的实施方式中,所述抗氧化剂以直立吸附的方式结合于所述铜粉的表面。
抗氧化剂的吸附方式可通过例如扫描隧道显微镜和拉曼光谱仪进行测定,采用直立吸附的方法相较于物理吸附或平伏吸附可以在铜粉表面最大量地吸附抗氧化剂,增加铜粉表面抗氧化剂覆盖度且有助于形成致密的包覆层,从而显著提升抗氧化效果。
进一步地,在本申请一些优选的实施方式中,所述抗氧化剂还包括对苯二酚,所述对苯二酚嵌入并游离在所述第一包覆层的网状空隙中。
进一步地,在本申请一些优选的实施方式中,还包括嵌入并游离在所述第一包覆层的网状空隙中的助焊剂。
进一步地,在本申请一些优选的实施方式中,还包括形成于所述第一包覆层外的第二包覆层,所述第二包覆层由月桂酸和/或马来酸形成。
本实施方式的铜粉的表面具有双层保护层,具体包括由抗氧化剂与铜粉配位反应形成的第一包覆层和由包覆剂形成的第二包覆层,包覆层更加致密且完全,显著隔绝了铜粉与空气的接触,且铜粉在进行第二包覆层包覆之前经助焊剂浸润,在能够保证焊锡与铜的充分润湿和结合同时进一步提高了铜粉的抗氧化性。
基于同一发明构思,本申请实施例还提供了一种导电浆料,包括如上所述的改性铜粉。
实施例1
按如下步骤对铜粉进行改性,获得改性铜粉:
1、称取盐酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为1%的盐酸溶液,并使用磁力搅拌器在转速为200rmp/min,温度为25℃下搅拌5min待用。
2、将铜粉加入上述盐酸溶液中,其中铜粉D10 0.42μm,D50 0.89μm,D90 1.62μm,D100 6.45μm,比表面积0.92m 2/g,振实密度3.7g/mL,铜粉: 盐酸质量配比为1:1.5,在搅拌速度为1000rpm/min下搅拌5h,pH值为2.9。然后放入离心管中,转速为4000rpm/min,离心6min,使用滤纸过滤清液。
3、在步骤2中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤3,直至pH值为6.9,清液电阻率在5MΩ以上。
4、称取甲基苯并三氮唑、对苯二酚按照1:0.3质量比配制。将该有机物溶解于去离子水中,配制浓度为8g/L的抗氧化液。
5、将步骤3处理后的铜粉浆液倒入步骤4的抗氧化液中,铜粉浆液与抗氧化液的质量比为1:1.8,使用磁力搅拌器转速为1000rpm/min,搅拌3.5h,温度为50℃。
6、在步骤5中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤6,直至pH值在6.9。
7、将松香加入到丁基卡必醇醋酸酯溶剂中,加入质量比例为5%,使用磁力搅拌器搅拌速度800rpm/min,温度为70℃,搅拌60min,至溶剂透明,并使用300目网筛过滤待用。
8、将步骤6的处理后的铜粉浆液和步骤7制备的助焊剂溶液按照质量比1:1.7混合,使用磁力搅拌器转速为800rpm/min,搅拌4h,温度在40℃。反应后放入离心管中并加入石油醚,转速为4000rpm/min,离心10min,使用滤纸过滤清液。反复清洗3~5次至pH值在6.9。
9、将月桂酸加入乙醇中,包覆剂与低沸点溶剂的质量比例为0.03:1。使用磁力搅拌器搅拌速度800rpm/min,温度为80℃,搅拌60min,至溶剂透明备用。
10、将步骤8的铜粉浆液和步骤9制备的包覆剂溶剂按照质量比1:1.2混合,使用磁力搅拌器转速为800rpm/min,搅拌3h,温度≤40℃,使用滤纸过滤清液得到铜粉浆液。
11、将铜粉浆液放入真空干燥箱中,65℃烘干12h至干燥状态,获得表面改性铜粉。
实施例2
按如下步骤对铜粉进行改性,获得改性铜粉:
1、称取硫酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为1%的硫酸溶液,并使用磁力搅拌器在转速为200rmp/min,温度为25℃下搅拌5min待用。
2、将铜粉加入上述硫酸溶液中,其中铜粉D10 0.42μm,D50 0.89μm,D90 1.62μm,D100 6.45μm,比表面积0.92m 2/g,振实密度3.7g/mL,铜粉:硫酸质量配比为1:0.8,在搅拌速度为1000rpm/min,搅拌5h,pH值为3.0。然后放入离心管中,转速为4000rpm/min,离心6min,使用滤纸过滤清液。
3、在步骤2中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤3,直至pH值为6.8,清液电阻率在5MΩ以上。
4、称取2-疏基苯并噻唑钠盐、对苯二酚按照1:0.25质量比配制。将该有机物溶解于去离子水中,配制浓度为8g/L的抗氧化液。
