WO2013046917A1 - 有機無機複合物およびその製造方法 - Google Patents

有機無機複合物およびその製造方法 Download PDF

Info

Publication number
WO2013046917A1
WO2013046917A1 PCT/JP2012/069685 JP2012069685W WO2013046917A1 WO 2013046917 A1 WO2013046917 A1 WO 2013046917A1 JP 2012069685 W JP2012069685 W JP 2012069685W WO 2013046917 A1 WO2013046917 A1 WO 2013046917A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
particles
gold
inorganic composite
substrate
Prior art date
Application number
PCT/JP2012/069685
Other languages
English (en)
French (fr)
Inventor
小山 拓
悟 天羽
孝介 桑原
孝仁 村木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201280039936.4A priority Critical patent/CN103732797A/zh
Priority to US14/238,910 priority patent/US20140211373A1/en
Priority to EP12837085.5A priority patent/EP2762610A1/en
Publication of WO2013046917A1 publication Critical patent/WO2013046917A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/964Applications coating of particles coating of inorganic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • the present invention relates to composite fine particles composed of a metal and an organic substance, and a method of producing the same.
  • conductive materials such as fine metal particles and conductive polymers are widely used in various electronic device fields, and are important materials for which application research has been conducted.
  • the application fields of the metal fine particles are, for example, nano level wiring materials, light wavelength cut filters, DNA sequencers, conductive adhesive materials.
  • conductive polymers are used as antistatic materials for circuit boards and photographic films, solid electrolyte materials for capacitors, and pressure-sensitive materials that can sense a change in electrical resistance by pressing a touch panel.
  • metal fine particles and conductive polymers are fixed on a substrate, or metal fine particles are dispersed in an organic substance.
  • Patent Document 1 gold ultrafine particles modified with a thiol compound having an amino group, a thiol compound having a hydroxyl group, or a thiol compound having a carboxyl group are mixed with a basic acid, and particles are produced by a polycondensation reaction or a polyaddition reaction. Materials are disclosed that connect between. Attempts have been made to achieve materials that can be used for electrical and optical devices with such gold ultrafine particle reagents.
  • Metallic fine particles used for nano level wiring materials, light wavelength cut filters, DNA sequencers, conductive adhesive materials, control of conductivity, small particle size, distance between metal particles in addition to dispersibility in organic substances, substrate Adsorbability to the metal is required.
  • Conductive polymers used for antistatic materials for circuit boards and photographic films, solid electrolyte materials for capacitors, and pressure-sensitive materials that can sense changes in electrical resistance by pressure applied to touch panels are lightweight, flexible, processable, ion permeable , Transparency is required.
  • a metal fine particle surface is often coated with a thiol compound or a silane coupling agent for use on a nano level wiring material.
  • the conductivity decreases as the coating becomes denser in order to improve the regularity and the adsorption on the substrate.
  • a sufficiently thin metal film must be formed on a substrate such as glass in order to resonate with a specific wavelength of incident light.
  • a conductive adhesive material is a paste in which metal particles coated with organic matter are dispersed in an organic solvent in order to adhere well and adhere well to a substrate made of metal or metal oxide and to obtain high conductivity. Often used. However, in order to obtain good adhesion and adhesion, heating and pressing are required, which increases production costs.
  • a conductive filler such as metal or carbon material is filled in the polymer as an insulator to control the difference in charge level with the material to be protected. It is often used, however, it is difficult to control the conductivity because the conductivity rapidly increases when the filling amount exceeds the threshold.
  • the solid electrolyte material of the capacitor often uses a conductive polymer such as polyaniline or polydioxythiophene in order to obtain adhesion between the dielectric and the electrode.
  • the conductive polymer is more than metal The conductivity is low, and in order to reduce the impedance in a high frequency region, it is necessary to further increase the conductivity.
  • metal particles such as indium tin oxide are often deposited on polyester film materials to form thin films.
  • indium tin oxide has low bending resistance, and thin film production requires expensive steps such as vacuum deposition.
  • conductive polymers such as polythiophene and polyaniline has been conducted as alternative materials, they are inferior in conductivity.
  • the conductivity is higher, the control of the electrical conductivity is easy, the control of the dispersibility of the metal particles is easy, and the adhesion to the substrate is excellent. Materials are needed.
  • Patent Document 1 is effective as a gold particle excellent in stability and mixability with other composition components, but high conductivity, ease of control of electric conductivity, control of dispersibility of metal particles, adhesion to substrate From the point of view of this, not enough study has been made.
  • a metal fine particle in which a thiol compound is coordinated to the surface which is adsorbed to a substrate via a silane compound, and by oxidative polymerization of the thiol compound on the surface, a structure in which a conductive polymer is coordinated to the metal fine particle surface It is characterized by taking.
  • FIG. 5 is an enlarged view of the organic-inorganic composite adhesion surface of FIG. 4;
  • the present invention is a metal fine particle in which a thiol compound is coordinated to the surface, and is adsorbed onto a substrate via a silane compound, and the conductive polymer is coordinated to the metal fine particle surface by oxidative polymerization of the thiol compound on the surface. It is characterized in that it has a combined structure.
  • the metal fine particles at this time may be, for example, citric acid, sodium citrate, hydroxylamine hydrochloride, hydroxylamine hydrochloride, acetylene gas, acetone, oxalate in an aqueous solution, a toluene solution or an alcohol solution of metal complexes such as gold chloride, silver nitrate, copper chloride and copper acetate. It is desirable to prepare by introducing any of an acid, hexadecyltrimethylammonium bromide, L-ascorbic acid, sodium borohydride, lithium borohydride and stearyltrimethylammonium chloride.
  • the particle size of the metal nanoparticles produced at this time is 100 nm or less, preferably 15 to 100 nm.
  • the thiol compound at this time is 2-aminothiophenol (C 6 H 7 NS, CAS No. 137-07-5), 4-aminothiophenol (C 6 H 7 NS, CAS No. 1193-02-8). , 2-thiophenethiol (C 4 H 4 S 2 , CAS No. 7774-74-5), 2-methylthiophene 3-thiol (C 5 H 6 S 2 , CAS No. 2527-76-6), 5-methyl It is desirable that it is any one of -2-thiophene thiol (C 5 H 6 S 2 , CAS No. 3970-28-3).
  • Such specific thiol compounds can be easily subjected to oxidative polymerization, and by using these thiol compounds, organic-inorganic composites having higher electric conductivity can be produced under relatively simple conditions. .
  • the silane compound at this time is trimethoxy (propyl) silane (C 6 H 16 O 3 Si, CAS No. 1067-25-0), vinyltrimethoxysilane (C 5 H 12 O 3 Si, CAS No. 2768-02) -7), 4- (trimethoxysilyl) styrene (C 11 H 16 O 3 Si, CAS No. 18001-13-3), 3-glycidoxypropyltrimethoxysilane (C 9 H 20 O 5 Si, CAS No. 1). 2530-83-8), 3-glycidoxypropylmethyldiethoxysilane (C 11 H 24 O 4 Si, CAS No.
  • the oxidizing agent for oxidizing and polymerizing the thiol compound covering the surface of the metal particle is any one of ferric chloride and hydrochloric acid, copper sulfate, copper chloride, iron p-toluenesulfonate, and ammonium peroxodisulfate 2-
  • it is a methyl-2-propanol solution or an aqueous solution.
  • a doping agent for imparting conductivity to a conductive polymer produced by oxidative polymerization may be hydrochloric acid, p-toluenesulfonic acid, carbon tetrachloride, m-cresol, water, alcohol, ether, or the like. It is desirable that the solution is any solution of chloroform.
  • coordination and modification mean coating of a thiol compound on a metal particle, coordination means coordination bond, and modification means either coordination bond, covalent bond, or ionic bond.
  • intermediate means a bond between a thiol compound and a silane compound, and means any of a coordinate bond, a covalent bond, and an ionic bond.
  • the observation of metal fine particles or metal fine particles modified with either a thiol compound or a conductive polymer was measured by the following method.
  • the surface of the substrate sample on which metal fine particles or metal fine particles modified with either a thiol compound or a conductive polymer are adsorbed is platinum-deposited using Hitachi E-1030, and scanning electron microscope Hitachi S-4800 is used.
  • the acceleration voltage was 10, 3 or 1.5 KV.
  • resin embedding was performed, and ion milling was performed at an accelerating voltage of 3 KV with Hitachi E-3500 to prepare a sample.
  • SEM observation observation with a scanning electron microscope
  • an image obtained by observation is referred to as a SEM image.
  • the thiol compound on the surface of the metal fine particle was oxidatively polymerized, and the generated conductive polymer was confirmed by the following method.
