WO2021215750A1 - 후처리 장치 - Google Patents

후처리 장치 Download PDF

Info

Publication number
WO2021215750A1
WO2021215750A1 PCT/KR2021/004804 KR2021004804W WO2021215750A1 WO 2021215750 A1 WO2021215750 A1 WO 2021215750A1 KR 2021004804 W KR2021004804 W KR 2021004804W WO 2021215750 A1 WO2021215750 A1 WO 2021215750A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
post
tank
receiving
receiving tank
Prior art date
Application number
PCT/KR2021/004804
Other languages
English (en)
French (fr)
Inventor
이세웅
송영만
김형준
이현민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/775,834 priority Critical patent/US20220387960A1/en
Priority to EP21792251.7A priority patent/EP4043498A4/en
Priority to CN202180006456.7A priority patent/CN114729069A/zh
Publication of WO2021215750A1 publication Critical patent/WO2021215750A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • B01D19/0078Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042 by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00065Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00067Liquid level measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/0025Foam formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical

Definitions

  • the present invention relates to a post-processing apparatus.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2001-0050323
  • One aspect of the present invention is to provide a post-treatment apparatus capable of removing unreacted monomers with high efficiency without compromising the thermal stability of latex.
  • the post-processing device is a post-processing device for post-processing latex, a receiving tank having an accommodating part formed therein, and having an inlet and an outlet through which the latex flows into and out of the accommodating part.
  • an ultrasonic wave generator for generating ultrasonic waves with the latex accommodated in the accommodating tank
  • a decompression unit for depressurizing the accommodating part of the accommodating tank to discharge unreacted monomers to the outside of the accommodating tank; and inside the accommodating part of the accommodating tank It is provided, and includes a partition including a plurality of partitions disposed along the outlet direction from the inlet of the accommodation tank, the latex accommodated in the accommodation portion can be moved along the upper and lower portions of the plurality of partitions.
  • ultrasonic waves are applied to the latex through an ultrasonic generator, and the contact area of the latex is expanded through the partition unit and the pressure is reduced through the decompression unit. have.
  • control unit adjusts the internal residence time of the receiving tank of latex through the control of the discharge valve to discharge the latex, thereby increasing the removal efficiency of the unreacted monomer, and the color of the latex is not bad can prevent
  • FIG. 1 is a perspective view illustrating an exemplary post-processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the concept of a post-processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a perspective view exemplarily showing a post-processing apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating the concept of a post-processing apparatus according to an embodiment of the present invention.
  • the latex (L) is introduced into the receiving part 111 and the receiving tank 110, the latex (L) generates ultrasonic waves. It is provided in the inside of the ultrasonic generating device 120, the decompression unit 130 for depressurizing the receiving unit 111 of the receiving tank 110, and the receiving unit 111 of the receiving tank 110, the receiving tank 110 ) includes a partition 140 including a plurality of partitions disposed along the direction of the outlet 113 from the inlet 112 of the.
  • the post-processing apparatus 100 includes a foam breaker unit (F) that removes foam generated by the flow of latex, and a temperature increase control unit (L) for controlling the temperature of the latex (L). 150), and a level indicator 160 for measuring the height level of the latex (L), and a control unit 180 may be further included.
  • F foam breaker unit
  • L temperature increase control unit
  • L level indicator
  • the post-treatment device 100 is a latex (L) discharge valve 172 on the discharge port 113 side of the receiving tank 110, a discharge line 171 connected to the discharge valve 172 , and a discharge pump 173 provided in the discharge line 171 may be further included.
  • L latex
  • the post-processing apparatus 100 is a post-processing apparatus 100 for separating and removing unreacted monomers by post-processing latex (L) (Latex).
  • the latex (L) may be a vinyl chloride-based copolymer latex (L).
  • the vinyl chloride-based copolymer may be polyvinyl chloride.
  • the receiving tank 110 may have an accommodating part 111 formed therein, and an inlet 112 and an outlet 113 through which the latex (L) flows into and out of the accommodating part 111 may be formed.
  • the inlet 112 may be provided on one side of the accommodation tank 110 , and the outlet 113 may be provided on the other side of the accommodation tank 110 .
  • the inlet 112 may be provided at the upper side of the side of the receiving tank 110
  • the outlet 113 may be provided at the lower side of the side of the receiving tank 110 .
  • the volume of the receiving tank 110 may be 15m 3 .
  • the ultrasonic generator 120 may generate ultrasonic waves with the latex (L) accommodated in the receiving tank 110 to separate unreacted monomers from the latex (L). Accordingly, the removal efficiency of unreacted (residual) monomers may be increased.
  • the ultrasonic generator 120 may be provided on the lower side of the accommodating tank 110 to generate ultrasonic waves with the latex (L) accommodated in the accommodating tank (110).
  • the ultrasonic waves when ultrasonic waves are oscillated through the ultrasonic generator 120 , the ultrasonic waves propagate through a solution (latex).
  • These cavities repeatedly generate and disappear within a very short time, and the number, size, and momentum of the cavities vary depending on the oscillated ultrasonic frequency, the temperature and pressure of the solution, and the like.
  • the cavities are generated and dissipated, accompanied by rapid pressure changes, and residual unreacted monomers (monomers) can be separated from the polymer (latex) by the cavities generated and dissipated near the evacuated gas.
  • the ultrasonic generator 120 may generate ultrasonic waves at, for example, 75 to 1500 kHz.
  • the ultrasonic generator 120 may specifically generate, for example, ultrasonic waves at 100 to 1000 kHz. In this case, when ultrasonic waves are generated at 100 kHz or higher through the ultrasonic generator 120 , the removal efficiency of unreacted monomers can be significantly increased.
  • the decompression unit 130 may depressurize the accommodation unit 111 of the accommodation tank 110 to discharge unreacted monomers to the outside of the accommodation tank 110 .
  • the decompression unit 130 may include a decompression line 131 connected to the upper side of the accommodation tank 110 , and a vacuum pump 132 provided in the decompression line 131 .
  • the decompression unit 130 depressurizes the receiving unit 111 of the receiving tank 110 through the vacuum pump 132 , and is vaporized from the latex (L) through the ultrasonic generator 120 and separated unreacted monomers. can be removed by discharging to the outside of the receiving tank 110 through the decompression line 131 .
  • the vacuum pressure when the vacuum pressure is lowered by applying a vacuum pressure to the receiving part 111 of the receiving tank 110 through the pressure reducing line 131 with the vacuum pump 132 , it is located in the receiving part 111 of the receiving tank 110 . It may be easier to discharge the vaporized and separated unreacted monomer.
  • the pressure of the receiving unit 111 of the receiving tank 110 is lowered through the pressure reducing unit 130 , the boiling point of the volatile unreacted monomer is lowered, so that the volatile unreacted monomer is not required without a separate carrier gas. can be more easily separated.
  • the pressure reducing unit 130 may apply a vacuum pressure of -0.5 to -0.7 kg/cm 2 through the vacuum pump 132 .
  • the partition 140 may include a plurality of partitions provided in the receiving portion 111 of the accommodation tank 110 and disposed along the direction of the outlet 113 from the inlet 112 of the accommodation tank 110 . have. At this time, the latex (L) accommodated in the receiving portion 111 may be moved along the upper and lower portions of the plurality of partitions.
  • the partition unit 140 includes a lower partition 141 fixed to the bottom surface 114 of the accommodation tank 110 and an upper portion spaced apart from the bottom surface 114 of the accommodation tank 110 by a predetermined interval.
  • a partition 142 may be included.
  • the latex (L) accommodated in the receiving part 111 may be moved along the upper portion of the lower partition 141 and the lower portion of the upper partition 142 .
  • the lower partition 141 and the upper partition 142 may be provided in the form of a plate so that both side portions may be fixed to both inner walls of the accommodation tank 110 .
  • the lower partition 141 and the upper partition 142 may be alternately disposed along a direction from the inlet 112 to the outlet 113 of the receiving tank 110 .
  • the latex (L) is moved to the upper and lower portions of the lower partition 141 and the upper partition 142 disposed in the receiving part 111 of the receiving tank 110, and the surface area of the latex (L) can be widened. have. That is, when the pressure reducing unit 130 applies a vacuum to suck through the pressure reduction line 131 and the unreacted monomer is degassed, the contact area may increase. Accordingly, the removal efficiency of unreacted monomers can be significantly increased.
  • the latex (L) portion located on the lower side is located at the bottom of the receiving tank 110.
  • the latex (L) located on the upper side receives relatively little influence of ultrasonic waves, but when the latex (L) is moved along the upper and lower portions of the partition unit 140, the entirety is evenly Can be affected by ultrasound.
  • the temperature rise control unit 150 is located in the receiving unit 111 of the receiving tank 110, it is possible to adjust the temperature of the latex (L) accommodated in the receiving unit (111). Accordingly, the removal efficiency of unreacted (residual) monomers may be increased.
