WO2022102326A1 - 金属不純物含有量の分析方法 - Google Patents

金属不純物含有量の分析方法 Download PDF

Info

Publication number
WO2022102326A1
WO2022102326A1 PCT/JP2021/037874 JP2021037874W WO2022102326A1 WO 2022102326 A1 WO2022102326 A1 WO 2022102326A1 JP 2021037874 W JP2021037874 W JP 2021037874W WO 2022102326 A1 WO2022102326 A1 WO 2022102326A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchanger
monolith
liquid
metal impurities
ion
Prior art date
Application number
PCT/JP2021/037874
Other languages
English (en)
French (fr)
Inventor
恭平 蔦野
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to KR1020237019214A priority Critical patent/KR20230104263A/ko
Priority to US18/036,525 priority patent/US20230406729A1/en
Priority to CN202180075960.2A priority patent/CN116438005A/zh
Priority to JP2022561345A priority patent/JP7503646B2/ja
Publication of WO2022102326A1 publication Critical patent/WO2022102326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1853Hardness of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is an analysis method for analyzing the content of metal impurities contained in a trace amount in a liquid such as ultrapure water, process water in an ultrapure water production process, a chemical used for cleaning semiconductors, or an organic solvent, and its use. Regarding the measurement kit to be used.
  • Ultrapure water with an extremely low content of ionic impurities is used in semiconductor manufacturing processes and pharmaceutical manufacturing processes. Therefore, in the production of ultrapure water used in the semiconductor manufacturing process and the pharmaceutical manufacturing process, a small amount of ionic impurities contained in the final ultrapure water or the process water of the ultrapure water manufacturing process It is important to know the content.
  • Patent Document 1 a predetermined amount of fluid is passed through a porous membrane having a functional group having an ion exchange function, impurities in the fluid are trapped in the porous membrane, and the trapped impurities are eluted from the porous membrane.
  • An analysis method is disclosed in which the impurity concentration in the eluent is measured and the impurity concentration in the fluid is calculated from the measured concentration.
  • metal impurities in ultrapure water may exist in aggregated colloids and dispersed fine particles in addition to ions.
  • the surface charge density of colloids and fine particles is smaller than that of ions, and the electrostatic interaction with ion exchange resins is small.
  • Patent Document 2 discloses a method of analyzing a trace amount of metal impurities in ultrapure water by using a monolithic organic porous ion exchanger instead of the porous membrane.
  • the monolith-like organic porous ion exchanger has a mesh-like flow path, and has an action of physically adsorbing or capturing fine particles in addition to electrostatic interaction. Further, by using the monolithic organic porous anion exchanger, it is possible to adsorb or capture the metal impurities in the complex anion state. Further, by using a monolithic organic porous cation exchanger, metal ions in a cation state can be adsorbed or captured. That is, metal impurities in ultrapure water can be effectively adsorbed or captured.
  • Patent Document 1 The analysis method described in Patent Document 1 enables analysis at the sub ⁇ g / L level (sub ppb level). Furthermore, in recent years, it has become necessary to analyze impurities having a lower concentration, such as impurities in ultrapure water.
  • Patent Document 2 describes an impurity trapping step in which the water to be analyzed is passed through a monolithic organic porous anion exchanger to capture metal impurities in the water to be analyzed by the monolithic organic porous anion exchanger. , The eluent was passed through the monolithic organic porous anion exchanger in which the metal impurities in the water to be analyzed were trapped, and the discharged liquid was recovered to elute from the monolithic organic porous anion exchanger.
  • It has an elution step of obtaining a recovered eluent containing metal impurities in the water to be analyzed and a measuring step of measuring the content of each metal impurity in the recovered eluent, and has an ng / L (ppt) level. It is possible to analyze metal impurities. Further, there is also disclosed an embodiment in which the monolithic organic porous anion exchanger is changed to a monolithic organic porous cation exchanger, or the anion exchanger and the cation exchanger are used in combination.
  • Alkali metals and alkaline earth metals are less likely to be adsorbed by anion exchangers, while boron and the like are less likely to be adsorbed by cation exchangers. Even if there is a difference in adsorption performance depending on the type of monolith, by using an anion exchanger and a cation exchanger in combination, almost complete adsorption of more than 99% is possible.
  • the concentration of the metal impurities to be analyzed the more the influence of the metal impurities contained in other than the analysis target becomes a problem. Therefore, it is necessary to increase the amount of liquid passing through to increase the concentration ratio in ion exchange or the like. However, if the concentration is high, the ions cannot be sufficiently adsorbed and captured by the ion exchanger and may leak out, making it impossible to accurately analyze the content of metal impurities in the liquid.
  • an object of the present invention is to provide a method for more accurately analyzing the content of metal impurities in a liquid containing low-concentration metal impurities.
  • a method for analyzing the content of metal impurities in a liquid A liquid passing step of passing the liquid through an ion exchanger, and An elution step in which metal impurities trapped in the ion exchanger are eluted with an eluent and recovered. It has a measuring step of analyzing an eluent containing the eluted metal impurities and measuring the content of the metal impurities in the eluent.
  • the ion exchanger is used by connecting two or more units of the same ion type ion exchanger in series.
  • the volume of the ion exchanger per unit is 0.5 to 5.0 ml, and the differential pressure coefficient per unit is 0.01 MPa / LV / m or less in the liquid.
  • a method for analyzing metal impurities is provided.
  • the analysis method of the present invention is a method for analyzing the content of metal impurities in a liquid.
  • the ion exchanger is used by connecting two or more units of the same ion type ion exchanger in series, and the volume of the ion exchanger per unit is 0.5 to 5.0 ml. ..
  • the elution step and the measurement step are performed for each unit of the ion exchanger in order from the upper stage, and the content of metal impurities in the liquid measured in the measurement step is less than the lower limit of quantification.
  • the total amount of the metal impurities in the liquid until it becomes less than the lower limit of quantification is defined as the content of the metal impurities in the liquid.
  • the ion exchanger used is not particularly limited, and is inorganic or organic as long as it has a functional group having an ion exchange ability such as a film-like, granular (resin), or porous material. Any of the systems can be used.
  • a porous ion exchanger described later, particularly a monolithic organic porous ion exchanger is preferable.
  • a monolithic organic porous ion exchanger (simply referred to as a monolith ion exchanger) is used will be described.
  • liquid to be analyzed examples include ultrapure water, process water in the ultrapure water production process, chemicals used for cleaning semiconductors, organic solvents, and other liquids in which the presence of trace amounts of metal impurities is a problem.
  • ultrapure water will be described as an example as a liquid.
  • the ultrapure water to be analyzed is passed through a porous ion exchanger (monolith ion exchanger), and metal impurities in the ultrapure water are captured by the monolith ion exchanger.
  • the ultrapure water to be analyzed in the present invention is ultrapure water obtained by an ultrapure water manufacturing process for producing ultrapure water used in use points such as a semiconductor manufacturing process and a pharmaceutical manufacturing process, or ultrapure water.
  • the process water in the middle of the water production process can be mentioned.
  • metal impurities of less than 1 ng / L contained in this ultrapure water are analyzed.
  • “less than 1 ng / L” is the concentration of metal impurities based on one metal element.
  • the process water in the middle of the ultrapure water production process is, for example, water transferred from the primary pure water production system to the secondary pure water production system in the ultrapure water production process, secondary pure water production.
  • Water transferred from the system's ultraviolet oxidizing device to a non-regenerative cartridge polisher filled with ion exchange resin, water transferred from a non-regenerative cartridge polisher filled with ion exchange resin to a degassing film device, degassing Refers to all water generated during the ultrapure water production process, such as water transferred from the vapor membrane device to the ultrapure water membrane device and water transferred from the ultrapure water membrane device to the point of use (the same applies below).
  • the metal impurities to be analyzed include Li, Be, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Sr, and so on. It is one or more elements of any one of Zr, Mo, Pd, Ag, Cd, Sn, Ba, W, Au and Pb. In particular, alkali metals and alkaline earth metal elements are preferable.
  • the ultrapure water used in the semiconductor manufacturing process may contain fine particles. These fine particles are, for example, fine particles originally contained in the raw material water, metal oxide fine particles generated from a piping material or a joint in a liquid feeding line of ultrapure water, and the like.
  • the size of the metal fine particles is not particularly limited, but is, for example, 1 to 100 nm.
  • the metal impurities exist in the state of ionic impurities, fine particles such as colloidal or monodisperse, and complexes.
  • each ionic impurity element exists in a cation state, an oxo anion state, or a mixed state of a cation state and an oxo anion state.
  • the metal impurity fine particles exist in a colloidal or monodisperse state.
  • the monolith ion exchanger As the monolith ion exchanger, a monolith ion exchanger formed into a predetermined size and shape is enclosed in a predetermined container, and a plurality of monolith ion exchangers are connected in series for use.
  • the shape of the monolith ion exchanger is preferably a columnar structure, and a columnar or prismatic shape (for example, 3 to 8 prisms) is preferable.
  • the ion exchanger per unit has a volume of 0.5 to 5.0 ml and a differential pressure coefficient of 0.01 MPa / LV / m or less.
  • the "1 unit" in the present invention is an ion exchanger enclosed in one container.
  • Such an ion exchanger is housed in a container having an inlet and an outlet for each unit, and "connected in series" means that the outlet and the downstream ion exchanger of the container containing the upstream ion exchanger are contained. It means connecting to the inflow port of the container containing the container.
  • the term “plurality” means connecting two or more containers, but the pressure loss tends to increase as the number of connections increases, and it is not necessary to connect an excessively large number of containers.
  • the upper limit of the number of connections cannot be unconditionally limited by the characteristics and size of the ion exchanger to be used, which will be described later, but the content of metal impurities analyzed based on the ion exchanger in the final stage is used.
  • the minimum number that is less than the lower limit of quantification It is preferable to connect the minimum number that is less than the lower limit of quantification.
  • an elution step (described later) and a measurement step (described later) are performed in order from the upper side (upstream side in the liquid flow direction) for each unit, and measurement is performed in the measurement step.
  • the content of metal impurities in the liquid is less than the lower limit of quantification
  • the total amount of metal impurities in the liquid until it becomes less than the lower limit of quantification is taken as the content of metal impurities in the liquid. can do.
  • an additional ion exchanger may be added to the downstream side of the lowermost ion exchanger, or It is desirable to reduce the concentration of the ion exchanger (the total flow rate of the ion exchanger).
  • the ion exchanger stored in one container may be referred to as a "flow cell".
  • the monolith ion exchanger according to the present invention is a porous body in which an ion exchange group (cation exchange group or anion exchange group) is introduced into a monolithic organic porous body.
  • the monolith-like organic porous body according to the monolith ion exchanger is a porous body in which the skeleton is formed of an organic polymer and has a large number of communication holes serving as liquid flow paths between the skeletons.
  • the monolith ion exchanger is a porous body in which ion exchange groups are uniformly distributed in the skeleton of the monolithic organic porous body.
  • the "monolithic organic porous body” is also simply referred to as “monolith”
  • the "monolithic organic porous ion exchanger” in which an ion exchange group is introduced into the monolith is simply “monolith ion exchanger”. That is.
  • a substance having an anion-exchange group introduced therein is referred to as an "anion-type monolith ion exchanger”
  • a substance having a cation-exchange group introduced into the monolith is referred to as a "cation-type monolith ion exchanger”.
  • the monolith ion exchanger according to the present invention is obtained by introducing an ion exchange group into a monolith, and its structure is an organic porous body composed of a continuous skeleton phase and a continuous pore phase, and has a continuous skeleton.
  • the thickness is preferably 1 to 100 ⁇ m, the average diameter of continuous pores is 1 to 1000 ⁇ m, and the total pore volume is preferably 0.5 to 50 mL / g.
  • the thickness of the continuous skeleton of the monolith ion exchanger in a dry state is preferably 1 to 100 ⁇ m.
  • the thickness of the continuous skeleton of the monolith ion exchanger is 1 ⁇ m or more, the ion exchange capacity per volume does not decrease, the decrease in mechanical strength is suppressed, and the monolith ion is particularly suppressed when the liquid is passed at a high flow velocity. Deformation of the exchange can be suppressed.
  • the thickness of the continuous skeleton of the monolith ion exchanger is 100 ⁇ m or less, the skeleton does not become too thick.
  • the thickness of the continuous skeleton is determined by SEM observation.
  • the average diameter of the continuous pores of the monolith ion exchanger in a dry state is preferably 1 to 1000 ⁇ m.
  • the average diameter of the continuous pores of the monolith ion exchanger is 1 ⁇ m or more, it is possible to suppress an increase in pressure loss during water flow.
  • the average diameter of the continuous pores of the monolith ion exchanger is 1000 ⁇ m or less, the contact between the liquid to be treated and the monolith ion exchanger is sufficient, and a predetermined capturing power can be maintained.
  • the average diameter of the continuous pores of the monolith ion exchanger in the dry state is measured by the mercury intrusion method and refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method.
  • the total pore volume of the monolith ion exchanger in a dry state is preferably 0.5 to 50 mL / g.
  • the total pore volume of the monolith ion exchanger is 0.5 mL / g or more, the contact efficiency of the liquid to be treated can be sufficiently secured, and further, the amount of permeated liquid per unit cross-sectional area is not a problem, and the treatment amount is reduced. Can be suppressed.
  • the total pore volume of the monolith ion exchanger is 50 mL / g or less, a desired ion exchange capacity per volume can be secured and a predetermined capturing power can be maintained.
  • the decrease in mechanical strength is suppressed, and it is possible to prevent the monolith ion exchanger from being significantly deformed, especially when the liquid is passed at high speed, and the pressure loss at the time of passing the liquid is suddenly increased.
  • the total pore volume is measured by the mercury intrusion method.
  • Examples of the structure of such a monolith ion exchanger include the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512, and JP-A-2009-67982. Examples thereof include a co-continuous structure, a particle-aggregated structure disclosed in JP-A-2009-7550, and a particle-composite-type structure disclosed in JP-A-2009-108294.
  • the ion exchange capacity per volume of the monolith ion exchanger is preferably 0.2 to 1.0 mg equivalent / mL (water-wet state).
  • the ion exchange capacity of the monolith ion exchanger is 0.2 mg equivalent / mL or more, the amount of treated water until it breaks can be sufficiently secured as the amount of treated water per treatment of the present invention.
  • the ion exchange capacity is 1.0 mg equivalent / mL or less, the pressure loss during water flow is within the range where there is no problem.
  • the ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface of the skeleton cannot be unconditionally determined depending on the type of the porous body or the ion exchange group, but is at most 500 ⁇ g equivalent / g.
  • the eluent is an aqueous solution containing an acid.
  • the acid contained in the eluent is not particularly limited as long as it does not affect the ion exchanger, and examples thereof include inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid and phosphoric acid, and organic acids such as methanesulfonic acid.
  • inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid and phosphoric acid
  • organic acids such as methanesulfonic acid.
  • nitric acid, sulfuric acid, and hydrochloric acid are preferable because ionic impurity elements from the monolith ion exchanger can be easily eluted and a high-purity reagent is required.
  • the acid concentration in the eluent is not particularly limited, but the analysis method of the present invention can lower the acid concentration in the eluent, so that the lower limit of quantification can be lowered. Therefore, the acid concentration in the eluent is preferably 0.1 to 2.0 N, more preferably 0.5 to 2.0 N in that the lower limit of quantification is lowered. When the acid concentration is 0.1 N or more, it is possible to suppress an increase in the amount of liquid to be recovered. On the other hand, when the acid concentration is 2.0 N or less, it is possible to suppress an increase in the lower limit of quantification of the analyzer.
  • the eluent is preferably one having a content of each metal impurity of 100 ppt or less, more preferably nitric acid or hydrochloric acid having a content of each metal impurity of 100 ppt or less, and nitric acid or hydrochloric acid having a content of each metal impurity of 10 ppt or less. Hydrochloric acid is particularly preferred.
  • the amount of eluent to be passed through the monolith ion exchanger is appropriately selected depending on the type and thickness of the monolith ion exchanger, the water flow rate, and the like. Since the metal element is easily eluted from the monolith ion exchanger in the analysis method of the present invention, the metal impurity analysis method of the present invention can reduce the amount of eluent flowing through the eluent. Then, the decrease in the amount of the eluent flowing through the eluent leads to a reduction in the measurement time.
  • the liquid passing conditions when the eluent is passed through the monolith ion exchanger are not particularly limited.
  • the liquid passing speed expressed in space velocity (SV) is preferably 20000 h -1 or less, more preferably 10 to 4000 h -1 , and particularly preferably 300 to 1000 h -1 .
  • the liquid passing speed represented by the linear velocity (LV) is preferably 1000 m / h or less, and particularly preferably 500 m / h or less.
  • the liquid passing time is appropriately selected depending on the total liquid passing amount of the eluent and the liquid passing speed.
  • the metal impurities to be analyzed trapped in the monolith ion exchanger are eluted by the eluent and transferred into the eluent. Then, by performing the elution step, a recovered eluent containing the metal impurities to be analyzed is obtained.
  • the method for measuring the content of each metal impurity in the recovered eluent is not particularly limited, and a method using a plasma mass spectrometer (ICP-MS), a plasma emission spectrophotometer (ICP), an atomic absorption spectrophotometer, etc. Examples include an ion chromatograph analyzer. The measurement conditions are appropriately selected.
  • the type and content of each metal impurity in the recovered eluent obtained by performing the measurement step are determined, and the recovered amount of the recovered eluent and the monolith in the ultrapure water passing step are performed.
  • the content of each metal impurity in the ultrapure water to be analyzed is obtained from the total amount of ultrapure water passed through the ion exchanger.
  • FIG. 1 An example of an embodiment of the analysis method of the present invention will be described.
  • the ultrapure water obtained by the ultrapure water production apparatus (not shown) is supplied to the use point
  • the ultrapure water is added to the use point.
  • a water discharge pipe 12 to be analyzed is connected in the middle of the ultrapure water transfer pipe 11 for transfer, and the other end side of the water discharge pipe 12 to be analyzed is connected in series with flow cells 13A and 13B provided with a monolith ion exchanger. It is connected to the inlet of the measurement kit 15 in which the integrated flow meter 14 is installed downstream.
  • the monolith ion exchangers arranged in the two flow cells have the same ion form, and when the cationic monolith ion exchanger is installed in the flow cell 13A, the flow cell 13B also exchanges cationic monolith ions. Set up the body.
  • the measurement kit 15 is removed from the water drain pipe 12 to be analyzed. At this time, the inside of the measurement kit 15 is removed by a method that does not cause impurities from being mixed from the outside, and the inside is sealed.
  • the flow cells 13A and 13B removed from the measurement kit 15 are attached to an elution device provided at a place different from the place where the ultrapure water manufacturing process is performed.
  • An elution step is performed in which nitric acid or hydrochloric acid is passed through the eluent supply pipes of the eluent device to the flow cells 13A and 13B, respectively, and metal impurities are eluted with the eluent and recovered.
  • a measurement step of measuring the content of metal impurities in the recovered eluent is performed.
  • the eluent is applied to the water drainage pipe 12 to be analyzed or the first and second branch pipes (16, 16') described later, or to the measurement kit 15 itself.
  • An eluent introduction tube (not shown) for passing water may be arranged. Thereby, the eluent can be passed through the flow cell with the measurement kit 15 (flow cell) attached to the ultrapure water production apparatus to perform the elution step, and the content of metal impurities in the recovered eluent can be measured. ..
  • the ultrapure water is added to the use point.
  • a water discharge pipe 12 to be analyzed is connected in the middle of the ultrapure water transfer pipe 11 for transfer, and the other end side of the water discharge pipe 12 to be analyzed is branched into a first branch pipe 16 and a second branch pipe 16'.
  • the first branch pipe 16 is connected to the inlet of the measurement kit 15 in which a monolith ion exchanger, for example, flow cells 13A and 13B having a cationic ion exchanger are connected in series and an integrated flow meter 14 is installed downstream thereof. ..
  • the total amount of ultrapure water passed through the measuring kits 15 and 15' is measured by the integrated flow meters 14 and 14'.
  • the elution step and the measurement step are carried out in the same manner.
  • monolithic ion exchangers of the same ionic form are connected in series, and different monolithic ion exchangers are connected in parallel.
  • FIG. 3 shows a configuration example of a measurement kit when a cationic monolith ion exchanger (CEM) and an anionic monolith ion exchanger (AEM) are connected in series and used.
  • CEM cationic monolith ion exchanger
  • AEM anionic monolith ion exchanger
  • CEM and AEM may be enclosed in one flow cell for use.
  • the number is two instead of four as shown in the figure.
  • the order of the cation type and the anion type is not particularly limited, and may be an order other than that shown in FIG.
  • two (2 units) monolith ion exchangers are connected in series for each ion form, but depending on the metal impurities contained in the ultrapure water, the cationic monolith ion exchanger may be used. It may be a combination of 2 units and 1 unit of an anionic monolith ion exchanger, for a total of 3 units.
  • FIGS. 1 to 3 show an example in which two units of monolith ion exchangers of the same ion type are connected in series, but the present invention is not limited to this, and three or more units may be connected as described above.
  • the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith.
  • the term "uniformly distributed ion-exchange groups" as used herein means that the distribution of ion-exchange groups is uniformly distributed on the surface and inside the skeleton on the order of at least ⁇ m.
  • the distribution of ion exchange groups can be easily confirmed by using an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith, the physical and chemical properties of the surface and the inside can be made uniform, so that the durability against swelling and shrinkage can be obtained. Sexuality improves.
  • Examples of the cation exchange group introduced into the cationic monolith ion exchanger include a sulfonic acid group, a carboxyl group, an iminodiacetic acid group, a phosphoric acid group, and a phosphoric acid ester group.
  • the anion exchange group introduced into the anionic monolith ion exchanger is a quaternary group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group and a methyldihydroxyethylammonium group.
  • a quaternary group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group and a methyldihydroxyethylammonium group.
  • ammonium group, a tertiary sulfonium group and a phosphonium group examples thereof include an ammonium group, a tertiary sulfonium group and a phosphonium group.
  • the material constituting the continuous skeleton is an organic polymer material having a crosslinked structure.
  • the cross-linking density of the polymer material is not particularly limited, but contains 0.1 to 30 mol%, preferably 0.1 to 20 mol% of the cross-linked structural units with respect to all the structural units constituting the polymer material. Is preferable.
  • the crosslinked structural unit is 0.1 mol% or more, the mechanical strength is not insufficient, while when it is 30 mol% or less, the introduction of the ion exchange group is not difficult.
  • the type of the polymer material is not particularly limited, and is, for example, an aromatic vinyl polymer such as polystyrene, poly ( ⁇ -methylstyrene), polyvinyltoluene, polyvinylbenzyl chloride, polyvinylbiphenyl, polyvinylnaphthalene; a polyolefin such as polyethylene and polypropylene; poly.
  • Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene
  • nitrile polymer such as polyacrylonitrile
  • cross-linking weight of (meth) acrylic polymer such as methyl polymethacrylate, glycidylpolymethacrylate, ethyl polyacrylate and the like.
  • the polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a cross-linking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a cross-linking agent, or a blend of two or more kinds of polymers. It may be the one that has been used.
  • organic polymer materials cross-linked polymers of aromatic vinyl polymers are easy to form continuous structures, easy to introduce ion exchange groups, high mechanical strength, and high stability to acids or alkalis. Is preferable, and styrene-divinylbenzene copolymer and vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.
  • Examples of the form of the monolith ion exchanger include the first monolith ion exchanger and the second monolith ion exchanger shown below.
  • examples of the form of the monolith into which the ion exchange group is introduced include the first monolith and the second monolith shown below.
  • the first monolith ion exchanger has an open cell structure with a common opening (mesopore) with an average diameter of 1 to 1000 ⁇ m in the walls of the macropores and macropores connected to each other in the dry state, and the whole in the dry state.
  • the pore volume is 1 to 50 mL / g, it has an ion exchange group, the ion exchange groups are uniformly distributed, and the ion exchange capacity per volume is 0.1 to 1.0 mg equivalent / mL. It is a monolith ion exchanger that is in a wet state.
  • the first monolith is a monolith before the introduction of the ion exchange group, and has a common opening (mesopore) having an average diameter of 1 to 1000 ⁇ m in the walls of the macropores and macropores connected to each other in a dry state. It is an organic porous body having an open cell structure and a total pore volume of 1 to 50 mL / g in a dry state.
  • bubble-like macropores overlap each other, and the overlapping portion has a common opening (mesopore) having an average diameter of 1 to 1000 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 20 to 100 ⁇ m in a dry state. It is a continuous macropore structure, most of which is an open pore structure. In the open pore structure, when a liquid is flowed, a flow path becomes a flow path in a bubble formed by the macropore and the mesopore.
  • the overlap of macropores is 1 to 12 for one macropore, and 3 to 10 for most macropores.
  • the diffusivity of the liquid to be treated into the inside of the monolith ion exchanger does not decrease, and when the average diameter of the mesopore in the dry state is 1000 ⁇ m or less, it is the liquid to be treated.
  • Sufficient contact with the monolith ion exchanger Since the structure of the first monolith ion exchanger is the open cell structure as described above, the macropore group and the mesopore group can be uniformly formed, and the particle aggregation as described in JP-A-8-252579 etc.
  • the pore volume and specific surface area can be significantly increased as compared with the type porous body.
  • the average diameter of the opening of the first monolith in the dry state and the average diameter of the opening of the first monolith ion exchanger in the dry state are measured by the mercury intrusion method and obtained by the mercury intrusion method. Refers to the maximum value of the pore distribution curve.
  • the total pore volume per weight of the first monolith ion exchanger in a dry state is 1 to 50 mL / g, preferably 2 to 30 mL / g.
  • the total pore volume is 1 mL / g or more, the contact efficiency of the liquid to be treated does not decrease, the permeation amount per unit cross-sectional area becomes sufficient, and the decrease in processing capacity can be suppressed.
  • the total pore volume is 50 mL / g or less, sufficient mechanical strength can be obtained, and it is possible to suppress the large deformation of the monolith ion exchanger particularly when the liquid is passed at a high flow rate.
  • the contact efficiency between the liquid to be treated and the monolith ion exchanger is sufficiently satisfied, and there is no problem of catchability. Since the total pore volume is at most 0.1 to 0.9 ml / g in the conventional particulate porous ion exchange resin, the high pore volume and high pore volume of 1 to 50 ml / g, which is higher than that in the conventional one. It can be used as a specific surface area.
  • the material constituting the skeleton is an organic polymer material having a crosslinked structure.
  • the cross-linking density of the polymer material is not particularly limited, but contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of cross-linked structural units with respect to all the structural units constituting the polymer material. Is preferable.
  • the crosslinked structural unit is 0.3 mol% or more, the mechanical strength is not insufficient, while when it is 10 mol% or less, the introduction of the ion exchange group is not hindered.
  • the type of the organic polymer material constituting the skeleton of the first monolith ion exchanger is not particularly limited, and for example, fragrances such as polystyrene, poly ( ⁇ -methylstyrene), polyvinyltoluene, polyvinylbenzyl chloride, polyvinylbiphenyl, and polyvinylnaphthalene.
  • the organic polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a cross-linking agent, or a polymer obtained by polymerizing a plurality of vinyl monomers and a cross-linking agent, and two or more kinds of polymers may be used. It may be a blend.
  • the crosslinked weight of aromatic vinyl polymers is due to the ease of forming a continuous macropore structure, the ease of introducing ion-exchange groups and the high mechanical strength, and the high stability against acids or alkalis.
  • the combination is preferable, and styrene-divinylbenzene copolymer and vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.
  • the above-mentioned ion exchange group can be mentioned.
  • the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. are doing.
  • the distribution of ion exchange groups is confirmed by using EPMA as described above.
  • such uniform distribution of ion exchange groups allows uniform physical and chemical properties on the surface and inside, thus improving durability against swelling and shrinkage.
  • the ion exchange capacity per volume of the first monolith ion exchanger is 0.1 to 1.0 mg equivalent / mL (water-wet state).
  • the ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface cannot be unconditionally determined depending on the type of the porous body or the ion exchange group, but is at most 500 ⁇ g equivalent / g.
  • the method for producing the first monolith is not particularly limited, but an example of the production method according to the method described in JP-A-2002-306976 is shown below. That is, the first monolith is a monolith obtained by mixing an oil-soluble monomer containing no ion exchange group, a surfactant, water and, if necessary, a polymerization initiator to obtain a water-in-oil emulsion, which is polymerized. Is obtained by forming. Such a method for producing the first monolith is preferable in that the porous structure of the monolith can be easily controlled.
  • the oil-soluble monomer containing no ion exchange group used in the production of the first monolith does not contain any of a cation exchange group such as a carboxylic acid group and a sulfonic acid group and an anion exchange group such as a quaternary ammonium group, and is water. It refers to a monomer that has low solubility in and is lipophilic.
  • these monomers include styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, divinylbenzene, ethylene, propylene, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, vinyl bromide, vinylidene chloride, and tetrafluoroethylene.
  • a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is preferably 0.3 to 10 mol% in the total oil-soluble monomer. It is preferable that the content is 0.3 to 5 mol% because the ion exchange group can be quantitatively introduced in a later step and a practically sufficient mechanical strength can be secured.
  • the surfactant used in the production of the first monolith is particularly capable of forming a water-in-oil (W / O) emulsion when water is mixed with an oil-soluble monomer containing no ion exchange group.
  • W / O water-in-oil
  • Nonionic surfactants Anionic surfactants such as potassium oleate, sodium dodecylbenzenesulfonate, sodium dioctyl sulfosuccinate; Cationic surfactants such as distearyldimethylammonium chloride; Amphoteric surfactants such as lauryldimethylbetaine Can be used. These surfactants can be used alone or in combination of two or more.
  • the water-in-oil emulsion is an emulsion in which the oil phase is a continuous phase and water droplets are dispersed therein.
  • the amount of the above-mentioned surfactant added varies greatly depending on the type of the oil-soluble monomer and the size of the target emulsion particles (macropores), and therefore cannot be unequivocally determined, but the total amount of the oil-soluble monomer and the surfactant. It can be selected in the range of about 2 to 70% by mass. Also, although not always essential, in order to control the bubble shape and size of the monolith, alcohols such as methanol and stearyl alcohol; carboxylic acids such as stearic acid; hydrocarbons such as octane, dodecane and toluene; Cyclic ether can also coexist in the system.
  • a compound that generates radicals by heat and light irradiation is preferably used as the polymerization initiator used as necessary when forming the monolith by polymerization.
  • the polymerization initiator may be water-soluble or oil-soluble, and may be, for example, azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, persulfate.
  • the polymerization proceeds only by heating or light irradiation without adding the polymerization initiator, so that it is not necessary to add the polymerization initiator in such a system.
  • the mixing method for mixing an oil-soluble monomer containing no ion exchange group, a surfactant, water and a polymerization initiator to form a water droplet type emulsion in oil is not particularly limited. Instead, a method of mixing each component at once, an oil-soluble component that is an oil-soluble monomer, a surfactant, and an oil-soluble polymerization initiator, and a water-soluble component that is water or a water-soluble polymerization initiator are separately separated. After uniformly dissolving, a method of mixing each component can be used.
  • the mixing device for forming the emulsion there is no particular limitation on the mixing device for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or an object to be treated is placed in a mixing container, and the mixing container is rotated around a revolution axis in an inclined state.
  • a so-called planetary stirrer or the like that stirs and mixes the object to be treated can be used by rotating the emulsion while rotating, and an appropriate device may be selected to obtain the desired emulsion particle size.
  • the mixing conditions are not particularly limited, and the stirring rotation speed and the stirring time capable of obtaining the desired emulsion particle size can be arbitrarily set.
  • the planetary stirring device is preferably used because it can uniformly generate water droplets in the W / O emulsion and the average diameter thereof can be arbitrarily set in a wide range.
  • various conditions can be selected for the polymerization conditions for polymerizing the water-in-oil droplet emulsion thus obtained, depending on the type of monomer and the initiator system.
  • the polymerization initiator when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate, etc. are used as the polymerization initiator, they can be polymerized by heating at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere.
  • hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, etc. are used as the initiator, the polymerization should be carried out at 0 to 30 ° C.
  • the method for producing the first monolith ion exchanger is not particularly limited, and in the method for producing the first monolith, a monomer containing an ion exchange group instead of a monomer not containing an ion exchange group, for example, the above ion.
  • the method of forming a first monolith by polymerizing using a monomer containing no ion exchange group and then introducing an ion exchange group makes it easy to control the porous structure of the monolith ion exchanger. , It is preferable because it is possible to quantitatively introduce an ion exchange group.
  • the method for introducing an ion exchange group into the first monolith is not particularly limited, and known methods such as polymer reaction and graft polymerization can be used.
  • a method for introducing a quaternary ammonium group if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method of producing monolith by copolymerization of chloromethylstyrene and divinylbenzene and reacting it with a tertiary amine; A method of uniformly introducing radical initiation groups and chain transfer groups into a monolith on the surface of the skeleton and inside the skeleton, and graft-polymerizing N, N, N-trimethylammonium ethyl acrylate or N, N, N-trimethylammonium propylacrylamide; Similarly
  • a method for introducing a quaternary ammonium group a method of introducing a chloromethyl group into a styrene-divinylbenzene copolymer with chloromethylmethyl ether or the like and then reacting with a tertiary amine, or chloromethylstyrene.
  • a method of producing a monolith by copolymerization of divinylbenzene with divinylbenzene and reacting it with a tertiary amine is preferable in that an ion exchange group can be introduced uniformly and quantitatively.
  • the ion exchange group to be introduced includes a quaternary ammonium group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group and a methyldihydroxyethylammonium group, and a tertiary sulfonium.
  • a quaternary ammonium group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group and a methyldihydroxyethylammonium group, and a tertiary sulfonium.
  • a quaternary ammonium group such as a trimethylammonium group, a triethylammonium group,
  • the second monolith ion exchanger is composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units in all structural units, and has an average thickness of 1 to 60 ⁇ m in a dry state. It is a co-continuous structure consisting of a continuous skeleton and three-dimensionally continuous pores with an average diameter of 10 to 200 ⁇ m between the skeletons, and the total pore volume in the dry state is 0.5.
  • the second monolith is a monolith before the introduction of the ion exchange group, and has an average thickness of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units in all the structural units.
  • the second monolith ion exchanger has a three-dimensionally continuous skeleton having an average thickness of 1 to 60 ⁇ m, preferably 3 to 58 ⁇ m in a dry state, and an average diameter between the skeletons of 10 to 200 ⁇ m, preferably 10 to 200 ⁇ m.
  • the liquid to be treated When the average diameter of the three-dimensionally continuous pores is 10 ⁇ m or more in the dry state, the liquid to be treated easily diffuses, and when it is 200 ⁇ m or less, the contact between the liquid to be treated and the monolith ion exchanger becomes sufficient, and as a result. , The removal performance is sufficient. Further, when the average thickness of the skeleton is 1 ⁇ m or more in a dry state, the ion exchange capacity per volume does not decrease, and the decrease in mechanical strength is suppressed. Further, the capture performance can be sufficiently obtained without lowering the contact efficiency between the reaction solution and the monolith ion exchanger. On the other hand, when the thickness of the skeleton is 60 ⁇ m or less, the skeleton does not become too thick and the diffusion of the liquid to be treated becomes uniform.
  • the average diameter of the opening of the monolith intermediate is determined by the mercury intrusion method and refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method.
  • the average thickness of the skeleton of the second monolith ion exchanger in the dry state can be obtained by SEM observation of the second monolith ion exchanger in the dry state.
  • the skeleton is rod-shaped and has a circular cross-sectional shape, but may include a skeleton having a different diameter such as an elliptical cross-sectional shape.
  • the thickness in this case is the average of the minor axis and the major axis.
  • the total pore volume per weight of the second monolith ion exchanger in a dry state is 0.5 to 10 mL / g.
  • the total pore volume is 0.5 mL / g or more, the contact efficiency with the liquid to be treated can be ensured, and the amount of permeated liquid per unit cross-sectional area is not a problem, and the decrease in the treated amount is suppressed.
  • the total pore volume is 10 ml / g or less, the contact efficiency between the liquid to be treated and the monolith ion exchanger does not decrease, and the decrease in capture performance is suppressed.
  • the size of the three-dimensionally continuous pores and the total pore volume are within the above ranges, the contact with the liquid to be treated is extremely uniform and the contact area is also large.
  • the material constituting the skeleton contains 0.1 to 5 mol%, preferably 0.5 to 3.0 mol% of crosslinked structural units in the total structural units. It is a vinyl polymer and is hydrophobic.
  • the crosslinked structural unit is 0.1 mol% or more, the mechanical strength is not insufficient, while when it is 5 mol% or less, the structure of the porous body is less likely to deviate from the co-continuous structure.
  • the type of aromatic vinyl polymer is not particularly limited, and examples thereof include polystyrene, poly ( ⁇ -methylstyrene), polyvinyltoluene, polyvinylbenzyl chloride, polyvinylbiphenyl, and polyvinylnaphthalene.
  • the polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a cross-linking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a cross-linking agent, or a blend of two or more kinds of polymers. It may be the one that has been used.
  • a styrene-divinylbenzene copolymer is a styrene-divinylbenzene copolymer because of its ease of forming a co-continuous structure, ease of introducing an ion exchange group, high mechanical strength, and high stability against acid or alkali. Or vinylbenzyl chloride-divinylbenzene copolymer is preferable.
  • the ion exchange group introduced into the second monolith ion exchanger is the same as the ion exchange group introduced into the first monolith ion exchanger.
  • the introduced ion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body.
  • the second monolith ion exchanger has an ion exchange capacity of 0.2 to 1.0 mg equivalent / mL (water-wet state) per volume. Since the second monolith ion exchanger has high continuity and uniformity of three-dimensionally continuous pores, the substrate and the solvent diffuse uniformly. Therefore, the reaction progresses quickly. When the ion exchange capacity is in the above range, the removal performance is high and the life is extended.
  • the second monolith prepares a water-in-oil emulsion by stirring a mixture of an oil-soluble monomer, a surfactant and water that does not contain an ion exchange group, and then polymerizes the water-in-oil emulsion to form a total pore.
  • Step I to obtain a monolithic organic porous intermediate having a continuous macropore structure with a volume of more than 16 mL / g and a volume of 30 mL / g or less (hereinafter, also referred to as monolith intermediate), aromatic vinyl monomer, in one molecule.
  • the aromatic vinyl monomer and the cross-linking agent are dissolved, but the polymer produced by the polymerization of the aromatic vinyl monomer is dissolved.
  • the mixture obtained in steps II and II for preparing a mixture consisting of an organic solvent and a polymerization initiator is polymerized under static conditions and in the presence of the monolith intermediate obtained in step I to form a co-continuous structure. It is obtained by carrying out step III of obtaining a second monolith, which is an organic porous body.
  • the step I for obtaining a monolith intermediate may be carried out in accordance with the method described in JP-A-2002-306976. That is, in the step I according to the second method for producing a monolith, examples of the oil-soluble monomer containing no ion exchange group include ion exchange of a carboxylic acid group, a sulfonic acid group, a tertiary amino group, a quaternary ammonium group and the like. Examples thereof include group-free, low-solubility in water, and lipophilic monomers.
  • these monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, vinylbiphenyl and vinylnaphthalene; ⁇ -olefins such as ethylene, propylene, 1-butene and isobutene; butadiene. Diene-based monomers such as isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile-based monomers such as acrylonitrile and methacrylic acid; vinyl esters such as vinyl acetate and vinyl propionate.
  • aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, vinylbiphenyl and vinylnaphthalene
  • ⁇ -olefins such as ethylene, propylene,
  • acrylic monomers such as glycidyl acid acid.
  • preferred ones are aromatic vinyl monomers, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, and divinylbenzene.
  • a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 5 mol%, preferably 0.3 to 0.3 in the total oil-soluble monomer. 3 mol% is preferable because it is advantageous for forming a co-continuous structure.
  • the surfactant used in step I according to the second method for producing monolith can form a water-in-oil (W / O) emulsion when water is mixed with an oil-soluble monomer containing no ion exchange group.
  • Non-ionic surfactants such as monooleate; Anionic surfactants such as potassium oleate, sodium dodecylbenzene sulfonate, sodium dioctyl sulfosuccinate; Cationic surfactants such as distearyldimethylammonium chloride; Lauryldimethylbetaine and the like.
  • Amphoteric surfactants can be used.
  • the water-in-oil emulsion is an emulsion in which the oil phase is a continuous phase and water droplets are dispersed therein.
  • the amount of the above-mentioned surfactant added varies greatly depending on the type of the oil-soluble monomer and the size of the target emulsion particles (macropores), and therefore cannot be unequivocally determined, but the total amount of the oil-soluble monomer and the surfactant. It can be selected in the range of about 2 to 70%.
  • a polymerization initiator may be used as necessary when forming a water-in-oil emulsion.
  • a compound that generates radicals by heat or light irradiation is preferably used.
  • the polymerization initiator may be water-soluble or oil-soluble, and may be, for example, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2 , 2'-azobis (2-methylbutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobisisobutyrate dimethyl, 4,4'-azobis (4,4'-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthium disulfide, hydrogen peroxide-ferrous chloride , Sodium persulfate-sodium acid sulfite and the like.
  • 2,2'-azobis isobutyronitrile
  • a mixing method for forming a water droplet type emulsion in oil by mixing an oil-soluble monomer containing no ion exchange group, a surfactant, water and a polymerization initiator in the step I according to the second method for producing a monolith.
  • a method of uniformly dissolving the components separately and then mixing the respective components can be used.
  • the mixing device for forming the emulsion is not particularly limited, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate device may be selected to obtain the desired emulsion particle size. Further, the mixing conditions are not particularly limited, and the stirring rotation speed and the stirring time capable of obtaining the desired emulsion particle size can be arbitrarily set.
  • the monolith intermediate (2) obtained in step I according to the second method for producing a monolith is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer.
  • the cross-linking density of the polymer material is not particularly limited, but contains 0.1 to 5 mol%, preferably 0.3 to 3 mol% of cross-linked structural units with respect to all the structural units constituting the polymer material. Is preferable. If the crosslinked structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is 16 to 20 ml / g, the crosslinked structural unit is preferably less than 3 mol% in order to form a co-continuous structure.
  • the type of the polymer material of the monolith intermediate may be the same as that of the polymer material of the first monolith.
  • the total pore volume per weight of the monolith intermediate obtained in step I according to the second method for producing a monolith is more than 16 mL / g, 30 mL / g or less, preferably more than 16 mL / g. , 25 mL / g or less. That is, although this monolith intermediate is basically a continuous macropore structure, the skeleton constituting the monolith structure is primary from the two-dimensional wall surface because the opening (mesopore), which is the overlapping part of the macropore and the macropore, is remarkably large. It has a structure that is as close as possible to the original rod-shaped skeleton.
  • a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a mold. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer changes from a co-continuous structure to a continuous macropore structure, which is not preferable. On the other hand, if the total pore volume is too large, When the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered or the ion exchange group is introduced, the ion exchange capacity per volume is lowered, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above range, the ratio of the monomer to water may be approximately 1:20 to 1:40.
  • the monolith intermediate obtained in the step I according to the second method for producing a monolith has an average diameter of an opening (mesopore), which is an overlapping portion of macropores and macropores, of 5 to 100 ⁇ m in a dry state.
  • an opening mesopore
  • the average diameter of the openings is 5 ⁇ m or more in a dry state, it is possible to suppress the opening diameter of the monolith obtained after polymerizing the vinyl monomer from becoming small, and it is possible to suppress the pressure loss during fluid permeation from becoming large.
  • the opening diameter of the monolith obtained after polymerizing the vinyl monomer does not become too large, and the contact between the liquid to be treated and the monolith ion exchanger becomes sufficient, resulting in a decrease in capture performance. Can be suppressed.
  • the monolith intermediate is preferably a uniform structure having the same macropore size and opening diameter, but is not limited to this, and non-uniform macropores larger than the uniform macropore size are scattered in the uniform structure. It may be something to do.
  • an aromatic vinyl monomer In the second step II of the method for producing a monolith, an aromatic vinyl monomer, a cross-linking agent of 0.3 to 5 mol% in a total oil-soluble monomer having at least two or more vinyl groups in one molecule, and an aromatic.
  • This is a step of preparing a mixture consisting of an organic solvent and a polymerization initiator, which dissolves the vinyl monomer and the cross-linking agent but does not dissolve the polymer produced by the polymerization of the aromatic vinyl monomer. It should be noted that there is no order between the I step and the II step, and the II step may be performed after the I step, or the I step may be performed after the II step.
  • the aromatic vinyl monomer used in the second step II of the method for producing a monolith is an oil-based aromatic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent.
  • a vinyl monomer that produces a polymer material of the same type or similar to the monolith intermediate (2) coexisting in the above-mentioned polymerization system include styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, vinylbiphenyl, vinylnaphthalene and the like. These monomers may be used alone or in combination of two or more.
  • Preferred aromatic vinyl monomers are styrene, vinylbenzyl chloride and the like.
  • the amount of the aromatic vinyl monomer added in the second step II of the method for producing a monolith is 5 to 50 times, preferably 5 to 40 times, the weight of the monolith intermediate coexisting at the time of polymerization.
  • the amount of the aromatic vinyl monomer added is 5 times or more that of the monolith intermediate, the rod-shaped skeleton can be made thicker, and when an ion exchange group is introduced, the ion exchange capacity per volume after the introduction of the ion exchange group is small. It can be suppressed.
  • the amount of the aromatic vinyl monomer added is 50 times or less, the diameter of the continuous pores does not become too small, and it is possible to suppress an increase in pressure loss during liquid passage.
  • cross-linking agent used in the second step II of the method for producing a monolith a cross-linking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used.
  • the cross-linking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate and the like. These cross-linking agents can be used alone or in combination of two or more.
  • Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability against hydrolysis.
  • the amount of the cross-linking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of the vinyl monomer and the cross-linking agent (total oil-soluble monomer).
  • the amount of the cross-linking agent used is 0.3 mol% or more, the mechanical strength of the monolith is not insufficient, while when the ion exchange group is introduced at 5 mol% or less, it is difficult to quantitatively introduce the ion exchange group. None become.
  • the amount of the cross-linking agent used is preferably substantially equal to the cross-linking density of the monolith intermediate coexisting during the polymerization of the vinyl monomer / cross-linking agent. If the amounts used are too large and different, the crosslink density distribution will be biased in the produced monolith, and when an ion exchange group is introduced, cracks are likely to occur during the ion exchange group introduction reaction.
  • the organic solvent used in the second step II of the method for producing a monolith is an organic solvent in which the aromatic vinyl monomer and the cross-linking agent are dissolved but the polymer produced by the polymerization of the aromatic vinyl monomer is not dissolved, in other words, the aroma. It is a poor solvent for the polymer produced by polymerizing the group vinyl monomer. Since the organic solvent varies greatly depending on the type of aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent may be methanol, ethanol or propanol.
  • a good polystyrene solvent such as dioxane, THF, and toluene can be used as an organic solvent when it is used together with the above-mentioned poor solvent and the amount used is small.
  • the amount of these organic solvents used is preferably such that the concentration of the aromatic vinyl monomer is 30 to 80% by mass. If the amount of the organic solvent used deviates from the above range and the concentration of the aromatic vinyl monomer is 30% by mass or more, the polymerization rate may decrease or the monolithic structure after polymerization may deviate from the range of the second monolith. Can be suppressed. On the other hand, when the concentration of the aromatic vinyl monomer is 80% by mass or less, the runaway of polymerization can be suppressed.
  • the polymerization initiator used in the second step II of the method for producing a monolith a compound that generates radicals by heat or light irradiation is preferably used.
  • the polymerization initiator is preferably oil-soluble.
  • Specific examples of the polymerization initiator include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (2-methylbutyronitrile).
  • Nitrile 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobisisobutyrate dimethyl, 4,4'-azobis (4-cyanovaleric acid), 1,1' -Azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthium disulfide and the like can be mentioned.
  • the amount of the polymerization initiator used varies greatly depending on the type of the monomer, the polymerization temperature, etc., but can be used in the range of about 0.01 to 5% by mass with respect to the total mass of the vinyl monomer and the cross-linking agent.
  • step III the mixture obtained in step II is polymerized in the presence of the monolith intermediate obtained in step I, and the monolith intermediate is continuously produced.
  • This is a step of changing the macropore structure into a co-continuous structure to obtain a second monolith which is a co-continuous structure monolith.
  • the monolith intermediate used in step III plays an extremely important role in creating a monolith having the structure of the present invention.
  • a vinyl monomer and a cross-linking agent are statically polymerized in a specific organic solvent in the absence of a monolithic intermediate, a particle-aggregating monolithic organic porous material is obtained. The body is obtained.
  • the vinyl monomer and the cross-linking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body.
  • the skeleton constituting the monolith structure changes from a two-dimensional wall surface to a one-dimensional rod-shaped skeleton to form a second monolith having a co-continuous structure.
  • the internal volume of the reaction vessel is not particularly limited as long as it has a size that allows the monolith intermediate to exist in the reaction vessel, and when the monolith intermediate is placed in the reaction vessel, it is not particularly limited.
  • a gap is formed around the monolith in a plan view, or a monolith intermediate can be inserted into the reaction vessel without a gap.
  • the monolith with a thick bone after polymerization does not receive pressure from the inner wall of the container and enters the reaction vessel without a gap, but the monolith is not distorted and the reaction raw material is not wasted and is efficient.
  • step III of the second method for producing a monolith the monolith intermediate is placed in a reaction vessel in a state of being impregnated with a mixture (solution).
  • the mixing ratio of the mixture obtained in Step II to the monolith intermediate is such that the amount of the vinyl monomer added is 3 to 50 times, preferably 4 to 40 times, by weight, with respect to the monolith intermediate. It is suitable to mix.
  • the vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed to the skeleton of the stationary monolith intermediate, and the polymerization proceeds in the skeleton of the monolith intermediate.
  • Various conditions are selected for the polymerization conditions of step III related to the second monolith production method depending on the type of monomer and the type of initiator. For example, when 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as the initiator.
  • the polymerization may be carried out by heating at 30 to 100 ° C. for 1 to 48 hours.
  • the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent polymerize in the skeleton, and the skeleton is thickened.
  • the contents are taken out and extracted with a solvent such as acetone for the purpose of removing the unreacted vinyl monomer and the organic solvent to obtain a second monolith.
  • the second monolith ion exchanger is obtained by performing an IV step of introducing an ion exchange group into the second monolith obtained in step III.
  • the method of introducing an ion exchange group into the second monolith is the same as the method of introducing an ion exchange group into the first monolith.
  • the second monolith and the second monolith ion exchanger have high mechanical strength because they have a skeletal skeleton even though the size of the three-dimensionally continuous pores is remarkably large. Further, since the second monolith ion exchanger has a thick skeleton, the ion exchange capacity per volume in a water-wet state can be increased, and the liquid to be treated can be passed through at a low pressure and a large flow rate for a long period of time. Is.
  • the captured ionic impurity elements are more easily eluted by the eluent than in the porous film and ion exchange resin used in the analysis method for the content of other ionic impurities. Therefore, the analysis method of the present invention is used. Can lower the acid concentration of the eluent, thus lowering the lower limit of quantification.
  • the analysis method of the present invention is an elution step. Since the time required for processing is shortened, the analysis time can be shortened.
  • the analysis method of the present invention can be used. Since the time required for the liquid passing process is shortened, the analysis time can be shortened.
  • the metal impurity content in the water to be analyzed is very low, for example, when it is 1 ppt or less, it is necessary to pass a large amount of water to be analyzed through the adsorbent.
  • the metal impurities in the water to be analyzed are very low, less than 1 ng / L, but the volume of the porous ion exchanger per unit is 0.5 to 5.0 ml.
  • the differential pressure coefficient is 0.01 MPa / LV / m or less, the captured metal impurity element is easily eluted by the eluent.
  • the amount of the eluent used can be reduced, and the amount of ultrapure water passed through the porous (monolith) ion exchanger can be reduced.
  • the amount of nitric acid or hydrochloric acid used in the elution step needs to be at least 10 times the volume from International Publication No. 2019/221186.
  • the minimum amount of eluent required for analysis without contamination with an analytical instrument is 5 ml, and the amount of eluent is preferably 50 ml at the maximum in order to reduce the amount of concentration for analysis to a low concentration. .. From this, it is desirable that the volume of the monolith exchanger required per unit is 0.5 to 5.0 ml.
  • the differential pressure coefficient of the ion exchanger is preferably 0.01 MPa / LV / m or less, preferably 0.005 MPa / LV / m or less. Further, since the liquid passing speed of ultrapure water can be increased, a large amount of liquid can be passed in a short time, so that the time required for the capture step in the analysis can be very shortened. Further, in this case, the pressure coefficient in the capture step of the analysis method of the present invention is preferably 0.1 to 10.0 L / min. / MPa, particularly preferably 2.0 to 10.0 L / min. / MPa.
  • the measurement kit (metal impurity trapping device) of the first aspect of the present invention is A measurement kit that measures the content of metal impurities in a liquid.
  • the ion exchanger is provided by connecting two or more units of the same ion type ion exchanger in series, and the volume of the ion exchanger per unit is 0.5 to 5.0 ml, and the unit is one. It is a measurement kit characterized in that the differential pressure coefficient per unit is 0.01 MPa / LV / m or less.
  • the size of the container used for the flow cell is not particularly limited, but it is desirable to set it according to the size of the ion exchanger of the above volume to be filled. If the cross-sectional area of the container to be filled is too small, the pressure loss will be large and it will take time to concentrate. If the cross-sectional area is too large, the length of the exchanger will be short and ions will not be captured and correct analysis will be possible. It disappears. Therefore, it is desirable that the diameter of the cross section is ⁇ 0.2 to 5 cm.
  • the shape of the container is not particularly limited, but a shape that can reduce short paths such as a columnar shape is desirable.
  • the measurement kit of the present invention can have various forms shown in FIGS. 1 to 3.
  • the integrated flow meter according to the measurement kit of the present invention is not particularly limited as long as it can measure and integrate the amount of liquid to be introduced.
  • a supply pipe for supplying the analysis target liquid and the eluent to the monolith ion exchanger in the flow cell and the discharge liquid discharged from the porous ion exchanger are introduced into the integrated flow meter. It is possible to have an introduction pipe for discharging the discharge liquid discharged from the integrated flow meter and a discharge pipe for discharging the discharge liquid to the outside of the kit. Further, a valve may be provided between the flow cell and the integrated flow meter to control the flow rate, or immediately after the integrated flow meter.
  • the measurement kit of the present invention is provided with a sealing means for sealing the inside so that impurities are not mixed into the inside after the kit is removed from the tube to which the liquid to be analyzed is supplied.
  • the above-mentioned monolith ion exchanger can be used.
  • a second cationic monolith ion exchanger was produced in the same manner as in Reference Example 17 of the examples of the specification according to JP-A-2010-234357.
  • styrene / divinylbenzene / SMO / 2,2'-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EME), which is a planetary stirring device, was added.
  • EME vacuum stirring defoaming mixer
  • This emulsion was immediately transferred to a reaction vessel, sealed, and polymerized at 60 ° C. for 24 hours under standing. After completion of the polymerization, the contents were taken out, extracted with methanol, and dried under reduced pressure to produce a monolithic intermediate having a continuous macropore structure.
  • the wall portion separating the two adjacent macropores was extremely thin and rod-shaped, but had an open cell structure.
  • the average diameter of the opening (mesopore) at the portion where the macropore and the macropore overlap was 70 ⁇ m and the total pore volume was 21.0 ml / g, which was measured by the mercury intrusion method.
  • the separated monolith intermediate was placed in a reaction vessel having an inner diameter of 110 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2'-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a reduced pressure chamber. After foaming, the reaction vessel was sealed and polymerized at 60 ° C. for 24 hours under standing. After completion of the polymerization, a monolith-like content having a thickness of about 60 mm was taken out, soxhlet-extracted with acetone, and then dried under reduced pressure at 85 ° C. overnight (step III).
  • the monolith When the internal structure of the monolith (dried product) containing 3.2 mol% of the crosslinked component composed of the styrene / divinylbenzene copolymer thus obtained was observed by SEM, the monolith had a skeleton and pores, respectively. It was a co-continuous structure that was three-dimensionally continuous and both phases were intertwined. The thickness of the skeleton measured from the SEM image was 17 ⁇ m. The size of the three-dimensionally continuous pores of the monolith measured by the mercury intrusion method was 41 ⁇ m, and the total pore volume was 2.9 ml / g.
  • the monolith produced by the above method was cut into a cylinder having a diameter of 75 mm and a thickness of about 15 mm.
  • the monolith weighed 18 g.
  • 1500 ml of dichloromethane was added, the mixture was heated at 35 ° C. for 1 hour, cooled to 10 ° C. or lower, 99 g of chlorosulfuric acid was gradually added, the temperature was raised, and the reaction was carried out at 35 ° C. for 24 hours.
  • the size of the continuous pores of the monolith in the water-wet state was estimated from the value of the monolith and the swelling rate of the cation exchanger in the water-wet state to be 70 ⁇ m, the diameter of the skeleton was 23 ⁇ m, and the total pore volume was 2. It was 9 ml / g.
  • the content of each element trapped in the cationic monolith ion exchanger was measured by ICP-MS (manufactured by Agilent Technologies, 8900).
  • ICP-MS a calibration curve of the count value (CPS) and the metal content is prepared in advance using a standard sample of a plurality of contents, and a test sample (test water or test water or The treated water) was measured, and the metal content corresponding to the count value was defined as the metal content of the test water or the treated water based on the calibration curve.
  • Example 1 The ultrapure water passing step, elution step and analysis step were carried out in the same manner as in Comparative Example 1 except that two units (CEM1 and CEM2) of the flow cells of the cationic monolith ion exchanger were connected in series. The results are shown in Table 1.
  • Example 2 The ultrapure water passing step, elution step and analysis step were carried out in the same manner as in Comparative Example 1 except that the flow cells of the cationic monolith ion exchanger were connected in series in 3 units (CEM1, CEM2, CEM3). The results are shown in Table 1.
  • the concentration is calculated by the following formula (1).
  • the limit was 0.1 ng / L, but in the adsorption concentration method of the present invention, the lower limit of quantification of 1 pg / L (0.001 ng / L) can be analyzed.
  • the anion-type monolith ion exchanger is cut into a shape having a diameter of 10 mm and a height of 50 mm and filled in a filling container made of PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) to obtain an anion-type monolith ion exchanger. Obtained a flow cell.
  • ultrapure water was added to about 100 mL / min so that the concentration was 100 L.
  • 2N nitric acid was used as an eluent, and the liquid was recovered at a volume of 50 mL.
  • the recovered liquid was measured by ICP-MS, and the concentration of the boron element shown in Table 2 was measured.
  • the content of each element captured by the monolith ion exchanger was measured by ICP-MS (manufactured by Agilent Technologies, 8900).
  • ICP-MS a calibration curve of the count value (CPS) and the metal content is prepared in advance using a standard sample of a plurality of contents, and a test sample (test water or test water or The treated water) was measured, and the metal content corresponding to the count value was defined as the metal content of the test water or the treated water based on the calibration curve.
  • Example 3 The ultrapure water passing step, elution step and analysis step were carried out in the same manner as in Comparative Example 2 except that two units (AEM1 and AEM2) of the flow cells of the anion-type monolith ion exchanger were connected in series. The results are shown in Table 2.
  • Example 4 The ultrapure water passing step, elution step and analysis step were carried out in the same manner as in Comparative Example 1 except that the flow cells of the anion-type monolith ion exchanger were connected in series in 3 units (AEM1, AEM2, AEM3). The results are shown in Table 2.
  • ⁇ 0.05 [ng / L] indicates that it is less than the lower limit of quantification of this method.
  • the boron concentration in ultrapure water was 0.22 ng / L in Comparative Example 2, but from the results of Examples 3 and 4, 1 unit of anionic monolith ion exchanger was used. It was confirmed that it could not be sufficiently captured and did not show the correct boron concentration in ultrapure water.
  • AEM3 was below the lower limit of quantification and the concentration of AEM1 + AEM2 was 0.37 ng / L, which was the boron concentration in ultrapure water.
  • the number of units connected in series of the ion exchanger is preferably the minimum number at which the content of the impurity component in the eluent from the most downstream ion exchanger is less than the lower limit of quantification.
  • Ultrapure water transfer pipe 12 Water drain pipe to be analyzed 13 Flow cell 13A, 13A', 13B, 13B'Flow cell 14, 14'Integrated flow meter 15, 15'Measurement kit 16 First branch pipe 16'Second branch pipe CEM cation Form monolith ion exchanger AEM Anion type monolith ion exchanger UPM Ultrapure water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

低濃度の金属不純物を含む液体(超純水)中の金属不純物の含有量をより正確に分析する方法は、該液体をイオン交換体に通液する通液工程と、該イオン交換体に捕捉された金属不純物を溶離液で溶離して回収する溶離工程と、該溶離した金属不純物を含む溶離液を分析して該溶離液中の金属不純物の含有量を測定する測定工程とを有し、イオン交換体は、複数の同イオン形のイオン交換体(13A、13B)を直列に接続して使用し、前記多孔質イオン交換体の1単位あたりの体積が0.5~5.0mlであり、差圧係数が0.01MPa/LV/m以下であることを特徴とする。

Description

金属不純物含有量の分析方法
 本発明は、超純水や超純水製造工程中の工程水、半導体洗浄に用いる薬剤や有機溶媒などの液体中に微量に含まれる金属不純物の含有量を分析するための分析方法及びそれに用いられる測定キットに関する。
 半導体製造プロセスや医薬品製造プロセスでは、イオン性不純物の含有量が極めて低い超純水が用いられている。そのため、半導体製造プロセスや医薬品製造プロセスに用いられる超純水の製造においては、最終的に製造される超純水、又は超純水製造工程の工程水に微量に含有されているイオン性不純物の含有量を把握することが重要である。
 特許文献1には、イオン交換機能を有する官能基を持つ多孔質膜に流体を所定量通過させ、多孔質膜に流体中の不純物を捕捉させ、捕捉した不純物を多孔質膜から溶離して、溶離液中の不純物濃度を測定し、この測定濃度から流体中の不純物濃度を算出する分析方法が開示される。
 ところで、超純水中の金属不純物は、種類や形態は定かではないが、イオンの他、凝集状態のコロイドや分散状態の微粒子で存在する可能性がある。コロイドや微粒子の表面電荷密度はイオンに比べて小さく、イオン交換樹脂との静電気的な相互作用が小さい。
 特許文献2では、多孔質膜に代えてモノリス状有機多孔質イオン交換体を使用して、超純水中の微量の金属不純物を分析する方法を開示している。
 モノリス状有機多孔質イオン交換体は網目状の流路を持っており、静電気的な相互作用に加えて、微粒子を物理的に吸着又は捕捉する作用を有する。また、モノリス状有機多孔質アニオン交換体を使用することで、錯形成したアニオン状態の金属不純物の吸着又は捕捉が出来る。また、モノリス状有機多孔質カチオン交換体を使用することで、カチオン状態の金属イオンを吸着または捕捉できる。すなわち、超純水中の金属不純物を効果的に吸着又は捕捉することができる。
特開2001-153854号公報 国際公開第2019/221186号
 特許文献1に記載の分析方法では、サブμg/Lレベル(サブppbレベル)での分析が可能となる。さらに近年では、超純水中の不純物のようにより低濃度の不純物の分析が必要となっている。
 特許文献2では、分析対象水を、モノリス状有機多孔質アニオン交換体に通液することにより、該分析対象水中の金属不純物を、該モノリス状有機多孔質アニオン交換体に捕捉させる不純物捕捉工程と、溶離液を、該分析対象水中の金属不純物を捕捉させた該モノリス状有機多孔質アニオン交換体に通液し、排出液を回収することにより、該モノリス状有機多孔質アニオン交換体から溶離した該分析対象水中の金属不純物を含有する回収溶離液を得る溶離工程と、該回収溶離液中の各金属不純物の含有量を測定する測定工程と、を有し、ng/L(ppt)レベルの金属不純物の分析が可能となっている。さらに上記モノリス状有機多孔質アニオン交換体をモノリス状有機多孔質カチオン交換体に変更したり、アニオン交換体とカチオン交換体とを組み合わせて使用したりする態様も開示されている。
 アルカリ金属やアルカリ土類金属はアニオン交換体では吸着されにくく、ホウ素などは逆にカチオン交換体では吸着されにくい。モノリスの種類によって吸着性能に差があるものでもアニオン交換体とカチオン交換体とを組み合わせて使用することで99%超のほぼ完全な吸着が可能となる。
 ここで、分析対象となる金属不純物の濃度が低くなるほど、分析対象以外に含まれる金属不純物の影響が問題となる。そのため、通液量を多くしてイオン交換等での濃縮倍率を高める必要がある。しかし、濃縮量が高くなるとイオン交換体でイオンが十分に吸着・捕捉できず、漏れ出す場合があり、液体中の金属不純物の含有量の正確な分析ができなくなる。
 従って、本発明の目的は、低濃度の金属不純物を含む液体中の金属不純物の含有量をより正確に分析する方法を提供することにある。
 上記課題は、以下に示す本発明により解決される。
 すなわち、本発明の一態様によれば、
 液体中の金属不純物の含有量を分析する方法であって、
 該液体をイオン交換体に通液する通液工程と、
 該イオン交換体に捕捉された金属不純物を溶離液で溶離して回収する溶離工程と、
 該溶離した金属不純物を含む溶離液を分析して、該溶離液中の金属不純物の含有量を測定する測定工程と
を有し、
 前記イオン交換体は、同イオン形のイオン交換体を2単位以上直列に接続して使用し、
 前記イオン交換体の1単位あたりの体積が0.5~5.0mlであり、かつ、該1単位あたりの差圧係数が0.01MPa/LV/m以下であることを特徴とする液体中の金属不純物の分析方法が提供される。
 本発明によれば、液体中の1ng/L未満の金属不純物の含有量を、より正確に分析できる方法を提供することができる。
本発明のイオン交換体の組み合わせ(測定キット)の一例を説明する概念図である。 本発明のイオン交換体の組み合わせ(測定キット)の他の一例を説明する概念図である。 本発明のイオン交換体の組み合わせ(測定キット)の他の一例を説明する概念図である。
 本発明の分析方法は、液体中の金属不純物の含有量を分析する方法であって、
 該液体をイオン交換体に通液する通液工程と、
 該イオン交換体に捕捉された金属不純物を溶離液で溶離して回収する溶離工程と、
 該溶離した金属不純物を含む溶離液を分析して該溶離液中の金属不純物の含有量を測定する測定工程と
を有し、
 前記イオン交換体は、同イオン形のイオン交換体を2単位以上直列に接続して使用し、前記イオン交換体の1単位あたりの体積が0.5~5.0mlであることを特徴とする。
 特に本発明では、上段から順番に前記溶離工程と測定工程を前記イオン交換体の1単位毎に行い、前記測定工程で測定した前記液体中の金属不純物の含有量が定量下限値未満となった場合に、定量下限値未満になるまでの前記液体中の金属不純物の含有量の合計量を、前記液体中の金属不純物の含有量とすることを特徴とする。
 本発明において、使用するイオン交換体としては、特に制限されず、膜状、粒状(樹脂)、多孔質材料など、イオン交換能を有する官能基が導入されたものであれば、無機系あるいは有機系のいずれも使用することができる。特に後述する多孔質イオン交換体、中でも、モノリス状有機多孔質イオン交換体であることが好ましい。以下、モノリス状有機多孔質イオン交換体(単にモノリスイオン交換体という)を用いる場合について説明する。また、分析対象となる液体としては、超純水や超純水製造工程中の工程水、半導体洗浄に用いる薬剤や有機溶媒など、極微量の金属不純物の存在が問題となる液体が挙げられる。以下、液体として超純水を例に説明する。
(通液工程)
 分析対象となる超純水を多孔質イオン交換体(モノリスイオン交換体)に通液して、超純水中の金属不純物をモノリスイオン交換体に捕捉させる。
 本発明において分析対象となる超純水としては、半導体製造プロセス、医薬品製造プロセス等のユースポイントで用いられる超純水を製造するための超純水製造工程により得られる超純水、又は超純水製造工程の途中の工程水が挙げられる。本発明では、この超純水中に含まれる1ng/L未満の金属不純物を分析する。ここで、「1ng/L未満」とは一つの金属元素に基づく金属不純物の濃度である。
 なお、本発明において、超純水製造工程の途中の工程水とは、例えば、超純水製造工程の一次純水製造系から二次純水製造系に移送される水、二次純水製造系の紫外線酸化装置からイオン交換樹脂が充填された非再生式のカートリッジポリッシャーに移送される水、イオン交換樹脂が充填された非再生式のカートリッジポリッシャーから脱気膜装置に移送される水、脱気膜装置から限外ろ過膜装置に移送される水、限外ろ過膜装置からユースポイントに移送される水等の超純水製造工程の途中で生じる水全般を指す(以下において同じ)。
 分析対象の金属不純物としては、Li,Be、B、Na、Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Sr、Zr、Mo、Pd、Ag、Cd、Sn、Ba、W、Au、Pbのうちのいずれか1種又は2種以上の元素である。特にアルカリ金属及びアルカリ土類金属元素であることが好ましい。
 また、半導体製造プロセスに用いられる超純水中には、微粒子が含まれることがある。この微粒子は、例えば、原料水中に元々含まれている微粒子や、超純水の送液ライン中の配管材又は継手などから発生する金属酸化物微粒子等である。そのようなことから、半導体製造プロセスに用いられる超純水においては、イオン性の不純物の含有量の分析に加えて、そのような微粒子の含有量の分析をすることが必要になる。金属微粒子の大きさは特に制限されないが、例えば、1~100nmである。
 また、金属不純物は、イオン性不純物、コロイド状や単分散等の微粒子、錯体の状態で存在している。
 分析対象水中で各イオン性不純物元素は、カチオンの状態で、あるいは、オキソアニオンの状態で、あるいは、カチオンの状態とオキソアニオンの状態が混在した状態で存在している。また、分析対象水中で、金属不純物微粒子は、コロイド状、又は単分散の状態で存在している。
 モノリスイオン交換体は所定の大きさ・形状に成形されたものを所定の容器内に封入し、複数直列に接続して使用する。モノリスイオン交換体の形状としては、柱状構造であることが好ましく、円柱状や角柱状(例えば3~8角柱)などの形状が好ましい。
 1単位あたりのイオン交換体とは、体積が0.5~5.0mlであり、かつ、差圧係数が0.01MPa/LV/m以下である。
 また、本発明における「1単位」とは、一つの容器に封入されるイオン交換体のことである。
 このようなイオン交換体は1単位毎に流入口と流出口とを備える容器に収納され、「直列に接続」するとは、上流のイオン交換体を内包する容器の流出口と下流のイオン交換体を内包する容器の流入口とを接続することを意味する。
 また、複数とは、2個以上の容器を接続することを意味するが、接続数が増加するほど圧力損失が大きくなる傾向にあり、過度に多くの容器を接続する必要はない。
 本発明において、接続数の上限は、後述する使用するイオン交換体の特性、大きさにより、一概に限定できるものではないが、最後段のイオン交換体に基づいて分析した金属不純物の含有量が定量下限値未満となる最小数を接続することが好ましい。
 複数の容器を直列に接続した場合、例えば、上段側(液体の流れ方向の上流側)から順番に溶離工程(後述する)及び測定工程(後述する)を1単位毎に行い、測定工程で測定した液体中の金属不純物の含有量が定量下限値未満となった場合に、定量下限値未満になるまでの液体中の金属不純物の含有量の合計量を、液体中の金属不純物の含有量とすることができる。
 また、最下段(液体の流れ方向の下流側)のイオン交換体で定量下限値にならなかった場合には、最下段のイオン交換体の下流側に更にイオン交換体を追加したり、或いは、イオン交換体の濃縮量(イオン交換体に流す全体流量)を減らすことが望ましい。
 なお、一つの容器に収納したイオン交換体を称して「フローセル」と言うことがある。
 本発明に係るモノリスイオン交換体は、モノリス状有機多孔質体にイオン交換基(カチオン交換基又はアニオン交換基)が導入されている多孔質体である。モノリスイオン交換体に係るモノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に液の流路となる連通孔を多数有する多孔質体である。そして、モノリスイオン交換体は、このモノリス状有機多孔質体の骨格中にイオン交換基が均一に分布するように導入されている多孔質体である。
 なお、本明細書中、「モノリス状有機多孔質体」を単に「モノリス」とも言い、該モノリスにイオン交換基を導入した「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」という。また、アニオン交換基を導入したものを「アニオン形モノリスイオン交換体」と言い、該モノリスにカチオン交換基を導入したものを「カチオン形モノリスイオン交換体」と言う。
 本発明に係るモノリスイオン交換体は、モノリスにイオン交換基を導入することで得られるものであり、その構造は、連続骨格相と連続空孔相からなる有機多孔質体であって、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50mL/gであることが好ましい。
 モノリスイオン交換体の乾燥状態での連続骨格の厚みは1~100μmであることが好ましい。モノリスイオン交換体の連続骨格の厚みが、1μm以上であると、体積当りのイオン交換容量が低下することがなく、機械的強度の低下が抑制され、特に高流速で通液した際にモノリスイオン交換体の変形が抑制できる。一方、モノリスイオン交換体の連続骨格の厚みが、100μm以下であれば、骨格が太くなり過ぎることはない。なお、連続骨格の厚みは、SEM観察により決定される。
 モノリスイオン交換体の乾燥状態での連続空孔の平均直径は、1~1000μmであることが好ましい。モノリスイオン交換体の連続空孔の平均直径が、1μm以上であれば、通水時の圧力損失の上昇を抑制できる。一方、モノリスイオン交換体の連続空孔の平均直径が、1000μm以下であれば、被処理液とモノリスイオン交換体との接触が十分となり、所定の捕捉力を維持することができる。なお、モノリスイオン交換体の乾燥状態での連続空孔の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。
 モノリスイオン交換体の乾燥状態での全細孔容積は0.5~50mL/gであることが好ましい。モノリスイオン交換体の全細孔容積が、0.5mL/g以上であると、被処理液の接触効率が十分確保でき、更に、単位断面積当りの透過液量も問題なく、処理量の低下を抑制できる。一方、モノリスイオン交換体の全細孔容積が、50mL/g以下であれば、体積当りの所望のイオン交換容量が確保でき、所定の捕捉力を維持できる。また、機械的強度の低下が抑制され、特に高速で通液した際にモノリスイオン交換体が大きく変形し、通液時の圧力損失が急上昇してしまうことを防止できる。なお、全細孔容積は、水銀圧入法で測定される。
 このようなモノリスイオン交換体の構造例としては、特開2002-306976号公報や特開2009-62512号公報に開示されている連続気泡構造や、特開2009-67982号公報に開示されている共連続構造や、特開2009-7550号公報に開示されている粒子凝集型構造や、特開2009-108294号公報に開示されている粒子複合型構造等が挙げられる。
 モノリスイオン交換体の体積当りのイオン交換容量は、0.2~1.0mg当量/mL(水湿潤状態)であることが好ましい。モノリスイオン交換体のイオン交換容量が、0.2mg当量/mL以上であれば、破過するまでの処理水量が本発明の一回当たりの処理水量を十分に確保できる。一方、イオン交換容量が1.0mg当量/mL以下であれば、通水時の圧力損失は問題のない範囲となる。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
<溶離工程>
 本発明では、次に多孔質イオン交換体(モノリスイオン交換体)に捕捉された金属不純物を溶離液で溶離して回収する工程を実施する。この工程を「溶離工程」と呼ぶ。
 溶離液は、酸を含有する水溶液である。溶離液に含有される酸としては、イオン交換体に影響しないものであれば特に制限されず、硝酸、硫酸、塩酸、リン酸等の無機酸、メタンスルホン酸等の有機酸が挙げられる。これらのうち、溶離液に含有される酸としては、モノリスイオン交換体からのイオン性不純物元素が溶離し易く、また、高純度の試薬が必要である点から、硝酸、硫酸、塩酸が好ましい。
 溶離液中の酸濃度は、特に制限されないが、本発明の分析方法は、溶離液中の酸濃度を低くすることができるため、定量下限値を低くすることができる。そのため、溶離液中の酸濃度は、定量下限値が低くなる点で、好ましくは0.1~2.0N、より好ましくは0.5~2.0Nである。酸濃度が0.1N以上であると回収する液量が増加することを抑制できる。一方、酸濃度が2.0N以下であれば、分析装置の定量下限値が高くなることを抑制できる。また、溶離液としては、各金属不純物の含有量が100ppt以下のものが好ましく、各金属不純物の含有量が100ppt以下の硝酸又は塩酸がより好ましく、各金属不純物の含有量が10ppt以下の硝酸又は塩酸が特に好ましい。
 溶離工程において、モノリスイオン交換体に通液する溶離液の量は、モノリスイオン交換体の種類や厚み、通水速度、等により、適宜選択される。本発明の分析方法では、モノリスイオン交換体から金属元素が溶離し易いので、本発明の金属不純物の分析方法は、溶離液の通液量を少なくすることができる。そして、溶離液の通液量の減少は、測定時間の短縮に繋がる。
 溶離工程において、モノリスイオン交換体に溶離液を通液するときの通液条件は、特に制限されない。空間速度(Space Velocity:SV)で表される通液速度は、好ましくは20000h-1以下、より好ましくは10~4000h-1、特に好ましくは300~1000h-1である。また、線速度(Linear Velocity:LV)で表される通液速度は、好ましくは1000m/h以下で、特に好ましくは500m/h以下である。また、通液時間は、溶離液の総通液量と通液速度により、適宜選択される。
 溶離工程では、モノリスイオン交換体に捕捉されていた分析対象の金属不純物が、溶離液により溶離され、溶離液中に移行する。そして、溶離工程を行うことにより、分析対象の金属不純物を含有する回収溶離液を得る。
<分析・測定工程>
 次に該溶離した金属不純物を含む溶離液を分析して該溶離液中の金属不純物の含有量を測定する測定工程を行う。
 回収溶離液中の各金属不純物の含有量を測定する方法としては、特に制限されず、プラズマ質量分析装置(ICP-MS)を用いる方法、プラズマ発光分光分析装置(ICP)、原子吸光光度計、イオンクロマト分析装置等が挙げられる。測定条件は、適宜選択される。
 本発明の分析方法では、測定工程を行うことにより得られる回収溶離液中の各金属不純物の種類と含有量とを求め、回収溶離液の回収量と、超純水の通液工程において、モノリスイオン交換体に通液した超純水の総通液量とから、分析対象の超純水中の各金属不純物の含有量を求める。
 本発明の分析方法の実施の形態例を説明する。例えば、図1に示すように、超純水製造装置(不図示)で得られる超純水(UPW)が、ユースポイントに供給される超純水の製造工程において、ユースポイントに超純水を移送するための超純水移送管11の途中に、分析対象水抜出管12を繋ぎ、分析対象水抜出管12の他端側を、モノリスイオン交換体を備えるフローセル13A及び13Bを直列に繋ぎその下流に積算流量計14を設置した測定キット15の入口に接続する。なお、ここでは2個のフローセルに配置されるモノリスイオン交換体は同じイオン形のものであり、フローセル13Aにカチオン形のモノリスイオン交換体を設置した場合、フローセル13Bも同じくカチオン形のモノリスイオン交換体を設置する。
 次いで、所定量の超純水を通液させた後、測定キット15を、分析対象水抜出管12から、取り外す。このとき、測定キット15の内部へ、外部からの不純物の混入が起こらない方法で取り外すと共に、内部を密閉する。次いで、超純水の製造工程を行っている場所とは違う場所に設けられている溶離装置に、測定キット15から取り外したフローセル13Aおよび13Bを取り付ける。溶離装置の溶離液供給管より、硝酸または塩酸をフローセル13Aおよび13Bにそれぞれ通液し、溶離液で金属不純物を溶離してそれぞれ回収する溶離工程を行う。次いで、回収した溶離液中の金属不純物の含有量を測定する測定工程を行う。なお、国際公開第2019/221186号に記載されているように、分析対象水抜出管12又は後述する第一及び第二分岐管(16,16’)に、あるいは測定キット15自体に溶離液を通水するための溶離液の導入管(不図示)を配置してもよい。これにより、測定キット15(フローセル)を超純水製造装置に取り付けた状態で溶離液をフローセルに通液して溶離工程を行い、回収した溶離液について金属不純物の含有量を測定することもできる。
 また、本発明の他の実施形態例を説明する。例えば、図2に示すように、超純水製造装置(不図示)で得られる超純水(UPW)が、ユースポイントに供給される超純水の製造工程において、ユースポイントに超純水を移送するための超純水移送管11の途中に、分析対象水抜出管12を繋ぎ、分析対象水抜出管12の他端側を、第一分岐管16と第二分岐管16’とに分岐させ、第一分岐管16を、モノリスイオン交換体、例えば、カチオン形のイオン交換体を備えるフローセル13A及び13Bを直列に繋ぎその下流に積算流量計14を設置した測定キット15の入口に接続する。同様に第二分岐管16’を、モノリスイオン交換体、例えばアニオン形のイオン交換体を備えるフローセル13A’及び13B’を直列に繋ぎその下流に積算流量計14’を設置した測定キット15’の入口に接続する。このとき、積算流量計14及び14’で、測定キット15及び15’への超純水の通液総量を測定する。その後は、同様に溶離工程、測定工程を行う。この例では、同じイオン形のモノリスイオン交換体は直列に接続され、異なるモノリスイオン交換体同士は並列に接続されている。
 さらに別の実施形態においては、カチオン形モノリスイオン交換体とアニオン形モノリスイオン交換体を直列に接続して用いることができる。図3はカチオン形モノリスイオン交換体(CEM)とアニオン形モノリスイオン交換体(AEM)を直列に接続して用いる場合の測定キットの構成例を示す。順序として、図3(a)に示すCEM1→CEM2→AEM1→AEM2と図3(b)に示すCEM1→AEM1→CEM2→AEM2とのいずれも可能である。特に図3(b)に示すように、同じイオン形のモノリスイオン交換体が連続していなくても、直列に接続されていることになる。また、1つのフローセルにCEMとAEMを封入して使用してもよい。その場合、図示するような4個ではなく、2個となる。なお、カチオン形とアニオン形の順序は特に制限はなく、図3に示す以外の順序でもよい。また、図3の例では各イオン形毎に2個(2単位)のモノリスイオン交換体を直列に接続しているが、超純水に含まれる金属不純物によっては、カチオン形モノリスイオン交換体の2単位とアニオン形モノリスイオン交換体の1単位の計3単位の組み合わせとしてもよい。特に本発明ではカチオン種の漏洩が起こりやすいことから、少なくともカチオン形モノリスイオン交換体の2単位を直列に接続しておくことが好ましい。
 さらに、図1~3では、同じイオン形のモノリスイオン交換体をそれぞれに2単位直列に接続した例を示しているが、これに限定されず上述した通り3単位以上を接続してもよい。
 モノリスイオン交換体において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、電子プローブマイクロアナライザー(Electron Probe Micro Analyzer;EPMA)を用いることで簡単に確認される。また、イオン交換基が、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
 カチオン形モノリスイオン交換体に導入されているカチオン交換基としては、スルホン酸基、カルボキシル基、イミノ二酢酸基、リン酸基、リン酸エステル基等が挙げられる。
 アニオン形モノリスイオン交換体に導入されているアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。
 モノリスイオン交換体において、連続骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.1~30モル%、好適には0.1~20モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.1モル%以上では、機械的強度が不足することはなく、一方、30モル%以下では、イオン交換基の導入が困難になることがない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
<モノリスイオン交換体の形態例>
 モノリスイオン交換体の形態例としては、以下に示す第1のモノリスイオン交換体や第2のモノリスイオン交換体が挙げられる。また、イオン交換基が導入されるモノリスの形態例としては、以下に示す第1のモノリスや第2のモノリスが挙げられる。
<第1のモノリス及び第1のモノリスイオン交換体の説明>
 第1のモノリスイオン交換体は、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、乾燥状態での全細孔容積が1~50mL/gであり、イオン交換基を有しており、イオン交換基が均一に分布しており、体積当りのイオン交換容量は、0.1~1.0mg当量/mL(水湿潤状態)であるモノリスイオン交換体である。また、第1のモノリスは、イオン交換基が導入される前のモノリスであり、互いにつながっているマクロポアとマクロポアの壁内に平均直径が乾燥状態で1~1000μmの共通の開口(メソポア)を有する連続気泡構造を有し、乾燥状態での全細孔容積が1~50mL/gである有機多孔質体である。
 第1のモノリスイオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径1~1000μm、好ましくは10~200μm、特に好ましくは20~100μmの共通の開口(メソポア)となる連続マクロポア構造体であり、その大部分がオープンポア構造のものである。オープンポア構造は、液体を流せば該マクロポアと該メソポアで形成される気泡内が流路となる。マクロポアとマクロポアの重なりは、1個のマクロポアで1~12個、多くのものは3~10個である。メソポアの乾燥状態での平均直径が1μm以上では、モノリスイオン交換体内部への被処理液の拡散性が低下することはなく、メソポアの乾燥状態での平均直径が1000μm以下では、被処理液とモノリスイオン交換体との接触が十分となる。第1のモノリスイオン交換体の構造が上記のような連続気泡構造となることにより、マクロポア群やメソポア群を均一に形成できると共に、特開平8-252579号公報等に記載されるような粒子凝集型多孔質体に比べて、細孔容積や比表面積を格段に大きくすることができる。
 なお、本発明では、乾燥状態の第1のモノリスの開口の平均直径、乾燥状態の第1のモノリスイオン交換体の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られる細孔分布曲線の極大値を指す。
 第1のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、1~50mL/g、好適には2~30mL/gである。全細孔容積が1mL/g以上であると、被処理液の接触効率が低下することなく、更に、単位断面積当りの透過量が十分となり、処理能力の低下が抑制できる。一方、全細孔容積が50mL/g以下では、機械的強度が十分得られ、特に高流速で通液した際にモノリスイオン交換体が大きく変形してしまうことを抑制できる。更に、被処理液とモノリスイオン交換体との接触効率が十分に満たされ、捕捉性の問題もない。全細孔容積は、従来の粒子状多孔質イオン交換樹脂では、せいぜい0.1~0.9ml/gであるから、それを越える従来には無い1~50ml/gの高細孔容積、高比表面積のものとして使用できる。
 第1のモノリスイオン交換体において、骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3~10モル%、好適には0.3~5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%以上では、機械的強度が不足することなく、一方、10モル%以下では、イオン交換基の導入が阻害されることはない。
 第1のモノリスイオン交換体の骨格を構成する有機ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記有機ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい材料として挙げられる。
 第1のモノリスイオン交換体に導入されているイオン交換基としては、前述のイオン交換基を上げることができる。第2のモノリスイオン交換体においても同様である。
 第1のモノリスイオン交換体において(第2のモノリスイオン交換体においても同じ)、導入されているイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。イオン交換基の分布状況は、前述のようにEPMAを用いることで確認される。また、イオン交換基のこのような均一分布により、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。
 第1のモノリスイオン交換体の体積当りのイオン交換容量は、0.1~1.0mg当量/mL(水湿潤状態)、である。水湿潤状態での体積当りのイオン交換容量が、上記範囲にあることにより、除去性能が高く且つ寿命が長くなる。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。
<第1のモノリス及び第1のモノリスイオン交換体の製造方法>
 第1のモノリスの製造方法としては、特に制限されないが、特開2002-306976号公報記載の方法に準じた、製造方法の一例を以下示す。すなわち、第1のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させてモノリスを形成することにより得られる。このような、第1のモノリスの製造方法は、モノリスの多孔構造の制御が容易である点で、好ましい。
 第1のモノリスの製造で用いられるイオン交換基を含まない油溶性モノマーとしては、カルボン酸基、スルホン酸基等のカチオン交換基及び四級アンモニウム基等のアニオン交換基のいずれも含まず、水に対する溶解性が低く、親油性のモノマーを指すものである。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、本発明においては、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~10モル%、好適には0.3~5モル%とすることが、後の工程でイオン交換基を定量的に導入し、かつ、実用的に十分な機械的強度を確保できる点で好ましい。
 第1のモノリスの製造で用いられる界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2~70質量%の範囲で選択することができる。また、必ずしも必須ではないが、モノリスの気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール;ステアリン酸等のカルボン酸;オクタン、ドデカン、トルエン等の炭化水素;テトラヒドロフラン、ジオキサン等の環状エーテルを系内に共存させることもできる。
 また、第1のモノリスの製造において、重合によりモノリスを形成する際、必要に応じて用いられる重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。
 第1のモノリスの製造において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサー、ホモジナイザー、高圧ホモジナイザーや、被処理物を混合容器に入れ、該混合容器を傾斜させた状態で公転軸の周りに公転させながら自転させることで、被処理物を攪拌混合する、所謂遊星式攪拌装置等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。これらの混合装置のうち、遊星式攪拌装置はW/Oエマルジョン中の水滴を均一に生成させることができ、その平均径を幅広い範囲で任意に設定できるため、好ましく用いられる。
 第1のモノリスの製造において、このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間、加熱重合させればよく、開始剤として過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0~30℃で1~48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去して第1のモノリスを得る。
 第1のモノリスイオン交換体の製造方法としては、特に制限されず、上記第1のモノリスの製造方法において、イオン交換基を含まないモノマーに代えて、イオン交換基を含むモノマー、例えば、上記イオン交換基を含まない油溶性モノマーに、モノメチルアンモニウム、ジメチルアンモニウム基、トリメチルアンモニウム基等のアニオン交換基が導入されているモノマーを用いて重合させ、一段階でモノリスアニオン交換体にする方法、イオン交換基を含まないモノマーを用いて重合させ第1のモノリスを形成し、次いで、アニオン交換基を導入する方法などが挙げられる。これらの方法のうち、イオン交換基を含まないモノマーを用いて重合させ第1のモノリスを形成し、次いで、イオン交換基を導入する方法は、モノリスイオン交換体の多孔構造の制御が容易であり、イオン交換基の定量的導入も可能であるため好ましい。
 第1のモノリスにイオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、四級アンモニウム基を導入する方法としては、モノリスがスチレン-ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;
モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;
モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N-トリメチルアンモニウムエチルアクリレートやN,N,N-トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;
同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法
等が挙げられる。これらの方法のうち、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。
<第2のモノリス及び第2のモノリスイオン交換体の説明>
 第2のモノリスイオン交換体は、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~10mL/gであり、イオン交換基を有しており、体積当りのイオン交換容量が、0.2~1.0mg当量/mL(水湿潤状態)であり、イオン交換基がモノリスイオン交換体中に均一に分布しているモノリスイオン交換体である。また、第2のモノリスは、イオン交換基が導入される前のモノリスであり、全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5~10mL/gである有機多孔質体である。
 第2のモノリスイオン交換体は、平均太さが乾燥状態で1~60μm、好ましくは3~58μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10~200μm、好ましくは15~180μm、特に好ましくは20~150μmの三次元的に連続した空孔とからなる共連続構造体である。
 三次元的に連続した空孔の平均直径が乾燥状態で10μm以上であると、被処理液が拡散しやすく、200μm以下では、被処理液とモノリスイオン交換体との接触が十分となり、その結果、除去性能が十分となる。また、骨格の平均太さが乾燥状態で1μm以上であると、体積当りのイオン交換容量が低下することがなく、機械的強度の低下が抑制される。更に、反応液とモノリスイオン交換体との接触効率が低下することなく、捕捉性能が十分に得られる。一方、骨格の太さが60μm以下では、骨格が太くなり過ぎることはなく、被処理液の拡散が均一になる。
 乾燥状態の第2のモノリスの開口の平均直径、乾燥状態の第2のモノリスイオン交換体の開口の平均直径及び以下に述べる第2のモノリスの製造のI工程で得られる、乾燥状態の第2のモノリス中間体の開口の平均直径は、水銀圧入法により求められ、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、第2のモノリスイオン交換体の骨格の乾燥状態での平均太さは、乾燥状態の第2のモノリスイオン交換体のSEM観察により求められる。具体的には、乾燥状態の第2のモノリスイオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。
 また、第2のモノリスイオン交換体の乾燥状態での重量当りの全細孔容積は、0.5~10mL/gである。全細孔容積が0.5mL/g以上では、被処理液との接触効率が確保でき、更に、単位断面積当りの透過液量も問題なく、処理量の低下が抑制される。一方、全細孔容積が10ml/g以下では、被処理液とモノリスイオン交換体との接触効率が低下することなく、捕捉性能の低下が抑制される。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、被処理液との接触が極めて均一で接触面積も大きくなる。
 第2のモノリスイオン交換体において、骨格を構成する材料は、全構成単位中、0.1~5モル%、好ましくは0.5~3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.1モル%以上では、機械的強度が不足することはなく、一方、5モル%以下では、多孔質体の構造が共連続構造から逸脱し難くなる。芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン-ジビニルベンゼン共重合体やビニルベンジルクロライド-ジビニルベンゼン共重合体が好ましい。
 第2のモノリスイオン交換体に導入されているイオン交換基は、第1のモノリスイオン交換体に導入されているイオン交換基と同様である。
 第2のモノリスイオン交換体において、導入されたイオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。
 第2のモノリスイオン交換体は、体積当り、0.2~1.0mg当量/mL(水湿潤状態)のイオン交換容量を有する。第2のモノリスイオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、基質や溶媒が均一に拡散する。そのため、反応の進行が速い。イオン交換容量が上記範囲にあることにより、除去性能が高く且つ寿命が長くなる。
<第2のモノリス及び第2のモノリスイオン交換体の製造方法>
 第2のモノリスは、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16mL/gを超え、30mL/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体とも記載する。)を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3~5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス中間体の存在下に重合を行い、共連続構造体である有機多孔質体である第2のモノリスを得るIII工程、を行うことにより得られる。
 第2のモノリスの製造方法に係るI工程において、モノリス中間体を得るI工程は、特開2002-306976号公報記載の方法に準拠して行えばよい。
 すなわち、第2のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、三級アミノ基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3~5モル%、好ましくは0.3~3モル%とすることが、共連続構造の形成に有利となるため好ましい。
 第2のモノリスの製造方法に係るI工程で用いられる界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2~70%の範囲で選択することができる。
 また、第2のモノリスの製造方法に係るI工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等が挙げられる。
 第2のモノリスの製造方法に係るI工程において、イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。
 第2のモノリスの製造方法に係るI工程で得られるモノリス中間体(2)は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.1~5モル%、好ましくは0.3~3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16~20ml/gの場合には、共連続構造を形成させるため、架橋構造単位は3モル%未満とすることが好ましい。
 第2のモノリスの製造方法に係るI工程において、モノリス中間体のポリマー材料の種類は、第1のモノリスのポリマー材料と同じものが挙げられる。
 第2のモノリスの製造方法に係るI工程で得られるモノリス中間体の乾燥状態での重量当りの全細孔容積は、16mL/gを超え、30mL/g以下、好適には16mL/gを超え、25mL/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、イオン交換基を導入する場合は、体積当たりのイオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を上記範囲とするには、モノマーと水の比を、概ね1:20~1:40とすればよい。
 また、第2のモノリスの製造方法に係るI工程で得られるモノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5~100μmである。開口の平均直径が乾燥状態で5μm以上では、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなることを抑制でき、流体透過時の圧力損失が大きくなることを抑制できる。一方、100μm以下では、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎることなく、被処理液とモノリスイオン交換体との接触が十分となり、その結果、捕捉性能の低下が抑制できる。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。
 第2のモノリスの製造方法に係るII工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3~5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。
 第2のモノリスの製造方法に係るII工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体(2)と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。
 第2のモノリスの製造方法に係るII工程で用いられる芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5~50倍、好ましくは5~40倍である。芳香族ビニルモノマー添加量がモノリス中間体に対して5倍以上であると、棒状骨格を太くでき、また、イオン交換基を導入する場合、イオン交換基導入後の体積当りのイオン交換容量が小さくなることを抑制できる。一方、芳香族ビニルモノマー添加量が50倍以下では、連続空孔の径が小さくなりすぎることがなく、通液時の圧力損失が大きくなることを抑制できる。
 第2のモノリスの製造方法に係るII工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3~5モル%、特に0.3~3モル%である。架橋剤使用量が0.3モル%以上では、モノリスの機械的強度が不足することがなく、一方、5モル%以下では、イオン交換基を導入する場合、イオン交換基の定量的導入が困難になることがない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、また、イオン交換基を導入する場合、イオン交換基導入反応時にクラックが生じやすくなる。
 第2のモノリスの製造方法に係るII工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30~80質量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30質量%以上では、重合速度が低下したり、重合後のモノリス構造が第2のモノリスの範囲から逸脱したりしてしまうことを抑制できる。一方、芳香族ビニルモノマー濃度が80質量%以下では、重合の暴走が抑制できる。
 第2のモノリスの製造方法に係るII工程で用いられる重合開始剤は、熱又は光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計質量に対して、約0.01~5質量%の範囲で使用することができる。
 第2のモノリスの製造方法に係るIII工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、共連続構造モノリスである第2のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7-501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、第2のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造を持つ第2のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有する第2のモノリスが形成されると考えられる。
 第2のモノリスの製造方法において、反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。
 第2のモノリスの製造方法に係るIII工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3~50倍、好ましくは4~40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有する第2のモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。また、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造の第2のモノリスを得ることができる。
 第2のモノリスの製造方法に係るIII工程の重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択される。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が骨格内で重合し、骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して第2のモノリスを得る。
 第2のモノリスイオン交換体は、III工程で得られた第2のモノリスにイオン交換基を導入するIV工程を行うことにより得られる。
 第2のモノリスにイオン交換基を導入する方法は、第1のモノリスにイオン交換基を導入する方法と同様である。
 第2のモノリス及び第2のモノリスイオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、第2のモノリスイオン交換体は、骨格が太いため、水湿潤状態での体積当りのイオン交換容量を大きくでき、更に、被処理液を低圧、大流量で長期間通液することが可能である。
 モノリスイオン交換体は、他のイオン性不純物の含有量の分析方法で用いられる多孔質膜やイオン交換樹脂に比べ、捕捉したイオン性不純物元素が溶離液により溶離され易いので、本発明の分析方法は、溶離液の酸濃度を低くすることができ、そのため、定量下限値が低くなる。
 モノリスイオン交換体は、他の金属不純物含有量の分析方法で用いられる多孔質膜やイオン交換樹脂に比べ、捕捉した金属元素が溶離液により溶離され易いので、本発明の分析方法は、溶離工程にかかる時間が短くなるため、分析時間を短くすることができる。
 モノリスイオン交換体は、他の金属不純物含有量の分析方法で用いられる多孔質膜やイオン交換樹脂に比べ、分析対象水の通液速度を高くすることができるので、本発明の分析方法は、通液工程にかかる時間が短くなるため、分析時間を短くすることができる。
 従来、分析対象水中の金属不純物含有量が非常に低い場合、例えば、1ppt以下である場合、吸着材に多量の分析対象水を通液する必要がある。本発明の分析方法では、分析対象水(超純水)中の金属不純物が1ng/L未満と非常に低いが、前記多孔質イオン交換体の1単位あたりの体積が0.5~5.0mlおよび、差圧係数が0.01 MPa/LV/m以下であるため、捕捉した金属不純物元素が溶離液により溶離され易い。このために、溶離液の使用量を少なくでき、多孔質(モノリス)イオン交換体への超純水の通液量を少なくすることができる。溶離工程で使用する、硝酸または塩酸の液量は、国際公開第2019/221186号より、体積の最低でも10倍量必要である。また、分析機器で汚染なく分析するための最低限必要な溶離液量は5mlであるまた、低濃度まで分析するための濃縮量をすくなくするため、溶離液量は最大でも50mlであることが望ましい。このことから、1単位あたりに必要なモノリス交換体の体積は0.5~5.0mlであることが望ましい。また、イオン交換体の差圧係数は0.01MPa/LV/m以下、好ましくは0.005MPa/LV/m以下であることが望ましい。さらに、超純水の通液速度を高くすることができるため、短時間で多量の通液が可能であるので、分析における捕捉工程にかける時間を非常に短くすることができる。また、この場合、本発明の分析方法の捕捉工程における圧力係数は、好ましくは0.1~10.0L/min./MPa、特に好ましくは2.0~10.0L/min./MPaである。
 本発明の第一の形態の測定キット(金属不純物捕捉装置)は、
 液体中の金属不純物の含有量を測定する測定キットであって、
 前記液体が通液されるイオン交換体と、
 該イオン交換体に通液された液体の量を計測するための積算流量計と、
を有し、
 前記イオン交換体は同イオン形のイオン交換体を2単位以上直列に接続して設けられ、前記イオン交換体の1単位あたりの体積が0.5~5.0mlであり、かつ、該1単位あたりの差圧係数が0.01 MPa/LV/m以下であることを特徴とする測定キットである。
 フローセルに使用する容器の大きさは特に限定されないが、充填する上記体積のイオン交換体の大きさに併せて設定することが望ましい。充填する容器の断面積が、小さすぎると圧力損失が大きくなり、濃縮に時間がかかる、また、断面積が大き過ぎると、交換体の長さが短くなり、イオンが捕捉されず正しい分析が出来なくなる。このため、断面積の径はφ0.2~5cmであることが望ましい。また、容器の形状は特に限定しないが、円柱状などショートパスを軽減できる形状が望ましい。
 本発明の測定キットは、図1~図3に示す種々の形態を有することができる。
 本発明の測定キットに係る積算流量計は、導入される液の量を計測し積算できるものであれば、特に制限されない。
 本発明の測定キットは、フローセル内のモノリスイオン交換体に、分析対象液及び溶離液を供給するための供給管と、多孔質イオン交換体から排出される排出液を、積算流量計に導入するための導入管と、積算流量計から排出される排出液を、キット外に排出するための排出管と、を有することができる。また、流量を制御するためにフローセルと積算流量計の間、または積算流量計の直後にバルブを設けてもよい。
 本発明の測定キットは、キットを分析対象液が供給される管から取り外した後、内部への不純物混入が起こらないように、内部を密閉するための密閉手段が付設されていることが好ましい。
 本発明の測定キットに係るイオン交換体としては、上記のモノリスイオン交換体を用いることができる。
 次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
 特開2010-234357号公報に係る明細書の実施例の参考例17と同様の方法で、第2のカチオン形モノリスイオン交換体を製造した。
(参考例1)
<カチオン形モノリスイオン交換体の製造>
(I工程;モノリス中間体の製造)
 スチレン5.4g、ジビニルベンゼン0.17g、ソルビタンモノオレエート(以下SMOと略す)1.4gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5~20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は21.0ml/gであった。
(共連続構造モノリスの製造)
 次いで、スチレン76.0g、ジビニルベンゼン4.0g、1-デカノール120g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を直径70mm、厚さ約40mmの円盤状に切断して4.1gを分取した。分取したモノリス中間体を内径110mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した(III工程)。
 このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を3.2モル%含有したモノリス(乾燥体)の内部構造をSEMにより観察したところ、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは17μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは41μm、全細孔容積は2.9ml/gであった。
(共連続構造のカチオン形モノリスイオン交換体(CEM)の製造)
 上記の方法で製造したモノリスを、直径75mm、厚み約15mmの円柱状に切断した。モノリスの重量は18gであった。これにジクロロメタン1500mlを加え、35℃で1時間加熱した後、10℃以下まで冷却し、クロロ硫酸99gを徐々に加え、昇温して35℃で24時間反応させた。その後、メタノールを加え、残存するクロロ硫酸をクエンチした後、メタノールで洗浄してジクロロメタンを除き、更に純水で洗浄して共連続構造を有するカチオン形モノリスイオン交換体CEMを得た。
(カチオン形モノリスイオン交換体CEMの分析)
 また、得られたカチオン形モノリスイオン交換体を一部切り出し、乾燥させた後、その内部構造をSEMにより観察したところ、当該モノリスイオン交換体は共連続構造を維持していることを確認した。また、該モノリスイオン交換体の反応前後の膨潤率は1.4倍であり、体積当りのカチオン交換容量は水湿潤状態で0.72mg当量/mlであった。水湿潤状態でのモノリスの連続空孔の大きさを、モノリスの値と水湿潤状態のカチオン交換体の膨潤率から見積もったところ70μmであり、骨格の直径は23μm、全細孔容積は2.9ml/gであった。
 また、水を透過させた際の圧力損失の指標である差圧係数は、0.005MPa/m・LVであった。更に、該モノリスイオン交換体のナトリウムイオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは16mmであり、市販の強酸性カチオン交換樹脂であるアンバーライトIR120B(商品名、ロームアンドハース社製)の値(320mm)に比べて圧倒的に短いばかりでなく、従来の連続気泡構造を有するカチオン形モノリスイオン交換体の値に比べても短かった。
 次に、該モノリスイオン交換体中のスルホン酸基の分布状態を確認するため、EPMAにより硫黄原子の分布状態を観察した。その結果、スルホン酸基は該モノリスイオン交換体の骨格表面及び骨格内部(断面方向)にそれぞれ均一に導入されていることが観察された。
(比較例1)
 上記のカチオン形モノリスイオン交換体を、直径10mm×高さ50mm(2.87mL)の形状に切り出し、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)製の充填容器に充填した。
 次いで、充填容器内に、超純水を、濃縮量が5000Lとなるように、約500mL/min.(SV=8000h-1、LV=400m/h)で、通液し、1単位のカチオン形モノリスイオン交換体(CEM1)への通液を行った。
 次いで、溶離液として2Nの硝酸を用い、液量50mLで回収した。回収液を、ICP-MSで測定し、表1に示す各金属元素の濃度を測定した。
(分析)
 カチオン形モノリスイオン交換体に捕捉された各元素の含有量を、ICP-MS(アジレントテクノロジー社製、8900)にて測定した。
 なお、ICP-MSでの含有量の分析においては、予め、複数の含有量の標準試料を用いてカウント値(CPS)と金属含有量の検量線を作製しておき、試験サンプル(試験水又は処理水)を測定し、検量線に基づいて、そのカウント値に対応する金属含有量を、試験水又は処理水の金属含有量とした。
(実施例1)
 上記カチオン形モノリスイオン交換体のフローセルを直列に2単位(CEM1、CEM2)接続した以外は比較例1と同様にして超純水の通液工程、溶離工程及び分析工程を実施した。結果を表1に示す。
(実施例2)
 上記カチオン形モノリスイオン交換体のフローセルを、直列に3単位(CEM1、CEM2、CEM3)接続した以外は比較例1と同様にして超純水の通液工程、溶離工程及び分析工程を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表中、「<1[pg/L]」は本手法の定量下限未満であることを示す。したがって、Mgについては、比較例1、実施例1、実施例2から超純水中の濃度が10pg/Lであることが確認されたが、その他の元素では、実施例1,2の結果から1単位のモノリスイオン交換体では十分に捕捉しきれず、正しい超純水中の金属濃度を示していないことが確認された。実施例2に示すように、CEM3がすべての金属元素で定量下限未満であり、CEM1+CEM2の濃度が超純水中の金属濃度であることが確認された。
 濃度の算出方法としては、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000002
 従来の方法(加熱濃縮法)では0.1ng/Lが限界であったが、本発明の吸着濃縮法では定量下限1pg/L(0.001ng/L)を分析することができる。
(アニオン形モノリスイオン交換体の製造)
 上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離して、アニオン形モノリスイオン交換体を得た。
(比較例2)
 上記アニオン形モノリスイオン交換体を、直径10mm×高さ50mmの形状に切り出し、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)製の充填容器に充填して、アニオン形モノリスイオン交換体のフローセルを得た。
 次いで、充填容器内に、超純水を、濃縮量が100Lとなるように、約100mL/min.(SV=1600h-1、LV=80m/h)で通液し、1単位のアニオン形モノリスイオン交換体(AEM1)への通液を行った。
 次いで、溶離液として2Nの硝酸を用い、液量50mLで回収した。回収液を、ICP-MSで測定し、表2に示すホウ素元素の濃度を測定した。
(分析)
 モノリスイオン交換体に捕捉された各元素の含有量を、ICP-MS(アジレントテクノロジー社製、8900)にて測定した。
 なお、ICP-MSでの含有量の分析においては、予め、複数の含有量の標準試料を用いてカウント値(CPS)と金属含有量の検量線を作製しておき、試験サンプル(試験水又は処理水)を測定し、検量線に基づいて、そのカウント値に対応する金属含有量を、試験水又は処理水の金属含有量とした。
(実施例3)
 上記アニオン形モノリスイオン交換体のフローセルを直列に2単位(AEM1、AEM2)接続した以外は比較例2と同様にして超純水の通液工程、溶離工程及び分析工程を実施した。結果を表2に示す。
(実施例4)
 上記アニオン形モノリスイオン交換体のフローセルを、直列に3単位(AEM1、AEM2、AEM3)接続した以外は比較例1と同様にして超純水の通液工程、溶離工程及び分析工程を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2中、「<0.05[ng/L]」は本手法の定量下限未満であることを示す。
 表2に示すように、比較例2では超純水中のホウ素濃度が0.22ng/Lであると確認されたが、実施例3,4の結果から1単位のアニオン形モノリスイオン交換体では十分に捕捉しきれず、正しい超純水中のホウ素濃度を示していないことが確認された。実施例4に示すように、AEM3が定量下限未満であり、AEM1+AEM2の濃度0.37ng/Lが超純水中のホウ素濃度であることが確認された。このように、イオン交換体の直列に接続する単位数は最下流のイオン交換体からの溶離液中の不純物成分の含有量が定量下限未満となる最小数であることが好ましい。
11     超純水移送管
12     分析対象水抜出管
13     フローセル
13A、13A’、13B、13B’ フローセル
14、14’ 積算流量計
15、15’ 測定キット
16     第一分岐管
16’    第二分岐管
CEM    カチオン形モノリスイオン交換体
AEM    アニオン形モノリスイオン交換体
UPM    超純水

Claims (7)

  1.  液体中の金属不純物の含有量を分析する方法であって、
     該液体をイオン交換体に通液する通液工程と、
     該イオン交換体に捕捉された金属不純物を溶離液で溶離して回収する溶離工程と、
     該溶離した金属不純物を含む溶離液を分析して、該液体中の金属不純物の含有量を測定する測定工程と
    を有し、
     前記イオン交換体は、同イオン形のイオン交換体を2単位以上直列に接続して使用し、
     前記イオン交換体の1単位あたりの体積が0.5~5.0mlであり、かつ、該1単位あたりの差圧係数が0.01MPa/LV/m以下であることを特徴とする分析方法。
  2.  上段から順番に前記溶離工程と測定工程を前記イオン交換体の1単位毎に行い、前記測定工程で測定した前記液体中の金属不純物の含有量が定量下限値未満となった場合に、定量下限値未満になるまでの前記液体中の金属不純物の含有量の合計量を、前記液体中の金属不純物の含有量とすることを特徴とする請求項1に記載の分析方法。
  3.  前記イオン交換体がモノリス状有機多孔質イオン交換体である請求項1または2に記載の分析方法。
  4.  前記イオン交換体の単位数は、最後段のイオン交換体に基づいて分析した金属不純物の含有量が定量下限値未満となる最小数である請求項1~3のいずれか1項に記載の分析方法。
  5.  液体中の金属不純物の含有量を測定する測定キットであって、
     前記液体が通液されるイオン交換体と、
     該イオン交換体に通液された液体の量を計測するための積算流量計と、
    を有し、
     前記イオン交換体は同イオン形のイオン交換体を2単位以上直列に接続して設けられ、前記イオン交換体の1単位あたりの体積が0.5~5.0mlであり、かつ、該1単位あたりの差圧係数が0.01MPa/LV/m以下であることを特徴とする測定キット。
  6.  前記イオン交換体がモノリス状有機多孔質イオン交換体である請求項5に記載の測定キット。
  7.  前記イオン交換体の単位数は、最後段のイオン交換体に基づいて分析した金属不純物の含有量が定量下限値未満となる最小数である請求項5または6に記載の測定キット。
PCT/JP2021/037874 2020-11-12 2021-10-13 金属不純物含有量の分析方法 WO2022102326A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237019214A KR20230104263A (ko) 2020-11-12 2021-10-13 금속 불순물 함유량의 분석 방법
US18/036,525 US20230406729A1 (en) 2020-11-12 2021-10-13 Method for analyzing metal impurity content
CN202180075960.2A CN116438005A (zh) 2020-11-12 2021-10-13 用于分析金属杂质的含量的方法
JP2022561345A JP7503646B2 (ja) 2020-11-12 2021-10-13 金属不純物含有量の分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188471 2020-11-12
JP2020188471 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102326A1 true WO2022102326A1 (ja) 2022-05-19

Family

ID=81601813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037874 WO2022102326A1 (ja) 2020-11-12 2021-10-13 金属不純物含有量の分析方法

Country Status (6)

Country Link
US (1) US20230406729A1 (ja)
JP (1) JP7503646B2 (ja)
KR (1) KR20230104263A (ja)
CN (1) CN116438005A (ja)
TW (1) TW202234060A (ja)
WO (1) WO2022102326A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153586A (ja) * 1997-11-20 1999-06-08 Tosoh Corp クロマトグラフ用流路切換えバルブ
JP2001153854A (ja) * 1999-11-29 2001-06-08 Japan Organo Co Ltd 不純物濃度モニター方法およびシステム
JP2010243476A (ja) * 2009-03-18 2010-10-28 Japan Organo Co Ltd イオンクロマトグラフィー装置用カラム、サプレッサー及びイオンクロマトグラフィー装置
JP2014028370A (ja) * 2009-03-10 2014-02-13 Japan Organo Co Ltd イオン吸着モジュール及び水処理方法
WO2019221186A1 (ja) * 2018-05-17 2019-11-21 オルガノ株式会社 金属不純物含有量の分析方法及び金属不純物含有量の分析キット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015384A (ja) 1999-06-30 2001-01-19 Tokin Corp 積層セラミックコンデンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153586A (ja) * 1997-11-20 1999-06-08 Tosoh Corp クロマトグラフ用流路切換えバルブ
JP2001153854A (ja) * 1999-11-29 2001-06-08 Japan Organo Co Ltd 不純物濃度モニター方法およびシステム
JP2014028370A (ja) * 2009-03-10 2014-02-13 Japan Organo Co Ltd イオン吸着モジュール及び水処理方法
JP2010243476A (ja) * 2009-03-18 2010-10-28 Japan Organo Co Ltd イオンクロマトグラフィー装置用カラム、サプレッサー及びイオンクロマトグラフィー装置
WO2019221186A1 (ja) * 2018-05-17 2019-11-21 オルガノ株式会社 金属不純物含有量の分析方法及び金属不純物含有量の分析キット

Also Published As

Publication number Publication date
KR20230104263A (ko) 2023-07-07
US20230406729A1 (en) 2023-12-21
TW202234060A (zh) 2022-09-01
CN116438005A (zh) 2023-07-14
JP7503646B2 (ja) 2024-06-20
JPWO2022102326A1 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
JP7196165B2 (ja) 金属不純物含有量の分析方法及び金属不純物含有量の分析キット
US9346895B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, and process for producing the monolithic organic porous body and the monolithic organic porous ion exchanger
US10647648B2 (en) Method for purifying organic solvent
WO2004014548A1 (ja) ホウ素選択吸着能を有する有機多孔質体、これを用いたホウ素除去モジュールおよび超純水製造装置
JP5486162B2 (ja) モノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体
JP4333919B2 (ja) 有機多孔質イオン交換体、その製造方法、イオン濃縮カラム及びイオンクロマトグラフィー装置
JP2010264344A (ja) 超純水製造装置
JP4034163B2 (ja) 有機多孔質体、その製造方法および有機多孔質イオン交換体
JP2010259989A (ja) 白金族金属担持触媒、過酸化水素の分解処理水の製造方法、溶存酸素の除去処理水の製造方法及び電子部品の洗浄方法
WO2022102326A1 (ja) 金属不純物含有量の分析方法
JP7266029B2 (ja) 超純水の製造方法、超純水製造システム及びイオン交換体充填モジュール
JP7081974B2 (ja) 液体精製カートリッジ及び液体の精製方法
JP5718435B2 (ja) イオンクロマトグラフィー装置用カラム、サプレッサー及びイオンクロマトグラフィー装置
US12025603B2 (en) Method for analyzing metal impurity content and kit for analyzing metal impurity content
JP5567958B2 (ja) 白金族金属担持触媒の製造方法
JP7289248B2 (ja) 不純物検知装置及び不純物検知方法
JP2021084045A (ja) 超純水製造装置とその水質管理方法
JP2021186792A (ja) アニオン交換体のイオン形変更方法およびアニオン交換体の製造方法
JP2005257459A (ja) イオンクロマトグラフィー試料の濃縮方法及びイオンクロマトグラフィー用濃縮装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561345

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036525

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237019214

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891573

Country of ref document: EP

Kind code of ref document: A1