  • the surface of the metal fine particles before and after oxidative polymerization was observed by a microreflection method using an FTS 3000 MX Fourier transform infrared spectrometer and a UWA 600 microscopic infrared analyzer manufactured by DIGLAB.
  • the spectrum obtained by the infrared spectrometer is referred to as an IR spectrum.
  • the electrical conductivity was measured by the following method. Silver paste was applied on the substrate to which the metal fine particles were adsorbed, and the metal fine particles other than the measurement portion were removed by sandpaper to prepare a conductivity measurement sample. Conductivity measurement was performed by a two-terminal method, and was performed at an AC frequency of 1 KHz with an LCZ meter 2322 (manufactured by NF Electric Instruments). The distance between the electrodes was measured with a stereomicroscope OPTIHOT (manufactured by Nikon Corporation).
  • the following operation was performed for the preparation of gold microparticles.
  • 95 ml of pure water and 14.2 mg of gold tetrachloride trihydrate manufactured by Wako Pure Chemical Industries, Ltd. were added, and the solution was stirred under reflux in an oil bath set at 130 ° C. until the aqueous solution boiled.
  • 5 g of an aqueous solution of citric acid, 1.4 g, produced by Wako Pure Chemical Industries, Ltd. was added to the aqueous solution of gold complex under stirring.
  • heating and stirring were continued for 1 hour to prepare an aqueous gold colloid solution.
  • the flask was removed from the oil bath, allowed to cool to room temperature, and the solution was stored in a refrigerator to obtain a gold fine particle sample.
  • the substrate is wiped with methanol from Wako Pure Chemical Industries, Ltd., and then plasma cleaned with an atmospheric pressure plasma processing apparatus FG 5001 manufactured by Plasmatreat, and the substrate is cleaned by Tokyo Chemical Industry ( Trimethoxy (propyl) Silane Co., Ltd., Shin-Etsu Chemical Co., Ltd. p-styryltrimethoxysilane, Tokyo Chemical Industry Co., Ltd. 3- (2-aminoethylamino) propyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd. ) 3-glycidoxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • the substrate was immersed in 22.5 ml of a gold colloid solution and stirred for the adsorption of gold fine particles on the substrate. Thereafter, 3.1 mmol of 2-aminothiophenol manufactured by Wako Pure Chemical Industries, Ltd. or 4-aminothiophenol manufactured by Wako Pure Chemical Industries, Ltd. was added, and the solution was stirred until the color of the solution became colorless and transparent. Then, the substrate surface was colored in gold, and when it was observed by SEM, adsorption of gold particles of about 20-65 nm in diameter could be confirmed.
  • the SEM image of the polyaniline-gold fine particle composite observed in FIG. 1 is shown.
  • Gold microparticles 501 can be identified in the overall image 500 (a) of the polyaniline-gold microparticles composite.
  • the gold fine particles 502 and the polyaniline 503 can be confirmed.
  • the composite adsorbed on the substrate does not peel off even when the adhesive tape is attached to the surface of the composite and then the tape is peeled off, and has good adsorptivity.
  • the composites in which the substrate was immersed in the silane compound having an epoxy group in the molecule showed good adsorptivity.
  • substrate was immersed in 22.5 ml of gold colloid solutions, and was stirred. Thereafter, 1.5 mmol of butanethiol from Wako Pure Chemical Industries, Ltd. and 2-aminothiophenol of 1.5 mmol from Wako Pure Chemical Industries, Ltd. were added, and the solution was stirred until it became colorless and transparent. Then, the substrate surface was colored in gold, and when observed by SEM, adsorption of gold particles of about 15-50 nm in diameter could be confirmed. After that, when the above-mentioned oxidative polymerization and doping operation were performed, the electrical conductivity of 945 Scm -1 was obtained.
  • FIG. 2 shows an SEM image of the entire image of the polyaniline-butanethiol fine gold particle composite observed on the surface.
  • Gold microparticles 505 can be identified in the overall image 504 of the polyaniline-butanethiol gold microparticles composite.
  • mixing the linear thiol compound during gold particle adsorption changes the particle diameter of the gold particle, and controls the interparticle distance of the gold particle, the dispersion state of the gold particle, and the conductivity.
  • the organic-inorganic complex of the present invention is used as a DNA sequencer, it is necessary to control the distance between gold particles in accordance with the length of DNA to be detected. As in the above method, the distance between the gold particles can be easily controlled by mixing a linear thiol compound at the time of gold particle adsorption.
  • the organic-inorganic composite of the present invention is used as an antistatic material, it is necessary to control the electrical conductivity in order to prevent a transient discharge when brought into contact with a charge.
  • the organic-inorganic composite of the present invention by changing the ligand of the metal particle, it is possible to easily control the electrical conductivity while having a good electrical conductivity.
  • FIG. 3 shows an SEM image of the cross section of the polyaniline-butanethiol modified gold fine particle composite.
  • the embedded resin 507, the substrate 508, and the gold particles 509 can be confirmed.
  • the film thickness of the composite is about 100 nm and is sufficiently thin to exhibit a resonance effect for a specific incident light.
  • substrate was immersed in 22.5 ml of gold colloid solutions, and was stirred. Then, 2.6 mmol Wako Pure Chemical Industries Ltd. 2-thiophene thiol, Wako Pure Chemical Industries Ltd. 2-methylthiophene 3-thiol, or Wako Pure Chemical Industries Ltd. 5-methyl-2- Thiophene thiol was charged, and the solution was stirred until the color of the solution became colorless and transparent. Then, the substrate surface was colored in gold, and when observed by SEM, adsorption of gold particles of about 15-50 nm in diameter could be confirmed.
  • the electrical conductivity of the polythiophene-modified gold particle was measured to be 10 @ 12 -1083 Scm.sup.- 1 .
  • the organic-inorganic composite of the present invention has sufficiently high electrical conductivity even when the ligand to the metal particles is changed.
  • the formation of the polythiophene can be performed in a short time as compared to the formation of the polyaniline.
  • the following operation was performed regarding preparation of silver fine particles.
  • 0.12 g of an aqueous solution of silver nitrate 0.12 g manufactured by Wako Pure Chemical Industries, Ltd. was added to 900 ml of pure water, and 0.1 g of stearyl trimethyl ammonium chloride manufactured by Wako Pure Chemical Industries, Ltd. was dissolved therein as a colloid protective agent.
  • 100 ml of an aqueous solution containing 0.8 g of sodium hydroxide aqueous solution manufactured by Aldrich sodium borohydride manufactured by Wako Pure Chemical Industries, Ltd. was added, and the mixture was stirred for 3 hours to obtain a yellowish brown metal silver colloid aqueous solution.
  • the material cost can be further reduced.
  • FIG. 4 is a cross-sectional view of a capacitor produced using the polyaniline-gold fine particle composite in the solid electrolyte layer shown in Example 1.
  • the sheath 511, the cathode terminal 512, the silver paste 513, the solid electrolyte layer 514, the dielectric oxide layer 515, the insulating layer 516, the anode 517, the lead 518 for the anode, and the anode terminal 519 It can be confirmed.
  • FIG. 5 is an enlarged view of the bonding surface of the organic-inorganic composite of FIG.
  • a solid electrolyte layer 514 formed of an organic-inorganic composite is adhered to the silver paste 513 and the insulating layer 516.
  • the silver paste 513 and the silane coupling agent 521 provided along the insulating layer 516, the metal fine particles 522, and the conductive polymer 523 can be confirmed.
  • a capacitor could be manufactured at the same cost as conventional.
  • the equivalent circuit resistance at a frequency of 100 kHz was 0.1 ⁇ .
  • a capacitor was prepared using polythiophene-gold fine particle composite.
  • the capacitor can be manufactured in a short time as compared with the case of using the polyaniline-gold fine particle composite at the same cost as conventional.
  • the equivalent circuit resistance at a frequency of 100 kHz was 0.12 ⁇ .
  • Comparative Example 1 As a comparative example, although the conductive polymer coat
  • Comparative Example 2 As a comparative example, an organic-inorganic composite was prepared in which a thiol compound was liganded to a metal particle but was not polymerized. The substrate was immersed in 22.5 ml of gold colloid solution and stirred. Thereafter, 3.1 mmol of 2-aminothiophenol manufactured by Wako Pure Chemical Industries, Ltd. was added, and the solution was stirred until the color of the solution became colorless and transparent, to obtain a 2-aminothiophenol-gold fine particle composite material. The electrical conductivity of this material was measured to be 833 Scm ⁇ 1 .
  • Comparative Example 3 As a comparative example, a capacitor was produced using polyethylenedioxythiophene as a conductive polymer in the solid electrolyte layer. The equivalent circuit resistance at a frequency of 100 kHz was 0.25 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Conductive Materials (AREA)