  • the temperature rise control unit 150 may be disposed between the lower partition 141 and the upper partition 142 in the moving direction of the latex (L). At this time, also, the temperature rise control unit 150 may be disposed before and after the lower partition 141 and the upper partition 142 in the moving direction of the latex (L), respectively.
  • the temperature increase control unit 150 may be provided as a heater.
  • the temperature rise control unit 150 may maintain, for example, the temperature of the latex (L) accommodated in the receiving unit 111 at 73 ⁇ 87 °C.
  • the temperature rise control unit 150 may specifically maintain the temperature of the latex (L) accommodated in the receiving unit 111 to 75 ⁇ 85 °C, for example. At this time, if the temperature of the latex (L) accommodated in the accommodation unit 111 through the temperature increase control unit 150 is maintained at 75° C. or higher, the removal efficiency of the unreacted monomer can be significantly increased.
  • the form breaker part (F) is located on the upper side of the accommodating tank 110, and removes the foam generated by the flow of the latex (L) in the accommodating part 111 by spraying the foam removal material. can do.
  • the chemical substance that is the foam removal material is a natural oil-based antifoaming agent, a polyether-based antifoaming agent, a higher aliphatic alcohol-based antifoaming agent, a silicone-based antifoaming agent, a paraffin-based antifoaming agent, and a mineral oil-based antifoaming agent.
  • the chemical material that is the foam removal material may specifically include an aliphatic alcohol having 8 to 19 carbon atoms, and more specifically, an aliphatic alcohol having 8 to 10 carbon atoms, an aliphatic alcohol having 12 to 18 carbon atoms, and 16 to 18 carbon atoms. It may be at least one or more types of fatty alcohols.
  • the discharge valve 172 is provided on the side of the discharge port 113 of the receiving tank 110 so that the discharge of the latex (L) can be controlled. At this time, by adjusting the discharge valve 172, the internal residence time of the accommodating tank 110 of the latex (L) can be adjusted.
  • the discharge valve 172 may be located on the lower side of the side of the receiving tank (110).
  • the discharge line 171 may be connected to the discharge valve 172 , and the discharge pump 173 may be provided in the discharge line 171 .
  • the discharge pump 173 may be operated to discharge the latex (L) accommodated in the accommodation part 111 of the accommodation tank 110 to the outside of the accommodation tank 110 through the discharge line 171 .
  • the discharge pump 173 may be provided farther than the discharge valve 172 with respect to the receiving tank 110 in the discharge line 171 . Accordingly, in spite of the operation of the discharge pump 173, the discharge valve 172 can control the discharge amount of the latex (L).
  • Level indicator (Level indicator) 160 may measure the height level of the latex (L). Here, by adjusting the discharge valve 172 with reference to the height level of the latex (L) measured by the level indicator 160, it is possible to adjust the internal residence time of the accommodating tank 110 of the latex (L).
  • the level indicator 160 includes a liquid level measuring sensor 161 for measuring the receiving height (level) of the liquid provided on the side of the receiving unit 111 of the receiving tank 110, to the receiving unit 111.
  • the height level of the contained latex (L) can be measured.
  • the controller 180 may receive a measurement value from the level indicator 160 of latex (L) and adjust the opening and closing of the discharge valve 172 .
  • the discharge valve 172 is opened more to increase the amount of latex (L), and the latex level measurement value is stored in the memory.
  • the internal residence time of the receiving tank 110 of the latex (L) can be adjusted.
  • the controller 180 may maintain the internal residence time of the accommodating tank 110 of the latex (L) at 13 to 32 minutes, for example.
  • the controller 180 can be specifically, for example, to maintain the internal residence time of the storage tank 110 of the latex (L) to 15 to 25 minutes.
  • the removal efficiency of unreacted monomers can be significantly increased, and the residence time is maintained at 25 minutes or less Thus, it is possible to effectively prevent deterioration of the color of the latex (L).
  • the post-treatment apparatus 100 further includes an inlet line 191 connected to the inlet 112 of the receiving tank 110 and an inlet pump 192 provided in the inlet line 191 . can do.
  • the inlet pump 192 may operate to introduce the latex (L) into the receiving part 111 of the receiving tank 110 through the inlet line 191 .
  • the post-processing apparatus 100 applies ultrasonic waves to the latex (L) through the ultrasonic generator 120 , and the contact area of the latex (L) through the partition unit 140 . It expands and reduces the pressure through the decompression unit 130, and maintains an appropriate temperature of the latex (L) through the temperature increase control unit 150, thereby removing unreacted residual monomers with high efficiency without compromising the thermal stability of the latex (L). can do.
  • the latex (L) by measuring the height level of the latex (L) in the level indicator 160, and controlling the opening and closing of the discharge valve 172 for discharging the latex (L) by the controller 180 with reference to the measured value, the latex (L) ) by adjusting the internal residence time of the receiving tank 110, to increase the removal efficiency of the unreacted monomer, it is possible to prevent deterioration of the color of the latex (L).
  • the post-processing apparatus 100 configured to lower the content of unreacted (residual) monomers in the latex (L) to 10 ppm or less, and the color can satisfy the whiteness (WI) standard of 90 or more .
  • Latex is put into the receiving tank of 15 m 3 volume with the receiving part formed therein through the inlet, and the input latex is moved along the top and bottom of the partition including the upper partition and the lower partition, which are alternately arranged in multiple pieces, and the outlet of the tank was allowed to flow through
  • the temperature of the latex was maintained at 80° C. through the temperature increase control unit located between the upper partition and the lower partition, and ultrasonic waves were generated at a frequency of 300 kHz through the ultrasonic generator located at the lower part of the receiving tank.
  • the foam was removed by spraying the foam removing material through the foam breaker during the flow of latex, and at this time, the generated residual unreacted monomer was separated/removed by decompression through the decompression unit.
  • the internal residence time of the latex in the receiving tank was maintained at 20 minutes.
  • Example 2 The same procedure as in Example 1 was performed, except that the temperature of the latex was maintained at 75° C. using a temperature increase control unit.
  • Example 2 The same procedure as in Example 1 was performed except that the temperature of the latex was maintained at 85° C. by using a temperature increase control unit.
  • Example 1 The same process as in Example 1 was performed except that the internal residence time in the storage tank of latex was maintained at 15 minutes by controlling the discharge valve through the control unit.
  • Example 1 The same process as in Example 1 was performed except that the internal residence time in the receiving tank of latex was maintained at 25 minutes by controlling the discharge valve through the control unit.
  • Example 2 The same procedure as in Example 1 was performed except that ultrasonic waves were generated at a frequency of 100 kHz through the ultrasonic generator.
  • ⁇ Comparative Example 1> to ⁇ Comparative Example 5> are cases in which the equipment of the present invention is not used.
  • Latex was put into a tank of 15 m 3 volume, and the jacket was heated to 80° C. while stirring at 35 rpm, followed by stripping under reduced pressure for 20 minutes.
  • Latex was put into a tank of 15 m 3 volume, and the jacket was heated to 80° C. while stirring at 70 rpm, followed by stripping under reduced pressure for 20 minutes.
  • Latex was put into a tank of 15 m 3 volume, and the jacket was heated to 90° C. while stirring at 35 rpm, followed by stripping under reduced pressure for 20 minutes.
  • Latex was put into a tank of 15 m 3 volume, and the jacket was heated to 90° C. while stirring at 35 rpm, followed by stripping under reduced pressure for 40 minutes.
  • Latex was put into a tank of 15 m 3 volume and stirred at 35 rpm, and steam at a temperature of 120° C. was injected through the lower part of the tank, followed by stripping for 20 minutes under reduced pressure.
  • Example 1 The same procedure as in Example 1 was performed except that ultrasonic waves were not generated through the ultrasonic generator.
  • Example 2 The same procedure as in Example 1 was performed except for stripping by generating ultrasonic waves at 50 kHz through an ultrasonic generator.
  • Example 2 The same procedure as in Example 1 was performed except that the temperature increase control unit was not used. At this time, the temperature of the latex was 40 °C.
  • Example 1 The same procedure as in Example 1 was performed except that the temperature of the latex was set to 70° C. and stripping was performed.
  • Example 1 The same procedure as in Example 1 was performed except that the temperature of the latex was set to 90° C. and stripping was performed.
  • Example 1 The same procedure as in Example 1 was performed except that the latex retention time was set to 10 minutes and stripping was performed.
  • Example 1 The same procedure as in Example 1 was performed except that the retention time of latex was set to 30 minutes and stripping was performed.
  • the latex was placed in a transparent PE bag, and then the whiteness (W.I.) was measured using the L,a,b method using the L,a,b color system to evaluate thermal stability.
  • Table 1 shows the residual (unreacted) monomer content (ppm) and latex color (WI) of Examples 1 to 6, and Table 2 shows the residual monomer content (ppm) and latex color of Comparative Examples 1 to 13 (WI) is shown. At this time, in Table 2, the low removal efficiency of the residual monomer and the inferior latex color are underlined.
  • the residual monomer content (ppm) of Examples 1 to 6 was 9.3 (ppm) or less, so the removal efficiency of the residual monomer was high, whereas in Comparative Examples 1 to 4, 35 (ppm) above, in Comparative Examples 6 to 9, 11, and 12, 11.3 (ppm) or more, but it can be seen that the removal efficiency of the residual monomer is low.