5、将步骤3处理后的铜粉浆液倒入步骤4的抗氧化液中,铜粉浆液与抗氧化液的质量比为1:1.9,使用磁力搅拌器转速为1000rpm/min,搅拌3.5h,温度在50℃。
6、在步骤5中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤6,直至pH值在6.8。
7、将松香改性酚醛树脂加入到丁基卡必醇醋酸酯溶剂中,加入质量比例为5%,使用磁力搅拌器搅拌速度800rpm/min,温度为70℃,搅拌60min,至溶剂透明,并使用300目网筛过滤待用。
8、将步骤6的处理后的铜粉浆液和步骤7制备的助焊剂溶液按照质量比1:1.6,使用磁力搅拌器转速为800rpm/min,搅拌4h,温度在40℃。反应后放入离心管中并加入石正丁醇中,转速为4000rpm/min,离心10min,使用滤纸过滤清液。反复清洗3~5次至pH至在6.8。
9、将马来酸加入乙醇中,包覆剂与乙醇的质量比例为0.03:1。使用磁力搅拌器搅拌速度800rpm/min,温度为80℃,搅拌60min,至溶剂透明备用。
10、将步骤8的铜粉浆液和步骤9制备的包覆剂溶剂按照质量比1:1.2混合,使用磁力搅拌器转速为800rpm/min,搅拌3h,温度≤40℃,使用滤纸过滤清液得到铜粉浆液。
11、将铜粉浆液放入真空干燥箱中,65℃烘干12h至干燥状态,获得表面改性铜粉。
实施例3
按如下步骤对铜粉进行改性,获得改性铜粉:
1、称取盐酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为0.05%的盐酸溶液,并使用磁力搅拌器在转速为200rmp/min,温度为45℃下搅拌5min待用。
2、将铜粉加入上述盐酸溶液中,其中铜粉D10 0.3μm,D50 0.7μm,D90 1.5μm,D100 8.3μm,比表面积0.8m 2/g,振实密度3.9g/mL,铜粉:盐酸质量配比为1:1.5,在搅拌速度为1000rpm/min下搅拌3h,pH值为4.5。然后放入离心管中,转速为4000rpm/min,离心6min,使用滤纸过滤清液。
3、在步骤2中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤3,直至pH值为6.9,清液电阻率在5MΩ以上。
4、称取甲基苯并三氮唑,将该有机物溶解于去离子水中,配制浓度为5g/L的抗氧化液。
5、将步骤3处理后的铜粉浆液倒入步骤4的抗氧化液中,铜粉浆液与抗氧化液的质量比为1:1.2,使用磁力搅拌器转速为1000rpm/min,搅拌3.5h,温度为50℃。
6、在步骤5中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤6,直至pH值在6.9。
7、将松香加入到醇酯十二溶剂中,加入质量比例为3%,使用磁力搅拌器搅拌速度800rpm/min,温度为70℃,搅拌60min,至溶剂透明,并使用300目网筛过滤待用。
8、将步骤6的处理后的铜粉浆液和步骤7制备的助焊剂溶液按照质量比1:1.1混合,使用磁力搅拌器转速为800rpm/min,搅拌4h,温度在40℃。反应后放入离心管中并加入石油醚,转速为4000rpm/min,离心10min,使用滤纸过滤清液。反复清洗3~5次至pH值在6.9。
9、将月桂酸加入正丁醇中,包覆剂与低沸点溶剂的质量比例为0.01:1。使用磁力搅拌器搅拌速度800rpm/min,温度为80℃,搅拌60min,至溶剂透明备用。
10、将步骤8的铜粉浆液和步骤9制备的包覆剂溶剂按照质量比1:0.5混合,使用磁力搅拌器转速为800rpm/min,搅拌3h,温度≤40℃,使用滤纸过滤清液得到铜粉浆液。
11、将铜粉浆液放入真空干燥箱中,65℃烘干12h至干燥状态,获得表面改性铜粉。
实施例4
按如下步骤对铜粉进行改性,获得改性铜粉:
1、称取磷酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为4%的磷酸溶液,并使用磁力搅拌器在转速为200rmp/min,温度为45℃下搅拌5min待用。
2、将铜粉加入上述磷酸溶液中,其中铜粉D10 0.42μm,D50 0.89μm,D90 1.62μm,D100 6.45μm,比表面积0.92m 2/g,振实密度3.7g/mL,铜粉:磷酸质量配比为1:1.5,在搅拌速度为1000rpm/min下搅拌3h,pH值为2。然后放入离心管中,转速为4000rpm/min,离心6min,使用滤纸过滤清液。
3、在步骤2中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤3,直至pH值为6.9,清液电阻率在5MΩ以上。
4、称取2-疏基苯并噻唑钠盐,将该有机物溶解于去离子水中,配制浓度为30g/L的抗氧化液。
5、将步骤3处理后的铜粉浆液倒入步骤4的抗氧化液中,铜粉浆液与抗氧化液的质量比为1:2.5,使用磁力搅拌器转速为1000rpm/min,搅拌3.5h,温度为50℃。
6、在步骤5中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤6,直至pH值在6.9。
7、将松香加入到丁基卡必醇溶剂中,加入质量比例为15%,使用磁力搅拌器搅拌速度800rpm/min,温度为70℃,搅拌60min,至溶剂透明,并使用300目网筛过滤待用。
8、将步骤6的处理后的铜粉浆液和步骤7制备的助焊剂溶液按照质量比1:2.5混合,使用磁力搅拌器转速为800rpm/min,搅拌4h,温度在40℃。反应后放入离心管中并加入石油醚,转速为4000rpm/min,离心10min,使用滤纸过滤清液。反复清洗3~5次至pH值在6.9。
9、将月桂酸加入异丁醇中,包覆剂与低沸点溶剂的质量比例为0.05:1。使用磁力搅拌器搅拌速度800rpm/min,温度为80℃,搅拌60min,至溶剂透明备用。
10、将步骤8的铜粉浆液和步骤9制备的包覆剂溶剂按照质量比1:1混合,使用磁力搅拌器转速为800rpm/min,搅拌3h,温度≤40℃,使用滤纸过滤清液得到铜粉浆液。
11、将铜粉浆液放入真空干燥箱中,65℃烘干12h至干燥状态,获得表面改性铜粉。
实施例5
按如下步骤对铜粉进行改性,获得改性铜粉:
1、称取盐酸缓慢倒入去离子水中,去离子水纯电阻率在10MΩ以上,配制成质量浓度为1%的盐酸溶液,并使用磁力搅拌器在转速为200rmp/min,温度为25℃下搅拌5min待用。
2、将铜粉加入上述盐酸溶液中,其中铜粉D10 0.42μm,D50 0.89μm,D90 1.62μm,D100 6.45μm,比表面积0.92m 2/g,振实密度3.7g/mL,铜粉:盐酸质量配比为1:1.5,在搅拌速度为1000rpm/min下搅拌5h,pH值为2.9。然后放入离心管中,转速为4000rpm/min,离心6min,使用滤纸过滤清液。
3、在步骤2中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤3,直至pH值为6.9,清液电阻率在5MΩ以上。
4、称取甲基苯并三氮唑和2-疏基苯并噻唑钠盐按照1:1质量比配制。将该有机物溶解于去离子水中,配制浓度为8g/L的抗氧化液。
5、将步骤3处理后的铜粉浆液倒入步骤4的抗氧化液中,铜粉浆液与抗氧化液的质量比为1:1.8,使用磁力搅拌器转速为1000rpm/min,搅拌3.5h,温度为50℃。
6、在步骤5中加入去离子水,使用磁力搅拌器转速为800rpm/min,搅拌30min,然后放入离心管中,转速为4000rpm/min,离心10min,使用滤纸过滤清液,反复重复步骤6,直至pH值在6.9。
7、将松香加入到丁基卡必醇醋酸酯溶剂中,加入质量比例为5%,使用磁力搅拌器搅拌速度800rpm/min,温度为70℃,搅拌60min,至溶剂透明,并使用300目网筛过滤待用。
8、将步骤6的处理后的铜粉浆液和步骤7制备的助焊剂溶液按照质量比1:1.7混合,使用磁力搅拌器转速为800rpm/min,搅拌4h,温度在40℃。反应后放入离心管中并加入石油醚,转速为4000rpm/min,离心10min,使用滤纸过滤清液。反复清洗3~5次至pH值在6.9。
9、将月桂酸加入乙醇中,包覆剂与低沸点溶剂的质量比例为0.03:1。使用磁力搅拌器搅拌速度800rpm/min,温度为80℃,搅拌60min,至溶剂透明备用。
10、将步骤8的铜粉浆液和步骤9制备的包覆剂溶剂按照质量比1:1.2混合,使用磁力搅拌器转速为800rpm/min,搅拌3h,温度≤40℃,使用滤纸过滤清液得到铜粉浆液。
11、将铜粉浆液放入真空干燥箱中,65℃烘干12h至干燥状态,获得表面改性铜粉。
对实施例1-5的铜粉在200℃下放置不同时间的氧含量进行测定,氧含量测定使用氧含量测试仪O-3000进行,并以未进行表面改性处理的铜粉作为对照,测定结果如下表所示:
   0min 30min 60min 120min 240min
实施例1 0.0231 0.0241 0.0261 0.0265 0.0323
实施例2 0.0231 0.0234 0.0251 0.0255 0.0283
实施例3 0.0231 0.0247 0.0264 0.0271 0.0347
实施例4 0.0231 0.0249 0.0268 0.0273 0.0355
实施例5 0.0231 0.0236 0.0241 0.0245 0.0250
未处理 0.0231 0.792 0.813 0.821 0.831
通过实施例1-5与未处理铜粉的对比可以看出,本申请的改性方法所获得的铜粉具有较强的抗氧化性,在200℃下放置240min氧含量变化不明显,而未经处理的铜粉氧含量显著增加,说明发生了明显的氧化。
通过实施例1-4的对比可以看出,对苯二酚的加入能够进一步改善铜粉的抗氧化性,通过实施例3-5的对比可以看出,甲基苯并三氮唑和2-疏基苯并噻唑钠盐具有协同作用,使得包覆更完全,能够明显提高铜粉的抗氧化性。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离前述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 一种铜粉的改性方法,其特征在于,包括:
    对铜粉进行去氧化处理;
    将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,其中所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐。
  2. 根据权利要求1所述的铜粉的改性方法,其特征在于,所述抗氧化剂还包括对苯二酚。
  3. 根据权利要求1所述的铜粉的改性方法,其特征在于,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜,具体包括:
    使所述铜粉与抗氧化剂溶液按质量比1:1.2-2.5混合,于40-60℃下搅拌反应2-4h后洗涤、过滤,其中所述抗氧化剂溶液的浓度为5-30g/L。
  4. 根据权利要求1所述的铜粉的改性方法,其特征在于,将去氧化处理后的铜粉与抗氧化剂接触,使所述铜粉的表面形成第一包覆膜之后,还包括:
    通过助焊剂对所述铜粉进行浸润。
  5. 根据权利要求4所述的铜粉的改性方法,其特征在于,通过助焊剂对所述铜粉进行浸润,具体包括:
    使所述铜粉与助焊剂溶液按质量比1:1.1-2.5混合,于20-40℃下搅拌反应2-4h后洗涤、过滤,其中所述助焊剂溶液的质量浓度为3-15%。
  6. 根据权利要求4所述的铜粉的改性方法,其特征在于,通过助焊剂对所述铜粉进行浸润之后,还包括:
    将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜。
  7. 根据权利要求6所述的铜粉的改性方法,其特征在于,将所述铜粉与包覆剂接触,使所述铜粉的表面形成第二包覆膜,具体包括:
    使所述铜粉与包覆剂溶液按质量比1:0.5-1.2混合,于40℃以下温度下搅拌反应2-4h后过滤,其中所述包覆剂为月桂酸和/或马来酸,所述包覆剂溶液的质量浓度为1-5%。
  8. 根据权利要求1所述的铜粉的改性方法,其特征在于,所述对铜粉进行去氧化处理,具体包括:
    将所述铜粉于质量浓度为0.05-4%的无机酸溶液中搅拌反应3-8h后洗 涤、滤出固体;
    其中所述无机酸为盐酸、硫酸和磷酸中的至少一种。
  9. 一种改性铜粉,其特征在于,包括:
    铜粉以及形成于所述铜粉表面的第一包覆膜,所述第一包覆膜由抗氧化剂吸附于铜粉表面所形成,所述抗氧化剂包括甲基苯并三氮唑和/或2-巯基苯并噻唑钠盐;
    其中所述铜粉为经去氧化处理后的铜粉。
  10. 根据权利要求9所述的改性铜粉,其特征在于,所述抗氧化剂以直立吸附的方式结合于所述铜粉的表面。
  11. 根据权利要求9所述的改性铜粉,其特征在于,所述抗氧化剂还包括对苯二酚,所述对苯二酚嵌入并游离在所述第一包覆层的网状空隙中。
  12. 根据权利要求9所述的改性铜粉,其特征在于,还包括嵌入并游离在所述第一包覆层的网状空隙中的助焊剂。
  13. 根据权利要求9所述的改性铜粉,其特征在于,还包括形成于所述第一包覆层外的第二包覆层,所述第二包覆层由月桂酸和/或马来酸形成。
  14. 一种导电浆料,其特征在于,包括权利要求9-13任一项所述的改性铜粉。
PCT/CN2023/071049 2022-01-24 2023-01-06 一种改性铜粉及其改性方法和导电浆料 WO2023138415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210083038.4A CN114453578B (zh) 2022-01-24 2022-01-24 一种改性铜粉及其改性方法和导电浆料
CN202210083038.4 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023138415A1 true WO2023138415A1 (zh) 2023-07-27

Family

ID=81412552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071049 WO2023138415A1 (zh) 2022-01-24 2023-01-06 一种改性铜粉及其改性方法和导电浆料

Country Status (2)

Country Link
CN (1) CN114453578B (zh)
WO (1) WO2023138415A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453578B (zh) * 2022-01-24 2023-12-05 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN115255358B (zh) * 2022-06-23 2024-01-16 西安隆基乐叶光伏科技有限公司 金属粉末材料表面改性方法、改性金属粉末材料及其应用
CN115376722A (zh) * 2022-08-01 2022-11-22 隆基绿能科技股份有限公司 含有包覆层的铜铝颗粒粉末、制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113508A (ja) * 1994-10-17 1996-05-07 Hitachi Chem Co Ltd 銅化合物粉体表面処理物、その製造法及びそれを用いた塗料組成物
JP2010131669A (ja) * 2008-10-29 2010-06-17 Nippon Handa Kk 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体および電気回路接続用バンプの製造方法
CN102151823A (zh) * 2011-01-26 2011-08-17 宁波广博纳米材料有限公司 纳米铜粉的抗氧化方法
CN103878366A (zh) * 2014-04-16 2014-06-25 湖南大学 铜包覆铬复合粉末及其制备方法和应用
CN106141168A (zh) * 2016-08-23 2016-11-23 金川集团股份有限公司 一种铜粉的湿法防氧化方法
CN109664048A (zh) * 2018-12-30 2019-04-23 北京康普锡威科技有限公司 纳米铜膏的制备方法、纳米铜膏及其应用
CN109877336A (zh) * 2018-03-16 2019-06-14 南京林业大学 一种片状铜粉的制备方法
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049622A (zh) * 1990-03-06 1991-03-06 北京市印刷技术研究所 导电铜粉的表面处理方法
JP4868716B2 (ja) * 2004-04-28 2012-02-01 三井金属鉱業株式会社 フレーク銅粉及び導電性ペースト
CN102274979B (zh) * 2011-09-20 2013-04-24 南京林业大学 一种小分子粘稠介质中制备纳米铜粉的方法
CN105499559A (zh) * 2014-09-24 2016-04-20 比亚迪股份有限公司 一种改性铜粉及其制备方法和电子浆料
CN108406166A (zh) * 2018-03-13 2018-08-17 广东省焊接技术研究所(广东省中乌研究院) 一种无卤素喷印锡膏用助焊剂及其制备方法
CN110369712B (zh) * 2019-08-29 2021-08-20 嘉兴学院 一种覆银铜粉的制备方法
CN110961829B (zh) * 2019-12-09 2022-02-22 青岛歌尔微电子研究院有限公司 助焊剂及其制备方法、锡膏及其制备方法
CN111540503A (zh) * 2020-05-29 2020-08-14 南京凯泰化学科技有限公司 一种导电铜浆及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113508A (ja) * 1994-10-17 1996-05-07 Hitachi Chem Co Ltd 銅化合物粉体表面処理物、その製造法及びそれを用いた塗料組成物
JP2010131669A (ja) * 2008-10-29 2010-06-17 Nippon Handa Kk 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体および電気回路接続用バンプの製造方法
CN102151823A (zh) * 2011-01-26 2011-08-17 宁波广博纳米材料有限公司 纳米铜粉的抗氧化方法
CN103878366A (zh) * 2014-04-16 2014-06-25 湖南大学 铜包覆铬复合粉末及其制备方法和应用
CN106141168A (zh) * 2016-08-23 2016-11-23 金川集团股份有限公司 一种铜粉的湿法防氧化方法
CN109877336A (zh) * 2018-03-16 2019-06-14 南京林业大学 一种片状铜粉的制备方法
CN109664048A (zh) * 2018-12-30 2019-04-23 北京康普锡威科技有限公司 纳米铜膏的制备方法、纳米铜膏及其应用
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料

Also Published As

Publication number Publication date
CN114453578A (zh) 2022-05-10
CN114453578B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2023138415A1 (zh) 一种改性铜粉及其改性方法和导电浆料
Kim et al. Chemically stabilized and functionalized 2D‐MXene with deep eutectic solvents as versatile dispersion medium
JP4894266B2 (ja) 導電粉の表面処理方法と導電粉及び導電性ペースト
JP6029721B2 (ja) ナノインク組成物
JP5880441B2 (ja) 導電性ペーストおよび導電膜付き基材
CN102950282B (zh) 银铜包覆粉的制备方法
WO2015045418A1 (ja) カーボンナノチューブ及びその分散液、並びに、カーボンナノチューブ含有膜および複合材料
CN101781520B (zh) 一种用于多孔墙板的水性导电高分子/金属复合纳米涂料及其制备方法
Jung et al. Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy
CN104801709B (zh) 一种镍包覆铜金属粉体及其制备方法和应用
CN104464887A (zh) 一种纳米银线导电银浆及其制备方法
TW201424887A (zh) 混銀銅粉及其製造法、含有該混銀銅粉之導電性糊料、導電性接著劑、導電性膜、及電路
WO2012077548A1 (ja) 導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法
CN105499559A (zh) 一种改性铜粉及其制备方法和电子浆料
WO2013046917A1 (ja) 有機無機複合物およびその製造方法
JP6424104B2 (ja) 導電性ペースト用銅粉およびその製造方法
JP6213301B2 (ja) ニッケル粉末の製造方法
KR101300774B1 (ko) 탄소 나노 튜브 및 아크릴계 수성 중합체를 함유하는 조성물 및 이를 이용한 전도성 투명 전극
Yokoyama et al. Surface treatment of Cu nanowires using hydroxy acids to form oxide-free Cu junctions for high-performance transparent conductive films
Wang et al. Tannic acid coated single-wall carbon nanotube membranes for the recovery of Au from trace-level solutions
CN108135119A (zh) 一种基于多孔石墨烯-合金硅的电磁屏蔽材料及其制备方法以及涂料
CN101206957B (zh) 低温烘干圆片电容电极银浆制备
CN103128275A (zh) 一种超细铜粉的防氧化方法
CN106229030B (zh) 一种导电组合物、导电油墨、导电膜、制备方法及应用
KR20210044042A (ko) 염기성 용액 분사 공정을 통해 전도성이 향상된 투명 전도성 전극 필름의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742730

Country of ref document: EP

Kind code of ref document: A1