Abstract

 導電性が高く、電気伝導度の制御および金属粒子の分散制御が容易で、基板への接着性に優れた金属と有機物とからなる複合微粒子及びその製造方法を提供することを目的とする。 表面にチオール化合物を配位させた金属微粒子であり、シラン化合物を介して基板に吸着し、表面のチオール化合物を酸化重合することにより、導電性高分子が金属微粒子表面に配位結合した構造をとることを特徴とする。

Description

有機無機複合物およびその製造方法
 本発明は、金属と有機物とからなる複合微粒子及びその製造方法に関する。
 従来、金属微粒子や導電性高分子といった導電性材料は各種電子機器分野で広範囲に使用され、応用研究がなされている重要な素材である。金属微粒子の適用分野は例えば、ナノレベルの配線材料、光波長カットフィルター、DNAシーケンサー、導電性接着材料である。他方導電性高分子は回路基板や写真フィルムの帯電防止材、コンデンサの固体電解質材料、タッチパネルの加圧により電気抵抗の変化を感知できる感圧材料に用いられている。
 このような電子機器分野への適用では、金属微粒子や導電性高分子を基板上に固定したり、金属微粒子を有機物中に分散させたりしている。
 例えば、特許文献1には、アミノ基を有するチオール化合物、水酸基を有するチオール化合物またはカルボキシル基を有するチオール化合物で修飾された金超微粒子を塩基酸類と混合し、重縮合反応や重付加反応で粒子間を連結する材料が開示されている。このような金超微粒子反応試剤で電気的および光学的デバイスに利用できる材料を達成する試みが行われている。
特開平11-60581号公報 特許第3276922号公報
 ナノレベルの配線材料、光波長カットフィルター、DNAシーケンサー、導電性接着材料に使用される金属微粒子は、有機物中への分散性に加えて導電性、小粒径、金属粒子間距離の制御、基板への吸着性が必要とされる。回路基板や写真フィルムの帯電防止材、コンデンサの固体電解質材料、タッチパネルの加圧により電気抵抗の変化を感知できる感圧材料に用いられる導電性高分子は軽量、柔軟性、加工性、イオン透過性、透明性が必要とされる。ナノレベルの配線材料には、導電性を有する金属微粒子を規則的に配列させるために、金属微粒子表面をチオール化合物やシランカップリング剤で被覆して使用されることが多い。ここで、チオール化合物やシランカップリング剤は絶縁物であるため、基板への規則配列性や吸着性を良好にするために被覆を密にする程、導電性が低下する。光波長カットフィルターには、特定の入射光の波長に共鳴させるために、ガラス等の基板上に十分に薄い金属膜を形成しなければならない。ここで、上記金属薄膜を形成するためには、金属微粒子を蒸着する必要があるが、大がかりな装置が必要となるため、生産コストがかかってしまう。DNAシーケンサーには、導電性を有する金属微粒子間の距離を検知するDNA塩基長と一致させるために、チオール化合物で金属微粒子表面を被覆し、チオール化合物の単分子層で金属粒子間の距離を調製して使用することが多い。しかしながら、チオール化合物は絶縁物であるので、粒子間の導電性が低下し、DNA検知効率が低下してしまう。導電性接着材料には、金属あるいは金属酸化物で構成される基板に対し良好に接着、密着し、高い導電性を得るために、表面を有機物で皮膜した金属粒子を有機溶剤に分散させたペーストを使用することが多い。しかしながら、良好な接着性、密着性を得るためには加熱と加圧を要するため、生産コストがかかってしまう。他方、回路基板や写真フィルムの帯電防止材には、保護対象材料との帯電レベルの差を制御するため、金属や炭素材料等の導電性の充填剤を絶縁物である高分子中に充填して使用することが多い、しかしながら、充填量が閾値を超えると急激に導電性が増加するため、導電性の制御が困難である。コンデンサの固体電解質材料には、誘電体と電極との密着性を得るために、ポリアニリン、ポリジオキシチオフェン等の導電性高分子を使用することが多い、しかしながら、導電性高分子は金属に比べ、導電性が低く、高周波領域での低インピーダンス化のためには更なる高導電化が必要である。加圧により電気抵抗の変化を感知できる感圧材料には、酸化インジウムスズ等の金属粒子をポリエステルフィルム材に蒸着し薄膜を形成して使用することが多い。しかしながら、酸化インジウムスズは曲げ耐性が低く、薄膜作製には真空蒸着等コストの高い工程が必要である。代替材料としてポリチオフェン、ポリアニリン等の導電性高分子の研究が行われているが、導電性に劣る。このように、金属と有機物とからなる複合微粒子の用途において、より導電性が高く、電気伝導度の制御が容易であり、金属粒子の分散性制御が容易であり、基板への接着性に優れた材料が必要となる。
 特許文献1は安定性、他の組成成分との混合性に優れた金粒子として有効であるが、高導電性、電気伝導度制御の容易さ、金属粒子の分散性制御、基板への接着性という観点では十分な検討はなされていない。
 表面にチオール化合物を配位させた金属微粒子であり、シラン化合物を介して基板に吸着し、表面のチオール化合物を酸化重合することにより、導電性高分子が金属微粒子表面に配位結合した構造をとることを特徴とする。
 導電性が高く、電気伝導度の制御および金属粒子の分散制御が容易で、基板への接着性に優れた金属と有機物とからなる有機無機複合物を提供することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
ポリアニリン-金微粒子複合物のSEM像である。 ポリアニリン-ブタンチオール修飾金微粒子複合物のSEM像である。 ポリアニリン-ブタンチオール修飾金微粒子複合物断面のSEM像である。 コンデンサ断面構成図である。 図4の有機-無機複合物接着面拡大図である。
 本発明は、表面にチオール化合物を配位させた金属微粒子であり、シラン化合物を介して基板に吸着し、表面のチオール化合物を酸化重合することにより、導電性高分子が金属微粒子表面に配位結合した構造をとることを特徴とする。