Abstract

본 발명은 후처리 장치에 관한 것으로서, 본 발명에 따른 후처리 장치는, 라텍스(Latex)를 후처리하는 후처리 장치로서, 내부에 수용부가 형성되고, 상기 라텍스가 상기 수용부에 유입 및 배출되는 유입구 및 배출구가 형성된 수용탱크, 상기 수용탱크에 수용된 상기 라텍스로 초음파를 발생시키는 초음파 발생장치, 상기 수용탱크의 수용부를 감압시켜 미반응 모노머를 상기 수용탱크의 외부로 배출시키는 감압부; 및 상기 수용탱크의 수용부의 내부에 구비되고, 상기 수용탱크의 유입구로부터 배출구 방향을 따라 배치된 다수개의 칸막이를 포함하는 칸막이부를 포함하고, 상기 수용부에 수용된 상기 라텍스는 다수개의 상기 칸막이의 상하부를 따라 이동된다.

Description

후처리 장치
관련출원과의 상호인용
본 출원은 2020년 04월 24일자 한국특허출원 제10-2020-0050155호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 후처리 장치에 관한 것이다.
염화비닐 모노머를 이용해 PVC를 중합할 때, 중합 전환율이 100%에 가까울수록 모노머의 전환속도가 더뎌져 일정 전환율이 도달하면 중합을 종료한 후 미반응된 모노머를 회수한 후 중합체를 얻는다. 이때, 미반응 단랑체는 제품 내 함유량 및 건조시 배출되는 등 환경적 이슈로 법적 규제가 강화되고 있으며, 이로 인해 최소화하여 관리하여야 하여야 한다.
일반적으로 중합 이후 반응기 안에서 승온/감압하여 중합체로부터 미반응 모노머를 회수하거나, 중합이 완료된 중합체를 다른 탱크(Tank)로 이송하여 승온/감압하에 미반응 모노머를 회수하는 방법이 이용되었으나, 이는 미반응 모노머 회수 효율이 좋지 못하다. 또한, 스팀(Steam)을 이용하여 미반응 모노머를 회수하는 방법의 경우 고온으로 인해 라텍스(Latex) 열 안정성이 나빠져 최종 제품의 물성에 악영향을 주는 문제가 있다.
[선행기술문헌] (특허문헌 1) 대한민국 공개특허공보 제10-2001-0050323호
본 발명의 하나의 관점은 라텍스(Latex)의 열안정성을 해치지 않으면서 고효율로 미반응 모노머를 제거할 수 있는 후처리 장치를 제공하기 위한 것이다.
본 발명의 실시예에 따른 후처리 장치는, 라텍스(Latex)를 후처리하는 후처리 장치로서, 내부에 수용부가 형성되고, 상기 라텍스가 상기 수용부에 유입 및 배출되는 유입구 및 배출구가 형성된 수용탱크, 상기 수용탱크에 수용된 상기 라텍스로 초음파를 발생시키는 초음파 발생장치, 상기 수용탱크의 수용부를 감압시켜 미반응 모노머를 상기 수용탱크의 외부로 배출시키는 감압부;, 및 상기 수용탱크의 수용부의 내부에 구비되고, 상기 수용탱크의 유입구로부터 배출구 방향을 따라 배치된 다수개의 칸막이를 포함하는 칸막이부를 포함하고, 상기 수용부에 수용된 상기 라텍스는 다수개의 상기 칸막이의 상하부를 따라 이동될 수 있다.
본 발명에 따르면, 초음파 발생장치를 통해 라텍스에 초음파를 가하고, 칸막이부를 통해 라텍스의 접촉면적을 넓히며 감압부를 통해 감압하여, 라텍스의 열안정성을 해치지 않으면서 고효율로 미반응된 잔류 모노머를 제거할 수 있다.
또한, 라텍스의 높이 레벨의 측정값을 참고하여 제어부가 라텍스를 배출시키는 배출밸브 제어를 통해 라텍스의 수용탱크의 내부 체류시간을 조절하여, 미반응 모노머의 제거효율을 증가시키고, 라텍스의 색상이 나빠지는 것을 방지할 수 있다.
도 1은 본 발명의 실시예에 따른 후처리 장치를 예시적으로 나타낸 사시도이다.
도 2는 본 발명의 실시예에 따른 후처리 장치의 개념을 나타낸 단면도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
도 1은 본 발명의 실시예에 따른 후처리 장치를 예시적으로 나타낸 사시도이고, 도 2는 본 발명의 실시예에 따른 후처리 장치의 개념을 나타낸 단면도이다.
도 1 및 도 2를 참고하면, 본 발명의 실시예에 따른 후처리 장치(100)는 라텍스(L)가 수용부(111)에 유입 및 수용탱크(110), 라텍스(L)로 초음파를 발생시키는 초음파 발생장치(120), 수용탱크(110)의 수용부(111)를 감압시키는 감압부(130), 및 수용탱크(110)의 수용부(111)의 내부에 구비되고, 수용탱크(110)의 유입구(112)로부터 배출구(113) 방향을 따라 배치된 다수개의 칸막이를 포함하는 칸막이부(140)를 포함한다.
또한, 본 발명의 실시예에 따른 후처리 장치(100)는 라텍스의 흐름으로 발생되는 폼(Form)을 제거하는 폼 브레이커부(F)와, 라텍스(L)의 온도를 조절하는 승온 조절부(150)와, 라텍스(L)의 높이 레벨을 측정하는 레벨 인디케이터(160), 및 제어부(180)를 더 포함할 수 있다.
아울러, 본 발명의 실시예에 따른 후처리 장치(100)는 수용탱크(110)의 배출구(113) 측에 라텍스(L) 배출밸브(172), 배출밸브(172)와 연결된 배출라인(171), 및 배출라인(171)에 구비된 배출펌프(173)를 더 포함할 수 있다.
보다 상세히, 본 발명의 실시예에 따른 후처리 장치(100)는 라텍스(L)(Latex)를 후처리하여, 미반응 모노머를 분리 제거하는 후처리 장치(100)이다.
여기서, 라텍스(L)는 염화비닐계 공중합체 라텍스(L)일 수 있다. 이때, 염화비닐계 공중합체는 폴리비닐크로라이드 일 수 있다.
수용탱크(110)는 내부에 수용부(111)가 형성되고, 라텍스(L)가 수용부(111)에 유입 및 배출되는 유입구(112) 및 배출구(113)가 형성될 수 있다.
유입구(112)는 수용탱크(110)의 일측에 구비되고, 배출구(113)는 수용탱크(110)의 타측에 구비될 수 있다. 이때, 유입구(112)는 수용탱크(110)의 측면 상부측에 구비되고, 배출구(113)는 수용탱크(110)의 측면 하부측에 구비될 수 있다.
또한, 수용탱크(110)의 부피는 15m3 일 수 있다.
초음파 발생장치(120)는 수용탱크(110)에 수용된 라텍스(L)로 초음파를 발생시켜, 미반응 모노머(monomer)를 라텍스(L)로부터 분리할 수 있다. 이에 따라, 미반응(잔류) 모노머의 제거 효율이 증가될 수 있다.
또한, 초음파 발생장치(120)는 수용탱크(110)의 하부측에 구비되어 수용탱크(110)에 수용된 라텍스(L)로 초음파를 발생시킬 수 있다. 여기서, 초음파 발생장치(120)를 통해 초음파가 발진되면 초음파는 용액(라텍스)을 통과하여 전파하게 되는데, 이때 캐비테이션(cavitation) 현상이 발생하여 미세한 저압의 공동(cavity)이 발생하게 된다. 이 공동은 매우 짧은 시간 안에 생성 및 소멸을 거듭하게 되며, 발진된 초음파 주파수, 용액의 온도 및 압력 등에 따라서 공동의 개수 및 크기, 모멘텀이 달라진다. 공동은 발생 및 소멸하면서 급격한 압력의 변화를 수반하게 되며 피탈기물 근처에서 생성 및 소멸하는 공동에 의해서 잔류 미반응 단량체(모노머)가 중합체(라텍스)에서 분리될 수 있다.
아울러, 초음파 발생장치(120)는 예를 들어 초음파를 75 ~ 1500 kHz 로 발생시킬 수 있다. 여기서, 초음파 발생장치(120)는 구체적으로 예를 들어 초음파를 100 ~ 1000 kHz 로 발생시킬 수 있다. 이때, 초음파 발생장치(120)를 통해 초음파를 100kHz 이상으로 발생시키면 미반응 모노머의 제거효율이 현저히 증가될 수 있다.
감압부(130)는 수용탱크(110)의 수용부(111)를 감압시켜 미반응 모노머를 수용탱크(110)의 외부로 배출시킬 수 있다.
또한, 감압부(130)는 수용탱크(110)의 상부측과 연결된 감압라인(131), 및 감압라인(131)에 구비된 진공펌프(132)를 포함할 수 있다.
아울러, 감압부(130)는 진공펌프(132)를 통해 수용탱크(110)의 수용부(111)를 감압하여, 초음파 발생장치(120)를 통해 라텍스(L)로부터 기화되며 분리된 미반응 모노머를 감압라인(131)을 통해 수용탱크(110)의 외부로 배출하여 제거할 수 있다.
여기서, 진공펌프(132)로 감압라인(131)을 통해 수용탱크(110)의 수용부(111)에 진공압력을 가하여 압력을 낮춰주면, 수용탱크(110)의 수용부(111)에 위치된 기화되어 분리된 미반응 모노머의 배출이 보다 용이할 수 있다. 이때, 감압부(130)를 통해 수용탱크(110)의 수용부(111)의 압력이 낮아지면, 휘발성 미반응 단량체의 비점(boiling point)이 낮아지게 되어, 별도의 캐리어 기체 없이도 휘발성 미반응 단량체가 보다 쉽게 분리될 수 있다.
한편, 감압부(130)는 진공펌프(132)를 통해 -0.5 ~ -0.7kg/cm2의 진공 압력을 가할 수 있다.
칸막이부(140)는 수용탱크(110)의 수용부(111)의 내부에 구비되고, 수용탱크(110)의 유입구(112)로부터 배출구(113) 방향을 따라 배치된 다수개의 칸막이를 포함할 수 있다. 이때, 수용부(111)에 수용된 라텍스(L)는 다수개의 칸막이의 상하부를 따라 이동될 수 있다.
또한, 칸막이부(140)는 수용탱크(110)의 바닥면(114)에 고정된 하부 칸막이(141)와, 수용탱크(110)의 바닥면(114)에서 일정 간격 상부로 이격되어 위치되는 상부 칸막이(142)를 포함할 수 있다. 이때, 수용부(111)에 수용된 라텍스(L)는 하부 칸막이(141)의 상부와 상부 칸막이(142)의 하부를 따라 이동될 수 있다. 여기서, 하부 칸막이(141)와 상부 칸막이(142)는 판 형태로 구비되어 양측 측부가 수용탱크(110)의 양측 내벽에 고정될 수 있다.
한편, 하부 칸막이(141) 및 상부 칸막이(142)는 수용탱크(110)의 유입구(112)로부터 배출구(113) 방향을 따라 교대로 배치될 수 있다.
이에 따라, 수용탱크(110)의 수용부(111)에 배치된 하부 칸막이(141) 및 상부 칸막이(142)의 상,하부를 라텍스(L)가 이동되며 라텍스(L)의 표면적이 넓어질 수 있다. 즉, 감압부(130)가 진공을 가하여 감압라인(131)을 통해 빨아들이며 미반응 모노머가 탈기될 때의 접촉면적이 늘어날 수 있다. 이에 따라, 미반응 모노머의 제거효율이 현저히 증가될 수 있다.
그리고, 칸막이부(140)가 없으면 라텍스(L)가 유입구(112)로 유입되어 배출구(113)로 배출 시, 상부측에 위치된 라텍스(L) 부분만 수용탱크(110)의 상부에 위치된 감압부(130)의 진공압력에 직접 접촉되고, 하부측에 위치된 라텍스(L)는 진공압력의 영향을 상대적으로 적게 받게 되지만, 상,하부를 따라 라텍스(L)가 이동되면 전체적으로 고르게 진공압력의 영향을 받을 수 있게 될 수 있다.
또한, 칸막이부(140)가 없으면 라텍스(L)가 유입구(112)로 유입되어 배출구(113)로 배출 시, 하부측에 위치된 라텍스(L) 부분은 수용탱크(110)의 하부에 위치된 초음파 발생기의 초음파 영향을 크게 받는 반면, 상부측에 위치된 라텍스(L)는 초음파의 영향을 상대적으로 적게 받게 되지만, 칸막이부(140)의 상,하부를 따라 라텍스(L)가 이동되면 전체적으로 고르게 초음파의 영향을 받을 수 있게 될 수 있다.
승온 조절부(150)는 수용탱크(110)의 수용부(111)에 위치되어, 수용부(111)에 수용된 라텍스(L)의 온도를 조절할 수 있다. 이에 따라, 미반응(잔류) 모노머의 제거 효율이 증가될 수 있다.
또한, 승온 조절부(150)는 라텍스(L)의 이동방향으로 하부 칸막이(141) 및 상부 칸막이(142)의 사이사이에 배치될 수 있다. 이때, 또한, 승온 조절부(150)는 라텍스(L)의 이동방향으로 하부 칸막이(141) 및 상부 칸막이(142)의 전,후에 각각 배치될 수 있다.
아울러, 승온 조절부(150)는 히터로 구비될 수 있다.
그리고, 승온 조절부(150)는 예를 들어 수용부(111)에 수용된 라텍스(L)의 온도를 73 ~ 87 ℃로 유지 시킬 수 있다. 여기서, 승온 조절부(150)는 구체적으로 예를 들어 수용부(111)에 수용된 라텍스(L)의 온도를 75 ~ 85℃로 유지 시킬 수 있다. 이때, 승온 조절부(150)를 통해 수용부(111)에 수용된 라텍스(L)의 온도를 75℃이상으로 유지시키면 미반응 모노머의 제거효율이 현저히 증가될 수 있다.
폼 브레이커(Form Breaker)부(F)는 수용탱크(110)의 상부측에 위치되어, 수용부(111)에서 라텍스(L)의 흐름으로 발생되는 폼(Form)을 폼제거물질을 분사하여 제거할 수 있다.
이에 따라, 라텍스(L)의 흐름으로 발생되는 거품을 제거하여 라텍스(L)에서 미반응 모너머의 제거효율을 증가시킬 수 있다.
여기서, 폼제거물질인 화학물질은 천연유지 소포제, 폴리에테르계 소포제, 고급 지방족 알코올계 소포제, 실리콘계 소포제, 파라핀계 소포제, 미네랄 오일계 소포제 등 소포제로 적용되는 물질은 제한 없이 적용될 수 있다. 이때, 폼제거물질인 화학물질은 구체적으로 탄소수 8 내지 19의 지방족 알코올을 포함할 수 있고, 보다 구체적으로는 탄소수 8 내지 10의 지방족 알코올, 탄소수 12 내지 18의 지방족 알코올, 및 탄소수 16 내지 18의 지방족 알코올 중에서 적어도 1종 이상일 수 있다.
배출밸브(172)는 수용탱크(110)의 배출구(113) 측에 구비되어 라텍스(L)의 배출이 조절될 수 있다. 이때, 배출밸브(172)를 조절하여 라텍스(L)의 수용탱크(110)의 내부 체류시간이 조절될 수 있다. 여기서, 배출밸브(172)는 수용탱크(110)의 측면 하부측에 위치될 수 있다.
배출라인(171)은 배출밸브(172)와 연결되고, 배출펌프(173)는 배출라인(171)에 구비될 수 있다. 여기서, 배출펌프(173)가 작동하여 수용탱크(110)의 수용부(111)에 수용된 라텍스(L)를 배출라인(171)을 통해 수용탱크(110)의 외부로 배출시킬 수 있다. 이때, 배출펌프(173)는 배출라인(171)에서 수용탱크(110)를 기준으로 배출밸브(172) 보다 멀리 구비될 수 있다. 이에 따라, 배출펌프(173)의 작동에도 불구하고 배출밸브(172)가 라텍스(L)의 배출량을 조절할 수 있다.
레벨 인디케이터(Level indicator)(160)는 라텍스(L)의 높이 레벨을 측정할 수 있다. 여기서, 레벨 인디케이터(160)에서 측정된 라텍스(L)의 높이 레벨을 참조하여 배출밸브(172)를 조절함으로써, 라텍스(L)의 수용탱크(110)의 내부 체류시간을 조절할 수 있다.
이때, 레벨 인디케이터(160)는 수용탱크(110)의 수용부(111) 측면에 구비된 액체의 수용 높이(레벨)을 측정하는 액체 레벨 측정센서(161)를 포함하여, 수용부(111)에 수용된 라텍스(L)의 높이 레벨을 측정할 수 있다.
제어부(180)는 라텍스(L)의 레벨 인디케이터(160)로부터 측정값을 전달받아 배출밸브(172)의 개폐를 조절할 수 있다. 여기서, 제어부(180)는 라텍스 레벨 측정값이 메모리(미도시)에 저장된 값보다 작다고 판단하면 배출밸브(172)를 보다 개방시켜 라텍스(L)의 배출량을 증가시고, 라텍스 레벨 측정값이 메모리에 저장된 값보다 크다고 판단하면 배출밸브(172)를 보다 폐쇄시켜 라텍스(L)의 배출량을 감소시킴으로서, 라텍스(L)의 수용탱크(110)의 내부 체류시간을 조절할 수 있다.
또한, 제어부(180)는 예를 들어 라텍스(L)의 수용탱크(110)의 내부 체류시간을 13 ~ 32분으로 유지시킬 수 있다. 여기서, 제어부(180)는 구체적으로 예를 들어 라텍스(L)의 수용탱크(110)의 내부 체류시간을 15 ~ 25분으로 유지시킬 수 있다.
이때, 제어부(180)를 통해 라텍스(L)의 수용탱크(110)의 내부 체류시간을 15 분 이상으로 유지하여 미반응 모노머의 제거효율이 현저히 증가될 수 있고, 체류시간이 25분 이하로 유지하여 라텍스(L)의 색상이 나빠지는 것을 효과적으로 방지할 수 있다.
한편, 본 발명의 실시예에 따른 후처리 장치(100)는 수용탱크(110)의 유입구(112)와 연결된 유입라인(191) 및 유입라인(191)에 구비된 유입펌프(192)를 더 포함할 수 있다.
여기서, 유입펌프(192)가 작동하여 라텍스(L)를 유입라인(191)을 통해 수용탱크(110)의 수용부(111)로 유입시킬 수 있다.
상기와 같이 구성된 본 발명의 실시예에 따른 후처리 장치(100)는 초음파 발생장치(120)를 통해 라텍스(L)에 초음파를 가하고, 칸막이부(140)를 통해 라텍스(L)의 접촉면적을 넓히며 감압부(130)를 통해 감압하고, 승온 조절부(150)를 통해 라텍스(L)의 적정온도를 유지하여, 라텍스(L)의 열안정성을 해치지 않으면서 고효율로 미반응된 잔류 모노머를 제거할 수 있다.
또한, 레벨 인디케이터(160)에서 라텍스(L)의 높이 레벨을 측정하고, 측정값을 참고하여 제어부(180)가 라텍스(L)를 배출시키는 배출밸브(172)의 개폐를 제어함으로써, 라텍스(L)의 수용탱크(110)의 내부 체류시간을 조절하여, 미반응 모노머의 제거효율을 증가시키고, 라텍스(L)의 색상이 나빠지는 것을 방지할 수 있다.
결국, 구성된 본 발명의 실시예에 따른 후처리 장치(100)는 라텍스(L) 내의 미반응(잔류) 모노머의 함량을 10ppm 이하로 낮추고, 색상은 백색도(WI) 기준 90 이상을 만족시킬 수 있다.
< 실시예 1 >
내부에 수용부가 형성된 15m3 부피의 수용탱크에 유입구로 라텍스를 투입하고, 투입된 라텍스는 다수개로 교대로 배치되는 상부 칸막이 및 하부 칸막이를 포함하는 칸막이부의 상,하부를 따라 이동되도록 하며 수용탱크의 배출구로 흐르도록 하였다.
이때, 상부 칸막이 및 하부 칸막이의 사이사이에 위치된 승온 조절부를 통해 라텍스의 온도를 80℃로 유지하였고, 수용탱크의 하부에 위치된 초음파 발생장치를 통해 300kHz 주파수로 초음파를 발생시켰다.
또한, 라텍스의 흐름 과정중에서 폼 브레이커부를 통해 폼제거물질을 분사하여 폼을 제거하였고, 이때, 발생하는 잔류 미반응 모노머를 감압부를 통해 감압하여 분리/제거하였다.
그리고, 레벨 인디케이터를 통해 라텍스의 높이 레벨을 측정하여 제어부를 통해 라텍스 배출밸브를 조절하여, 라텍스의 수용탱크에서의 내부 체류시간을 20분으로 유지하였다.
< 실시예 2 >
승온 조절부를 이용하여 라텍스의 온도를 75℃로 유지한 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 실시예 3 >
승온 조절부를 이용하여 라텍스의 온도를 85℃로 유지한 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 실시예 4 >
제어부를 통해 배출밸브를 조절하여 라텍스의 수용탱크에서의 내부 체류시간을 15분으로 유지한 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 실시예 5 >
제어부를 통해 배출밸브를 조절하여 라텍스의 수용탱크에서의 내부 체류시간을 25분으로 유지한 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 실시예 6 >
초음파 발생장치를 통해 100kHz 주파수로 초음파를 발생시킨 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 비교예 1 > ~ < 비교예 5 >는 본원발명 설비를 미사용한 경우임.
< 비교예 1 >
15m3 부피의 탱크에 라텍스를 투입하여 35rpm에서 교반하면서 80℃ 온도로 자켓(Jacket)을 승온하여 감압하에 20분간 스트리핑(Stripping) 하였다.
< 비교예 2 >
15m3 부피의 탱크에 라텍스를 투입하여 70rpm에서 교반하면서 80℃ 온도로 자켓(Jacket)을 승온하여 감압하에 20분간 스트리핑(Stripping) 하였다.
< 비교예 3 >
15m3 부피의 탱크에 라텍스를 투입하여 35rpm에서 교반하면서 90℃ 온도로 자켓(Jacket)을 승온하여 감압하에 20분간 스트리핑(Stripping) 하였다.
< 비교예 4 >
15m3 부피의 탱크에 라텍스를 투입하여 35rpm에서 교반하면서 90℃ 온도로 자켓(Jacket)을 승온하여 감압하에 40분간 스트리핑(Stripping) 하였다.
< 비교예 5 >
15m3 부피의 탱크에 라텍스를 투입하여 35rpm에서 교반하면서, 탱크 하부를 통해 120℃ 온도의 스팀(Steam)을 주입하여 감압하에 20분간 스트리핑(Stripping) 하였다.
< 비교예 6 > ~ < 비교예 13 >는 본원발명 설비를 일부 사용하지만 조건이 미비된 경우
< 비교예 6 >
초음파 발생장치를 통해 초음파를 발생시키지 않은 것을 제외하고 실시예 1과 동일과정을 수행하였다.
< 비교예 7 >
초음파 발생장치를 통해 50kHz로 초음파를 발생시켜 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 비교예 8 >
승온 조절부를 사용하지 않은 것을 제외하고는 실시예 1과 동일과정을 수행하였다. 이때, 라텍스의 온도는 40℃ 였다.
< 비교예 9 >
라텍스의 온도를 70℃로 설정하여 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 비교예 10 >
라텍스의 온도를 90℃로 설정하여 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 비교예 11 >
칸막이부를 제거한 후 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 비교예 12 >
라텍스의 체류시간을 10분으로 설정하여 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 비교예 13 >
라텍스의 체류시간을 30분으로 설정하여 스트리핑(Stripping) 한 것을 제외하고는 실시예 1과 동일과정을 수행하였다.
< 실험예 1>
잔류 모노머 함량을 측정하기 위하여,
헤드스페이스 분석장비인 HS-GC/SIM mode(m/z62,62)를 이용하여 라텍스 2g을 90도 20분 20mL vial 조건에서 나오는 VCM 성분을 분석하였다.
라텍스 색상을 측정하기 위하여,
스트리핑이 완료된 라텍스를 투명 PE 봉지에 넣은 후 L,a,b 표색계를 이용하는 L,a,b 법을 이용해 백색도(W.I.)를 측정하여 열안정성을 평가하였다.
실험예 1의 실험을 통해 측정된 잔류 모노머 함량 및 라텍스 색상은 하기 표 1 및 표 2에 나타내었다.
실시예
1 2 3 4 5 6
잔류모노머
함량(ppm)
8.2 8.9 7.8 9.1 8.0 9.3
라텍스색상
(W.I.)
90.3 90.7 91.1 91.2 90.2 90.4
비교예
1 2 3 4 5 6 7 8 9 10 11 12 13
잔류모노머함량(ppm) 48.2 37.6 35.1 40.3 9.7 24.9 12.1 21.6 11.3 8.0 17.6 19.5 7.7
라텍스색상(W.I.) 90.5 90.6 89.1 89.7 81.3 90.4 90.2 92.4 90.9 88.4 90.1 90.6 87.1
표 1은 실시예 1 내지 실시예 6의 잔류(미반응) 모노머 함량(ppm) 및 라텍스 색상(W.I.)을 나타내고, 표 2는 비교예 1 내지 비교예 13의 잔류 모노머 함량(ppm) 및 라텍스색상(W.I.)을 나타낸다. 이때, 표 2에서 잔류 모노머의 제거 효율이 낮거나 및 라텍스 색상이 열세한 것을 밑줄로 표시하였다.
표 1 및 표 2를 참고할 때, 잔류 모노머 함량(ppm)이 실시예 1 내지 실시예 6은 9.3(ppm) 이하로 나타나 잔류 모노머의 제거 효율이 높은 반면, 비교예 1 내지 4에서는 35(ppm) 이상이고, 비교예 6 내지 9, 11, 및 12에서는 11.3(ppm) 이상으로 나타나나 잔류 모노머의 제거 효율이 낮은 것을 알 수 있다.
또한, 표 1 및 표 2를 참고할 때, 라텍스 색상(W.I.)이 실시예 1 내지 실시예 6은 90 이상으로 나타나 열안정성이 우수한 반면, 비교예 5, 10,13에서는 88.4 이하로 나타나 열안정성이 실시예 1 내지 실시예 6에 비해 열세한 것을 알 수 있다.
보다 상세히, 표 1 및 표 2를 참고할 때, 비교예 1 내지 4와 같이 자켓(Jacket)을 이용해 승온하여 교반하에 스트리핑할 경우 잔류 모노머 함량이 35.1(ppm) 이상으로 현저히 높은 것을 알 수 있다. 여기서, 비교예 2와 같이 rpm을 70rpm으로 높이거나, 비교예 3과 같이 온도를 90℃로 올리거나, 비교예 4와 같이 40분의 긴 시간을 운전하여도 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다. 그리고, 비교예 1 내지 4와 같이 자켓(Jacket)을 이용해 승온하여 교반하에 스트리핑할 경우 라텍스 특성에 의하여 폼 발생이 많은 문제가 있다.
비교예 5와 같이 스팀을 사용할 경우 라텍스 색상이 81.3으로 열세한 것을 알 수 있다. 또한, 비교예 5와 같이 스팀을 사용할 경우 고온 부위에 라텍스가 붙어 고착되면서 변색되는 문제가 있다.
비교예 6과 같이 초음파를 사용하지 않을 때 잔류 모노머 함량이 24.9로 나타나, 잔류 모노머 제거 효율이 상당히 나쁜 것을 알 수 있다.
비교예 7과 같이 초음파를 50kHz의 낮은 주파수로 발생시킬 때, 잔류 모노머 함량이 12.1로 나타나, 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다.
비교예 8과 같이 승온 조절부를 사용하지 않을때, 잔류 모노머 함량이 21.6으로 나타나, 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다.
비교예 9와 같이 라텍스의 온도를 70℃로 낮게 설정할 때, 잔류 모노머 함량이 11.3으로 나타나, 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다.
비교예 10과 같이 라텍스의 온도를 90℃로 높게 설정할 때, 라텍스 색상이 88.4로 열세한 것을 알 수 있다.
비교예 11과 같이 칸막이부를 제거할 때, 잔류 모노머 함량이 17.6으로 나타나, 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다.
비교예 12와 같이 라텍스의 체류시간이 10분으로 너무 짧으면 잔류 모노머 함량이 19.5로 나타나, 잔류 모노머 제거 효율이 나쁜 것을 알 수 있다.
비교예 13과 같이 라텍스의 체류 시간이 30분으로 너무 길면 라텍스의 색상이 87.1로 열세해지는 것을 알 수 있다.
결국, 실시예 1 내지 실시예 6은 비교예 1 내지 비교예 13에 비해, 잔류 모노머의 제거 효율이 높고, 열안정성이 우수한 것을 알 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 후처리 장치는 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
100: 후처리 장치
110: 수용탱크
111: 수용부
112: 유입구
113: 배출구
114: 바닥면
120: 초음파 발생장치
130: 감압부
131: 감압라인
132: 진공펌프
140: 칸막이부
141: 하부 칸막이
142: 상부 칸막이
150: 승온 조절부
160: 레벨 인디케이터
161: 액체 레벨 측정센서
171: 배출라인
172: 배출밸브
173: 배출펌프
180: 제어부
191: 유입라인
192: 유입펌프
L: 라텍스
F: 폼 브레이커부

Claims (19)

  1. 라텍스(Latex)를 후처리하는 후처리 장치로서,
    내부에 수용부가 형성되고, 상기 라텍스가 상기 수용부에 유입 및 배출되는 유입구 및 배출구가 형성된 수용탱크;
    상기 수용탱크에 수용된 상기 라텍스로 초음파를 발생시키는 초음파 발생장치;
    상기 수용탱크의 수용부를 감압시켜 미반응 모노머를 상기 수용탱크의 외부로 배출시키는 감압부; 및
    상기 수용탱크의 수용부의 내부에 구비되고, 상기 수용탱크의 유입구로부터 배출구 방향을 따라 배치된 다수개의 칸막이를 포함하는 칸막이부를 포함하고,
    상기 수용부에 수용된 상기 라텍스는 다수개의 상기 칸막이의 상하부를 따라 이동되는 후처리 장치.
  2. 청구항 1에 있어서,
    상기 칸막이부는 상기 탱크의 바닥면에 고정된 하부 칸막이와, 상기 탱크의 바닥면에서 일정 간격 상부로 이격되어 위치되는 상부 칸막이를 포함하고,
    상기 수용부에 수용된 상기 라텍스는 상기 하부 칸막이의 상부와 상기 상부 칸막이의 하부를 따라 이동되는 후처리 장치.
  3. 청구항 2에 있어서,
    상기 하부 칸막이 및 상기 상부 칸막이는 상기 수용탱크의 유입구로부터 배출구 방향을 따라 교대로 배치되는 후처리 장치.
  4. 청구항 1에 있어서,
    상기 감압부는 상기 수용탱크의 상부측과 연결된 감압라인; 및 상기 감압라인에 구비된 진공펌프를 포함하고,
    상기 감압부는 상기 진공펌프를 통해 상기 수용탱크의 수용부를 감압하여, 상기 초음파 발생장치를 통해 상기 라텍스로부터 기화되며 분리된 상기 미반응 모노머를 상기 감압라인을 통해 상기 수용탱크의 외부로 배출하여 제거하는 후처리 장치.
  5. 청구항 1에 있어서,
    상기 수용탱크의 상부측에 위치되어, 상기 수용부에서 상기 라텍스의 흐름으로 발생되는 폼(Form)을 폼제거물질을 분사하여 제거하는 폼 브레이커(Form Breaker)부를 더 포함하는 후처리 장치.
  6. 청구항 1에 있어서,
    상기 라텍스는 염화비닐계 공중합체 라텍스인 후처리 장치.
  7. 청구항 1에 있어서,
    상기 초음파 발생장치는
    상기 수용탱크의 하부측에 구비되어 상기 수용탱크에 수용된 상기 라텍스로 초음파를 발생시키는 후처리 장치.
  8. 청구항 2에 있어서,
    상기 수용탱크의 수용부에 위치되어, 상기 수용부에 수용된 상기 라텍스의 온도를 조절하는 승온 조절부를 더 포함하는 후처리 장치.
  9. 청구항 8에 있어서,
    상기 승온 조절부는
    상기 라텍스의 이동방향으로 상기 하부 칸막이 및 상기 상부 칸막이의 사이사이에 배치되는 후처리 장치.
  10. 청구항 8에 있어서,
    상기 승온 조절부는
    상기 수용부에 수용된 상기 라텍스의 온도를 73 ~ 87℃로 유지시키는 후처리 장치.
  11. 청구항 8에 있어서,
    상기 승온 조절부는
    상기 수용부에 수용된 상기 라텍스의 온도를 75 ~ 85℃로 유지시키는 후처리 장치.
  12. 청구항 1에 있어서,
    상기 초음파 발생장치는
    초음파를 75 ~ 1500 kHz 로 발생시키는 후처리 장치.
  13. 청구항 1에 있어서,
    상기 초음파 발생장치는
    초음파를 100 ~ 1000 kHz 로 발생시키는 후처리 장치.
  14. 청구항 1에 있어서,
    상기 수용탱크의 배출구 측에 상기 라텍스 배출밸브가 더 구비되고,
    상기 배출밸브를 조절하여 상기 라텍스의 상기 수용탱크의 내부 체류시간이 조절되는 후처리 장치.
  15. 청구항 14에 있어서,
    상기 라텍스의 높이 레벨을 측정하는 레벨 인디케이터(Level indicator)를 더 포함하고,
    상기 레벨 인디케이터에서 측정된 상기 라텍스의 높이 레벨을 참조하여 상기 배출밸브를 조절함으로써, 상기 라텍스의 상기 수용탱크의 내부 체류시간을 조절하는 후처리 장치.
  16. 청구항 15에 있어서,
    상기 라텍스의 레벨 인디케이터로부터 측정값을 전달받아 상기 배출밸브의 개폐를 조절하는 제어부를 더 포함하는 후처리 장치.
  17. 청구항 16에 있어서,
    상기 제어부는 상기 라텍스의 상기 수용탱크의 내부 체류시간을 13 ~ 32분으로 유지시키는 후처리 장치.
  18. 청구항 16에 있어서,
    상기 제어부는 상기 라텍스의 상기 수용탱크의 내부 체류시간을 15 ~ 25분으로 유지시키는 후처리 장치.
  19. 청구항 14에 있어서,
    상기 배출밸브와 연결된 배출라인; 및
    상기 배출라인에 구비된 배출펌프를 더 포함하는 후처리 장치.
PCT/KR2021/004804 2020-04-24 2021-04-16 후처리 장치 WO2021215750A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/775,834 US20220387960A1 (en) 2020-04-24 2021-04-16 Post-processing apparatus
EP21792251.7A EP4043498A4 (en) 2020-04-24 2021-04-16 POST-TREATMENT DEVICE
CN202180006456.7A CN114729069A (zh) 2020-04-24 2021-04-16 后处理设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0050155 2020-04-24
KR1020200050155A KR20210131717A (ko) 2020-04-24 2020-04-24 후처리 장치

Publications (1)

Publication Number Publication Date
WO2021215750A1 true WO2021215750A1 (ko) 2021-10-28

Family

ID=78269705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004804 WO2021215750A1 (ko) 2020-04-24 2021-04-16 후처리 장치

Country Status (5)

Country Link
US (1) US20220387960A1 (ko)
EP (1) EP4043498A4 (ko)
KR (1) KR20210131717A (ko)
CN (1) CN114729069A (ko)
WO (1) WO2021215750A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929206A (en) * 1992-01-13 1999-07-27 Solvay (Societe Anonyme) Continuous process for removing the residual monomer or monomers from an aqueous latex of a synthetic polymer and device for carrying it out
JP2000273104A (ja) * 1999-03-23 2000-10-03 Mitsui Chemicals Inc 粉体製造装置における粉体抜き出し方法および気相重合器における粉体抜き出し方法
KR20010050323A (ko) 1999-09-14 2001-06-15 후루타 타케시 염화비닐계 페이스트 수지 라텍스의 소포방법
KR20010053137A (ko) * 1999-04-22 2001-06-25 고또오 슈운기찌 중합체 라텍스로부터 미반응 모노머를 제거하는 장치 및방법
KR100789234B1 (ko) * 2005-11-03 2008-01-02 주식회사 엘지화학 진공 초음파를 사용한 고분자 라텍스 또는 슬러리 내 잔류모노머 탈기 방법 및 이를 이용한 탈기 장치
KR20190041969A (ko) * 2017-10-12 2019-04-23 가부시끼가이샤 구레하 중합체의 연속 제조 장치 및 연속 제조 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US984754A (en) * 1909-05-24 1911-02-21 Franciscus Hendrikus Eijdman Evaporating apparatus.
US1033558A (en) * 1911-10-24 1912-07-23 Joseph E Dunn Evaporator.
US3229448A (en) * 1961-05-29 1966-01-18 Stanley E Jacke Ultrasonic degasifying device
US3239998A (en) * 1962-05-02 1966-03-15 Eastman Kodak Co Ultrasonic degassing of multiple emulsions in a vertical unit
BE756027A (nl) * 1969-09-13 1971-03-11 Agfa Gevaert Nv Inrichting voor het transporteren en ontgassen van viskeuze vloeistoffen
US4375541A (en) * 1976-07-14 1983-03-01 Stauffer Chemical Company Method for separating vinyl chloride from polymers
US4907611A (en) * 1986-12-22 1990-03-13 S & C Co., Ltd. Ultrasonic washing apparatus
DE3736578A1 (de) * 1987-10-26 1989-05-03 Schering Ag Verfahren zum zerstoeren von schaum und vorrichtung dafuer
US5322082A (en) * 1992-10-16 1994-06-21 Yoshihide Shibano Ultrasonic cleaning apparatus
US5389264A (en) * 1993-07-12 1995-02-14 Zimpro Environmental Inc. Hydraulic energy dissipator for wet oxidation process
JP3709568B2 (ja) * 1994-02-07 2005-10-26 チッソ株式会社 残留モノマー除去処理法およびそれに用いる残留モノマー除去処理塔
JP2000086704A (ja) * 1998-09-10 2000-03-28 Kanegafuchi Chem Ind Co Ltd 未反応単量体の除去方法及び除去装置
JP2003048917A (ja) * 2001-08-08 2003-02-21 Nippon Zeon Co Ltd 未反応モノマーの回収方法および回収装置
DE10229103A1 (de) * 2002-06-25 2004-01-15 Agrolinz Melamin Gmbh Vorrichtung und Verfahren zur thermischen Wasseraufbereitung
MY171736A (en) * 2011-05-31 2019-10-25 Kaneka Corp Vinyl chloride resin aggregate particle, method for producing same, and gloves comprising same
WO2015036523A1 (en) * 2013-09-13 2015-03-19 Tetra Laval Holdings & Finance S.A. Method and arrangement for foam extinguishing
JP2016043434A (ja) * 2014-08-21 2016-04-04 株式会社ブルー・スターR&D 超音波バリ取り・表面研磨方法
CN104231173B (zh) * 2014-09-17 2018-08-14 珠海金鸡化工有限公司 羧基丁苯胶乳制备系统及其制备方法
CN107141386A (zh) * 2017-06-16 2017-09-08 唐山三友氯碱有限责任公司 一种生产聚氯乙烯糊树脂的方法及反应回收装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929206A (en) * 1992-01-13 1999-07-27 Solvay (Societe Anonyme) Continuous process for removing the residual monomer or monomers from an aqueous latex of a synthetic polymer and device for carrying it out
JP2000273104A (ja) * 1999-03-23 2000-10-03 Mitsui Chemicals Inc 粉体製造装置における粉体抜き出し方法および気相重合器における粉体抜き出し方法
KR20010053137A (ko) * 1999-04-22 2001-06-25 고또오 슈운기찌 중합체 라텍스로부터 미반응 모노머를 제거하는 장치 및방법
KR20010050323A (ko) 1999-09-14 2001-06-15 후루타 타케시 염화비닐계 페이스트 수지 라텍스의 소포방법
KR100789234B1 (ko) * 2005-11-03 2008-01-02 주식회사 엘지화학 진공 초음파를 사용한 고분자 라텍스 또는 슬러리 내 잔류모노머 탈기 방법 및 이를 이용한 탈기 장치
KR20190041969A (ko) * 2017-10-12 2019-04-23 가부시끼가이샤 구레하 중합체의 연속 제조 장치 및 연속 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043498A4

Also Published As

Publication number Publication date
EP4043498A4 (en) 2023-01-11
EP4043498A1 (en) 2022-08-17
KR20210131717A (ko) 2021-11-03
US20220387960A1 (en) 2022-12-08
CN114729069A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2021215750A1 (ko) 후처리 장치
WO2023121379A1 (ko) 에틸렌-비닐알코올 공중합체의 제조 방법
WO2018084408A1 (ko) Abs계 수지 조성물의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2016195436A1 (ko) 염화비닐계 중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2020218814A1 (ko) 식각장치 및 그 식각방법
WO2017159960A1 (ko) 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
WO2019240475A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019194327A1 (ko) 웨이퍼 수납용기
WO2017078332A1 (ko) 3차원 조형물의 형성 방법
WO2009107987A2 (en) Ph-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2023177133A1 (ko) Pgme, pgmea, 물의 혼합물로부터 물을 분리하는 방법
WO2020036451A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019172512A1 (ko) 대칭형 폴리올레핀 블록 공중합체 및 이의 제조 방법
WO2020226385A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2012177043A2 (ko) 광학 필름
WO2020130412A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2022146093A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2016056848A1 (ko) 비닐계 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 비닐계 열가소성 수지
WO2019088431A1 (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2019083329A2 (en) PLASMA GENERATOR AND ELECTRICAL APPLIANCE COMPRISING THE SAME
WO2018186638A1 (en) A supercritical carbon dioxide morphologically modified acid-based halloysite catalyst
WO2023120887A1 (ko) 에틸렌-비닐알코올 공중합체의 제조방법
WO2023249282A1 (ko) 염화비닐계 중합체의 제조방법
WO2022080711A1 (ko) 변성 에틸렌-비닐알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021792251

Country of ref document: EP

Effective date: 20220426

WWE Wipo information: entry into national phase

Ref document number: 21792251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE