WO2021189665A1 - 一种含硅材料及其制备方法和应用 - Google Patents

一种含硅材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021189665A1
WO2021189665A1 PCT/CN2020/094708 CN2020094708W WO2021189665A1 WO 2021189665 A1 WO2021189665 A1 WO 2021189665A1 CN 2020094708 W CN2020094708 W CN 2020094708W WO 2021189665 A1 WO2021189665 A1 WO 2021189665A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
containing material
oxide particles
geopolymer
silicon oxide
Prior art date
Application number
PCT/CN2020/094708
Other languages
English (en)
French (fr)
Inventor
方自力
杨乐之
涂飞跃
陈涛
汤刚
唐唯佳
陈文强
覃事彪
Original Assignee
长沙矿冶研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙矿冶研究院有限责任公司 filed Critical 长沙矿冶研究院有限责任公司
Publication of WO2021189665A1 publication Critical patent/WO2021189665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and particularly relates to a silicon-containing material and a preparation method and application thereof.
  • lithium-ion batteries have greater advantages in terms of development space, service life, and electrical performance, and are quite competitive.
  • the fast-developing power battery market puts forward higher requirements for lithium-ion batteries: higher energy density, better cycle life, better high and low temperature charge and discharge performance and safety performance, etc., therefore, as a lithium ion battery
  • the research on electrode materials of lithium-ion batteries also needs to be further in-depth and perfected.
  • silicon exhibits a high capacity. At the same time, this type of material has a low lithium-deintercalation voltage, and is considered to be the most promising alternative to carbon materials as the negative electrode material for next-generation lithium-ion batteries.
  • silicon when silicon is used as a negative electrode active material, there is a large volume effect in the charge and discharge process, which easily leads to electrode fracture and powder, resistance increase, and cycle performance, which severely limits the utilization and commercialization of silicon negative electrode materials.
  • the technical problem to be solved by the present invention is to provide a silicon-containing material and its preparation method and application in order to overcome the shortcomings and defects mentioned in the above background art.
  • the silicon-containing material has a volume effect and low sensitivity to water, and is effective Improve the first cycle efficiency and safety performance.
  • the preparation method of the silicon-containing material has simple process, simple operation and high productivity, and is suitable for large-scale industrial production.
  • a silicon-containing material includes silicon oxide particles and a geopolymer dispersed in the inside and surface of the silicon oxide particles; or the geopolymer is dispersed inside or on the surface of the silicon oxide particles.
  • Silicon oxide particles include a silicon phase and a silicon dioxide phase.
  • the silicon dioxide phase is dispersed in the inside and/or surface of the silicon phase.
  • the silicon dioxide in the silicon oxide particles is charged and discharged.
  • the geopolymer in silicon oxide is converted from the reaction of silicon dioxide, so the geopolymer.
  • the existence of silicon oxide can reduce the mass proportion of silicon dioxide in silicon oxide, increase the contact resistance during short-circuit, reduce the volume effect of the negative electrode active material, and help improve the battery's first cycle efficiency, cycle performance and safety performance; at the same time; , The addition of geopolymer will not affect the performance of the negative electrode material.
  • the geopolymer is -Si-O-Al-O- as the basic structural unit, a three-dimensional network of covalent and ionic bonds formed by geopolymerization at a certain temperature.
  • Glue inorganic polymeric silicate material is -Si-O-Al-O- as the basic structural unit, a three-dimensional network of covalent and ionic bonds formed by geopolymerization at a certain temperature.
  • the mass fraction of the geopolymer in the silicon-containing material is A, 0.1% ⁇ A ⁇ 50%, and as a further preference, 0.1% ⁇ A ⁇ 25%.
  • the mass fraction of the geopolymer reaches 0.1%, the water sensitivity of the silicon-containing material as the negative electrode active material has been significantly improved; and if the mass fraction of the geopolymer exceeds 50%, it will cause the silicon-containing material to act as a When the negative electrode active material loses its electrical properties, the battery cannot be used normally; after repeated experiments and tests by the inventor, the most suitable mass fraction A of the geopolymer is 0.1% ⁇ A ⁇ 25%.
  • the above-mentioned silicon-containing material contains a metal element M, and the metal element M is one or more of the first, second, third, and fourth main group elements and subgroup elements.
  • the metal elements in the first, second, third, and fourth main group and subgroup elements have good electrical conductivity or other characteristics, and can improve the electrochemical performance of the silicon-containing material after adding the geopolymer. Reduce the degree of degradation of the electrochemical performance of silicon-containing materials caused by the addition of geopolymers.
  • the above metal element M is one or more of Al, Ca, Na, Mg, Fe, Mn, Cr, Ti, Zn, Zr and Ge.
  • the above-mentioned metal elements have good electrical properties, which can further improve the electrochemical performance of silicon-containing materials, and the oxides and silicon oxides corresponding to the above-mentioned metal elements can exist stably, which can improve the electrochemical performance of silicon-containing materials.
  • the mass fraction of the metal element M in the geopolymer is B, 0.1% ⁇ B ⁇ 50%.
  • the silicon oxide particles include a silicon phase and a silicon dioxide phase.
  • the silicon phase may contain a metal element X.
  • the metal element X is one or more of alkali metals, alkaline earth metals, titanium elements, and aluminum elements.
  • the metal element Z may be contained in the silicon dioxide phase, and/or the silica phase.
  • the above-mentioned metal element Z is one or more of alkali metals, alkaline earth metals, titanium elements, and aluminum elements.
  • the presence of metal elements in the silicon phase and/or the silicon dioxide phase can improve the electrochemical performance of the silicon oxide particles.
  • the above metal elements X and Z can be one or more of Li, Mg, Al and Ti.
  • the above-mentioned metals have better conductivity than silicon or can reduce the relative oxygen content of the material, which can maximize the electrical performance of silicon oxide particles and silicon-containing materials.
  • the silicon-containing material further includes a carbon material layer covering the surface of the silicon oxide particles.
  • the design idea here is that because the carbon material has a higher reversible specific capacity and conductivity, the use of a carbon material layer to coat silicon can improve the specific capacity and conductivity of the silicon-containing active material particles, thereby increasing the negative electrode active material And the electrical performance of the battery used in it.
  • the mass of the carbon material layer accounts for 0.01%-30% of the mass of the silicon-containing material.
  • the molecular formula of the silicon oxide particles is represented by SiO x , and 0.5 ⁇ x ⁇ 1.7.
  • a method for preparing a silicon-containing negative electrode active material includes the following steps: silicon oxide and aluminosilicate are excited to react under specific conditions.
  • the SiO 2 in the silicon-containing material can be converted into a geopolymer, thereby reducing the volume effect of the silicon-containing material, which is beneficial to improve the first cycle efficiency, cycle performance and safety performance of the battery;
  • the preparation method of the technical scheme has simple operation and is suitable for large-scale industrial production.
  • the aluminosilicate in step (2) may be one of B, Ca, Na, Mg, Fe, Mn, Cr, Ti, Zn, Zr and Ge aluminosilicate or Many kinds.
  • aluminosilicates that may contain B, Ca, Na, Mg, Fe, Mn, Cr, Ti, Zn, Zr and Ge as the reaction raw materials, which can introduce alkali metals and alkaline earth metal elements into the geopolymer of the negative electrode active material , While reducing the volume effect of the negative electrode active material during charging and discharging, it also improves the electrochemical performance of the negative electrode active material.
  • the reaction excitation condition of the silicon oxide particles and aluminosilicate in step (2) is mixing the silicon oxide particles and aluminosilicate for heating reaction or mixing and immersing them in an alkaline solution for reaction.
  • the design idea of the above technical scheme is that the use of silicon-containing materials as negative electrode active materials in lithium ion secondary batteries can effectively reduce the volume effect of the negative electrode materials of lithium ion secondary batteries, which is beneficial to improve the first cycle efficiency and safety performance of the battery .
  • the silicon-containing material of the present invention can reduce the volume effect of the material when lithium is inserted and released, thereby improving the first cycle efficiency and safety performance of the battery.
  • the geopolymer itself is a water-stable component, it is The negative electrode active material has a certain improvement effect on the problem of water sensitivity.
  • the preparation method of the silicon-containing material of the present invention has simple process, simple operation and high productivity, and is suitable for large-scale industrial production.
  • FIG. 1 is a schematic diagram of the structure of the silicon-containing material of Example 1 of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the silicon-containing material of Comparative Example 1 of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the silicon-containing material of Comparative Example 2 of the present invention.
  • Figure 5 is a scanning electron microscope photograph of Example 1 of the present invention.
  • the various raw materials, reagents, instruments and equipment used in the present invention can be purchased from the market or can be prepared by existing methods.
  • the silicon-containing material of this embodiment includes silicon oxide particles, a hard carbon layer covering the surface of the silicon oxide particles, and a geopolymer dispersed inside and/or on the surface of the silicon oxide particles.
  • the total mass of the material is 7%.
  • the structure diagram of the silicon-containing material is shown in Figure 1, where the X element can be one or more of the alkali metals, alkaline earth metals, titanium and aluminum, and the Z elements can be alkali metals, alkaline earth metals, and titanium.
  • One or more arbitrary elements among the element and the aluminum element, and the X and Z elements may be the same or different.
  • the scanning electron microscope photo is shown in Figure 5.
  • SiO x particles and metakaolin are mixed and excited by ball milling under alkaline conditions according to the mass fraction of 10:1, and are excited and cured at 80°C to cause depolymerization and repolymerization, and then the product is crushed and pulverized After the ball mill is washed, it is heated to 900°C under the protection of inert gas to obtain SiO x particles dispersed with geopolymer.
  • the above-mentioned geopolymer-dispersed SiO x particles are chemically vapor-deposited using a hydrocarbon gas to form a carbon material layer on the surface, and then subjected to a prelithiation treatment to obtain a silicon-containing material.
  • the silicon-containing material of this embodiment includes silicon oxide particles, a hard carbon layer covering the surface of the silicon oxide particles, and a geopolymer dispersed inside and/or on the surface of the silicon oxide particles. 12% of the total mass of the material.
  • the above-mentioned geopolymer-dispersed SiOx particles are chemically vapor-deposited using a hydrocarbon gas to form a carbon material layer on the surface, and then subjected to a prelithiation treatment to obtain a silicon-containing material.
  • the negative electrode active material of this comparative example includes silicon oxide particles and a hard carbon layer covering the surface of the silicon oxide particles.
  • the structure of the negative active material of this comparative example is shown in FIG. 2.
  • the above-mentioned geopolymer-dispersed SiOx particles are chemically vapor deposited using a hydrocarbon gas to form a carbon material layer on the surface, and then subjected to prelithiation/predoping treatment to obtain a silicon-containing material.
  • the negative electrode active material of this comparative example includes silicon oxide particles and a hard carbon layer covering the surface of the silicon oxide particles.
  • the structure of the negative active material of this comparative example is shown in FIG. 3.
  • the above-mentioned geopolymer-dispersed SiOx particles are chemically vapor-deposited using a hydrocarbon gas to form a carbon material layer on the surface to obtain a silicon-containing material.
  • Example 1 and Example 2 have characteristic peaks near 26.6°, which coincides with the characteristic peaks of geopolymers, so it can be proved that Example 1 And in Example 2, it contains a geopolymer component.
  • Example 1 and Example 2 have decreased to a certain extent, the first charging and discharging efficiency has increased to varying degrees compared with Comparative Examples 1 and 2, which improves the electrical properties of the material and meets the expected design expectations.
  • Example 1 and Example 2 After the water stability test under the conditions shown in Table 2, the results show that the exposure of Example 1 and Example 2 to air and water will not affect the capacity performance, which is significantly better than Comparative Example 1, which improves the water sensitivity of the material. The characteristics meet the expected design expectations.
  • Example 1 100% 100% 100.0% 100.0%
  • Example 2 100% 100% 100.0% 100.0%
  • Comparative example 1 100% 99.2% 96.6% 85.3%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种含硅材料及其制备方法和应用,含硅材料包括硅氧化物颗粒和地聚合物,所述地聚合物分散在硅氧化物颗粒的内部和表面;或所述地聚合物分散在硅氧化物颗粒的内部或表面。含硅材料的制备方法包括以下步骤:(1)准备所需原料,将硅和二氧化硅混合后加热沉积得到沉积物,将沉积物粉碎得到硅氧化物颗粒;(2)将硅氧化物颗粒与硅铝酸盐在特定条件下激发进行反应,得到含硅材料。该含硅材料作为负极活性材料应用于锂离子二次电池,具有体积效应和对水敏感性低的优点,能有效提高首次循环效率以及安全性能。该制备方法工艺简单、操作简便、产能高,可适用于大规模产业化生产。

Description

一种含硅材料及其制备方法和应用 技术领域
本发明属于锂离子电池领域,尤其涉及一种含硅材料及其制备方法和应用。
背景技术
在现有的二次电池种类中,锂离子电池在发展空间、使用寿命和电学性能等方面都具有较大的优势,具备相当的竞争力。目前,高速发展的动力电池市场对锂离子电池提出了更高的要求:更高的能量密度、更好的循环寿命、更好的高低温充放电性能和安全性能等,因此,作为锂离子电池的重要组成部分和影响电池电学性能的关键因素,关于锂离子电池电极材料的研究还需要进一步地深入与完善。
硅作为新型负极活性材料表现出了很高的容量,同时该类材料的脱嵌锂电压较低,被认为是最有希望替代碳材料成为下一代锂离子电池的负极材料。但是硅作为负极活性材料使用时在充放电过程中存在较大的体积效应,易导致电极断裂粉化、电阻增大、循环性能骤降,严重地限制了硅负极材料的利用和商业化进程。
目前,对于硅负极活性材料的研究主要包括硅粉与碳源进行混合热解制备硅-碳复合材料、使用气相法同时沉积硅和非晶二氧化硅等,但经过上述方法改进后的硅负极活性材料的首次充放效率依然较低,对水仍比较敏感,安全性和稳定性也未得到明显的提高。
发明内容
本发明所要解决的技术问题是,为克服以上背景技术中提到的不足和缺陷,提供一种含硅材料及其制备方法和应用,该含硅材料体积效应和对水敏感性低,能有效提高首次循环效率以及安全性能。该含硅材料的制备方法工艺简单、操作简便、产能高,可适用于大规模产业化生产。
为解决上述技术问题,本发明提出的技术方案为:
一种含硅材料,包括硅氧化物颗粒和地聚合物,该地聚合物分散在硅氧化物颗粒的内部和表面;或地聚合物分散在硅氧化物颗粒的内部或表面。
硅氧化物颗粒包括硅相以及二氧化硅相,二氧化硅相分散在硅相的内部和/或表面,当硅氧化物作为负极活性材料时,硅氧化物颗粒中的二氧化硅在充放电过程中具有明显的体积效应,造成了电池循环性能和首次循环效率的降低,还容易导致使用安全方面的问题出现;硅氧化物中的地聚合物由二氧化硅反应转化生成,因此地聚合物的存在能够降低硅氧化物中作为二氧化硅的质量占比,提高了短路时的接触电阻,降低了负极活性材料的体积效应,有利于提高电池的首次循环效率、循环性能以及安全性能;同时,地聚合物的添加不会影响负极 材料性能。
作为上述技术方案的优选,地聚合物为-Si-O-Al-O-作为基本结构单元的、在一定温度下发生地质聚合反应形成的以共价键和离子键为主的三维网状凝胶无机聚合硅酸盐材料。
作为上述技术方案的优选,地聚合物在含硅材料中的质量分数为A,0.1%<A<50%,作为进一步的优选,0.1%<A<25%。在地聚合物的质量分数达到0.1%时,含硅材料作为负极活性材料的对水敏感性得到了较为显著的改善;而若地聚合物的质量分数超过50%,则会导致含硅材料作为负极活性材料时失去其电学性质,导致电池无法正常使用;经过发明人的反复试验和测试,得到地聚合物最适宜的质量分数A为0.1%<A<25%。
作为上述技术方案的优选,上述含硅材料中含有金属元素M,该金属元素M为第一、第二、第三、第四主族元素和副族元素中的一种或多种。上述第一、第二、第三、第四主族和副族元素中的金属元素均具有较好的导电性或其他特性,能够改善在加入地聚合物后的含硅材料的电化学性能,减少因地聚合物加入造成的含硅材料电化学性能的下降程度。
作为上述技术方案的优选,上述金属元素M为Al、Ca、Na、Mg、Fe、Mn、Cr、Ti、Zn、Zr和Ge中的一种或多种。上述金属元素具有良好的电学特性,可进一步改善含硅材料的电化学性能,并且上述金属元素对应的氧化物和硅氧化物能稳定存在,可以改善含硅材料的电化学性能。
作为上述技术方案的优选,上述金属元素M在地聚合物中的质量分数为B,0.1%<B<50%。经发明人反复试验后确认,含有该取值范围内的金属元素的地聚合物,其电学性能最优,能够最大程度上减少含硅材料添加地聚合物后电学方面性能下降的程度,若地聚合物中的金属元素质量分数超过50%则会影响材料结构或过度影响材料的容量,失去经济价值。
作为上述技术方案的优选,硅氧化物颗粒包括硅相和二氧化硅相,硅相可以含有金属元素X,上述金属元素X为碱金属、碱土金属、钛元素和铝元素中的一种或多种,和/或二氧化硅相中可以含有金属元素Z,上述金属元素Z为碱金属、碱土金属、钛元素和铝元素中的一种或多种。硅相和/或二氧化硅相中金属元素的存在可改善硅氧化物颗粒的电化学性能。
作为上述技术方案的优选,上述金属元素X和Z可以为Li、Mg、Al和Ti中的一种或多种。上述几种金属的导电性较硅好或可以降低材料的相对氧含量,能够最大程度上提高硅氧化物颗粒以及含硅材料在电学方面的表现。
作为上述技术方案的优选,含硅材料还包括碳材料层,该碳材料层覆盖在硅氧化物颗粒的表面。该处设计的思路在于,由于碳材料具有较高的可逆比容量和导电性能,使用碳材料层对含硅进行包覆能够改善含硅活性物质颗粒的比容量和导电性,从而提高负极活性材料及其所应用于的电池的电学性能。
作为上述技术方案的优选,碳材料层质量占含硅材料质量的0.01%~30%。
作为上述技术方案的优选,硅氧化物颗粒的分子式由SiO x表示,0.5≤x≤1.7。
一种含硅负极活性材料的制备方法,包括以下步骤:将硅氧化物与硅铝酸盐在特定条件下激发进行反应。
上述技术方案的反应原理如下:
Figure PCTCN2020094708-appb-000001
通过与硅铝酸盐进行反应,能够将含硅材料中的SiO 2反应转化成地聚合物,从而降低了含硅材料的体积效应,有利于提高电池的首次循环效率、循环性能以及安全性能;本技术方案的制备方法操作简单,适于大规模产业化生产。
作为上述技术方案的优选,步骤(2)中的硅铝酸盐可能为B、Ca、Na、Mg、Fe、Mn、Cr、Ti、Zn、Zr和Ge的铝硅酸盐中的一种或多种。选择可能含有B、Ca、Na、Mg、Fe、Mn、Cr、Ti、Zn、Zr和Ge的铝硅酸盐作为反应原料,能够将碱金属和碱土金属元素引入负极活性材料的地聚合物中,在减少负极活性材料充放电过程中的体积效应的同时,提高负极活性材料的电化学性能。
作为上述技术方案的优选,步骤(2)的硅氧化物颗粒与硅铝酸盐的反应激发条件为将硅氧化物颗粒与硅铝酸盐混合加热反应或混合浸渍在碱性溶液中反应。
一种上述技术方案的含硅材料的应用,该含硅材料作为负极活性材料应用于锂离子二次电池中。
上述技术方案的设计思路在于,将含硅材料作为负极活性材料应用于锂离子二次电池中,可以有效降低锂离子二次电池负极材料的体积效应,有利于提高电池的首次循环效率以及安全性能。
与现有技术相比,本发明的优点在于:
(1)本发明的含硅材料,能够降低嵌锂和释锂时材料的体积效应,从而提高电池的首次循环效率以及安全性能,同时由于地聚合物本身是是对水稳定的成份,因此对负极活性材料对水敏感的问题有一定的改善作用。
(2)本发明的含硅材料的制备方法,工艺简单、操作简便、产能高,可适用于大规模产业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图 获得其他的附图。
图1为本发明实施例1的含硅材料的结构示意图;
图2为本发明对比例1的含硅材料的结构示意图;
图3为本发明对比例2的含硅材料的结构示意图;
图4为本发明实施例1和2及对比例1的含硅材料的XRD测试对比图;
图5为本发明实施例1的扫描电子显微镜照片。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
本实施例的含硅材料,包括硅氧化物颗粒、覆盖在硅氧化物颗粒表面的硬炭层和分散在硅氧化物颗粒内部和/或表面的地聚合物,其中,地聚合物占含硅材料总质量为7%。含硅材料的结构示意图如图1所示,其中,X元素可以是碱金属、碱土金属、钛元素和铝元素中的一种或多种任意元素,Z元素可以是碱金属、碱土金属、钛元素和铝元素中的一种或多种任意元素,X和Z元素可以相同也可以不同。其扫描电子显微镜照片如图5所示。
本实施例的含硅材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到硅氧化物颗粒(SiO x颗粒)。
(2)将上述SiO x颗粒与偏高岭土按质量分数10:1在碱性条件下进行球磨混合激发,进行激发并经80℃温养护,发生解聚和重聚合,再将产物经破碎、粉碎球磨,经冲洗后,在惰性气体的保护下加热至900℃,得到分散有地聚合物的SiO x颗粒。
(3)将上述分散有地聚合物的SiO x颗粒使用烃类气体进行化学气相沉积,在表面形成碳材料层,然后进行预锂化处理,得到含硅材料。
实施例2:
本实施例的含硅材料,包括硅氧化物颗粒、覆盖在硅氧化物颗粒表面的硬炭层和分散在 硅氧化物颗粒内部和/或表面的地聚合物,其中,地聚合物占含硅材料总质量的12%。
本实施例的含硅材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到硅氧化物颗粒(SiO x颗粒)。
(2)将上述SiO x颗粒与高炉冶铁产生的矿渣混合,浸渍在NaOH溶液中进行激发并经80℃温养护,发生解聚和重聚合,再将产物经破碎、粉碎球磨,冲洗干燥后得到分散有地聚合物的SiO x颗粒。
(3)将上述分散有地聚合物的SiOx颗粒使用烃类气体进行化学气相沉积,在表面形成碳材料层,然后进行预锂化处理,得到含硅材料。
对比例1:
本对比例的负极活性材料,包括硅氧化物颗粒和覆盖在硅氧化物颗粒表面的硬炭层。本对比例的负极活性材料的结构如图2所示。
本实施例的负极活性材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到SiO x颗粒。
(2)将上述分散有地聚合物的SiOx颗粒使用烃类气体进行化学气相沉积,在表面形成碳材料层,然后进行预锂化/预掺杂处理,得到含硅材料。
对比例2:
本对比例的负极活性材料,包括硅氧化物颗粒和覆盖在硅氧化物颗粒表面的硬炭层。本对比例的负极活性材料的结构如图3所示。
本实施例的负极活性材料的制备方法,包括以下步骤:
(1)将硅粉和二氧化硅按照1:1的比例混合,在惰性气体的保护下低压加热后,在顶部沉积板上进行沉积,得到SiO x成分的结块,将该结块经颚碎、气流粉碎、球磨后粉化得到SiO x颗粒。
(2)将上述分散有地聚合物的SiOx颗粒使用烃类气体进行化学气相沉积,在表面形成碳材料层,得到含硅材料。
将实施例1、实施例2的含硅材料以及对比例1的负极活性材料制成负极再制备成电池后,进行相关测试,结果如下:
将上述三组电池经XRD测试后,结果如图4所示;由图可见实施例1和实施例2在26.6°附近存在特征峰,与地聚合物的特征峰吻合,因此可以证明实施例1和实施例2中,含有地聚合物成份。
将上述三组电池经扣电0.1C充放进行容量测试,结果见表1。
测试结果显示,实施例1和实施例2虽然容量有一定下降,但首次充放效率和对比例1和2相比较,均有不同程度上升,改善了材料的电性能,符合预期设计期望。
表1容量测试结果
  容量/mAh/g 首次充放效率/%
实施例1 973.2 82.7%
实施例2 895.6 84.3%
对比例1 1110.4 79.2%
对比例2 1570.1 71.3%
经表2中所示条件的对水稳定性测试,结果显示,实施例1和实施例2在空气和水中暴露,不会影响容量发挥,显著优于对比例1,改善了材料的对水敏感的特性,符合预期设计期望。
表2材料对水稳定性测试结果(容量保持率)
  空气中暴露24h 空气中暴露72h 浸水0.5h 浸水4h
实施例1 100% 100% 100.0% 100.0%
实施例2 100% 100% 100.0% 100.0%
对比例1 100% 99.2% 96.6% 85.3%
经表3中所示条件的对实施例1、2和对比例1进行安全和滥用测试(表中数字代表电池失控严重程度:1:无冒烟;2:冒烟但无明火;3,明火;4,爆炸),结果显示,实施例1和实施例2在短路、挤压和针刺测试中,均表现出比对比例1更优的安全特性,符合预期设计期望。
表3材料制备电池安全性测试结果
  短路 过充 挤压 针刺
实施例1 1 2 2 2
实施例2 1 2 2 2
对比例1 2 2 3 3

Claims (10)

  1. 一种含硅材料,其特征在于,包括硅氧化物颗粒和地聚合物,所述地聚合物分散在硅氧化物颗粒的内部和表面;或所述地聚合物分散在硅氧化物颗粒的内部或表面。
  2. 如权利要求1所述的含硅材料,其特征在于,所述地聚合物的质量在所述含硅材料的质量分数为A,0.1%<A<50%。
  3. 如权利要求1所述的含硅材料,其特征在于,所述含硅材料含有金属元素M,所述金属元素M为第一、第二、第三、第四主族元素和副族元素中的一种或多种。
  4. 如权利要求3所述的含硅材料,其特征在于,所述金属元素M为Al、Ca、Na、Mg、Fe、Mn、Cr、Ti、Zn、Zr和Ge中的一种或多种。
  5. 如权利要求3所述的含硅材料,其特征在于,所述金属元素M在所述地聚合物中的质量分数为B,0.1%<B<50%。
  6. 如权利要求1-5任一项所述的含硅材料,其特征在于,所述含硅材料表面还覆盖有碳材料。
  7. 如权利要求1-5任一项所述的含硅材料,其特征在于,所述硅氧化物颗粒包括硅相和二氧化硅相,所述硅相中含有金属元素X,所述金属元素X为钛元素、铝元素、碱金属和碱土金属中的一种或多种,和/或所述二氧化硅相中含有金属元素Z,所述金属元素Z为钛元素、铝元素、碱金属和碱土金属中的一种或多种。
  8. 如权利要求7所述的含硅材料,其特征在于,所述金属元素X和Z为Ti、Al、Li和Mg中的一种或多种。
  9. 一种权利要求1所述的含硅材料的制备方法,其特征在于,包括以下步骤:
    (1)准备所需原料,将硅和二氧化硅混合后加热沉积得到沉积物,将沉积物粉碎得到硅氧化物颗粒;
    (2)将硅氧化物颗粒与硅铝酸盐在特定条件下激发进行反应,得到含硅材料。
  10. 一种权利要求1-8任一项所述的含硅材料的应用,其特征在于,所述含硅材料作为负极活性材料应用于锂离子二次电池。
PCT/CN2020/094708 2020-03-25 2020-06-05 一种含硅材料及其制备方法和应用 WO2021189665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010218049.XA CN111384385B (zh) 2020-03-25 2020-03-25 一种含硅材料及其制备方法和应用
CN202010218049.X 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021189665A1 true WO2021189665A1 (zh) 2021-09-30

Family

ID=71217448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094708 WO2021189665A1 (zh) 2020-03-25 2020-06-05 一种含硅材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111384385B (zh)
WO (1) WO2021189665A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933916B (zh) * 2020-10-12 2021-02-19 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法
CN111933917A (zh) * 2020-10-12 2020-11-13 长沙矿冶研究院有限责任公司 一种含硅材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078094A (zh) * 2013-01-09 2013-05-01 天津大学 锡颗粒-聚吡咯核壳纳米复合材料的制备方法和应用
JP2017188334A (ja) * 2016-04-06 2017-10-12 凸版印刷株式会社 非水電解質二次電池用電極及び非水電解質二次電池
CN109994710A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合负极材料及其制备方法、负极极片、电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078094A (zh) * 2013-01-09 2013-05-01 天津大学 锡颗粒-聚吡咯核壳纳米复合材料的制备方法和应用
JP2017188334A (ja) * 2016-04-06 2017-10-12 凸版印刷株式会社 非水電解質二次電池用電極及び非水電解質二次電池
CN109994710A (zh) * 2017-12-29 2019-07-09 宁德时代新能源科技股份有限公司 复合负极材料及其制备方法、负极极片、电池

Also Published As

Publication number Publication date
CN111384385B (zh) 2021-07-27
CN111384385A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN111326723B (zh) 锂离子电池用硅碳复合负极材料及其制备方法
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
JP7237167B2 (ja) シリコン複合物負極材料、その調製方法及びリチウムイオン電池
CN108346788B (zh) 一种碳包覆硅铁合金复合负极材料的制备方法
KR102237829B1 (ko) 리튬 이차 전지용 음극재, 그 제조방법, 이를 음극으로 포함하는 리튬 이차 전지
CN111129466B (zh) 一种高性能正极材料及其制备方法和在锂离子电池中的应用
CN112652742B (zh) 硅碳复合材料及其制备方法和应用
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
CN111816859A (zh) 硅基负极材料、其制备方法及锂离子二次电池
CN101728517A (zh) 一种表面自生长氮化钛导电膜修饰钛酸锂的制备方法
WO2021189665A1 (zh) 一种含硅材料及其制备方法和应用
CN103187556B (zh) 锂离子电池及其负极材料、制备方法
WO2021136376A1 (zh) 硅基负极材料及其制备方法、电池和终端
CN114267841B (zh) 一种表面全包覆的高镍单晶三元材料的制备方法及应用
WO2023179050A1 (zh) 一种石墨烯基氮化物负极材料及其制备方法
WO2022077855A1 (zh) 一种含硅材料及其制备方法和应用
CN108172791A (zh) 复合物负极材料及其制备方法、锂离子电池
CN107732245A (zh) 一种用于锂电池的硬碳/石墨烯复合负极材料的制备方法
CN114400307B (zh) 一种锡碳复合材料及其制备方法和应用
CN114050263B (zh) 负极材料及其制备方法和应用
CN111384386A (zh) 一种负极活性材料及其制备方法
WO2022077856A1 (zh) 一种负极活性材料及其制备方法
WO2022236986A1 (zh) 一种硅基负极材料及其制备方法和应用
CN114649531B (zh) 一种改性电极及其制备方法和应用
TW202239042A (zh) 鋰離子電池用矽碳複合材料、其製造方法及鋰離子電池用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927692

Country of ref document: EP

Kind code of ref document: A1