 また、この時の金属微粒子は、塩化金、硝酸銀、塩化銅、酢酸銅等の金属錯体の水溶液、トルエン溶液またはアルコール溶液中にクエン酸、クエン酸ナトリウム、塩酸ヒドロキシルアミン、アセチレンガス、アセトン、シュウ酸、ヘキサデシルトリメチルアンモニウムブロミド、L―アスコルビン酸、水素化ホウ素ナトリウム、水素化ホウ素リチウム、塩化ステアリルトリメチルアンモニウムのいずれかを投入することで作製することが望ましい。
 また、この時作製される金属ナノ粒子の粒径は100nm以下好ましくは15から100nmであることが望ましい。
 また、この時のチオール化合物は、2-アミノチオフェノール(C67NS、CASNo.137-07-5)、4-アミノチオフェノール(C67NS、CASNo.1193-02-8)、2-チオフェンチオール(C442、CASNo.7774-74-5)、2-メチルチオフェン-3-チオール(C562、CASNo.2527-76-6)、5-メチル-2-チオフェンチオール(C562、CASNo.3970-28-3)のいずれかであることが望ましい。このような特定のチオール化合物は容易に酸化重合を行うことができ、これらチオール化合物を用いることにより、より高い電気伝導度をもった有機無機複合物を比較的簡便な条件で製造することができる。
 また、この時のシラン化合物は、トリメトキシ(プロピル)シラン(C6163Si、CASNo.1067-25-0)、ビニルトリメトキシシラン(C5123Si、CASNo.2768-02-7)、4-(トリメトキシシリル)スチレン(C11163Si、CASNo.18001-13-3)、3-グリシドキシプロピルトリメトキシシラン(C9205Si、CASNo.2530-83-8)、3-グリシドキシプロピルメチルジエトキシシラン(C11244Si、CASNo.2897-60-1)、3-グリシドキシプロピルトリエトキシシラン(C12265Si、CASNo.2602-34-8)、2-(3、4-エポキシシクロへキシル)エチルトリエトキシシラン(C11224Si、CASNo.3388-04-3)、3-グリシドキシプロピルメチルジメトキシシラン(C9204Si、CASNo.65799-45-7)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(C82223Si、CASNo.1760-24-3)、3-イソシアネートプロピルトリエトキシシラン(C1021NO4Si、CASNo.24801-88-5)、のいずれかのメチルエチルケトン溶液であることが望ましい。このような特定のシラン化合物を用いることにより、有機材料と無機材料の界面の密着性がより高い有機無機複合物を製造することができる。
 また、金属粒子表面を被覆している、チオール化合物を酸化重合させる酸化剤は、塩化第二鉄と塩酸、硫酸銅、塩化銅、p-トルエンスルホン酸鉄、ペルオキソ二硫酸アンモニウムのいずれかの2-メチル-2-プロパノール溶液あるいは水溶液であることが望ましい。
 また、酸化重合にて生成した導電性高分子に導電性を付与するためのドーピング剤は、塩酸、p-トルエンスルホン酸、四塩化炭素、m-クレゾール、のいずれかの水、アルコール、エーテル、クロロホルムのいずれかの溶液であることが望ましい。
 なお、本発明において、配位、修飾とは金属粒子へのチオール化合物の被覆を意味し、配位は、配位結合を、修飾は、配位結合、共有結合、イオン結合のいずれかを意味する。
 なお、本発明において、介して、とはチオール化合物とシラン化合物の結合を意味し、配位結合、共有結合、イオン結合のいずれかを意味する。
 以下の実施例において、金属微粒子あるいは、チオール化合物、導電性高分子のいずれかが修飾した金属微粒子の観察は以下の方法で測定した。金属微粒子あるいは、チオール化合物、導電性高分子のいずれかが修飾した金属微粒子の吸着した基板試料表面を、日立E-1030を用いて白金蒸着し、走査型電子顕微鏡日立S-4800を用いて、加速電圧10、3、あるいは1.5KVにて行った。板材断面方向の観察に際しては、樹脂埋め込みを行い、日立E-3500にて加速電圧3KVにてイオンミリングし、試料を作製した。以下、走査型電子顕微鏡による観察をSEM観察、観察により得られた像をSEM像と称す。
 以下の実施例において、金属微粒子表面のチオール化合物を酸化重合し、生成した導電性高分子の確認は以下の方法で行った。DIGLAB製FTS3000MXフーリエ変換型赤外分光分析装置、およびUWA600顕微赤外分析装置を用いて、酸化重合前後の金属微粒子表面を顕微反射法にて観測した。以下、赤外分光分析装置により得られたスペクトルをIRスペクトルと称す。
 以下の実施例において、電気伝導率は以下の方法で測定した。金属微粒子を吸着した基板上に銀ペーストを塗布し、測定部分以外の金属微粒子をサンドペーパーで除去し、電導度測定試料とした。電導度測定は2端子法で行い、LCZメーター2322(NFエレクトリックインストゥルメンツ社製)にて交流周波数1KHzで行った。電極間の距離の測定は実体顕微鏡OPTIHOT((株)ニコン製)で行った。
 金属微粒子の作製に関しては、例えば金微粒子の作製に関して下記の操作を行った。95mlの純水と14.2mgの和光純薬工業(株)製四塩化金三水和物を投入し、130℃に設定したオイルバス中で還流しながら水溶液が沸騰するまで攪拌した。その後、1.4gの和光純薬工業(株)製クエン酸の水溶液5mlを撹拌中の金錯体水溶液に投入した。クエン酸投入後溶液の色が黄色から赤紫色に変化したことを確認した後、1時間加熱攪拌を続け、金コロイド水溶液を作製した。1時間後、フラスコをオイルバスから除き、室温で放冷し、溶液を冷蔵庫にて保管し、金微粒子試料とした。
