WO2022077856A1 - 一种负极活性材料及其制备方法 - Google Patents

一种负极活性材料及其制备方法 Download PDF

Info

Publication number
WO2022077856A1
WO2022077856A1 PCT/CN2021/080989 CN2021080989W WO2022077856A1 WO 2022077856 A1 WO2022077856 A1 WO 2022077856A1 CN 2021080989 W CN2021080989 W CN 2021080989W WO 2022077856 A1 WO2022077856 A1 WO 2022077856A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode active
active material
silicon oxide
oxide particles
Prior art date
Application number
PCT/CN2021/080989
Other languages
English (en)
French (fr)
Inventor
方自力
杨乐之
涂飞跃
陈涛
汤刚
唐唯佳
陈文强
覃事彪
Original Assignee
长沙矿冶研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙矿冶研究院有限责任公司 filed Critical 长沙矿冶研究院有限责任公司
Publication of WO2022077856A1 publication Critical patent/WO2022077856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and in particular relates to a negative electrode active material and a preparation method thereof.
  • lithium-ion batteries have great advantages in terms of development space, service life and electrical performance, and are quite competitive.
  • the rapidly developing power battery market has put forward higher requirements for lithium-ion batteries: higher energy density, better cycle life, better high-low temperature charge-discharge performance and safety performance, etc. Therefore, as a lithium-ion battery
  • the important components of lithium ion battery and the key factors affecting the electrical performance of the battery the research on electrode materials for lithium ion batteries needs to be further deepened and improved.
  • silicon exhibits high capacity, and at the same time, this type of material has a low lithium-deintercalation voltage, and is considered to be the most promising alternative to carbon materials to become the anode material for next-generation lithium-ion batteries.
  • silicon when silicon is used as a negative electrode active material, there is a large volume effect in the charging and discharging process, which leads to the easy disconnection between the negative electrode material and the electrode, which affects the cycle life and cycle performance of the battery and severely limits the silicon Utilization and commercialization of anode materials.
  • the technical problem to be solved by the present invention is to provide a negative electrode active material and a preparation method thereof in order to overcome the deficiencies and defects mentioned in the above background art.
  • the negative electrode active material of the invention has the characteristics of high cycle life and strong expandability, is simple and convenient to prepare, and is suitable for large-scale industrial production.
  • the technical scheme proposed by the present invention is:
  • a negative electrode active material comprising silicon oxide particles, a carbon material layer and a carboxylation group; the carboxylation group is connected on the surface of the silicon oxide particles, and the carbon material layer covers the silicon oxide particles and carboxyl groups outside of the group.
  • the design idea of the above technical solution is that by carboxylating the silicon oxide particles, the carboxylated group is connected to the surface of the silicon oxide particles, and extends into the carbon material layer in the process of further carbon coating.
  • the inner surface (it can be judged by common sense, the surface of the carbon material layer covering the surface of the silicon oxide particles in contact with the silicon oxide particles is the inner surface), which can be strengthened by the immobilization of the carboxylated groups extending into the carbon material layer.
  • the carbon material layer is connected with the silicon oxide particles, and the carboxylated group can also be used to transfer other groups through its grafting on the surface of the silicon oxide particles Si-O-Si. It can continue to connect other metal elements or modifying groups to achieve the purpose of improving material properties.
  • the carboxylated group is one or more of -COOH, -COO-Si-R and -COO-M, wherein R is a group or atom containing a non-metal element, and M for metal elements.
  • the mass fraction of the carboxylated group in the total mass of the negative electrode active material is A, and A ⁇ 10%. Excessive mass of carboxylated groups will affect the electrochemical performance of the material. The inventors have found that the maximum mass fraction of carboxylated groups is 10%.
  • the carbon material layer covers more than 30% of the surface area of the silicon oxide particles. Due to the high reversible specific capacity and electrical conductivity of carbon materials, coating silicon oxide with a carbon material layer can improve the specific capacity and electrical conductivity of silicon-containing active material particles, thereby improving the negative electrode active material and its applications. Regarding the electrical properties of the battery, if the coverage area of the carbon material layer is less than 30%, the effect of improving the electrical properties of the negative electrode material is not obvious.
  • the carbon material layer accounts for 0.01% to 30% of the total mass of the negative electrode active material.
  • the silicon oxide particles include a silicon phase and a silicon dioxide phase, and the silicon oxide particles are represented by the chemical formula SiOx, wherein 0.5 ⁇ x ⁇ 1.7.
  • the silicon phase and the silicon dioxide phase contain metal elements, or the silicon phase or the silicon dioxide phase contains metal elements.
  • the presence of metal elements in the silicon and/or silica phases can improve the electrochemical properties of the silicon oxide particles.
  • the metal element is one or more of titanium element, aluminum element, alkali metal and alkaline earth metal.
  • the above-mentioned types of metal elements have excellent electrical conductivity, and therefore improve the electrical properties of silicon oxide particles better than other metal elements.
  • the metal element is one or more of Li, Mg, Ca, Al and Ti.
  • the electrical conductivity of the above metals is better than that of silicon, or the relative oxygen content of the material can be reduced, and the electrical performance of the silicon oxide particles can be improved to the greatest extent.
  • the ratio of the mass of the metal element to the total mass of the negative electrode active material is B, 0 ⁇ B ⁇ 20%.
  • the present invention also provides a preparation method of the negative electrode active material of the above technical solution, which specifically includes the following steps:
  • the preparation of the negative electrode material can be completed through two simple operations by first preparing the silicon oxide particles, and then subjecting the silicon oxide particles to carboxylation treatment and then carbon coating.
  • the prepared negative electrode material can improve the coating effect of the carbon coating layer, and reduce the adverse effect of the volume effect of the silicon-containing negative electrode material to a certain extent.
  • the specific operation of the carboxylation treatment is as follows: the silicon oxide particles are immersed in a mixed solution of H 2 O 2 and H 2 SO 4 (volume ratio is 1:3), and then Wetting with CH 3 CH 2 OH, coupling with a coupling agent, and then adding acid anhydride for carboxylation to obtain carboxylated silicon oxide particles.
  • the negative electrode active material of the present invention has superior electrical properties, can enhance the degree of bonding between the carbon material layer coated on the surface of the material and the silicon oxide particles inside the material, and can also enhance the negative electrode active material of the present invention after being prepared into a negative electrode.
  • the preparation method of the negative electrode active material of the present invention has the advantages of simple process, simple operation and high production capacity, and can be suitable for large-scale industrial production.
  • FIG. 1 is a schematic structural diagram of the negative electrode active material of Example 1 of the present invention.
  • FIG. 2 is a scanning electron microscope image (magnification of 500 times) of the negative electrode active material of Example 1 of the present invention.
  • FIG. 3 is a graph showing the results of testing the cycle performance of batteries according to Examples 1, 2 and Comparative Example 1 of the present invention.
  • the negative electrode active material of this embodiment includes silicon oxide particles, a carbon material layer, and a carboxylated group; the carboxylated group is connected to the surface of the silicon oxide particle, and the carbon material layer covers the silicon oxide particle and the carboxylated group. external.
  • the structure of the negative electrode active material is shown in FIG. 1 .
  • the carboxylated group is a carboxyl group, and its mass accounts for 8% of the total mass of the negative electrode active material.
  • the carbon material layer covers more than 80% of the surface of the silicon oxide particles, and its mass accounts for 10% of the total mass of the negative electrode active material.
  • the silicon oxide particles include a silicon phase and a silicon dioxide phase, which are represented by the chemical formula SiO x , where 0.5 ⁇ x ⁇ 1.7.
  • Li is contained in the silicon phase and the silicon dioxide phase of the silicon oxide particles.
  • the negative electrode active material of this embodiment includes silicon oxide particles, a carbon material layer, and a carboxylated group; the carboxylated group is connected to the surface of the silicon oxide particle, and the carbon material layer covers the surface of the silicon oxide particle and the carboxylated group the outer layer, and the carboxylated group protrudes into the interior of the carbon material layer.
  • the carboxylated group is a -COO-Li group, and its mass accounts for 4% of the total mass of the negative electrode active material.
  • the carbon material layer covers 90% of the surface area of the silicon oxide particles, and its mass accounts for 15% of the total mass of the negative electrode active material.
  • the silicon oxide particles include a silicon phase and a silicon dioxide phase, which are represented by the chemical formula SiO x , where 0.5 ⁇ x ⁇ 1.7.
  • Li is contained in the silicon phase and the silicon dioxide phase of the silicon oxide particles.
  • the carboxylated silicon oxide particles are kneaded at high speed using pitch with a mass fraction of 25%, and then calcined at 1100° C. in an inert atmosphere, and then pre-lithiated to obtain a negative electrode active material.
  • the preparation method of the negative electrode active material of this comparative example comprises the following steps:
  • Example 1 The silicon-containing materials of Example 1, Example 2 and the silicon-containing material of Comparative Example 1 were made into negative electrodes and then prepared into batteries, and then a charge-discharge cycle test was carried out. The results are shown in Figure 3. It can be seen from Figure 3 that Example 1 Compared with Example 2, Comparative Example 1 exhibits excellent cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种负极活性材料及其制备方法,负极活性材料包括硅氧化物颗粒、碳材料层和羧基化基团;羧基化基团连接在硅氧化物颗粒表面,碳材料层覆盖在硅氧化物颗粒和羧基化基团的外部;负极活性材料的制备方法包括以下步骤:包括以下步骤:(1)制备硅氧化物颗粒,并对硅氧化物颗粒进行羧基化处理,得到羧基化硅氧化物颗粒;(2)对羧基化硅氧化物颗粒进行碳包覆,得到负极活性材料。本发明能够改善负极活性材料的循环寿命和电学性能。

Description

一种负极活性材料及其制备方法 技术领域
本发明属于锂离子电池领域,尤其涉及一种负极活性材料及其制备方法。
背景技术
在现有的二次电池种类中,锂离子电池在发展空间、使用寿命和电学性能等方面都具有较大的优势,具备相当的竞争力。目前,高速发展的动力电池市场对锂离子电池提出了更高的要求:更高的能量密度、更好的循环寿命、更好的高低温充放电性能和安全性能等,因此,作为锂离子电池的重要组成部分和影响电池电学性能的关键因素,关于锂离子电池电极材料的研究还需要进一步地深入与完善。
硅作为新型负极活性材料表现出了很高的容量,同时该类材料的脱嵌锂电压较低,被认为是最有希望替代碳材料成为下一代锂离子电池的负极材料。但是硅作为负极活性材料使用时在充放电过程中存在较大的体积效应,导致负极材料与电极之间的联系易断开,从而影响电池的循环寿命和循环性能骤降,严重地限制了硅负极材料的利用和商业化进程。
发明内容
本发明所要解决的技术问题是,为克服以上背景技术中提到的不足和缺陷,提供一种负极活性材料及其制备方法。本发明的负极活性材料具有循环寿命高、可扩展性强的特点,且制备简单便捷,适用于大规模产业化生产。
为解决上述技术问题,本发明提出的技术方案为:
一种负极活性材料,包括硅氧化物颗粒、碳材料层和羧基化基团;所述羧基化基团连接在所述硅氧化物颗粒表面,所述碳材料层覆盖在硅氧化物颗粒和羧基化基团的外部。
上述技术方案的设计思路在于,通过对硅氧化物颗粒进行羧基化,使羧基化基团连接在硅氧化物颗粒的表面,并在进一步进行碳包覆的过程中伸入碳材料层的内部以及内表面(以常识可判断,覆盖在硅氧化物颗粒表面的碳材料层与硅氧化物颗粒接触的表面为其内表面),能够通过伸入碳材料层内部的羧基化基团的固定作用加强在制备成负极后碳材料层与硅氧化物颗粒的联系,且该羧基化基团还可通过其对硅氧化物颗粒Si-O-Si表面的嫁接,起到转接其他多种基团的作用,续接其他金属元素或改性基团,达到提升材料性能的目的。
作为上述技术方案的优选,所述羧基化基团为-COOH、-COO-Si-R和-COO-M中的一种或多种,其中R为含非金属元素的基团或原子,M为金属元素。
作为上述技术方案的优选,所述羧基化基团占负极活性材料总质量的质量分数为A,A<10%。羧基化基团质量过大会影响材料的电化学性能,经发明人研究发现,羧基化基团质量分数最大值为10%。
作为上述技术方案的优选,所述碳材料层覆盖所述硅氧化物颗粒表面30%以上的面积。由于碳材料具有较高的可逆比容量和导电性能,使用碳材料层对硅氧化物进行包覆能够改善含硅活性物质颗粒的比容量和导电性,从而提高负极活性材料及其所应用于的电池的电学性能,若是碳材料层的覆盖面积小于30%,则其对负极材料电学性能的提升效果则不明显。
作为上述技术方案的优选,所述碳材料层占负极活性材料总质量的0.01%~30%。经发明人多次试验和反复研究发现,碳材料层的质量占比位于上述范围内时,羧基化基团对碳材料层和硅氧化物颗粒之间的固定作用最佳,而且对负极材料电学性能的提升效果最明显。
作为上述技术方案的进一步优选,所述硅氧化物颗粒包括硅相和二氧化硅相,所述硅氧化物颗粒通过化学式SiOx表示,其中,0.5≤x≤1.7。
作为上述技术方案的进一步优选,所述硅相和二氧化硅相中含有金属元素,或所述硅相或二氧化硅相中含有金属元素。硅相和/或二氧化硅相中金属元素的存在可改善硅氧化物颗粒的电化学性能。
作为上述技术方案的进一步优选,所述金属元素为钛元素、铝元素、碱金属和碱土金属中的一种或多种。上述种类的金属元素的导电性优良,因此对于硅氧化物颗粒电学性能的提升较其他金属元素更好。
所述金属元素为Li、Mg、Ca、Al和Ti中的一种或多种。上述几种金属的导电性较硅好或可以降低材料的相对氧含量,能够最大程度上提高硅氧化物颗粒在电学方面的表现。
所述金属元素的质量占所述负极活性材料总质量的比例为B,0<B<20%。
基于同一技术构思,本发明还提供一种上述技术方案的负极活性材料的制备方法,具体包括以下步骤:
(1)制备硅氧化物颗粒,并对所述硅氧化物颗粒进行羧基化处理,得到羧基化硅氧化物颗粒;
(2)对所述羧基化硅氧化物颗粒进行碳包覆,得到负极活性材料。
上述技术方案的设计思路在于,通过先制备硅氧化物颗粒,将硅氧化物颗粒进行羧基化处理后再进行碳包覆,可通过两步简单操作完成负极材料的制备,流程简单简便,适合大规模产业化生产,制备得到的负极材料可以改善碳包覆层的包覆效果,一定程度上减少了含硅负极材料体积效应的不良影响。
作为上述技术方案的进一步优选,所述羧基化处理的具体操作为:将所述硅氧化物颗粒浸渍在H 2O 2与H 2SO 4(体积比为1:3)的混合溶液中,再经CH 3CH 2OH润湿,并使用偶联剂进行偶连,再加入酸酐进行羧基化,得到羧基化硅氧化物颗粒。
与现有技术相比,本发明的优点在于:
(1)本发明的负极活性材料电学性能优越,能够增强材料表面包覆的碳材料层与材料内部的硅氧化物颗粒的结合程度,还能增强在制备成负极后本发明的负极活性材料与负极极片的粘结剂之间的作用力,从而防止因含硅的负极活性材料循环时的体积效应造成的循环寿命降低的问题;
(2)通过本发明的负极活性材料的制备方法,工艺简单、操作简便、产能高,可适用于大规模产业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1的负极活性材料的结构示意图。
图2为本发明实施例1的负极活性材料的扫描电镜图(放大倍数为500倍)。
图3为本发明实施例1、2与对比例1制作成电池后进行循环性能测试结果图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
本实施例的负极活性材料,包括硅氧化物颗粒、碳材料层和羧基化基团;羧基化基团连接在硅氧化物颗粒表面,碳材料层覆盖在硅氧化物颗粒和羧基化基团的外部。该负极活性材料的结构如图1所示。
本实施例中,羧基化基团为羧基基团,且其质量占负极活性材料总质量8%。
本实施例中,碳材料层覆盖硅氧化物颗粒表面80%以上的面积,且其质量占负极活性材料总质量的10%。
本实施例中,硅氧化物颗粒包括硅相和二氧化硅相,通过化学式SiO x表示,其中,0.5≤x≤1.7。
本实施例中,硅氧化物颗粒的硅相和二氧化硅相中含有Li。
本实施例的负极活性材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到硅氧化物颗粒SiO x
(2)对硅氧化物颗粒浸渍在H 2O 2与H 2SO 4(体积比为1:3)的混合溶液中,再经CH 3CH 2OH润湿,并使用APTES(硅烷偶联剂3-氨丙基三乙氧基硅烷)进行偶连,再加入琥珀酸酐进行羧基化,得到羧基化硅氧化物颗粒;
(3)对羧基化硅氧化物颗粒使用烃类气体进行化学气相沉积,并进行预锂化,得到负极活性材料。
实施例2:
本实施例的负极活性材料,包括硅氧化物颗粒、碳材料层和羧基化基团;羧基化基团连接在硅氧化物颗粒表面,碳材料层覆盖在硅氧化物颗粒表面以及羧基化基团的外层,且羧基化基团伸入碳材料层的内部。
本实施例中,羧基化基团为-COO-Li基团,且其质量占负极活性材料总质量的4%。
本实施例中,碳材料层覆盖硅氧化物颗粒表面90%的面积,且其质量占负极活性材料总质量的15%。
本实施例中,硅氧化物颗粒包括硅相和二氧化硅相,通过化学式SiO x表示,其中,0.5≤x≤1.7。
本实施例中,硅氧化物颗粒的硅相和二氧化硅相中含有Li。
本实施例的负极活性材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到硅氧化物颗粒SiO x
(2)对硅氧化物颗粒浸渍在H 2O 2与H 2SO 4(体积比为1:3)的混合溶液中,再经CH 3CH 2OH润湿,并使用APTES进行偶连,再加入定二酸酐进行羧基化,得到羧基化硅氧化物颗粒;
(3)对羧基化硅氧化物颗粒使用质量分数25%的沥青进行高速混捏,然后经1100℃惰性气氛下进行焙烧后,进行预锂化,得到负极活性材料。
对比例1:
本对比例的负极活性材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到硅氧化物颗粒SiO x
(2)对硅氧化物颗粒使用烃类气体进行化学气相沉积,并进行预锂化,得到负极活性材料。
将实施例1、实施例2的含硅材料以及对比例1的含硅材料制成负极再制备成电池后,进行充放电循环测试,结果如图3所示,由图3可见,实施例1和实施例2相比对比例1,表现出了优良的循环性能。

Claims (10)

  1. 一种负极活性材料,其特征在于,包括硅氧化物颗粒、碳材料层和羧基化基团;所述羧基化基团连接在所述硅氧化物颗粒表面,所述碳材料层覆盖在硅氧化物颗粒和羧基化基团的外部。
  2. 如权利要求1所述的负极活性材料,其特征在于,所述羧基化基团为-COOH、-COO-Si-R和-COO-M中的一种或多种,其中R为含非金属元素的基团或原子,M为金属元素。
  3. 如权利要求1所述的负极活性材料,其特征在于,所述羧基化基团占负极活性材料总质量的质量分数为A,A<10%。
  4. 如权利要求1所述的负极活性材料,其特征在于,所述碳材料层覆盖所述硅氧化物颗粒表面30%以上的面积。
  5. 如权利要求1所述的负极活性材料,其特征在于,所述碳材料层占负极活性材料总质量的0.01%~30%。
  6. 如权利要求1-5任一所述的负极活性材料,其特征在于,所述硅氧化物颗粒包括硅相和二氧化硅相,所述硅氧化物颗粒通过化学式SiO x表示,其中,0.5≤x≤1.7。
  7. 如权利要求6所述的负极活性材料,其特征在于,所述硅相和二氧化硅相中含有金属元素,或所述硅相或二氧化硅相中含有金属元素。
  8. 如权利要求7所述的负极活性材料,其特征在于,所述金属元素为钛元素、铝元素、碱金属和碱土金属中的一种或多种。
  9. 如权利要求7所述的负极活性材料,其特征在于,所述金属元素的质量占所述负极活性材料总质量的比例为B,0<B<20%。
  10. 一种权利要求1所述的负极活性材料的制备方法,其特征在于,包括以下步骤:
    (1)制备硅氧化物颗粒,并对所述硅氧化物颗粒进行羧基化处理,得到羧基化硅氧化物颗粒;
    (2)对所述羧基化硅氧化物颗粒进行碳包覆,得到负极活性材料。
PCT/CN2021/080989 2020-10-12 2021-03-16 一种负极活性材料及其制备方法 WO2022077856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011081293.2A CN111933916B (zh) 2020-10-12 2020-10-12 一种负极活性材料及其制备方法
CN202011081293.2 2020-10-12

Publications (1)

Publication Number Publication Date
WO2022077856A1 true WO2022077856A1 (zh) 2022-04-21

Family

ID=73333732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080989 WO2022077856A1 (zh) 2020-10-12 2021-03-16 一种负极活性材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111933916B (zh)
WO (1) WO2022077856A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933916B (zh) * 2020-10-12 2021-02-19 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643788A (zh) * 2016-08-18 2019-04-16 三井化学株式会社 非水电解质二次电池用负极、非水电解质二次电池、及非水电解质二次电池用负极的制造方法
CN109860553A (zh) * 2019-01-28 2019-06-07 郑州比克电池有限公司 一种高比容量长寿命SiOx/C电极复合材料的制备方法
CN111933916A (zh) * 2020-10-12 2020-11-13 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101480216B1 (ko) * 2013-04-01 2015-01-07 충남대학교산학협력단 실리콘 산화물계 음극활물질, 이의 제조방법 및 이를 이용한 이차전지
CN103474666B (zh) * 2013-07-23 2016-03-02 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料的制备方法
KR20150044710A (ko) * 2013-10-17 2015-04-27 김상범 복합입자의 제조방법과 이 방법에 의해 제조된 복합입자
CN103545493B (zh) * 2013-11-01 2015-12-30 中南大学 一种硅/碳多元复合负极材料的制备方法
DE102014201627A1 (de) * 2014-01-30 2015-08-13 Robert Bosch Gmbh Kondensiertes Silicium-Kohlenstoff-Komposit
CN104103821B (zh) * 2014-06-20 2016-08-24 浙江瓦力新能源科技有限公司 硅碳负极材料的制备方法
CN105086520A (zh) * 2014-12-09 2015-11-25 西南石油大学 纳米SiO2表面可控的改性方法
CN104629494B (zh) * 2015-01-29 2017-05-10 苏州大学 一种多羧基二氧化硅纳米颗粒及其制备方法
CN106927465A (zh) * 2015-12-31 2017-07-07 江苏天恒纳米科技股份有限公司 一种改性纳米硅粉的制备方法
CN109417166B (zh) * 2016-06-15 2022-04-01 罗伯特·博世有限公司 用于锂离子电池的具有三维键合网络的硅基复合物
US10164245B2 (en) * 2016-09-19 2018-12-25 GM Global Technology Operations LLC High performance silicon electrodes having improved interfacial adhesion between binder, silicon and conductive particles
CN107394158A (zh) * 2017-07-21 2017-11-24 张娟 一种基于膨胀石墨制备硅碳复合型锂电池负极材料的方法
CN107492645B (zh) * 2017-08-09 2020-06-26 深圳市金牌新能源科技有限责任公司 一种氧化亚硅-石墨烯复合材料及其制备方法
CN109428062A (zh) * 2017-08-28 2019-03-05 内蒙古欣蒙碳纳米科技有限公司 一种石墨烯-硅复合负极材料及其制备方法
DE102018201274A1 (de) * 2018-01-29 2019-08-01 Robert Bosch Gmbh Aktivmaterial mit kovalent gebundener Solid-Electrolyte-Interphase
CN108410440B (zh) * 2018-03-07 2020-09-15 中国石油大学(华东) 一种用于提高采收率的表面改性纳米二氧化硅纳米流体
JP2019160613A (ja) * 2018-03-14 2019-09-19 Tdk株式会社 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
CN110112408B (zh) * 2019-04-08 2021-03-12 新奥石墨烯技术有限公司 一种石墨烯-硅复合材料及其制备方法、电极材料及电池
CN110346487A (zh) * 2019-07-18 2019-10-18 广西民族大学 ZIF-8@ SiO2核壳微球及其制备方法和应用
CN110707304A (zh) * 2019-10-17 2020-01-17 高点(深圳)科技有限公司 一种硅碳复合材料及其制备方法、应用
CN111384385B (zh) * 2020-03-25 2021-07-27 长沙矿冶研究院有限责任公司 一种含硅材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643788A (zh) * 2016-08-18 2019-04-16 三井化学株式会社 非水电解质二次电池用负极、非水电解质二次电池、及非水电解质二次电池用负极的制造方法
CN109860553A (zh) * 2019-01-28 2019-06-07 郑州比克电池有限公司 一种高比容量长寿命SiOx/C电极复合材料的制备方法
CN111933916A (zh) * 2020-10-12 2020-11-13 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法

Also Published As

Publication number Publication date
CN111933916B (zh) 2021-02-19
CN111933916A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN108172804B (zh) 一种石墨烯/二氧化钛包覆正极材料及其制备和应用
CN106450265B (zh) 一种原位氮掺杂碳包覆钛酸锂复合电极材料及其制备方法
CN108899550B (zh) 复合包覆正极活性材料及其制备方法、锂离子电池正极材料和固态锂离子电池
CN110112408A (zh) 一种石墨烯-硅复合材料及其制备方法、电极材料及电池
WO2023097937A1 (zh) 一种用于固态电池的高压实高镍层状正极材料的复合包覆方法
WO2018161378A1 (zh) 一种新型结构石墨烯包覆硅纳米颗粒及其制备方法
EP4451376A1 (en) Negative electrode material and preparation method therefor, negative electrode plate and battery
CN107681147A (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
CN112928246B (zh) 一种复合材料、其制备方法及应用
WO2022237230A1 (zh) 硼氧化物包覆的四元正极材料及其制备方法和应用
WO2022077855A1 (zh) 一种含硅材料及其制备方法和应用
WO2022077856A1 (zh) 一种负极活性材料及其制备方法
WO2021189665A1 (zh) 一种含硅材料及其制备方法和应用
CN108933238A (zh) 改性三元正极材料及其制备方法和应用
CN117410463A (zh) 一种硫化物固态电池用复合正极材料及其制备方法和应用
CN108183216B (zh) 一种碳包覆富锂锰基正极材料及其制备方法和锂离子电池
CN111170364A (zh) 碳包覆硅基钛铌复合材料、其制备方法及锂离子电池
CN106887591A (zh) 锂离子电池复合导电剂及其制备方法
CN116314735A (zh) 硅碳复合材料的制备方法、硅碳复合材料和锂离子电池
Yang et al. Mitigating particle cracking and surface deterioration for better cycle stability by encapsulating NCM811 primary particles into LiBO2
CN113937277B (zh) 一种Na和Br共掺杂锂离子负极材料及其制备方法
CN113651356B (zh) 核壳空腔结构二氧化钛石墨烯复合体制备方法及其应用
CN114388771A (zh) 硅基复合负极材料、负极极片、其制备方法及锂离子电池
CN114938686A (zh) 一种钴酸锂层状正极材料及其制备方法和应用
CN113745519A (zh) 一种具有人工sei膜的硅基负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878912

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21878912

Country of ref document: EP

Kind code of ref document: A1