WO2022102905A1 - 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법 - Google Patents

스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법 Download PDF

Info

Publication number
WO2022102905A1
WO2022102905A1 PCT/KR2021/008764 KR2021008764W WO2022102905A1 WO 2022102905 A1 WO2022102905 A1 WO 2022102905A1 KR 2021008764 W KR2021008764 W KR 2021008764W WO 2022102905 A1 WO2022102905 A1 WO 2022102905A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
styrene copolymer
monomer
based monomer
styrene
Prior art date
Application number
PCT/KR2021/008764
Other languages
English (en)
French (fr)
Inventor
주민철
이형섭
이대우
서재범
신민승
홍성원
김인수
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210088233A external-priority patent/KR20220063706A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US17/788,891 priority Critical patent/US20230057580A1/en
Priority to EP21892075.9A priority patent/EP4063454A4/en
Priority to CN202180006914.7A priority patent/CN114761486A/zh
Publication of WO2022102905A1 publication Critical patent/WO2022102905A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a styrenic copolymer, a thermoplastic resin composition, and a manufacturing method thereof, and more particularly, to a styrene copolymer in which input components are uniformly polymerized to reduce residual oligomer content and greatly improve transparency, and the styrene copolymer It relates to a thermoplastic resin composition having excellent heat resistance, scratch resistance and surface appearance, and a method for manufacturing the same.
  • ABS-based resins represented by acrylonitrile-butadiene-styrene (Acrylonitrile-Butadiene-Styrene, hereinafter referred to as 'ABS-based') resins, are characterized by their rigidity, chemical resistance, processability, mechanical strength and beautiful appearance. It is widely used in electronic products and office equipment. However, since the ABS-based resin uses a butadiene rubber polymer, there is a problem in that it is not suitable as an outdoor material because of its weak weather resistance.
  • ASA-based resin represented by an acrylonitrile-styrene-acrylate (hereinafter referred to as 'ASA') resin using a polymer, has been developed. These ASA-based resins have excellent weather resistance and aging resistance, and are used in various fields such as automobiles, ships, leisure products, building materials, and horticulture.
  • thermoplastic resin composition having improved scratch resistance and processability by reducing the residual oligomer content in the ASA-based resin to improve heat resistance and at the same time improving compatibility and manufacturing method thereof.
  • Patent Document 1 US Patent No. 4448580
  • an object of the present invention is to provide a styrenic copolymer having improved compatibility and excellent transparency by reducing residual oligomer content, and a method for preparing the same.
  • Another object of the present invention is to provide a thermoplastic resin composition excellent in heat resistance and excellent scratch resistance and appearance quality using the styrene copolymer, and a method for manufacturing the same.
  • Another object of the present invention is to provide a molded article prepared from the above-mentioned thermoplastic resin composition.
  • a monomer mixture comprising 35 to 65% by weight of a (meth)acrylate-based monomer, 10 to 30% by weight of a vinyl cyanide monomer, and 20 to 40% by weight of an aromatic vinylic monomer, 100 to 200% by weight of an aqueous solvent in the reactor parts, and a reaction solution containing 0.1 to 10 parts by weight of a dispersant is added to the polymerization,
  • the aromatic vinyl-based monomer is styrene in which at least one hydrogen is substituted with an alkyl group
  • a part of the aromatic vinyl-based monomer is batch-injected before the polymerization starts, and the remainder is continuously added and polymerized from the time when the temperature of the reactor reaches 90 to 110 °C It provides a method for producing a styrene copolymer .
  • the weight ratio of the batch-injected aromatic vinyl-based monomer and the continuously-injected aromatic vinyl-based monomer may be 1:0.4 to 1:2.
  • the aromatic vinyl-based monomers that are batched in form a block, and the aromatic vinyl-based monomers that are continuously input do not form blocks and are irregularly combined with other monomers to form a random arrangement.
  • the weight ratio of the aromatic vinyl-based monomer and the (meth)acrylate-based monomer may be 1:1 to 1:8.
  • the aromatic vinyl-based monomer may be a compound in which one or more hydrogens of styrene are substituted with 1 to 3 alkyl groups.
  • Polymerization in the reactor may be carried out at 80 to 130 °C under 400 to 600 rpm for 8 to 10 hours.
  • It may include adjusting the pH of the polymerization slurry generated in the reactor to 1 to 4.
  • the dispersant may be a phosphate metal salt.
  • styrene copolymer prepared by the above-described method, having a glass transition temperature (Tg) of 115° C. or higher, a residual oligomer content of 0.51 wt% or less, and a refractive index of 1.55 or less.
  • the styrene copolymer is, in a total of 100% by weight of the styrene copolymer, 39 to 47% by weight of a (meth)acrylate-based monomer, 18 to 21% by weight of a vinyl cyanide-based monomer, and 35 to 43% by weight of an alkyl-substituted styrenic monomer may be included.
  • the styrene copolymer may have a haze of 0.3% or less and a color b value of 6.0 to 7.0.
  • a graft copolymer comprising an acrylic rubber polymer, an aromatic vinyl monomer and a vinyl cyan monomer
  • the styrene copolymer includes 39 to 47% by weight of a (meth)acrylate-based monomer, 18 to 21% by weight of a vinyl cyanide monomer, and 35 to 43% by weight of a styrenic monomer in 100% by weight of the total styrene copolymer It provides a thermoplastic resin composition, characterized in that made.
  • the aromatic vinyl-based monomer included in the styrene copolymer may be styrene in which at least one hydrogen is substituted with an alkyl group
  • the aromatic vinyl-based monomer included in the graft copolymer may be styrene
  • the present invention provides a molded article prepared from the above-described thermoplastic resin composition.
  • the styrenic copolymer according to the present invention is prepared so that the composition distribution of the components to be input is uniform, thereby reducing the residual oligomer content and providing improved compatibility and transparency.
  • thermoplastic resin composition containing the styrene copolymer according to the present invention has excellent heat resistance and excellent scratch resistance and appearance quality, so it can be widely applied to various industrial fields including automobiles, ships, leisure products, building materials, and gardening products. .
  • heat resistance can be measured by various methods known in the art, and unless otherwise specified, the glass transition temperature (Tg) measured using a differential calorimeter (manufacturer: Ta Instruments, product name: DISCOVERY DSC25) is refers to
  • the corresponding glass transition temperature (Tg) is 116 ° C. or higher, it can be determined as a heat-resistant copolymer.
  • the weight average molecular weight can be measured as a relative value with respect to a standard PS (standard polystyrene) sample through GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as an eluent, and specifically, the gel
  • PS standard polystyrene
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • Mw polystyrene reduced weight average molecular weight
  • GPC gel permeation chromatography
  • the column may be one in which two PLmixed Bs from Waters are connected in series, and the data is processed using ChemStation after measuring at 40° C. using an RI detector (manufactured by Agilent Waters, 2414) as a detector.
  • composition ratio of the (co)polymer may mean the content of units constituting the (co)polymer, or may mean the content of units input during polymerization of the (co)polymer.
  • content means a weight unless otherwise defined
  • % means a weight % unless otherwise defined.
  • the method for preparing a styrene copolymer according to an embodiment of the present invention comprises 35 to 65% by weight of a (meth)acrylate-based monomer, 10 to 30% by weight of a vinyl cyanide-based monomer, and 20 to 40% by weight of an aromatic vinylic monomer in a reactor.
  • the aqueous solvent in the step of initiating the polymerization may include water, and in this case, it is easy to control the heat of reaction, and the polymerization can proceed even at a high viscosity, so that it can have a high polymerization conversion rate.
  • the aqueous solvent may be, for example, 100 to 200 parts by weight, preferably 100 to 150 parts by weight, based on 100 parts by weight of the monomer mixture. It has the effect of having a polymerization conversion rate.
  • a dispersant refers to an inorganic dispersant.
  • the dispersant may be, for example, a phosphate metal salt, preferably tricalcium phosphate. In this case, it is possible to prepare a copolymer having a high polymerization conversion rate by improving polymerization stability.
  • tricalcium phosphate examples include hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, tetracalcium phosphate, amorphous calcium phosphate ( amorphous calcium phosphate, monocalcium phosphate anhydrate, dicalcium phosphate anhydrate, octacalcium phosphate, monocalcium phosphate monohydrate, dicalcium phosphate dehydrate), Na 2 O-CaO-SiO 2 -P 2 O 5 , CaOSiO 2 , P 2 O 5 -CaO-Na 2 O and P 2 O 5 -CaO-K 2 O At least one selected from the group consisting of can be
  • the dispersant may be, for example, 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the monomer mixture, and within this range, the polymerization reaction can be facilitated and uniform particles can be prepared, which is advantageous for processing It works.
  • the polymerization using the aqueous solvent and dispersant is preferably suspension polymerization, for example.
  • the product yield is low due to high viscosity and the residual oligomer content is high, so heat resistance may be reduced.
  • the monomer mixture may include, for example, 35 to 65% by weight of the (meth)acrylate-based monomer, 10 to 30% by weight of a vinyl cyanide-based monomer, and 20 to 40% by weight of an aromatic vinylic monomer, and the (meth) It is preferable to include 40 to 54% by weight of an acrylate-based monomer, 21 to 30% by weight of a vinyl cyanide-based monomer, and 25 to 35% by weight of an aromatic vinylic monomer.
  • each monomer becomes a unit of a styrene copolymer.
  • the aromatic vinyl-based monomer may be batch-injected before the polymerization starts and may be continuously added and polymerized from the time the temperature of the reactor reaches 90 to 110 ° C.
  • the aromatic vinyl-based monomer may be, for example, an aromatic vinyl-based monomer in which at least one hydrogen is substituted with an alkyl, and specific examples thereof may be a styrene monomer substituted with an alkyl group having 1 to 3 carbon atoms, ⁇ -methylstyrene, ⁇ -ethylstyrene, and It may be at least one selected from p-methylstyrene, and among them, ⁇ -methylstyrene or ⁇ -ethylstyrene is preferable.
  • styrene copolymer of the present invention since heat resistance and transparency can be improved due to steric hindrance of alkyl-substituted styrene rather than styrene, in the present invention, it is preferable not to include styrene during preparation of the styrene copolymer. .
  • the batch-injected aromatic vinyl monomer may be, for example, styrene in which at least one hydrogen is substituted with an alkyl group having 1 to 3 carbon atoms.
  • the continuously added aromatic vinyl monomer may be, for example, styrene in which at least one hydrogen is substituted with an alkyl group having 1 to 3 carbon atoms.
  • the aromatic vinyl-based monomers fed at once may preferably form a block, and the aromatic vinyl-based monomers continuously fed may form a random structure unlike the aromatic vinyl-based monomers fed at once.
  • the weight ratio of the batch-injected aromatic vinyl-based monomer and the continuously-injected aromatic vinyl-based monomer may be, for example, 1:0.4 to 1:2, and specifically, 1:0.41 to 1:1.18.
  • a styrene copolymer having a high refractive index is prepared.
  • a styrene copolymer having a low glass transition temperature can be prepared because a relatively small amount of a vinyl cyan-based monomer and an aromatic vinyl-based monomer is included. sex may be reduced.
  • the (meth) acrylate-based monomer may be, for example, at least one selected from (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate and propyl (meth) acrylate, of which methyl meta Krylates are preferred.
  • the whole amount of the (meth)acrylate-based monomer is added before polymerization starts, and for example, methacrylate has a solubility of 1.5 g/100 ml in the aqueous phase, so as the total amount is added, it is present in the aqueous phase due to an increase in the proportion present in the organic phase.
  • methacrylate-based monomer By reducing the ratio of the (meth) acrylate-based monomer to increase the degree of polymerization participation.
  • the aromatic vinyl-based monomer and the (meth)acrylate-based monomer have a weight ratio of, for example, 1:1 to 1:8, preferably 1:1 to 1:2, or, for example, 1:3 to 1:8. It may be included as a weight ratio.
  • a weight ratio of, for example, 1:1 to 1:8, preferably 1:1 to 1:2, or, for example, 1:3 to 1:8.
  • the vinyl cyan-based monomer may be, for example, at least one selected from acrylonitrile, methacrylonitrile, ethacrylate, phenyl acrylonitrile, ⁇ -chloroacrylonitrile and ethacrylonitrile, of which acrylic Ronitrile is preferred.
  • the total amount of the vinyl cyanide-based monomer is batch-injected before polymerization starts, and for example, acrylonitrile has a solubility of 7 g/100 ml in the aqueous phase, so as the total amount is added, the proportion of the vinyl cyanide present in the aqueous phase increases relative to the organic phase. Polymerization participation can be increased by reducing the proportion of staphylococcal monomers.
  • the polymerization in the reactor may be performed, for example, at 80 to 130 °C and 400 to 600 rpm. When the reaction is carried out for 8 to 10 hours under these conditions, it is preferable in terms of reduction of styrene-based polymerization conversion, colorability, and residual oligomer content.
  • a reaction solution containing a monomer mixture and an aqueous solvent is batch-injected into the reactor, suspension polymerization is carried out at 80 to 90° C. for 3 to 4 hours, and after the temperature of the reactor reaches 90 to 110° C., the aromatic vinyl Suspension polymerization is most preferable in terms of polymerization conversion rate, transparency, and residual oligomer content of the styrene copolymer while continuously adding 6 to 24 wt% of the system monomer over 5 to 7 hours.
  • the difference in polymerization conversion rate is insignificant, while transparency is lowered and the residual oligomer content is increased.
  • the pH of the polymerization slurry generated in the reactor through the polymerization reaction is adjusted to 1 to 4, and a styrene copolymer in the form of beads can be prepared.
  • the dispersing agent included in the reaction can be effectively prepared and the product is highly purified.
  • the pH may be measured in a manner commonly known in the related art, for example, it may be measured using a pH meter.
  • the pH of the polymerization slurry may be adjusted using an acidic solution, and for example, formic acid, hydrochloric acid or acetic acid may be used.
  • the styrene copolymer may be prepared by including an initiator and an antioxidant in addition to the dispersant described above.
  • the initiator is, for example, a peroxide, preferably t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butyl peroxyisobutyrate, 1,1-bis(t-butylperoxy)cyclohexane , 2,2-bis(4,4-di-t-butylperoxycyclohexane)propane, t-hexylperoxyisopropyl monocarbonate, t-butyl peroxylaurate, t-butylperoxyisopropyl monocarbonate , t-butylperoxy 2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate, 2,2-bis(t-butylperoxy)butane, t-butyl peroxybenzoate, 1 selected from dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-but
  • the initiator may be, for example, 0.01 to 1 part by weight, preferably 0.01 to 0.5 part by weight, more preferably 0.01 to 0.2 part by weight, based on 100 parts by weight of the monomer mixture, and within this range, the polymerization reaction is facilitated to It has the effect of maintaining excellent mechanical properties, weather resistance, heat resistance and scratch resistance.
  • the antioxidant may be, for example, an organic phosphate, preferably polyoxyethylene alkylether phosphate. In this case, there is an effect of maintaining excellent mechanical properties, weather resistance, heat resistance and scratch resistance by facilitating the polymerization reaction.
  • the antioxidant may be, for example, 0.001 to 1 part by weight, preferably 0.001 to 0.5 part by weight, based on 100 parts by weight of the monomer mixture, and within this range, the polymerization reaction is facilitated to facilitate mechanical properties, weather resistance, heat resistance and scratch resistance. It has the effect of maintaining excellent performance.
  • the styrene copolymer prepared by the above-mentioned preparation method in its total weight%, 39 to 47% by weight of a (meth)acrylate-based monomer, 18 to 21% by weight of a vinyl cyanide-based monomer, and 35 to an alkyl-substituted styrenic monomer By including 43% by weight, it is possible to provide a uniform composition distribution in the final polymer chain.
  • each monomer becomes a unit of a styrene copolymer.
  • the styrene copolymer may improve heat resistance and scratch resistance of the thermoplastic resin composition.
  • the styrene copolymer may also improve the weather resistance of the thermoplastic resin composition by including a (meth)acrylate-based monomer.
  • the styrenic copolymer comprises 40 to 46 wt% of a (meth)acrylate-based monomer, 18 to 21 wt% of a vinyl cyanide-based monomer, and 35 to 43 wt% of an alkyl-substituted styrenic monomer in total wt% It is possible to provide a uniform composition distribution within the final polymer chain.
  • the styrene copolymer may have a residual oligomer content of, for example, 0.51% by weight or less, and specifically, 0.50 to 0.51% by weight.
  • the residual oligomer content can be measured by a conventional method in the related field. For example, 1 g of the sample is dissolved in 10 mL of chloroform, the polymer is precipitated with methanol, and the supernatant of the sample is taken and a 0.2 ⁇ m disk syringe filter is applied. can be filtered and then analyzed using gel chromatography. When the content of residual oligomers contained in the styrene copolymer is within the above range, a copolymer having high purity may be prepared.
  • the styrene copolymer may have a haze of 0.3% or less, for example, 0.2% or less.
  • haze may be measured at room temperature using ASTM D-1003.
  • the styrene copolymer may have a color b value of 6.0 to 7.0, for example, 6.0 to 6.6.
  • the color b value may be measured by a method known in the related field, and for example, may be measured using the Hunter LAB color coordinate system.
  • the styrene copolymer may be a low refractive index copolymer having a refractive index of 1.55 or less, for example, 1.53 to 1.54, for example.
  • the refractive index may be measured at 25° C. using a known method, that is, an Abbe Refractometer, generally according to ASTM D542.
  • the refractive index of the styrene copolymer may be calculated according to Equation 1 below by using the refractive index and content of each component (or monomer) constituting the styrene copolymer.
  • Equation 1 Wti is the weight fraction (%) of each component (or monomer) in the styrene copolymer, and RIi is the refractive index of the styrene copolymer-forming monomer.
  • the styrene copolymer may provide a thermoplastic resin composition having excellent scratch resistance as the glass transition temperature is improved.
  • the styrene copolymer may have a glass transition temperature (Tg) of, for example, 115°C or higher, and specifically, 115 to 130°C.
  • Tg glass transition temperature
  • the styrene copolymer may have a polymerization conversion ratio of 95 wt% or more, preferably 97 wt% or more.
  • the polymerization conversion rate is calculated by removing a portion of the polymer in the reactor, measuring the moisture content, obtaining the actual sample weight using Equation 2 below, then dissolving it with a THF and MeOH mixture, precipitating it, and drying the suspended matter with the weight measured by Equation 3 can be calculated using
  • the styrene copolymer may have a weight average molecular weight of, for example, 40,000 to 200,000 g/mol, preferably 70,000 to 150,000 g/mol, and more preferably 80,000 to 130,000 g/mol. If the above-mentioned range is satisfied, the balance of physical properties with the graft copolymer, that is, the balance of mechanical properties, processability, and appearance quality, can be more easily controlled in the thermoplastic resin composition to be described later.
  • styrene copolymer a commercially available material may be used as long as it follows the definition of the present invention.
  • the styrene copolymer may be, for example, a methylmethacrylate-styrene-alphamethylstyrene copolymer.
  • the styrene copolymer satisfies all of the above-described haze, color value, residual oligomer content and refractive index conditions, so that a balance between heat resistance and transparency can be achieved even under a high polymerization conversion rate.
  • a thermoplastic resin composition having excellent scratch resistance and reduced surface flow marks.
  • the amount of the dispersant reduction was obtained by wet decomposition of a part of the reactant that had undergone the step of adjusting the pH of the polymerization slurry to be 1 to 4 with sulfuric acid, nitric acid and hydrogen peroxide, and then diluted with ultrapure water to analyze inorganic substances using ICP (Inductively Coupled Plasma Spectrometer). can be saved
  • the reduction amount of the dispersant of the styrene copolymer may be, for example, 100 ppm or less, and specifically, 70 ppm or less.
  • thermoplastic resin composition including the above-described styrene copolymer are as follows.
  • thermoplastic resin of the present disclosure all of the above-described styrene copolymer is included.
  • the styrene copolymer may be, for example, 55 to 75 wt%, preferably 55 to 70 wt%, more preferably 55 to 65 wt%, based on the total weight of the thermoplastic resin composition, while maintaining heat resistance within this range There is an effect of improving workability and scratch resistance.
  • the graft copolymer of the present disclosure may be formed by graft polymerization of acrylic rubber, aromatic vinyl monomer and vinyl cyan monomer, for example, a graft copolymer comprising an acrylic rubber polymer having an average particle diameter of 50 to 500 nm.
  • a graft copolymer comprising an acrylic rubber polymer having an average particle diameter of 50 to 500 nm.
  • mechanical properties such as impact strength and tensile strength are excellent, and heat resistance, colorability and weather resistance are excellent.
  • the acrylic rubber included in the graft copolymer may have, for example, an average particle diameter of 50 to 500 nm, preferably 70 to 450 nm, and more preferably 100 to 350 nm.
  • an average particle diameter of 50 to 500 nm, preferably 70 to 450 nm, and more preferably 100 to 350 nm.
  • the average particle diameter can be measured using a dynamic light scattering method, and in detail, it can be measured in a Gaussian mode using a particle size distribution analyzer (Nicomp 380) in a latex state, and the dynamic light scattering method It may mean an arithmetic mean particle diameter in the particle size distribution measured by
  • the sample is prepared by diluting 0.1 g of Latex (total solid content 35-50 wt%) 1,000-5,000 times with deionized or distilled water, that is, diluting it appropriately so as not to significantly deviate from the Intensity Setpoint 300kHz, and putting it in a glass tube.
  • Measurement method is auto-dilution and measurement with flow cell
  • measurement mode is dynamic light scattering method/Intensity 300KHz/Intensity-weight Gaussian Analysis
  • setting value is temperature 23 °C
  • measurement wavelength 632.8 nm It can be measured with a channel width of 10 ⁇ sec.
  • the acrylic rubber contained in the graft copolymer may be, for example, 20 to 60% by weight, preferably 30 to 55% by weight, more preferably 40 to 50% by weight, based on the total weight of the graft copolymer, Within the range, it has excellent weather resistance, impact strength and scratch resistance.
  • the acrylic rubber can be prepared by emulsion polymerization of a (meth)acrylate-based monomer, for example, and as a specific example, emulsion polymerization by mixing a (meth)acrylate-based monomer, an emulsifier, an initiator, a grafting agent, a crosslinking agent, an electrolyte, and water. It can be manufactured, and in this case, the grafting efficiency is excellent and there is an effect of excellent physical properties such as impact resistance.
  • the (meth) acrylate-based monomer may be, for example, at least one selected from among alkyl (meth) acrylates having 2 to 8 carbon atoms, preferably an alkyl acrylate having 4 to 8 carbon atoms in the alkyl group, more preferably can be butyl acrylate or ethylhexyl acrylate.
  • the (meth)acrylate-based monomer is used in the sense of including both an acrylate-based monomer and a methacrylate-based monomer.
  • the emulsion polymerization may be a graft emulsion polymerization, for example, may be carried out at 50 to 85 °C, preferably 60 to 80 °C.
  • the initiator may include, as a radical initiator, inorganic peroxides including sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-mentane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide organic peroxides including oxide, 3,5,5-trimethylhexanol peroxide, t-butylperoxy isobutylate; and azo compounds including azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis cyclohexanecarbonylnitrile, azobis isonyxate (butyric acid)methyl; It may be at least one
  • An activator may be further added to promote the initiation reaction together with the initiator.
  • the activator may be, for example, at least one selected from sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate, ferrose sulfate, dextrose, sodium pyrophosphate, sodium pyrophosphate anhydiros and sodium sulfate.
  • the initiator is, for example, 0.001 to 1 parts by weight, preferably 0.01 to 0.5 parts by weight, more preferably 0.02 to 0.1 parts by weight, based on 100 parts by weight of the total of rubber and monomer constituting the graft copolymer.
  • the residual amount of the initiator in the graft copolymer can be minimized in units of several tens of ppm while the emulsion polymerization can be easily performed.
  • the weight of the rubber is based on the solid content in the case of latex, and may be the weight of the monomer added during rubber manufacturing.
  • the emulsifier is, for example, a potassium compound of an alkylbenzenesulfonate, a sodium compound of an alkylbenzenesulfonate, a potassium compound of an alkylcarboxylate, a sodium compound of an alkylcarboxylate, a potassium compound of oleic acid, a sodium compound of oleic acid, a potassium compound of an alkylsulfate , sodium compound of alkylsulfate, potassium compound of alkyldicarboxylate, sodium compound of alkyldicarboxylate, potassium compound of alkylethersulfonate, sodium compound of alkylethersulfonate and allyloxynonylphenoxypropan-2-yloxy It may be at least one selected from among the ammonium compounds of methylsulfonate, and sodium dodecylbenzenesulfonate is preferable.
  • the emulsifier may use a commercially available material.
  • one or more selected from SE10N, BC-10, BC-20, HS10, Hitenol KH10 and PD-104 may be used.
  • the emulsifier is, for example, 0.15 to 2.0 parts by weight, preferably 0.3 to 1.5 parts by weight, more preferably 0.5 to 1.2 parts by weight, based on 100 parts by weight of the total of rubber and monomer constituting the graft copolymer. In this range, not only the emulsion polymerization can be easily performed, but also the residual amount of the initiator in the graft copolymer can be minimized in units of several tens of ppm.
  • a molecular weight modifier may be further added.
  • the molecular weight modifier may be, for example, at least one selected from t-dodecyl mercaptan, N-dodecyl mercaptan, and alphamethylstyrene dimer, and among these, t-dodecyl mercaptan is preferable.
  • the molecular weight regulator may be added in an amount of, for example, 0.1 to 1 parts by weight, preferably 0.2 to 0.8 parts by weight, more preferably 0.4 to 0.6 parts by weight, based on 100 parts by weight of the total of the monomers constituting the graft copolymer. there is.
  • the emulsion polymerization is initiated after all monomers and the like are put into the reactor, or some of the monomers are added to the reactor before emulsion polymerization is started, and the remainder is continuously added after initiation, or the emulsion polymerization is performed while continuously adding the monomers for a certain period of time.
  • the graft copolymer obtained in this way can be recovered in the form of a dry powder through the processes of agglomeration, dehydration and drying in the form of latex.
  • salts such as calcium chloride, magnesium sulfate, and aluminum sulfate, or acidic substances such as sulfuric acid, nitric acid, hydrochloric acid, and the like, and mixtures may be used.
  • the aromatic vinyl-based monomer included in the graft copolymer may be at least one selected from styrene, ⁇ -methylstyrene, ⁇ -ethylstyrene, and p-methylstyrene, among which styrene is preferable.
  • the aromatic vinyl monomer included in the graft copolymer may be, for example, 10 to 50% by weight, preferably 20 to 45% by weight, based on the total weight of the graft copolymer, and within this range, tensile strength and impact strength There is an effect excellent in mechanical properties and processability, such as.
  • the aromatic vinyl monomer is, for example, styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, m-methyl styrene, ethyl styrene, isobutyl styrene, t-butyl styrene, ⁇ -bromo styrene, ⁇ -Chlorostyrene, m-bromostyrene, ⁇ -chlorostyrene, ⁇ -chlorostyrene, m-chlorostyrene, vinyltoluene, vinylxylene, fluorostyrene and vinylnaphthalene may be at least one selected from the group consisting of, in this case It has excellent processability due to proper fluidity, and mechanical properties such as tensile strength and impact strength are also excellent.
  • the type disclosed for the aromatic vinyl-based monomer included in the above-described styrene copolymer may be used.
  • the vinyl cyanide monomer included in the graft copolymer may be, for example, 5 to 30% by weight, preferably 5 to 25% by weight, more preferably 10 to 20% by weight based on the total weight of the graft copolymer, , there is an effect excellent in impact resistance, workability, etc. within this range.
  • total weight of the copolymer means the actual total weight of the obtained copolymer or may mean the total weight of rubber and/or monomers added instead of it.
  • graft copolymer commercially available materials may be used as long as it follows the definition of the present invention.
  • the graft copolymer may be 25 to 45 wt%, preferably 20 to 45 wt%, more preferably 30 to 45 wt%, based on the total weight of the thermoplastic resin composition, and the impact strength and tensile strength within this range It has excellent mechanical properties such as heat resistance, scratch resistance, and colorability while excellent, and when it is less than the above range, scratch resistance is inferior, and when it exceeds the above range, a problem of reduced fluidity may occur.
  • the thermoplastic resin composition may include, for example, at least one additive selected from the group consisting of lubricants, antioxidants, UV stabilizers, release agents, pigments, dyes and UV stabilizers, and in this case, weather resistance and heat resistance without deterioration of mechanical properties , processability and scratch resistance are excellent and have the effect of being maintained.
  • the lubricant may be, for example, at least one selected from the group consisting of ethylene bis stearamide, oxidized polyethylene wax and magnesium stearate, and preferably ethylene bis stearamide to improve the wettability of the composition of the present invention and at the same time improve mechanical properties This has an excellent effect.
  • the lubricant may be, for example, 0.1 to 3 parts by weight, preferably 0.1 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, based on 100 parts by weight of the total of 100 parts by weight of the styrene copolymer and the graft copolymer.
  • the antioxidant may include, for example, a phenol-based antioxidant, a phosphorus-based antioxidant, or a mixture thereof, and in this case, oxidation due to heat during the extrusion process is prevented and the mechanical properties of the present invention are excellent.
  • the antioxidant may be, for example, 0.001 to 3 parts by weight, preferably 0.001 to 1 parts by weight, more preferably 0.005 to 1 parts by weight, based on 100 parts by weight of the styrene copolymer and the graft copolymer, and within this range In the extrusion process, oxidation due to heat is prevented and the mechanical properties of the present invention are excellent.
  • the dye may be, for example, 0.1 to 1.5 parts by weight, preferably 0.5 to 1 parts by weight, based on 100 parts by weight of the total of 100 parts by weight of the styrene copolymer and the graft copolymer. It has an excellent effect of color expression.
  • the thermoplastic resin composition may have, for example, a glass transition temperature of 116 °C or higher, preferably 116 to 119 °C.
  • the glass transition temperature may be measured using a differential calorimeter (manufacturer: Ta Instruments, product name: DSC Q20).
  • the thermoplastic resin composition may have a pencil hardness of H or more, preferably H to 4H, measured at a 45 ° angle under a load of 0.5 kg according to ASTM D3363 using a pencil hardness tester (Cometech).
  • the aromatic vinyl-based monomer included in the styrene copolymer may be styrene in which at least one hydrogen is substituted with an alkyl group, and the aromatic vinyl-based monomer included in the graft copolymer may be styrene. there is.
  • thermoplastic resin composition
  • thermoplastic resin composition of the present disclosure all of the above-described styrene copolymer and thermoplastic resin composition are included.
  • thermoplastic resin composition for example, 55 to 75% by weight of a styrene copolymer is mixed with 25 to 45% by weight of a graft copolymer including an acrylic rubber polymer, an aromatic vinylic monomer and a vinylcyanic monomer and melted. kneading and extruding.
  • the melt-kneading step may include, for example, other additives described above.
  • the melt-kneading and extruding may be performed by using, for example, at least one selected from a single screw extruder, a twin screw extruder and a Banbury mixer, and preferably mixed uniformly using a twin screw extruder and then extruded to form pellets.
  • a thermoplastic resin composition can be obtained, and in this case, mechanical properties, thermal properties, scratch resistance, and appearance quality are excellent.
  • the styrene copolymer and the graft copolymer are mixed, and then uniformly dispersed and extruded using a single screw extruder, twin screw extruder or Banbury mixer, and then the extrudate is heated in a water bath passing through and cutting it to prepare pellets.
  • the step of preparing the pellets using the extrusion kneader may be performed, for example, at a barrel temperature of 200 to 270 ° C., preferably within a range of 220 to 270 ° C., in which case the throughput per unit time is adequate and sufficient melting Kneading may be possible, and there is an effect that does not cause problems such as thermal decomposition of the resin component.
  • the step of preparing pellets using the extrusion kneader may be performed, for example, under the condition that the screw rotation speed is 200 to 300 rpm, preferably 250 to 300 rpm, and in this case, the throughput per unit time is appropriate and the process efficiency is excellent while It has the effect of suppressing excessive cutting.
  • thermoplastic resin composition pellets may be manufactured as injection-molded articles using an injection machine, for example, at an injection barrel temperature of 210 to 250 °C, preferably at 220 to 250 °C.
  • thermoplastic resin composition of the present invention a molded article including the thermoplastic resin composition of the present invention will be described. In describing a molded article including the thermoplastic resin composition of the present invention, all of the above-described thermoplastic resin composition is included.
  • the molded article of the present substrate is prepared from, for example, the thermoplastic resin composition of the present substrate. It may be manufactured, and in this case, there is an effect of improving transparency, workability, scratch resistance, and surface flow mark characteristics while maintaining heat resistance.
  • the use of the molded article is not particularly limited, but preferably, for example, may be at least one selected from the group consisting of automobile parts, electrical and electronic parts, or building materials.
  • the styrene copolymer, the thermoplastic resin composition, the method for producing the same, and the molded article, other conditions or equipment not explicitly described are within the range commonly practiced in the art. It can be appropriately selected and is not particularly limited.
  • Graft copolymer a graft copolymer with an average rubber particle diameter of 120 nm (SA130 from LG Chem)
  • 'MMA' methyl methacrylate
  • ⁇ -methylstyrene 18 parts by weight out of 28 parts by weight of ⁇ -methylstyrene are used for batch input, hereinafter referred to as 'batch AMS')
  • 'AN' acrylonitrile 22 parts by weight
  • 100 parts by weight of ion-exchanged water 0.05 parts by weight of 1,1-bis(t-butylperoxy)cyclohexane
  • tricalcium phosphate 0.005 parts by weight of polyoxyethylene alkyl ether phosphate was added, and the temperature was raised to 100° C. under 500 rpm to initiate polymerization.
  • ⁇ -methylstyrene (hereinafter referred to as 'continuous injection AMS') was continuously added for 5 hours and polymerization was performed for 9 hours to prepare a polymerization slurry.
  • the above-mentioned ion-exchange water is 114 parts by weight based on 100 parts by weight of the total amount of MMA, batch-injection AMS, AN, and continuous-injection AMS, 1,1-bis(t-butylperoxy)cyclohexane is 0.3 parts by weight, tri Calcium phosphate was added in an amount of 1.3 parts by weight, and polyoxyethylene alkyl ether phosphate was added in an amount of 0.005 parts by weight.
  • Formic acid was added to the prepared polymerization slurry to adjust the pH of the slurry to 2.5, and tricalcium phosphate used as a dispersant was removed, and then washed with water, dehydrated and dried to prepare a styrene copolymer in the form of beads.
  • the prepared copolymer had a refractive index of 1.531 and a polymerization conversion rate of 98%.
  • thermoplastic resin composition ⁇ Preparation of thermoplastic resin composition>
  • a monomer solution was prepared by mixing 28 parts by weight of AMS, 50 parts by weight of MMA, and 22 parts by weight of AN to 9 parts by weight of toluene as a reaction solvent when preparing the styrene copolymer, and 1,1-bis(t) in this polymerization solution -Butylperoxy) cyclohexane 0.12 parts by weight is added, and then added to the static mixer at the front of the reactor at a constant rate of 7 kg/hr, and 50% of the polymer in the reactor is passed through the static mixer to uniformly mix with the monomer. It was put into the reactor in a state of the block polymerization was performed.
  • the reactor temperature is 115 ° C. After polymerization, it goes through reactors 2 and 3 of 16 liters, and the unreacted monomer and reaction solvent are recovered and removed from the devolatilization tank 235 ° C and 15 torr, except that the resin was prepared in the form of pellets. Repeated the same process as in Example 1.
  • Refractive index according to ASTM D542 at 25 °C using Abbe refractometer measured.
  • Polymerization conversion (%) (sample after drying) / (sample before drying) ⁇ 100
  • Color b Measured using the Hunter LAB color coordinate system.
  • Residual oligomer content 1 g of sample is dissolved in 10 mL of chloroform, polymer is precipitated with methanol, and the supernatant of the sample is filtered using a 0.2 ⁇ m disc syringe filter, followed by gel chromatography (ALS-GC/FID) ) was used for analysis.
  • ALS-GC/FID gel chromatography
  • Pencil hardness Using a pencil hardness tester (Cometech), according to ASTM D3363, fix the pencil at a load of 0.5 kg and an angle of 45 °, and then scrape the surface of the specimen by hardness (in order of 2B, B, HB, F, H). It was measured whether or not it was scratched with the naked eye.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Composition A (AMS) 28 28 28 28 33 33 33 28 Composition A (SM) - - - - - - - Composition A (MMA) 50 50 50 45 45 45 50 Composition A (AN) 22 22 22 22 22 22 22 22 A Initial composition (Batch input AMS) 18 18 18 13 23 23 23 18 A Initial composition (MMA) 50 50 50 45 45 45 50 A Initial composition (AN) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 A split input (continuous input AMS) 10 10 10 15 10 10 10 10 10 10 A division input (AMS start min) 0 0 0 0 0 0 0 0 A division input (AMS end min) 300 360 420 360 300 360 320 360 Reactor (rpm) 500 500 500 500 500 500 500 600 A composition distribution (AMS) 35.5 35.5 35.7 35.2 39.6 39.8 39.8 35.5 A composition distribution (MMA) 46 45.5 45.5 45.3 41.5 40 39.8 45.3 A composition
  • Examples 1 to 8 prepared according to the present invention had excellent heat resistance and excellent pencil hardness (scratch resistance) and surface appearance, compared to Comparative Examples 1 to 6, which were out of the scope of the present invention.
  • the refractive index and residual oligomer content were reduced, and polymerization conversion and transparency were improved. Accordingly, the surface of the resin composition Appearance and glass transition temperature were improved.
  • the graft copolymer contains a styrene copolymer having a specific refractive index, polymerization conversion rate, and residual oligomer content by uniformly polymerizing the composition distribution of the polymer, a thermoplastic suitable for molded articles with excellent scratch resistance and surface appearance while excellent heat resistance It was confirmed that the resin composition was provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법에 관한 것으로, 투입되는 성분들이 균일하게 중합되어 잔류 올리고머 함량을 저감하고 투명도를 크게 개선한 스티렌 공중합체, 및 상기 스티렌 공중합체를 아크릴 고무질 그라프트 공중합체에 포함하여 내열성, 내스크래치성 및 표면 외관이 뛰어난 성형품에 적합한 열가소성 수지 조성물을 제공하는 효과가 있다.

Description

스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법
〔출원(들)과의 상호 인용〕
본 출원은 2020.11.10일자 한국특허출원 제 10-2020-0149422호 및 그를 토대로 2021.07.06일자로 재출원한 한국특허출원 제 10-2021-0088233호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법에 관한 것으로, 보다 상세하게는 투입되는 성분들이 균일하게 중합되어 잔류 올리고머 함량을 저감하고 투명도를 크게 개선한 스티렌 공중합체, 상기 스티렌 공중합체를 포함하고 내열성, 내스크래치성 및 표면 외관이 우수한 열가소성 수지 조성물 및 이들의 제조방법에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(Acrylonitrile-Butadiene-Styrene,이하'ABS계'라 함) 수지로 대표되는 ABS계 수지는 강성, 내약품성, 가공성, 기계적 강도 및 미려한 외관 특성으로 인하여 자동차용품, 전기/전자 제품 및 사무용 기기 등에 다양하게 사용되고 있다. 그러나 ABS계 수지는 부타디엔 고무 중합체를 사용하기 때문에 내후성이 취약하여 실외용 재료로서는 적합하지 못하다는 문제가 있었다.
이러한 문제를 해결하기 위해, 물성이 우수하면서도 내후성과 내노화성이 우수한 열가소성 수지를 얻기 위해 그라프트 공중합체 내에 자외선으로 인한 노화를 일으키는 에틸렌계 불포화 중합체가 존재하지 않는 가교된 알킬 (메트)아크릴레이트 고무 중합체를 사용한 아크릴로니트릴-스티렌-아크릴레이트(Acrylonitrile-Styrene-Acrylate, 이하'ASA'라 함) 수지로 대표되는 ASA계 수지가 개발되었다. 이러한 ASA계 수지는 우수한 내후성, 내노화성을 가지며, 자동차, 선박, 레저용품, 건축자재, 원예용 등 다방면에 사용되고 있다.
특히 자동차 등에 적용되는 ASA계 수지의 경우, 미려한 외관을 위하여 내후성 외에도 우수한 착색성, 내열성, 내스크래치성 등이 요구되고 있다.
이를 위해 ASA계 수지에 내열 스티렌계 수지 및 폴리메틸메타크릴레이트 수지와 컴파운드하는 경우 착색성과 내스크래치성은 개선되나 상용성 부족으로 2개의 유리전이온도(Two Tg)가 관찰되며 염료 또는 안료가 미분산되어 표면에 플로우 마크(Flow Mark)가 발생하는 문제가 있다.
따라서, ASA계 수지에 잔류 올리고머 함량을 줄여 내열성을 향상하는 동시에 상용성이 개선되어 내스크래치성과 가공성이 개선된 열가소성 수지 조성물 및 그 제조방법의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국 등록 특허 제4448580호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 잔류 올리고머 함량을 줄여 상용성이 증가되고 투명도가 매우 뛰어난 스티렌 공중합체 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기의 스티렌 공중합체를 사용하여 내열성이 우수하면서도 내스크래치성 및 외관품질이 뛰어난 열가소성 수지 조성물 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기의 열가소성 수지 조성물로부터 제조되는 성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은
반응기에 (메트)아크릴레이트계 단량체 35 내지 65 중량%, 비닐시안계 단량체 10 내지 30 중량%, 및 방향족 비닐계 단량체 20 내지 40 중량%를 포함하는 단량체 혼합물 100 중량부, 수계 용매 100 내지 200 중량부, 및 분산제 0.1 내지 10 중량부를 포함하는 반응 용액을 투입하여 중합하되,
상기 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌이고,
상기 방향족 비닐계 단량체는 일부가 상기 중합 개시 전에 일괄 투입되고, 나머지가 상기 반응기의 온도가 90 내지 110 ℃에 도달한 시점부터 연속 투입되어 중합되는 것을 특징으로 하는 스티렌 공중합체의 제조방법을 제공한다.
상기 일괄 투입되는 방향족 비닐계 단량체와 연속 투입되는 방향족 비닐계 단량체는 중량비가 1:0.4 내지 1:2일 수 있다. 이때 일괄 투입되는 방향족 비닐계 단량체는 블록을 형성하고, 연속 투입되는 방향족 비닐계 단량체는 블록을 형성하지 않고 다른 단량체와 불규칙적으로 결합하여 랜덤 배열을 형성할 수 있다.
상기 방향족 비닐계 단량체와 (메트)아크릴레이트계 단량체는 중량비가 1:1 내지 1:8일 수 있다.
상기 방향족 비닐계 단량체는 스티렌의 하나 이상의 수소가 1 내지 3의 알킬기로 치환된 화합물일 수 있다.
상기 반응기 내 중합은 80 내지 130 ℃에서 400 내지 600 rpm 하에 8 내지 10 시간 동안 수행될 수 있다.
상기 반응기 내 생성된 중합 슬러리의 pH를 1 내지 4로 조절하는 단계를 포함할 수 있다.
상기 분산제는 포스페이트 금속염일 수 있다.
또한, 본 발명은
전술한 방법에 의해 제조되고, 유리전이온도(Tg)가 115 ℃ 이상이며, 잔류 올리고머 함량이 0.51 중량% 이하이고 굴절률이 1.55 이하인 스티렌 공중합체를 제공한다.
상기 스티렌 공중합체는, 스티렌 공중합체 총 100 중량% 중에, (메트)아크릴레이트계 단량체 39 내지 47 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 알킬 치환된 스티렌계 단량체 35 내지 43 중량%를 포함하여 이루어질 수 있다.
상기 스티렌 공중합체는 헤이즈가 0.3% 이하이고, Color b값이 6.0 내지 7.0일 수 있다.
또한, 본 발명은
(메트)아크릴레이트계 단량체, 비닐시안계 단량체, 방향족 비닐계 단량체를 포함하여 이루어진 스티렌 공중합체; 및
아크릴계 고무질 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체를 포함하여 이루어진 그라프트 공중합체를 포함하고,
상기 스티렌 공중합체는, 스티렌 공중합체 총 100 중량% 중에, (메트)아크릴레이트계 단량체 39 내지 47 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 스티렌계 단량체 35 내지 43 중량%를 포함하여 이루어지는 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
바람직하게는, 상기 스티렌 공중합체에 포함되는 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌일 수 있고, 상기 그라프트 공중합체에 포함되는 방향족 비닐계 단량체는 스티렌일 수 있다.
또한, 본 발명은
스티렌 공중합체 55 내지 75 중량%에, 아크릴계 고무질 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체를 포함하여 이루어진 그라프트 공중합체 25 내지 45 중량%를 혼합하고 용융 혼련 및 압출하는 단계를 포함하며, 상기 스티렌 공중합체는 전술한 제조방법에 의해 제조된 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공한다.
또한, 본 발명은 전술한 열가소성 수지 조성물로 제조되는 성형품을 제공한다.
본 발명에 따른 스티렌 공중합체는 투입되는 성분들의 조성 분포가 균일하게 제조되어 잔류 올리고머 함량을 줄이고 개선된 상용성과 투명도를 제공할 수 있다.
즉, 본 발명에 따른 스티렌 공중합체를 포함하는 열가소성 수지 조성물은 내열성이 우수하면서도 내스크래치성 및 외관품질이 뛰어나 자동차, 선박, 레저용품, 건축자재, 원예용품을 비롯한 다양한 산업 분야에 널리 적용될 수 있다.
이하 본 발명에 대한 이해를 돕기 위하여 본 발명을 보다 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 점을 감안하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 기재에서 "포함하여 이루어지는"의 의미는 별도의 정의가 없는 이상 "포함하여 중합 제조된", "포함하여 중합된" 또는 "유래의 단위로서 포함하는"으로 정의될 수 있다.
본 기재에서 내열성은 이 기술분야에서 공지된 다양한 방식으로 측정할 수 있으며, 달리 특정하지 않는 한 시차열량 분석기(제조사: Ta Instruments, 제품명: DISCOVERY DSC25)를 이용하여 측정한 유리전이온도(Tg)를 지칭한다.
해당 유리전이온도(Tg)가 116 ℃ 이상인 경우 내열 공중합체로 판단할 수 있다.
본 기재에서 중량평균분자량은 용출액으로 THF(테트라하이드로푸란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있고, 상세하게는 겔 투과 크로마토그래피(GPC: gel permeation chromatography, PL GPC220, Agilent Technologies)에 의해 폴리스티렌 환산 중량평균분자량(Mw)을 구한 것을 적용한 값이다.
구체적으로는, 측정하는 중합체 1%의 농도가 되도록 테트라하이드로푸란에 용해시켜 GPC에 10 ㎕ 주입하되, 0.3 mL/min의 유속으로 유입하고, 시료 농도 2.0 mg/mL(100 ㎕ injection)에 대해 30 ℃에서 분석을 수행할 수 있다. 여기서 컬럼은 Waters사 PLmixed B 2개를 직렬로 연결하고, 검출기로는 RI 검출기(Agilent Waters사 제품, 2414)를 이용하여 40 ℃에서 측정한 다음 ChemStation을 사용하여 데이터를 가공한 것일 수 있다.
본 기재에서, (공)중합체의 조성비는 (공)중합체를 구성하는 단위체의 함량을 의미하거나, 또는 (공)중합체의 중합 시 투입되는 단위체의 함량을 의미할 수 있다.
본 기재에서 "함량"은 별도의 정의가 없는 이상 중량을 의미하고, "%"는 별도의 정의가 없는 이상 중량%를 의미한다.
본 발명자들은 (메트)아크릴레이트계 단량체, 비닐시안계 단량체 및 알킬 치환된 방향족 비닐계 단량체를 수성 용매 및 분산제 하에 중합하여 스티렌 공중합체를 제조하는 경우 단량체간 반응성 차이로 인해 중합 전환율에 따라 투명도와 색상이 점차 불량해지는 트레이드 오프 문제를 해소하지 못하지만, 특정 단량체를 분할 투입하는 경우, 해당 트레이드 오프 문제를 해소할 뿐 아니라 잔류 올리고머 함량을 저감하여 상용성을 증가시키고 나아가 유리전이온도까지 증가시키는 것을 확인하고, 해당 스티렌 공중합체 및 아크릴계 고무질 그라프트 공중합체를 포함하는 조성물에서 내열성, 내스크래치성 및 표면품질이 개선되는 효과를 확인하고, 이를 토대로 연구에 더욱 매진하여 본 발명을 완성하기에 이르렀다.
스티렌 공중합체의 제조방법
본 발명의 일 실시예에 따른 스티렌 공중합체의 제조방법은 반응기에 (메트)아크릴레이트계 단량체 35 내지 65 중량%, 비닐시안계 단량체 10 내지 30 중량%, 및 방향족 비닐계 단량체 20 내지 40 중량%를 포함하는 단량체 혼합물 100 중량부, 수계 용매 100 내지 200 중량부, 및 분산제 0.1 내지 10 중량부를 포함하는 반응 용액을 투입하여 중합하되, 상기 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌이고, 상기 방향족 비닐계 단량체는 일부가 상기 중합 개시 전에 일괄 투입되고, 나머지가 상기 반응기의 온도가 90 내지 110℃에 도달한 시점부터 연속 투입되어 중합되는 경우에, 잔류 올리고머 함량이 저감되어 내열도가 향상되고 상용성이 증가되는 효과가 있다.
상기 중합을 개시하는 단계에서의 수계 용매는 물을 포함할 수 있고, 이 경우 반응열 제어가 용이하고, 고점도에서도 중합을 진행할 수 있어 높은 중합 전환율을 가질 수 있다.
상기 수계 용매는 일례로 단량체 혼합물 100 중량부에 대하여 100 내지 200 중량부, 바람직하게는 100 내지 150 중량부일 수 있고, 이 범위 내에서 단량체의 혼합이 용이하고 중합 안정성이 향상되어 조성이 균일하면서도 높은 중합 전환율을 갖는 효과가 있다.
본 기재에서 분산제는 달리 특정하지 않는 한, 무기 분산제를 지칭한다.
상기 분산제는 일례로 포스페이트 금속염이며, 바람직하게는 트리칼슘 포스페이트일 수 있다. 이 경우 중합 안정성을 향상시켜 높은 중합 전환율을 갖는 공중합체를 제조할 수 있다.
상기 트리칼슘 포스페이트는 구체적인 예로 하이드록시아파타이트(hydroxyapatite), α-트리칼슘포스페이트(α-tricalcium phosphate), β-트리칼슘포스페이트(β-tricalcium phosphate), 테트라칼슘포스페이트(tetracalcium phosphate), 비정질칼슘포스페이트(amorphous calcium phosphate), 무수칼슘포스페이트(monocalcium phosphate anhydrate), 무수디칼슘포스페이트(dicalcium phosphate anhydrate), 옥타칼슘포스페이트(octacalcium phosphate), 모노칼슘포스페이트 모노수화물(monocalcium phosphate monohydrate), 디칼슘포스페이트 이수화물(dicalcium phosphate dehydrate), Na2O-CaO-SiO2-P2O5, CaOSiO2, P2O5-CaO-Na2O 및 P2O5-CaO-K2O로 이루어진 군으로부터 1종 이상 선택될 수 있다.
상기 분산제는 일례로 단량체 혼합물 100 중량부에 대하여 0.1 내지 10 중량부, 바람직하게는 0.2 내지 5 중량부일 수 있고, 이 범위 내에서 중합 반응을 용이하게 하고 균일한 입자를 제조할 수 있어 가공에 유리한 효과가 있다.
상기 수계 용매 및 분산제를 사용한 중합은 일례로 현탁 중합인 것이 바람직하다. 참고로, 유기 용매를 사용하여 괴상 중합으로 제조할 경우 고점도로 인해 제품의 수율이 낮고 잔류 올리고머 함량이 높아 내열성이 저하될 수 있다.
상기 단량체 혼합물은 일례로 상기 (메트)아크릴레이트계 단량체 35 내지 65 중량%, 비닐시안계 단량체 10 내지 30 중량%, 및 방향족 비닐계 단량체 20 내지 40 중량%를 포함할 수 있고, 상기 (메트)아크릴레이트계 단량체 40 내지 54 중량%, 비닐시안계 단량체 21 내지 30 중량% 및 방향족 비닐계 단량체 25 내지 35 중량%를 포함하는 것이 바람직하다.
이때 각 단량체는 스티렌 공중합체의 단위가 된다.
상기 방향족 비닐계 단량체는 상기 중합 개시 전에 일괄 투입되고 상기 반응기의 온도가 90 내지 110℃에 도달한 시점부터 연속 투입되어 중합될 수 있고, 이 경우에 단량체간 반응성 차이로 인해 중합 전환율에 따라 투명도와 색상이 점차 불량해지는 트레이드 오프 문제를 해소할 뿐 아니라 잔류 올리고머 함량을 저감할 수 있어 바람직하다.
상기 방향족 비닐계 단량체는 일례로 하나 이상의 수소가 알킬 치환된 방향족 비닐계 단량체일 수 있고, 구체적인 예로 탄소수 1 내지 3의 알킬기로 치환된 스티렌 단량체일 수 있으며, α-메틸스티렌, α-에틸스티렌 및 p-메틸스티렌 중에서 선택된 1종 이상일 수 있고, 이 중 α-메틸스티렌 또는 α-에틸스티렌이 바람직하다.
본 기재의 스티렌 공중합체를 제조함에 있어 스티렌보다 알킬 치환 스티렌의 입체 장애(steric hindrance)로 인해 내열도와 투명도가 개선될 수 있기 때문에, 본 발명에서는 스티렌 공중합체 제조 도중 스티렌을 포함하지 않는 것이 바람직하다.
상기 일괄 투입되는 방향족 비닐계 단량체는 일례로 하나 이상의 수소가 탄소수 1 내지 3의 알킬기로 치환된 스티렌일 수 있다.
상기 연속 투입되는 방향족 비닐계 단량체는 일례로 하나 이상의 수소가 탄소수 1 내지 3의 알킬기로 치환된 스티렌일 수 있다.
상기 일괄 투입되는 방향족 비닐계 단량체는 바람직하게는 블록을 형성할 수 있고, 상기 연속 투입되는 방향족 비닐계 단량체는 상기 일괄 투입되는 방향족 비닐계 단량체와 달리 랜덤 구조를 형성할 수 있다.
상기 일괄 투입되는 방향족 비닐계 단량체와 연속 투입되는 방향족 비닐계 단량체는 일례로 중량비가 1:0.4 내지 1:2, 구체적인 예로 1:0.41 내지 1:1.18일 수 있다. 상술한 범위를 만족하면 이러한 스티렌 공중합체를 후술하는 열가소성 수지 조성물에 적용시, 투명도와 내열성이 개선될 뿐 아니라 내스크래치성도 개선될 수 있다.
이때, 상기 (메트)아크릴레이트계 단량체가 소량 포함되면 굴절률이 높은 스티렌 공중합체가 제조되기 때문에, 이러한 스티렌 공중합체를 열가소성 수지 조성물에 적용시, 열가소성 수지 조성물의 착색성이 저하될 수 있으며, 과량 포함되면 상대적으로 비닐시안계 단량체와 방향족 비닐계 단량체가 소량 포함되므로 유리전이온도가 낮은 스티렌 공중합체가 제조될 수 있고, 이러한 스티렌 공중합체를 열가소성 수지 조성물에 적용시, 열가소성 수지 조성물의 내열성 및 내스크래치성이 저하될 수 있다.
상기 (메트)아크릴레이트계 단량체는 일례로 (메트)아크릴레이트, 메틸(메트)아크릴레이트, 에틸(메트)아크릴레이트 및 프로필(메트)아크릴레이트 중에서 선택되는 1종 이상일 수 있고, 이중에서 메틸 메타크릴레이트가 바람직하다.
상기 (메트)아크릴레이트계 단량체는 전량이 중합 개시 전에 일괄 투입되며, 메타아크릴레이트를 예로 들면 수상에서 용해도가 1.5 g/100 ml이므로 전량 투입함에 따라 유기상에 상대적으로 존재하는 비율 증가로 수상에 존재하는 (메트)아크릴레이트계 단량체의 비율을 줄여 중합 참여도를 늘릴 수 있다.
상기 방향족 비닐계 단량체와 (메트)아크릴레이트계 단량체는 중량비가 일례로 1:1 내지 1:8, 바람직하게는 1:1 내지 1:2의 중량비, 또는 일례로 1:3 내지 1:8의 중량비로 포함될 수 있다. 상술한 범위를 만족하면, 단량체간 반응성 차이를 극복하고 최종 고분자 사슬내 균일한 분포를 제공하며 잔류 올리고머 함량을 저감할 수 있다.
상기 비닐시안계 단량체는 일례로, 아크릴로니트릴, 메타크릴로니트릴, 에타크릴레이트, 페닐 아크릴로니트릴, α-클로로아크릴로니트릴 및 에타크릴로니트릴 중에서 선택되는 1종 이상일 수 있으며, 이 중 아크릴로니트릴이 바람직하다.
상기 비닐시안계 단량체는 전량이 중합 개시 전에 일괄 투입되며, 아크릴로니트릴을 예로 들면 수상에서 용해도가 7 g/100 ml이므로 전량 투입함에 따라 유기상에 상대적으로 존재하는 비율 증가로 수상에 존재하는 비닐시안계 단량체의 비율을 줄여 중합 참여도를 늘릴 수 있다.
상기 반응기 내 중합은 일례로 80 내지 130 ℃에서 400 내지 600 rpm 하에 수행할 수 있다. 이러한 조건 하에 반응을 8 내지 10 시간동안 수행한 경우에 스티렌계 중합 전환율, 착색성 및 잔류 올리고머 함량 저감측면에서 바람직하다.
구체적인 예로, 상기 반응기에 단량체 혼합물 및 수계 용매를 포함하는 반응 용액을 일괄 투입하여 80 내지 90 ℃에서 3 내지 4 시간 현탁 중합한 다음 상기 반응기의 온도가 90 내지 110 ℃에 도달한 후, 상기 방향족 비닐계 단량체 6 내지 24 중량%를 5 내지 7 시간에 걸쳐 연속 투입하면서 현탁 중합하는 것이 스티렌 공중합체의 중합 전환율, 투명도 및 잔류 올리고머의 함량 측면에서 가장 바람직하다. 상기 범위를 초과하여 장시간 중합시킬 경우 중합 전환율 차이는 미미하면서 투명도가 저하되고 잔류 올리고머 함량이 증가하였고, 상기 범위 미만에서 단시간 중합시킬 경우 중합 전환율이 감소할 뿐 아니라 잔류 모노머가 증가할 수 있다.
그런 다음 상기 중합 반응으로 반응기 내 생성된 중합 슬러리의 pH를 1 내지 4로 조절하고 비드 형태의 스티렌 공중합체를 제조할 수 있다. 상술한 pH 범위를 만족하면 반응에 포함된 분산제를 효과적으로 제조할 수 있고 제품이 고순도화 되는 효과가 있다.
본 기재에서 pH는 관련 분야에서 통상 공지된 방식으로 측정될 수 있으며, 일례로 pH 미터를 사용하여 측정할 수 있다.
상기 중합 슬러리의 pH는 산성 용액을 사용하여 조절할 수 있으며, 일례로 포름산, 염산 또는 초산을 사용할 수 있다.
상기 스티렌 공중합체의 제조는 전술한 분산제 이외에 개시제 및 산화방지제를 포함하여 수행할 수 있다.
상기 개시제는 일례로 과산화물이며, 바람직하게는 t-부틸퍼옥시-2-에틸헥사노에이트, 벤조일 퍼옥사이드, t-부틸 퍼옥시이소부티레이트, 1,1-비스(t-부틸퍼옥시)시클로헥산, 2,2-비스(4,4-디-t-부틸퍼옥시시클로헥산)프로판, t-헥실퍼옥시이소프로필 모노카보네이트, t-부틸 퍼옥시라우레이트, t-부틸퍼옥시 이소프로필 모노카보네이트, t-부틸퍼옥시 2-에틸헥실 모노카보네이트, t-헥실 퍼옥시벤조에이트, t-부틸 퍼옥시아세테이트, 2,2-비스(t-부틸퍼옥시)부탄, t-부틸 퍼옥시벤조에이트, 디큐밀 퍼옥사이드, 2,5-디메틸-2,5-비스(t-부틸퍼옥시)헥산, t-부틸큐밀 퍼옥사이드, 디-t-부틸 퍼옥사이드 및 디-t-아민 퍼옥사이드 중에서 선택된 1종 이상일 수 있다. 이 경우 중합 반응을 용이하게 하여 기계적 물성, 내후성, 내열성 및 내스크래치성을 우수하게 유지하는 효과가 있다.
상기 개시제는 일례로 단량체 혼합물 100 중량부에 대하여, 0.01 내지 1 중량부, 바람직하게는 0.01 내지 0.5 중량부, 보다 바람직하게는 0.01 내지 0.2 중량부일 수 있고, 이 범위 내에서 중합 반응을 용이하게 하여 기계적 물성, 내후성, 내열성 및 내스크래치성을 우수하게 유지하는 효과가 있다.
상기 산화방지제는 일례로 유기 포스페이트이며, 바람직하게는 폴리옥시에틸렌 알킬에테르 포스페이트일 수 있다. 이 경우 중합 반응을 용이하게 하여 기계적 물성, 내후성, 내열성 및 내스크래치성을 우수하게 유지하는 효과가 있다.
상기 산화방지제는 일례로 단량체 혼합물 100 중량부에 대하여, 0.001 내지 1 중량부, 바람직하게는 0.001 내지 0.5 중량부일 수 있고, 이 범위 내에서 중합 반응을 용이하게 하여 기계적 물성, 내후성, 내열성 및 내스크래치성을 우수하게 유지하는 효과가 있다.
스티렌 공중합체
전술한 제조방법으로 제조된 스티렌 공중합체는, 이의 총 중량% 중에, (메트)아크릴레이트계 단량체 39 내지 47 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 알킬 치환된 스티렌계 단량체 35 내지 43 중량%를 포함하여 이루어져 최종 고분자 사슬내 균일한 조성 분포를 제공할 수 있다.
이때 각 단량체는 스티렌 공중합체의 단위가 된다.
상기 스티렌 공중합체는 열가소성 수지 조성물의 내열성 및 내스크래치성을 개선시킬 수 있다. 그리고 상기 스티렌 공중합체는 (메트)아크릴레이트계 단량체를 포함함으로써 열가소성 수지 조성물의 내후성도 개선시킬 수 있다.
상기 스티렌 공중합체는, 이의 총 중량% 중에 (메트)아크릴레이트계 단량체 40 내지 46 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 알킬 치환된 스티렌계 단량체 35 내지 43 중량%를 포함하여 이루어져 최종 고분자 사슬내 균일한 조성 분포를 제공할 수 있다.
상기 스티렌 공중합체는 잔류 올리고머 함량이 일례로 0.51 중량% 이하, 구체적인 예로 0.50 내지 0.51 중량%일 수 있다.
본 기재에서 잔류 올리고머 함량은 관련 분야에서 통상적인 방법으로 측정할 수 있으며, 이례로 샘플 1g을 클로포름 10 mL에 용해시킨 다음 메탄올로 고분자를 침전시키고 시료℃의 상등액을 취해 0.2 ㎛ 디스크 시린지 필터를 사용하여 필터링한 다음 겔 크로마토그래피를 이용하여 분석할 수 있다. 스티렌 공중합체에 포함된 잔류 올리고머 함량이 상기 범위 내일 때 순도가 높은 공중합체를 제조할 수 있다.
상기 스티렌 공중합체는 헤이즈가 일례로 0.3% 이하, 구체적인 예로 0.2% 이하일 수 있다.
본 기재에서 헤이즈는 ASTM D-1003을 사용하여 상온에서 측정할 수 있다.
상기 스티렌 공중합체는 Color b값이 일례로 6.0 내지 7.0, 구체적인 예로 6.0 내지 6.6일 수 있다.
본 기재에서 Color b값은 관련 분야에서 공지된 방법으로 측정할 수 있으며, 일례로 Hunter LAB 색 좌표계를 사용하여 측정할 수 있다.
상기 스티렌 공중합체는 굴절률이 일례로 1.55 이하, 구체적인 예로 1.53 내지 1.54인 저 굴절률 공중합체일 수 있다.
본 기재에서 굴절률은 공지된 방법, 즉 일반적으로 ASTM D542에 의거하여 아베 굴절계(Abbe Refractometer)를 사용하여 25 ℃에서 측정할 수 있다.
또한, 스티렌 공중합체의 굴절률은 해당 스티렌 공중합체를 구성하는 각 구성성분(또는 단량체)의 굴절률 및 함량을 이용하여 하기 수학식 1에 따라 계산될 수 있다.
[수학식 1]
Figure PCTKR2021008764-appb-I000001
상기 수학식 1에서, Wti는 스티렌 공중합체에서 각 구성성분(또는 단량체)의 중량분율(%)이고, RIi는 스티렌 공중합체 형성 단량체의 굴절률이다.
상기 스티렌 공중합체는 유리전이온도가 개선됨에 따라 내스크래치성이 우수한 열가소성 수지 조성물을 제공할 수 있다.
상기 스티렌 공중합체는 유리전이온도(Tg)가 일례로 115 ℃ 이상, 구체적인 예로 115 내지 130 ℃일 수 있다.
상기 스티렌 공중합체는 중합 전환율이 95 중량% 이상, 바람직하게는 97 중량% 이상일 수 있다.
본 기재에서 중합 전환율은 반응기내 중합물을 일부 덜어내어 함수율을 측정하여 하기 수학식 2로 실제 샘플 무게를 구한 다음 THF 및 MeOH 혼합으로 녹인 다음 침전시키고 부유물을 건조시켜 측정된 무게를 가지고 하기 수학식 3을 이용하여 산출할 수 있다.
[수학식 2]
실제 샘플 무게 = (채취된 반응물) - (채취된 반응물 Ⅹ 함수율/100)
[수학식 3]
중합 전환율(%) = (건조 후 샘플) / (건조 전 샘플) Ⅹ 100
상기 스티렌 공중합체는 중량평균분자량이 일례로 40,000 내지 200,000 g/mol, 바람직하게는 70,000 내지 150,000 g/mol, 보다 바람직하게는 80,000 내지 130,000 g/mol일 수 있다. 상술한 범위를 만족하면, 후술하는 열가소성 수지 조성물 내에서 그라프트 공중합체와의 물성 균형, 즉 기계적 특성, 가공성 및 외관 품질의 균형을 보다 용이하게 조절할 수 있다.
상기 스티렌 공중합체는 본 발명의 정의에 따르는 한 시판되는 물질을 이용할 수 있다.
상기 스티렌 공중합체는 일례로 메틸메타크릴레이트-스티렌-알파메틸스티렌 공중합체일 수 있다.
본 발명에서 스티렌 공중합체는 전술한 헤이즈, Color 값, 잔류 올리고머 함량 및 굴절률 조건을 모두 만족하여 높은 중합 전환율 하에서도 내열도와 투명도 사이에 균형을 이룰 수 있으며, 이러한 공중합체를 후술하는 열가소성 수지 조성물에 적용시 내스크래치성이 우수하고 표면 플로우 마크(Flow Mark)가 저감된 열가소성 수지 조성물을 제조할 수 있다.
상기 분산제 저감량은 생성된 중합 슬러리의 pH를 1 내지 4로 조절하는 단계를 거친 반응물 일부를 황산, 질산 및 과산화수소로 습식 분해하고 초순수 희석한 상태로 ICP(Inductively Coupled Plasma Spectrometer)를 이용하여 무기물 분석으로 구할 수 있다.
상기 스티렌 공중합체의 분산제 저감량은 일례로 100 ppm 이하, 구체적인 예로 70 ppm 이하일 수 있다.
전술한 스티렌 공중합체를 포함하는 열가소성 수지 조성물을 구성하는 성분들에 대하여 살펴보면 다음과 같다.
열가소성 수지 조성물
스티렌 공중합체
본 기재의 열가소성 수지를 설명함에 있어 상술한 스티렌 공중합체의 내용을 모두 포함한다.
상기 스티렌 공중합체는 일례로 열가소성 수지 조성물 총 중량에 대하여 55 내지 75 중량%, 바람직하게는 55 내지 70 중량%, 보다 바람직하게는 55 내지 65 중량%일 수 있고, 이 범위 내에서 내열성이 유지되면서 가공성 및 내스크래치성이 향상되는 효과가 있다.
그라프트 공중합체
본 기재의 그라프트 공중합체는 아크릴계 고무, 방향족 비닐 단량체 및 비닐시안계 단량체를 그라프트 중합하여 이루어진 것일 수 있고, 일례로 평균입경이 50 내지 500 nm인 아크릴계 고무질 중합체를 포함하는 그라프트 공중합체일 수 있다. 이 경우 충격강도, 인장강도 등의 기계적 물성이 우수하며서도 내열성, 착색성 및 내후성이 우수한 효과가 있다.
상기 그라프트 공중합체에 포함된 아크릴계 고무는 일례로 평균입경이 50 내지 500 nm, 바람직하게는 70 내지 450 nm, 보다 바람직하게는 100 내지 350 nm일 수 있다. 상술한 범위를 만족하면 기계적 물성 및 내열성이 모두 우수하고, 상기 범위 미만일 경우 충격강도, 인장강도 등의 기계적 물성이 저하되는 문제가 발생할 수 있으며, 상기 범위를 초과할 경우 열안정성이 저하되는 문제가 있다.
본 기재에서 평균입경은 동적 광산란(Dynamic Light Scattering)법을 이용하여 측정할 수 있고, 상세하게는 라텍스 상태에서 입도 분포 분석기(Nicomp 380)를 이용하여 가우시안 모드로 측정할 수 있으며, 동적 광산란법에 의해 측정되는 입도 분포에 있어서의 산술 평균입경, 구체적으로는 산란강도(Intensity Distribution) 평균입경을 의미할 수 있다.
구체적인 측정예로, 샘플은 Latex(총 고형분 함량 35-50 중량%) 0.1g을 탈이온수 또는 증류수로 1,000-5,000배 희석하여, 즉 Intensity Setpoint 300kHz을 크게 벗어나지 않도록 적절히 희석하여 glass tube에 넣어 준비하고, 측정방법은 Auto-dilution하여 flow cell로 측정하며, 측정모드는 동적 광산란법(dynamic light scattering)법/Intensity 300KHz/Intensity -weight Gaussian Analysis로 하고, setting 값은 온도 23 ℃, 측정 파장 632.8 nm, channel width 10 μsec으로 하여 측정할 수 있다.
상기 그라프트 공중합체에 포함된 아크릴계 고무는 일례로 그라프트 공중합체 총 중량에 대하여 20 내지 60 중량%, 바람직하게는 30 내지 55 중량%, 보다 바람직하게는 40 내지 50 중량%일 수 있고, 이 범위 내에서 내후성, 충격강도 및 내스크래치성이 우수한 효과가 있다.
상기 아크릴계 고무는 일례로 (메트)아크릴레이트계 단량체를 유화 중합하여 제조할 수 있고, 구체적인 예로 (메트)아크릴레이트계 단량체, 유화제, 개시제, 그라프트제, 가교제, 전해질 및 물을 혼합하여 유화중합하여 제조할 수 있으며, 이 경우 그라프팅 효율이 우수하여 내충격성 등의 물성이 우수한 효과가 있다.
상기 (메트)아크릴레이트계 단량체는 일례로 탄소수가 2 내지 8인 알킬 (메트)아크릴레이트 중에서 선택된 1종 이상일 수 있고, 바람직하게는 알킬기의 탄소수가 4 내지 8인 알킬 아크릴레이트이며, 더욱 바람직하게는 부틸 아크릴레이트 또는 에틸헥실 아크릴레이트일 수 있다.
본 기재에서 (메트)아크릴레이트계 단량체는 아크릴레이트계 단량체 및 메타크릴레이트계 단량체를 모두 포함하는 의미로 사용된다.
상기 유화 중합은 그라프트 유화중합일 수 있고, 일례로 50 내지 85 ℃, 바람직하게는 60 내지 80 ℃에서 수행될 수 있다.
상기 개시제는 라디칼 개시제로서 과황산 나트륨, 과황산 칼륨, 과황산 암모늄, 과인산 칼륨, 과산화수소를 비롯한 무기 과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로퍼옥사이드, p-멘탄하이드로퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸큐밀 퍼옥사이드, 아세틸퍼옥사이드, 이소부틸퍼옥사이드, 옥타노일퍼옥사이드, 디벤조일퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드, t-부틸퍼옥시 이소부틸레이트를 비롯한 유기 과산화물; 및 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스 시클로헥산카보닐니트릴, 아조비스 이소낙산(부틸산)메틸을 비롯한 아조 화합물; 중에서 선택된 1종 이상일 수 있다.
상기 개시제와 함께 개시 반응을 촉진시키기 위하여 활성화제가 더 투입될 수 있다.
상기 활성화제는 일례로, 소듐 포름알데히드 설폭실레이트, 소듐 에틸렌디아민 테트라아세테이트, 페로스 설페이트, 덱스트로스, 소듐 피로포스페이트, 소듐 피로포스페이트 언하이디로스 및 소듐 설페이트 중에서 선택된 1종 이상일 수 있다.
상기 개시제는 상기 그라프트 공중합체를 구성하는 고무와 단량체의 합 100 중량부에 대하여, 일례로 0.001 내지 1 중량부, 바람직하게는 0.01 내지 0.5 중량부, 보다 바람직하게는 0.02 내지 0.1 중량부로 투입될 수 있다. 상기 범위내에서, 유화 중합이 용이하게 수행될 수 있으면서 상기 그라프트 공중합체내 개시제의 잔류량은 수십 ppm 단위로 최소화할 수 있다.
상기 고무의 중량은 라텍스의 경우 고형분 기준이며, 고무 제조시 투입된 단량체의 중량일 수 있다.
상기 유화제는 일례로 알킬벤젠설포네이트의 칼륨 화합물, 알킬벤젠설포네이트의 나트륨 화합물, 알킬카복실레이트의 칼륨 화합물, 알킬카복실레이트의 나트륨 화합물, 올레인산의 칼륨 화합물, 올레인산의 나트륨 화합물, 알킬설페이트의 칼륨 화합물, 알킬설페이트의 나트륨 화합물, 알킬디카복실레이트의 칼륨 화합물, 알킬디카복실레이트의 나트륨 화합물, 알킬에테르설포네이트의 칼륨 화합물, 알킬에테르설포네이트의 나트륨 화합물 및 알릴옥시노닐페녹시프로판-2-일옥시메틸설포네이트의 암모늄 화합물 중에서 선택된 1종 이상일 수 있고, 이중 도데실벤젠설폰산 나트륨이 바람직하다.
상기 유화제는 시판 물질을 이용할 수 있는데, 이 경우 SE10N, BC-10, BC-20, HS10, Hitenol KH10 및 PD-104 중에서 선택된 1종 이상을 이용할 수 있다.
상기 유화제는 상기 그라프트 공중합체를 구성하는 고무와 단량체의 합 100 중량부에 대하여, 일례로 0.15 내지 2.0 중량부, 바람직하게는 0.3 내지 1.5 중량부, 보다 바람직하게는 0.5 내지 1.2 중량부로 투입될 수 있고, 상기 범위내에서 유화 중합이 용이하게 수행될 뿐 아니라 그라프트 공중합체 내 개시제의 잔류량은 수십 ppm 단위로 최소화할 수 있다.
상기 유화 중합시, 분자량 조절제가 더 투입될 수 있다. 상기 분자량 조절제는 일례로 t-도데실 메르캅탄, N-도데실 메르캅탄 및 알파메틸스티렌 다이머 중에서 선택된 1종 이상일 수 있고, 이 중 t-도데실 메르캅탄이 바람직하다.
상기 분자량 조절제는 상기 그라프트 공중합체를 구성하는 단량체의 합 100 중량부에 대하여, 일례로 0.1 내지 1 중량부, 바람직하게는 0.2 내지 0.8 중량부, 더욱 바람직하게는 0.4 내지 0.6 중량부로 투입될 수 있다.
상기 유화 중합은 단량체 등을 반응기에 일괄 투입한 후 개시하거나, 유화 중합 개시 전에 반응기에 단량체 등을 일부 투입하고, 개시 후 나머지는 연속 투입하거나 단량체 등을 일정시간 동안 연속 투입하면서 유화 중합을 수행할 수 있다.
이와 같이 하여 수득된 그라프트 공중합체는 라텍스 형태로서 응집, 탈수 및 건조의 공정으로 드라이 파우더 형태로 회수할 수 있다.
상기 응집에 사용되는 응집제로는 염화칼슘, 황산마그네슘, 황산알루미늄 등의 염이나 황산, 질산, 염산 등의 산성 물질 및 혼합물을 사용할 수 있다.
상기 그라프트 공중합체에 포함되는 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, α-에틸스티렌 및 p-메틸스티렌 중에서 선택된 1종 이상일 수 있고, 이 중 스티렌이 바람직하다.
상기 그라프트 공중합체에 포함되는 방향족 비닐계 단량체는 일례로 그라프트 공중합체 총 중량에 대하여 10 내지 50 중량%, 바람직하게는 20 내지 45 중량%일 수 있고, 이 범위 내에서 인장강도, 충격강도 등의 기계적 물성 및 가공성이 우수한 효과가 있다.
상기 방향족 비닐계 단량체는 일례로, 스티렌, α-메틸 스티렌, ο-메틸 스티렌, ρ-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, 이소부틸 스티렌, t-부틸 스티렌, ο-브로모 스티렌, ρ-클로로 스티렌, m-브로모 스티렌, ο-클로로스티렌, ρ-클로로 스티렌, m-클로로스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 유동성이 적절하여 가공성이 우수하고 인장강도, 충격강도 등의 기계적 물성 또한 우수한 효과가 있다.
상기 그라프트 공중합체에 포함되는 비닐시안계 단량체는 전술한 스티렌 공중합체에 포함되는 방향족 비닐계 단량체에 개시한 종류를 사용할 수 있다.
상기 그라프트 공중합체에 포함되는 비닐시안계 단량체는 일례로 그라프트 공중합체 총 중량에 대하여 5 내지 30 중량%, 바람직하게는 5 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량%일 수 있고, 이 범위 내에서 내충격성, 가공성 등이 우수한 효과가 있다.
본 기재에서 공중합체 총 중량이라 함은 얻어지는 공중합체의 실제 총 중량을 의미하거나 또는 이를 대체하여 투입된 고무 및/또는 단량체의 총 중량을 의미할 수 있다.
상기 그라프트 공중합체는 본 발명의 정의에 따르는 한 시판되는 물질을 이용할 수 있다.
상기 그라프트 공중합체는 열가소성 수지 조성물 총 중량에 대하여 25 내지 45 중량%, 바람직하게는 20 내지 45 중량%, 보다 바람직하게는 30 내지 45 중량%일 수 있고, 이 범위 내에서 충격강도, 인장강도 등의 기계적 물성이 우수하면서도 내열성, 내스크래치성 및 착색성이 우수한 효과가 있고, 상기 범위 미만일 경우 내스크래치성이 열세하게 되고, 상기 범위 초과일 경우 유동성이 저하되는 문제가 발생할 수 있다.
첨가제
상기 열가소성 수지 조성물은 일례로 활제, 산화방지제, UV 안정제, 이형제, 안료, 염료 및 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상의 첨가제를 포함할 수 있고, 이 경우 기계적 물성이 저하되지 않으면서도 내후성, 내열성, 가공성 및 내스크래치성이 우수하고 유지되는 효과가 있다.
상기 활제는 일례로 에틸렌비스 스테아르아미드, 산화 폴리에틸렌 왁스 및 마그네슘 스테아레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 에틸렌 비스 스테아르아미드인 것이 본 기재의 조성물의 젖음성을 향상시킴과 동시에 기계적 물성이 우수한 효과가 있다.
상기 활제는 일례로 스티렌 공중합체 및 그라프트 공중합체 총 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게는 0.1 내지 2 중량부, 보다 바람직하게는 0.05 내지 1.5 중량부일 수 있으며, 이 범위 내에서 본 기재의 조성물의 젖음성을 향상시킴과 동시에 기계적 물성이 우수한 효과가 있다.
상기 산화방지제는 일례로 페놀계 산화방지제, 인계 산화방지제 또는 이들의 혼합물을 포함할 수 있고, 이 경우 압출 공정시 열에 의한 산화를 방지하며 본 발명의 기계적 물성이 우수한 효과가 있다.
상기 산화방지제는 일례로 스티렌 공중합체 및 그라프트 공중합체 총 100 중량부에 대하여 0.001 내지 3 중량부, 바람직하게는 0.001 내지 1 중량부, 보다 바람직하게는 0.005 내지 1 중량부일 수 있으며, 이 범위 내에서 압출 공정시 열에 의한 산화를 방지하며 본 발명의 기계적 물성이 우수한 효과가 있다.
상기 염료는 일례로 스티렌 공중합체 및 그라프트 공중합체 총 100 중량부에 대하여 0.1 내지 1.5 중량부, 바람직하게는 0.5 내지 1 중량부일 수 있으며, 이 범위 내에서 본 기재의 조성물 본연의 물성을 저하시키지 않으면서도 색상 발현이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 일례로 유리전이온도가 116 ℃ 이상, 바람직하게는 116 내지 119 ℃일 수 있다.
본 기재에서 유리전이온도는 시차열량분석기(제조사: Ta Instruments, 제품명: DSC Q20)을 이용하여 측정할 수 있다.
상기 열가소성 수지 조성물은 일례로 연필 경도계(Cometech)을 이용하여 ASTM D3363에 의거하여 0.5 kg의 하중으로 45 ° 각도에서 측정한 연필경도가 H 이상, 바람직하게는 H 내지 4H일 수 있다.
본 기재의 열가소성 수지 조성물 내에서, 상기 스티렌 공중합체에 포함되는 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌일 수 있고, 상기 그라프트 공중합체에 포함되는 방향족 비닐계 단량체는 스티렌일 수 있다.
열가소성 수지 조성물의 제조방법
본 기재의 열가소성 수지 조성물의 제조방법을 설명함에 있어서 상술한 스티렌 공중합체 및 열가소성 수지 조성물의 내용을 모두 포함한다.
상기 열가소성 수지 조성물의 제조방법은 일례로 스티렌 공중합체 55 내지 75 중량%에, 아크릴계 고무질 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체를 포함하여 이루어진 그라프트 공중합체 25 내지 45 중량%를 혼합하고 용융 혼련 및 압출하는 단계를 포함한다.
상기 용융혼련 단계는 일례로 상술한 기타 첨가제를 포함할 수 있다.
상기 용융혼련 및 압출하는 단계는 일례로 일축 압출기, 이축 압출기 및 벤버리 믹서 중에서 선택된 1종 이상을 사용하여 수행될 수 있고, 바람직하게는 이축 압출기를 사용하여 균일하게 혼합한 다음 압출하여 펠렛 형태의 열가소성 수지 조성물을 수득할 수 있으며, 이 경우 기계적 물성, 열적 특성, 내스크래치성, 외관 품질이 우수한 효과가 있다.
또 다른 예로, 상기 열가소성 수지 조성물의 제조방법은 상기 스티렌 공중합체 및 그라프트 공중합체를 혼합한 후, 일축 압출기, 이축 압출기 또는 밴버리 믹서를 사용하여 균일하게 분산시켜 압출한 다음, 압출물을 수조로 통과시키고 이를 절단하여 펠렛을 제조하는 단계를 포함할 수 있다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 일례로 일례로 배럴 온도가 200 내지 270 ℃, 바람직하게는 220 내지 270 ℃인 범위 내에서 수행될 수 있고, 이 경우 단위 시간당 처리량이 적절하면서도 충분한 용융 혼련이 가능할 수 있으며, 수지 성분의 열분해 등의 문제점을 야기하지 않는 효과가 있다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 일례로 스크류 회전수가 200 내지 300 rpm, 바람직하게는 250 내지 300 rpm인 조건 하에 수행될 수 있고, 이 경우 단위 시간당 처리량이 적절하여 공정 효율이 우수하면서도 과도한 절단을 억제하는 효과가 있다.
상기 열가소성 수지 조성물 펠렛은 일례로 사출기를 이용하여 사출 배럴 온도 210 내지 250 ℃ 하에서, 바람직하게는 220 내지 250 ℃ 하에서 사출 성형품으로 제조될 수 있다.
나아가, 본 발명의 열가소성 수지 조성물을 포함하는 성형품에 관하여 설명하기로 한다. 본 발명의 열가소성 수지 조성물을 포함하는 성형품을 설명함에 있어서 상술한 열가소성 수지 조성물의 내용을 모두 포함한다.
성형품
본 기재의 성형품은 일례로 본 기재의 열가소성 수지 조성물로부터 제조된 것일 수 있고, 이 경우 내열성이 유지되면서도 투명도, 가공성 및 내스크래치성, 표면 플로우 마크특성이 향상되는 효과가 있다.
상기 성형품의 용도는 특별히 제한되지 않으나, 바람직하게는 일례로 자동차 부품, 전기전자 부품 또는 건축용 자재로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 기재의 스티렌 공중합체의 제조방법, 스티렌 공중합체, 열가소성 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예 1 내지 8, 비교예 1 내지 6 및 참고예 1 내지 3에 사용된 재료는 다음과 같다.
-(B)그라프트 공중합체: 고무 평균입경이 120nm인 그라프트 공중합체(LG 화학사의 SA130)
-활제: 에틸렌 비스 스테아르아미드(EBA)
-산화방지제: Irganox 1010
실시예 1
<스티렌 공중합체 제조(A)>
반응기에 메틸메타크릴레이트(이하 'MMA'라 함) 50 중량부, α-메틸스티렌 18 중량부(α-메틸스티렌 총 28 중량부 중 18 중량부를 일괄 투입에 사용함, 이하 '일괄투입 AMS'라 함) 및 아크릴로니트릴(이하 'AN'이라 함) 22 중량부에 이온교환수 100 중량부, 1,1-비스(t-부틸퍼옥시)시클로헥산 0.05 중량부, 트리칼슘 포스페이트 1.0 중량부, 폴리옥시에틸렌 알킬에테르 포스페이트 0.005 중량부를 투입하고 500 rpm 하에 100℃로 승온하여 중합을 개시하였다.
중합온도 100 ℃ 도달시 α-메틸스티렌(이하 '연속투입 AMS'라 함) 10 중량부를 연속적으로 5시간 투입하고 9시간동안 중합하여 중합 슬러리를 제조하였다. 전술한 이온교환수는 MMA, 일괄투입 AMS, AN, 및 연속투입 AMS의 총 합량 100 중량부에 대하여 114 중량부로, 1,1-비스(t-부틸퍼옥시)시클로헥산은 0.3 중량부로, 트리칼슘 포스페이트는 1.3 중량부로, 그리고 폴리옥시에틸렌 알킬에테르 포스페이트는 0.005 중량부로 투입하였다.
제조된 중합 슬러리에 포름산을 투입하여 슬러리의 pH를 2.5로 만들어 분산제로 사용된 트리칼슘 포스페이트를 제거한 후 수세, 탈수 및 건조하여 비드 형태의 스티렌 공중합체를 제조하였다.
비드 형태의 스티렌 공중합체 일부를 황산, 질산 및 과산화수소로 습식 분해하고 초순수 희석한 상태로 ICP(Inductively Coupled Plasma Spectrometer)를 이용하여 무기물 분석으로 구한 결과, 트리칼슘 포스페이트의 잔존량이 100 ppm 이하이었다.
제조된 공중합체는 굴절률이 1.531, 중합 전환율 98 %이었다.
제조된 스티렌 공중합체 내 조성 분포를 FT-IR을 사용하여 측정한 결과, MMA 46 중량%, AMS 35.5 중량% 및 AN 18.5 중량%으로 확인되었다.
<열가소성 수지 조성물 제조>
상기에서 제조된 (A) 스티렌 공중합체 60 중량% 및 (B) 그라프트 공중합체 40 중량%에 활제 1 중량부, 산화방지제 0.2 중량부를 첨가하여 240 ℃ 압출기(28Φ)에 투입하여 펠렛 형태의 수지를 제조한 후 사출하여 시편을 제조하였다.
실시예 2 내지 8
상기 (A) 스티렌 공중합체 제조 시 하기 표 1의 성분과 함량, 분할 투입 시기를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 반복하여 시편을 제조하였다.
비교예 1 내지 6, 및 참고예 1 내지 3
상기 (A) 스티렌 공중합체 제조 시 하기 표 2의 성분과 함량, 분할 투입 시기를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 반복하여 시편을 제조하였다. 참고로, 비교예 5와 참고예 1에서는 AMS 대신 스티렌(이하 'SM'라 함)을 투입하였다.
비교예 6
상기 (A) 스티렌 공중합체 제조시 반응 용매인 톨루엔 9 중량부에 AMS 28 중량부, MMA 50 중량부, AN 22 중량부를 혼합한 모노머 용액을 제조하고, 이 중합용액에 1,1-비스(t-부틸퍼옥시)사이클로헥산 0.12 중량부를 첨가한 다음 7 kg/hr의 일정 속도로 반응기 전단의 스태틱 믹서에 투입하고 반응기 내부의 중합물 중 50 %가 스태틱 믹서를 통과하게 하여 투입되는 단량체와 균일 혼합된 상태로 반응기로 투입하여 괴상 중합을 수행하였다.
이때 반응기 온도는 115 ℃ 하에 중합한 다음 16리터의 2,3번 반응기를 거쳐 탈휘발조 235 ℃, 15 torr에서 미반응 단량체와 반응 용매를 회수, 제거하고 펠렛 형태로 수지를 제조한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다.
[시험예]
상기 실시예 1 내지 8, 비교예 1 내지 6, 및 참고예 1 내지 3에서 제조된 시편의 특성을 하기와 같은 방법으로 측정하고, 그 결과를 하기의 표 1 및 표 2에 나타내었다.
* 굴절률: ASTM D542에 의거하여 Abbe 굴절계를 이용하여 25 ℃에서 측정하였다.
* 중합 전환율(중량%): 반응기 내 중합물을 일부 덜어내어 함수율을 측정하여 하기 수학식 2로 실제 샘플 무게를 구한 다음, THF와 MeOH의 혼합으로 녹인 다음 침전시키고 부유물을 건조시켜 측정된 무게를 가지고 하기 수학식 3을 이용하여 산출하였다.
[수학식 2]
실제 샘플 무게 = (채취된 반응물) - (채취된 반응물 × 함수율/100)
*[수학식 3]
중합 전환율(%) = (건조 후 샘플)/(건조 전 샘플) × 100
* 헤이즈: ASTM D-1003을 사용하여 25 ℃에서 측정하였다.
* Color b: Hunter LAB 색 좌표계를 사용하여 측정하였다.
* 잔류 올리고머 함량(중량%): 샘플 1g을 클로로포름 10 mL에 용해시킨 다음 메탄올로 고분자를 침전시키고 시료의 상등액을 취해 0.2 ㎛ 디스크 시린지 필터를 사용하여 필터링한 다음 겔 크로마토그래피(ALS-GC/FID)를 이용하여 분석하였다.
* 연필경도: 연필경도계(Cometech)를 이용하여 ASTM D3363에 의거하여 하중 0.5 kg, 각도 45 °로 연필을 고정시킨 후 시편의 표면을 경도별(2B,B,HB,F,H순)로 긁어 육안으로 긁히는지 여부를 측정하였다.
* 유리전이온도(℃): 시차열량분석기(제조사: Ta Instruments, 제품명: DISCOVERY Q20 DSC)을 이용하여 측정하였다.
* 플로우 마크: 사출물의 상태를 육안으로 5점법에 의해 측정하였다. 5점은 우수, 1점은 불량을 나타낸다.
구분 실시예1 실시예 2 실시예 3 실시예 4 실시예5 실시예6 실시예7 실시예8
A조성(AMS) 28 28 28 28 33 33 33 28
A조성(SM) - - - - - - - -
A조성(MMA) 50 50 50 50 45 45 45 50
A조성(AN) 22 22 22 22 22 22 22 22
A초기조성
(일괄투입AMS)
18 18 18 13 23 23 23 18
A초기조성(MMA) 50 50 50 50 45 45 45 50
A초기조성(AN) 22 22 22 22 22 22 22 22
A분할투입(연속투입AMS) 10 10 10 15 10 10 10 10
A분할투입(AMS시작min) 0 0 0 0 0 0 0 0
A분할투입(AMS종료min) 300 360 420 360 300 360 320 360
반응기(rpm) 500 500 500 500 500 500 500 600
A조성분포(AMS) 35.5 35.5 35.7 35.2 39.6 39.8 39.8 35.5
A조성분포(MMA) 46 45.5 45.5 45.3 41.5 40 39.8 45.3
A조성분포(AN) 18.5 19 19.8 19.5 18.9 20.2 20.4 19.2
A물성(굴절률) 1.531 1.531 1.532 1.531 1.535 1.536 1.536 1.531
A물성(중합 전환율%) 98 98 98 98 98 97 97 98
A물성(헤이즈%) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
A물성(Color b값) 6.4 6.3 6.3 6.3 6.2 6.2 6.2 6.3
A물성(Tg) 119.5 120.0 119.1 119.3 120.8 121.2 120.8 120.9
A올리고머함량(%) 0.51 0.5 0.51 0.5 0.5 0.5 0.5 0.5
열가소성
수지조성물
물성
내스크래치성 H H H H H H H H
Tg(℃) 116.7 117 116 116.3 117.9 118.1 117.7 118
플로우마크 5 5 5 5 5 5 5 5
(상기 표에서 A는 스티렌 공중합체를 지칭한다.)
구분 비교예1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6 참고예1 참고예2 참고예3
A조성(AMS) 28 33 10 50 - 28 - 28 28
A조성(SM) - - - - 28 - 28 - -
A조성(MMA) 50 45 70 30 50 50 50 50 50
A조성(AN) 22 22 20 20 22 22 22 22 22
A초기조성
(일과투입 AMS)
28 33 10 50 SM 28 28 SM 18 18 18
A초기조성(MMA) 50 45 70 30 50 50 50 40 50
A초기조성(AN) 22 22 20 20 22 22 22 22 12
A분할투입(연속투입 AMS) - - - - - - SM 10 MMA 10 AN 10
A분할투입(AMS시작min) - - - - - - - MMA 0 AN 0
A분할투입(AMS종료min) - - - - - - SM 360 MMA 360 AN 360
반응기(rpm) 500 500 500 500 500 - 500 500 500
A조성분포(AMS) 36.3 39.3 13.3 57.1 SM 36.5 36.5 SM 36.5 40.1 38.1
A조성분포(MMA) 46.2 41.4 70.7 24.2 46.2 44.3 45.5 43.8 46.5
A조성분포(AN) 17.5 19 16 18.7 17.3 19.2 18 16.1 15.4
A물성(굴절률) 1.532 1.531 1.508 1.553 1.531 1.532 1.532 1.535 1.533
A물성(중합 전환율%) 98 97 99 92 99 83 99 97 96
A물성(헤이즈%) 0.5 0.5 0.8 0.3 0.5 0.2 0.4 0.4 0.5
A물성(Color b값) 8.5 8.5 8.3 9 8.5 6.4 6.4 9.7 10.1
A물성(Tg) 117.1 119.5 120.1 125.0 108.0 119.1 109.0 117.5 116.0
A올리고머함량(%) 0.52 0.53 0.52 0.52 0.52 0.89 0.52 0.58 0.59
열가소성
수지조성물
물성
내스크래치성 F F F HB HB H HB HB HB
Tg(℃) 114.3 116.6 117 121.9 105.1 116.3 106.3 114.2 112.1
플로우마크 4 4 4 2 4 5 4 4 4
상기 표 1 및 2에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 8은 본 발명의 범위를 벗어난 비교예 1 내지 6 대비, 내열성이 우수하면서도 연필경도(내스크래치성) 및 표면 외관이 뛰어난 효과를 확인할 수 있었다.또한, 본 발명에 따라 제조된 실시예 1 내지 8의 (A) 스티렌 공중합체는 굴절율과 잔류 올리고머 함량이 저감되고 중합 전환율과 투명도가 개선되었으며, 이에 따라 수지 조성물의 표면 외관 및 유리전이온도가 개선되는 효과가 있었다.
반면, 모노머의 분할 투입 또는 현탁 중합을 수행하지 않은 비교예 1 내지 6에 따르면 잔류 올리고머 함량이 모두 0.52 중량% 이상이었다.
또한, (A) 스티렌 공중합체에서 MMA/AMS의 중량비가 1:1 내지 1:5를 만족하지 않는 비교예 3 및 4는 공통적으로 연필경도(내스크래치성)와 표면 외관이 불량하였다.
또한, 알킬 치환된 스티렌 대신 미치환 스티렌을 사용한 비교예 5에서는 내열성 및 내스크래치성이 불량한 것으로 확인되었다.
또한, 괴상 중합을 수행한 비교예 6은 스티렌 공중합체의 잔류 올리고머 함량이 증가되고 중합 전환율이 불량해지는 것을 확인할 수 있었다.
나아가, 미치환 스티렌을 분할 투입한 참고예 1에 따르면 내열도 및 내스크래치성이 낮은 결과를 확인할 수 있다.
또한, (메트)아크릴레이트계 단량체를 분할 투입한 참고예 2, 및 비닐시안계 단량체를 분할 투입한 참고예 3에 따르면 전환율 및 내스크래치성이 낮은 결과를 확인할 수 있다.
결론적으로, 그라프트 공중합체에 고분자의 조성 분포가 균일하게 중합되어 특정 굴절율과 중합 전환율 및 잔류 올리고머 함량을 갖는 스티렌 공중합체를 포함하는 경우 내열성이 우수하면서도 내스크래치성과 표면 외관이 뛰어난 성형품에 적합한 열가소성 수지 조성물을 제공함을 확인할 수 있었다.

Claims (14)

  1. 반응기에 (메트)아크릴레이트계 단량체 35 내지 65 중량%, 비닐시안계 단량체 10 내지 30 중량%, 및 방향족 비닐계 단량체 20 내지 40 중량%를 포함하는 단량체 혼합물 100 중량부, 수계 용매 100 내지 200 중량부, 및 분산제 0.1 내지 10 중량부를 포함하는 반응 용액을 투입하여 중합하되,
    상기 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌이고,
    상기 방향족 비닐계 단량체는 일부가 상기 중합 개시 전에 일괄 투입되고, 나머지가 상기 반응기의 온도가 90 내지 110 ℃에 도달한 시점부터 연속 투입되어 중합되는 것을 특징으로 하는 스티렌 공중합체의 제조방법.
  2. 제1항에 있어서,
    상기 일괄 투입되는 방향족 비닐계 단량체와 연속 투입되는 방향족 비닐계 단량체는 중량비가 1:0.4 내지 1:2인 것을 특징으로 하는 스티렌 공중합체의 제조방법.
  3. 제1항에 있어서,
    상기 방향족 비닐계 단량체와 (메트)아크릴레이트계 단량체는 중량비가 1:1 내지 1:8인 것을 특징으로 하는 스티렌 공중합체의 제조방법.
  4. 제1항에 있어서,
    상기 방향족 비닐계 단량체는 하나 이상의 수소가 탄소수 1 내지 3의 알킬기로 치환되는 스티렌인 것을 특징으로 하는 스티렌 공중합체의 제조방법.
  5. 제1항에 있어서,
    상기 반응기 내 중합은 80 내지 130 ℃에서 400 내지 600 rpm 하에 8 내지 10 시간 동안 수행되는 것을 특징으로 하는 스티렌 공중합체의 제조방법.
  6. 제1항에 있어서,
    상기 반응기 내 생성된 중합 슬러리의 pH를 1 내지 4로 조절하는 단계를 포함하는 스티렌 공중합체의 제조방법.
  7. 제1항에 있어서,
    상기 분산제는 포스페이트 금속염인 것을 특징으로 하는 스티렌 공중합체.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 의해 제조되고,
    유리전이온도(Tg)가 115 ℃ 이상이며, 올리고머 함량이 0.51 중량% 이하이고 굴절률이 1.55 이하인 스티렌 공중합체.
  9. 제8항에 있어서,
    상기 스티렌 공중합체는, 스티렌 공중합체 총 100 중량% 중에, (메트)아크릴레이트계 단량체 39 내지 47 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 알킬 치환된 스티렌계 단량체 35 내지 43 중량%를 포함하여 이루어지는 것을 특징으로 하는 스티렌 공중합체.
  10. 제8항에 있어서,
    상기 스티렌 공중합체는 헤이즈가 0.3 % 이하이고, Color b값이 6.0 내지 7.0인 것을 특징으로 하는 스티렌 공중합체.
  11. (메트)아크릴레이트계 단량체, 비닐시안계 단량체, 방향족 비닐계 단량체를 포함하여 이루어진 스티렌 공중합체; 및
    아크릴계 고무질 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체를 포함하여 이루어진 그라프트 공중합체를 포함하고,
    상기 스티렌 공중합체는, 스티렌 공중합체 총 100 중량% 중에, (메트)아크릴레이트계 단량체 39 내지 47 중량%, 비닐시안계 단량체 18 내지 21 중량%, 및 하나 이상의 수소가 알킬기로 치환된 스티렌 35 내지 48 중량%를 포함하여 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제11항에 있어서,
    상기 스티렌 공중합체에 포함되는 방향족 비닐계 단량체는 하나 이상의 수소가 알킬기로 치환된 스티렌이고,
    상기 그라프트 공중합체에 포함되는 방향족 비닐계 단량체는 스티렌인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 스티렌 공중합체 55 내지 75 중량%에, 아크릴계 고무질 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체를 포함하여 이루어진 그라프트 공중합체 25 내지 45 중량%를 혼합하고 용융 혼련 및 압출하는 단계를 포함하며, 상기 스티렌 공중합체는 제1항 내지 제7항 중 어느 한 항의 방법에 의해 제조된 것을 특징으로 하는 열가소성 수지 조성물의 제조방법.
  14. 제11항의 열가소성 수지 조성물로 제조되는 성형품.
PCT/KR2021/008764 2020-11-10 2021-07-09 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법 WO2022102905A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/788,891 US20230057580A1 (en) 2020-11-10 2021-07-09 Styrene copolymer, thermoplastic resin composition, and method of preparing styrene copolymer and thermoplastic resin composition
EP21892075.9A EP4063454A4 (en) 2020-11-10 2021-07-09 STYRENE COPOLYMER, THERMOPLASTIC RESIN COMPOSITION AND PROCESS FOR THEIR PREPARATION
CN202180006914.7A CN114761486A (zh) 2020-11-10 2021-07-09 苯乙烯共聚物、热塑性树脂组合物和制备苯乙烯共聚物和热塑性树脂组合物的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200149422 2020-11-10
KR10-2020-0149422 2020-11-10
KR10-2021-0088233 2021-07-06
KR1020210088233A KR20220063706A (ko) 2020-11-10 2021-07-06 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2022102905A1 true WO2022102905A1 (ko) 2022-05-19

Family

ID=81601422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008764 WO2022102905A1 (ko) 2020-11-10 2021-07-09 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법

Country Status (4)

Country Link
US (1) US20230057580A1 (ko)
EP (1) EP4063454A4 (ko)
CN (1) CN114761486A (ko)
WO (1) WO2022102905A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448580A (en) 1981-09-29 1984-05-15 Japan Synthetic Rubber Co., Ltd. Process for producing α-methyl styrene-methyl methacrylate-acrylonitrile thermoplastic resin
KR20000003096A (ko) * 1998-06-25 2000-01-15 황규억 발포성 스티렌계 삼원 공중합체 수지비드의 제조방법
KR20100059263A (ko) * 2008-11-26 2010-06-04 금호석유화학 주식회사 가공조제의 제조방법 및 열가소성 수지의 조성물
JP2012184301A (ja) * 2011-03-04 2012-09-27 Nippon A&L Inc 耐光性に優れた発泡成形用熱可塑性樹脂組成物及びその発泡成形品
KR20140092735A (ko) * 2012-12-28 2014-07-24 제일모직주식회사 열가소성 수지 조성물 및 이를 포함한 성형품
KR20190134452A (ko) * 2018-05-25 2019-12-04 주식회사 엘지화학 공중합체의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306043A (en) * 1979-04-28 1981-12-15 Japan Synthetic Rubber Co., Ltd. Process for producing thermoplastic resins
JP2941485B2 (ja) * 1991-05-10 1999-08-25 呉羽化学工業株式会社 熱可塑性樹脂組成物
WO2015047026A1 (ko) * 2013-09-30 2015-04-02 (주) 엘지화학 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
KR102311951B1 (ko) * 2018-12-21 2021-10-14 주식회사 엘지화학 열가소성 수지 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448580A (en) 1981-09-29 1984-05-15 Japan Synthetic Rubber Co., Ltd. Process for producing α-methyl styrene-methyl methacrylate-acrylonitrile thermoplastic resin
KR20000003096A (ko) * 1998-06-25 2000-01-15 황규억 발포성 스티렌계 삼원 공중합체 수지비드의 제조방법
KR20100059263A (ko) * 2008-11-26 2010-06-04 금호석유화학 주식회사 가공조제의 제조방법 및 열가소성 수지의 조성물
JP2012184301A (ja) * 2011-03-04 2012-09-27 Nippon A&L Inc 耐光性に優れた発泡成形用熱可塑性樹脂組成物及びその発泡成形品
KR20140092735A (ko) * 2012-12-28 2014-07-24 제일모직주식회사 열가소성 수지 조성물 및 이를 포함한 성형품
KR20190134452A (ko) * 2018-05-25 2019-12-04 주식회사 엘지화학 공중합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063454A4

Also Published As

Publication number Publication date
EP4063454A1 (en) 2022-09-28
US20230057580A1 (en) 2023-02-23
EP4063454A4 (en) 2022-12-28
CN114761486A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022010053A1 (ko) 열가소성 수지 및 이의 제조방법
WO2020091370A1 (ko) 열가소성 수지 조성물
WO2020101332A1 (ko) 열가소성 수지 조성물
WO2022097867A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2017142172A1 (ko) 고무질 중합체와 이의 제조방법, 그라프트 공중합체 및 열가소성 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021118063A1 (ko) 알킬 아크릴레이트 화합물-비닐시안 화합물-방향족 비닐 화합물 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022102905A1 (ko) 스티렌 공중합체, 열가소성 수지 조성물 및 이들의 제조방법
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022035071A1 (ko) 투명 열가소성 수지 및 이의 제조방법
WO2020050544A1 (ko) 그라프트 공중합체의 제조방법 및 그라프트 공중합체
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2021066345A1 (ko) 아크릴계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022085893A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2021015485A1 (ko) 아크릴계 공중합체 응집제 및 이를 이용한 그라프트 공중합체의 제조방법
WO2022085913A1 (ko) 비닐시안 화합물-공액디엔 고무-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이를 포함하는 열가소성 수지 조성물의 제조방법
WO2020101326A1 (ko) 열가소성 수지 조성물
WO2019221399A1 (ko) 공액 디엔계 중합체의 제조방법 및 이를 포함하는 그라프트 공중합체의 제조방법
WO2018088677A1 (ko) 열가소성 수지 및 열가소성 수지 조성물
WO2023008808A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021892075

Country of ref document: EP

Effective date: 20220622

NENP Non-entry into the national phase

Ref country code: DE