 基板のシラン化合物を用いての表面処理に関しては、基板を和光純薬工業(株)製メタノールで拭いた後、大気圧プラズマ処理装置Plasmatreat社製FG5001にてプラズマ洗浄し、基板を東京化成工業(株)製トリメトキシ(プロピル)シラン、信越化学工業(株)製p-スチリルトリメトシキシシラン、東京化成工業(株)製3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、信越化学工業(株)製3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製3-グリシドキシプロピルメチルジエトキシシラン、信越化学工業(株)製3-グリシドキシプロピルトリエトキシシラン、信越化学工業(株)製2-(3、4-エポキシシクロへキシル)エチルトリエトキシシラン、あるいは信越化学工業(株)製3-グリシドキシプロピルメチルジメトキシシランの0.1wt%和光純薬工業(株)製メチルエチルケトン溶液に1時間浸漬した。
 金微粒子の基板への吸着に関しては、金コロイド溶液22.5ml中に基板を浸漬し、攪拌した。その後、3.1mmol和光純薬工業(株)製2-アミノチオフェノール、あるいは和光純薬工業(株)製4-アミノチオフェノールを投入し、溶液の色が無色透明になるまで攪拌した。すると、基板表面が金色に着色し、SEMで観察すると直径約20-65nmの金粒子の吸着が確認できた。
 金微粒子表面に配位した2-アミノチオフェノールあるいは4-アミノチオフェノールの酸化重合に関しては、基板上の2-アミノチオフェノールあるいは4-アミノチオフェノール修飾金微粒子に10mmol和光純薬工業(株)製塩化第二鉄の1mol塩酸水溶液を滴下し、室温で8時間放置し、ポリアニリンを生成した。
 図1に観察したポリアニリン-金微粒子複合物のSEM像を示す。ポリアニリン-金微粒子複合物の全体像500(a)においては、金微粒子501を確認することができる。ポリアニリン-金微粒子複合物の拡大像500(b)においては、金微粒子502及びポリアニリン503を確認することができる。
 基板吸着の際にチオール化合物を投入し、基板吸着後にチオール化合物を重合することにより、金属粒子の凝集を防ぎ、良好な分散状態を得ることができる。また、吸着操作に関して、大型な装置を用いる必要が無く、低コストで行うことができる。基板に吸着した複合物は、複合物表面に粘着テープを貼った後、テープを引き剥がしても、剥離せず、良好な吸着性を有している。特に上記のシラン化合物のうち、分子内にエポキシ基を有するシラン化合物に基板を浸漬した複合物は良好な吸着性を示した。
 金微粒子表面のポリアニリンのドーピングに関しては、1mol塩酸水溶液を用いて、洗浄とドーピングを行った。電気伝導度を測定すると1869Scm-1を得た。このように、導電性高分子を金属粒子に配位結合させることによって、従来の導電性高分子、および導電性高分子と金属粒子が物理的に接触した複合物に比べて、高い電気伝導度を得ることができる。
 金微粒子表面のチオール化合物の酸化重合操作前後のIRスペクトルを確認したところ、2-アミノチオフェノール修飾金微粒子では1550cm-1にベンゼン環のC=C伸縮、1463cm-1にキノイドのC-C伸縮、1300cm-1にC-N伸縮、1200cm-1にC-N・+伸縮ピークが確認できた。一方、ポリアニリン修飾金微粒子でもベンゼン環のC=C伸縮、キノイドのC-C伸縮、C-N伸縮のピークは確認できるが、C-N・+伸縮のピークが消失していた。よって、ポリアニリンの生成を確認できた。
 また、2種類のチオール化合物を用いる際の金微粒子の基板への吸着に関しては、金コロイド溶液22.5ml中に基板を浸漬し、攪拌した。その後、1.5mmol和光純薬工業(株)製ブタンチオール、および1.5mmol和光純薬工業(株)製2-アミノチオフェノールを投入し、溶液の色が無色透明になるまで攪拌した。すると、基板表面が金色に着色し、SEMで観察すると直径約15-50nmの金粒子の吸着が確認できた。その後、上記、酸化重合、ドーピング操作を行ったところ、945Scm-1の電気伝導度を得た。
 図2に表面観察したポリアニリン-ブタンチオール金微粒子複合物全体像のSEM像を示す。ポリアニリン-ブタンチオール金微粒子複合物の全体像504においては、金微粒子505を確認することができる。
 このように金粒子吸着の際に、直鎖状のチオール化合物を混ぜることで、金粒子の粒径が変化し、金粒子の粒子間距離、金粒子の分散状態、および導電性を制御することができる。本発明の有機無機複合物をDNAシーケンサーとして用いる場合、金粒子間の距離を検出したいDNAの長さに合わせて制御する必要がある。上記方法のように、金粒子吸着の際に、直鎖状のチオール化合物を混ぜることで、簡便に金粒子間距離を制御することができる。本発明の有機無機複合物を帯電防止材として用いる場合、帯電物に接触させた際の過渡的な放電を防ぐために、電気伝導度を制御する必要がある。本発明の有機無機複合物では金属粒子の配位子を変更することにより、良好な電気伝導度を有しつつ、電気伝導度を容易に制御することが可能である。
 図3にポリアニリン-ブタンチオール修飾金微粒子複合物の断面のSEM像を示す。ポリアニリン-ブタンチオール修飾金微粒子複合物の断面のSEM像506においては、埋め込み樹脂507、基板508、金粒子509を確認できる。複合物の膜厚は約100nmであり、特定の入射光に対し共鳴効果を示すのに十分な薄さを有している。
 また、チオール化合物を変更した際の金微粒子の基板への吸着に関しては、金コロイド溶液22.5ml中に基板を浸漬し、攪拌した。その後、2.6mmol和光純薬工業(株)製2-チオフェンチオール、和光純薬工業(株)製2-メチルチオフェン-3-チオール、または和光純薬工業(株)製5-メチル-2-チオフェンチオールを投入し、溶液の色が無色透明になるまで攪拌した。すると、基板表面が金色に着色し、SEMで観察すると直径約15-50nmの金粒子の吸着が確認できた。
 金微粒子表面に配位した2-チオフェンチオール、2-メチルチオフェン-3-チオール、または5-メチル-2-チオフェンチオールの酸化重合に関しては、基板上の2-チオフェンチオール、2-メチルチオフェン-3-チオール、または5-メチル-2-チオフェンチオール修飾金微粒子に重量比でチオフェン:p-トルエンスルホン酸:tert-ブチルアルコール=1:10:5.5の水溶液を滴下し、40℃で1時間放置し、ポリチオフェンを生成した。以上のように、ここでは2-または5-チエニルのうちのいずれかのチオール化合物の重合物を金属微粒子表面に配位している。
 上記、ポリチオフェン修飾金粒子の電気伝導度を測定すると1012-1083Scm-1を得た。このように、本発明の有機無機複合材料は金属粒子への配位子を変更しても、十分に高い電気伝導度を有している。また、上記ポリチオフェンの生成は上記ポリアニリンの生成に比べ短時間で行うことができる。
 実施例1の金微粒子以外の、金属微粒子の作製に関しては、例えば銀微粒子の作製に関して下記の操作を行った。和光純薬工業(株)製0.12g硝酸銀水溶液0.9mlを純水900mlに加え、これにコロイド保護剤として、和光純薬工業(株)製塩化ステアリルトリメチルアンモニウム0.1gを溶解させた。これにアルドリッチ社製水素化ホウ素ナトリウムの和光純薬工業(株)製水酸化ナトリウム水溶液0.8gを含む水溶液100mlを加え、3時間攪拌して、黄褐色の金属銀コロイド水溶液を得た。有機-無機複合物に銀微粒子を用いることで、材料コストをより低くできる。
 実施例1の金微粒子、および実施例2の銀微粒子以外の、金属微粒子の作製に関しては、例えば銅微粒子の作製に関して下記の操作を行った。アルドリッチ社製1mol塩化銅水溶液50mlを反応容器にとり、保護コロイドとして4.5gのゼネカ社製ソルスパース24000(商品名)を和光純薬工業(株)製トルエン13.5gに溶かした溶液を加えて混合攪拌した。充分混合した後、2molのアルドリッチ社製水素化ホウ素リチウム水溶液50mlを加えて1時間攪拌し反応を行った。静置後、無色透明の水相と濃赤色の有機溶媒相に分離した。有機溶媒相のみを抽出した後、水洗することにより鮮やかな赤色の銅コロイドのトルエン溶液を得た。有機-無機複合物に銅微粒子を用いることで、材料コストをより低くできる。
 図4は、実施例1に示した、固体電解質層にポリアニリン-金微粒子複合物を使用して作製した、コンデンサの断面構成図である。図4のように、コンデンサ断面510においては、外装511、陰極端子512、銀ペースト513、固体電解質層514、誘電体酸化層515、絶縁層516、陽極517、陽極用リード518、陽極端子519を確認することができる。
 図5は図4の有機-無機複合物接着面拡大図である。図5のように、有機-無機複合物で構成する固体電解質層514が銀ペースト513、絶縁層516に接着している。有機-無機複合物接着面520においては、銀ペースト513及び絶縁層516に沿って設けられたシランカップリング剤521、金属微粒子522、導電性高分子523を確認することができる。ポリアニリン-金微粒子複合物を使用することにより、従来と同等のコストでコンデンサを作製することができた。周波数100kHzにおける等価回路抵抗は0.1Ωであった。
 実施例4に示した、固体電解質層にポリアニリン-金微粒子複合物を使用して作製した、コンデンサのその他の実施例として、ポリチオフェン-金微粒子複合物を使用してコンデンサを作製した。ポリチオフェン-金微粒子複合物を使用することにより、従来と同等のコストで、ポリアニリン-金微粒子複合物を使用する場合に比べて短時間で、コンデンサを作製することができた。周波数100kHzにおける等価回路抵抗は0.12Ωであった。
〔比較例1〕
 比較例として、金属粒子を導電性高分子が被覆しているが、配位していない有機無機複合物を作製した。アニリンの水溶液に0.03%の塩化金錯体水溶液200mlを加えた後、65℃で30分攪拌することで、アニリン中に金微粒子が取り込まれた、アニリンと金微粒子が化学的に結合していない、アニリン-金微粒子複合材料を得た。この材料の電気伝導度を測定したところ、3.0×10-2Scm-1であった。
〔比較例2〕
 比較例として、チオール化合物が金属粒子に配位子しているが、重合していない有機無機複合物を作製した。金コロイド溶液22.5ml中に基板を浸漬し、攪拌した。その後、3.1mmol和光純薬工業(株)製2-アミノチオフェノールを投入し、溶液の色が無色透明になるまで攪拌し、2-アミノチオフェノール-金微粒子複合材料を得た。この材料の電気伝導度を測定したところ、833Scm-1であった。
〔比較例3〕
 比較例として、固体電解質層に導電性高分子として、ポリエチレンジオキシチオフェンを使用してコンデンサを作製した。周波数100kHzにおける等価回路抵抗は0.25Ωであった。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである
 500(a) ポリアニリン-金微粒子複合物の全体像
 500(b) ポリアニリン-金微粒子複合物の拡大像
 501、502、505 金微粒子
 503 ポリアニリン
 504 ポリアニリン-ブタンチオール金微粒子複合物の全体像
 506 ポリアニリン-ブタンチオール修飾金微粒子複合物の断面のSEM像
 507 埋め込み樹脂
 508 基板
 509 金粒子
 510 コンデンサ断面
 511 外装
 512 陰極端子
 513 銀ペースト
 514 固体電解質層
 515 誘電体酸化層
 516 絶縁層
 517 陽極
 518 陽極用リード
 519 陽極端子
 520 有機-無機複合物接着面
 521 シランカップリング剤
 522 金属微粒子
 523 導電性高分子

Claims (7)

  1.  金属微粒子と、
     各金属微粒子表面に配位する2-または4-アミノチオフェノールと、2-または5-チエニルのうちのいずれかのチオール化合物の重合物からなる有機無機複合物。
  2.  請求項1に記載の有機無機複合物であって、
     シラン化合物により表面処理された基板を有する有機無機複合物。
  3.  請求項1または2に記載の有機無機複合物であって、
     直鎖状のチオール化合物を有する有機無機複合物。
  4.  請求項1乃至3のいずれかに記載の有機無機複合物から構成される固体電解質層を有するコンデンサ。
  5.  金属微粒子を分散させた溶液に基板を浸漬する工程と、
     前記溶液に2-または4-アミノチオフェノールと、2-または5-チエニルのうちのいずれかのチオール化合物を入れて攪拌する工程と、
     前記チオール化合物を酸化重合する工程を有する有機無機複合物の製造方法。
  6.  請求項5に記載の有機無機複合物の製造方法であって、
     前記基板を浸漬する工程の前に、前記基板をシラン化合物により表面処理する工程を有する有機無機複合物の製造方法。
  7.  請求項5または6に記載の有機無機複合物の製造方法であって、
     前記シラン化合物はエポキシ基を有している有機無機複合物の製造方法。
PCT/JP2012/069685 2011-09-27 2012-08-02 有機無機複合物およびその製造方法 WO2013046917A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039936.4A CN103732797A (zh) 2011-09-27 2012-08-02 有机无机复合物及其制造方法
US14/238,910 US20140211373A1 (en) 2011-09-27 2012-08-02 Organic-inorganic composite and method for manufacturing the same
EP12837085.5A EP2762610A1 (en) 2011-09-27 2012-08-02 Organic-inorganic composite and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210082A JP2013072096A (ja) 2011-09-27 2011-09-27 有機無機複合物およびその製造方法
JP2011-210082 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046917A1 true WO2013046917A1 (ja) 2013-04-04

Family

ID=47994971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069685 WO2013046917A1 (ja) 2011-09-27 2012-08-02 有機無機複合物およびその製造方法

Country Status (5)

Country Link
US (1) US20140211373A1 (ja)
EP (1) EP2762610A1 (ja)
JP (1) JP2013072096A (ja)
CN (1) CN103732797A (ja)
WO (1) WO2013046917A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140170427A1 (en) * 2012-12-13 2014-06-19 Carestream Health, Inc. Anticorrosion agents for transparent conductive film
CN105002488B (zh) * 2015-04-10 2018-04-03 深圳市美克科技有限公司 一种线路板和焊接组件的金属镀层表面防护封孔方法
ITUB20152574A1 (it) * 2015-07-29 2017-01-29 Hft Smartsensors Inc Sensore elettrochimico organico per la misurazione di parametri corporei
KR101929623B1 (ko) 2016-10-28 2018-12-14 고려대학교 산학협력단 플렉시블 전극 및 이의 제조방법
CN108975383B (zh) * 2018-08-29 2020-08-11 淮阴师范学院 多孔Ag/AgBr纳米材料的制备方法
CN110014167A (zh) * 2019-04-22 2019-07-16 重庆大学 金基银球表面增强材料和变压器油中糠醛的检测方法
CN115522206B (zh) * 2022-09-30 2023-08-15 深圳市豪龙新材料技术有限公司 一种腔体滤波器表面处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160581A (ja) 1997-08-21 1999-03-02 Mitsui Chem Inc 金超微粒子反応試剤
JP3276922B2 (ja) 1998-06-09 2002-04-22 三ツ星ベルト株式会社 金属微粒子修飾基板の製造方法
JP2004098246A (ja) * 2002-09-11 2004-04-02 Japan Science & Technology Corp ナノスケール山谷構造基板を用いた金ナノ粒子一次元鎖列の製造法
JP2007531802A (ja) * 2004-03-19 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性有機ポリマー/ナノ粒子複合材料およびその使用方法
JP2010095688A (ja) * 2008-10-20 2010-04-30 Three M Innovative Properties Co 導電性高分子複合体及び導電性高分子材料を用いた熱電素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583917B2 (ja) * 1987-11-09 1997-02-19 株式会社フジクラ 導電性有機重合体の製法
TW557237B (en) * 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP4314384B2 (ja) * 2002-02-28 2009-08-12 亮一 久保井 複合化導電性高分子およびその製造方法並びにそれを用いたガスセンサー
JP2011071087A (ja) * 2009-03-12 2011-04-07 Sanyo Electric Co Ltd 導電性高分子膜、電子デバイス、及びこれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160581A (ja) 1997-08-21 1999-03-02 Mitsui Chem Inc 金超微粒子反応試剤
JP3276922B2 (ja) 1998-06-09 2002-04-22 三ツ星ベルト株式会社 金属微粒子修飾基板の製造方法
JP2004098246A (ja) * 2002-09-11 2004-04-02 Japan Science & Technology Corp ナノスケール山谷構造基板を用いた金ナノ粒子一次元鎖列の製造法
JP2007531802A (ja) * 2004-03-19 2007-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性有機ポリマー/ナノ粒子複合材料およびその使用方法
JP2010095688A (ja) * 2008-10-20 2010-04-30 Three M Innovative Properties Co 導電性高分子複合体及び導電性高分子材料を用いた熱電素子

Also Published As

Publication number Publication date
JP2013072096A (ja) 2013-04-22
CN103732797A (zh) 2014-04-16
EP2762610A1 (en) 2014-08-06
US20140211373A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2013046917A1 (ja) 有機無機複合物およびその製造方法
JP6193245B2 (ja) カプセル化バリアスタック
AU2014260477B2 (en) Encapsulation barrier stack comprising dendrimer encapsulated nanoparticles
CN107655598B (zh) 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
Jin et al. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder
Tong et al. Graphene based materials and their composites as coatings
KR101479811B1 (ko) 투명 전극 필름 제조용 기재 필름
JP2015008141A (ja) 透明導電膜の製造方法およびそれにより製造された透明導電膜
KR101224020B1 (ko) 유연 전자소자용 전도성 고분자-금속 나노입자 하이브리드 투명전극필름 및 이의 제조방법
Park et al. Comb-type polymer-hybridized MXene nanosheets dispersible in arbitrary polar, nonpolar, and ionic solvents
CN103848415B (zh) 一种石墨烯纳米带及其制备方法和在透明电极中的应用
CN102577638B (zh) 用于自组装单层(sam)的介电保护层
KR100992154B1 (ko) 탄소나노튜브를 이용한 투명 전도성 박막 및 그 제조 방법
US11312870B2 (en) Copper based conductive paste and its preparation method
JP2013545222A (ja) 電極基板の製造方法
Huang et al. A facile way for scalable fabrication of silver nanowire network electrodes for high-performance and foldable smart windows
CN108511133A (zh) 一种免转印、高黏结性金属网格透明电极的制备方法
TW201044463A (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP4318414B2 (ja) 気相重合法による伝導性高分子の合成方法及びその製造物
US10854352B1 (en) Conducting films and methods for forming them
Kim et al. Influence of dispersion of multi-walled carbon nanotubes on the electrochemical performance of PEDOT–PSS films
CN106634668B (zh) 一种纳米型多层复合导电胶膜及其制作方法
Xie et al. Well encapsulated hollow borosilicate glass sphere@ polypyrrole composite with low density, designable thickness and conductivity
JP2017188378A (ja) 有機導電膜およびその製造方法
KR102398273B1 (ko) 개질된 전도성 고분자 박막의 제조 방법 및 이를 이용하여 제조된 개질된 전도성 고분자 박막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837085

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012837085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012837085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE