WO2020050589A1 - 가교 폴리올레핀 분리막 및 이의 제조방법 - Google Patents

가교 폴리올레핀 분리막 및 이의 제조방법 Download PDF

Info

Publication number
WO2020050589A1
WO2020050589A1 PCT/KR2019/011328 KR2019011328W WO2020050589A1 WO 2020050589 A1 WO2020050589 A1 WO 2020050589A1 KR 2019011328 W KR2019011328 W KR 2019011328W WO 2020050589 A1 WO2020050589 A1 WO 2020050589A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked polyolefin
separation membrane
silane
diluent
heat
Prior art date
Application number
PCT/KR2019/011328
Other languages
English (en)
French (fr)
Inventor
유비오
배원식
이주성
이아영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980005934.5A priority Critical patent/CN111372981B/zh
Priority to PL19858288.4T priority patent/PL3715407T3/pl
Priority to JP2020526873A priority patent/JP7024079B2/ja
Priority to US16/766,116 priority patent/US11673985B2/en
Priority to EP19858288.4A priority patent/EP3715407B1/en
Publication of WO2020050589A1 publication Critical patent/WO2020050589A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a crosslinked polyolefin separation membrane and a method for manufacturing the same.
  • the electrochemical device is the most attracting field in this aspect, and among them, the development of a secondary battery capable of charging and discharging has become a focus of interest, and recently, in developing such a battery, a new electrode to improve capacity density and specific energy. Research and development are being conducted on the design of the over battery.
  • lithium secondary batteries developed in the early 1990s have the advantage of higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use aqueous electrolyte solutions. Is in the limelight.
  • the lithium secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the separator has a high ion conductivity to increase the permeability of lithium ions based on insulation and high porosity for electrically insulating the positive electrode and the negative electrode. Is required.
  • the separator may also have a wide interval between a shutdown temperature and a melt down temperature to ensure safety of the lithium secondary battery including the separator. To widen the gap between the two, the shutdown temperature should be reduced and the melt down temperature increased.
  • the problem to be solved by the present invention is to provide a crosslinked polyolefin separation membrane having a high melt down temperature and an improved heat shrinkage rate and a method for manufacturing the same.
  • One aspect of the present invention provides a method for producing a crosslinked polyolefin separator according to the following embodiments.
  • the first embodiment is a first embodiment.
  • (S4) heat-setting the result of the cross-linked product including, relates to a method for producing a cross-linked polyolefin separation membrane.
  • the extraction tank is to include a water and an extraction solvent, relates to a method for producing a crosslinked polyolefin separation membrane.
  • the extraction tank further comprises an alcohol, and relates to a method for producing a crosslinked polyolefin separation membrane.
  • the weight ratio of water to alcohol is 95: 5 to 80: 20, which relates to a method for producing a crosslinked polyolefin separation membrane.
  • the alcohol relates to a method for producing a crosslinked polyolefin separator comprising methanol, ethanol, propanol, isopropyl alcohol, butanol, pentaol, hexanol, or a mixture of two or more of them.
  • the sixth embodiment is any one of the first to fifth embodiments.
  • the temperature of the extraction tank is 40 °C or more, relates to a method for producing a crosslinked polyolefin separation membrane.
  • the content of the carbon-carbon double bond-containing alkoxy silane is 0.01 to 1.0 parts by weight based on 100 parts by weight of the total amount of the polyolefin and the diluent,
  • the content of the initiator is 0.1 to 5.0 parts by weight based on 100 parts by weight of the carbon-carbon double bond-containing alkoxy silane, and relates to a method for producing a crosslinked polyolefin separator.
  • the heat setting temperature is from 120 to 150 °C, it relates to a method for producing a crosslinked polyolefin separation membrane.
  • the carbon-carbon double bond-containing alkoxy silane is vinyl trimethoxysilane, vinyl triethoxysilane, vinyl triacetoxysilane, (3-methacryloxypropyl) trimethoxysilane, (3-methacryloxypropyl) tri It relates to a method for producing a crosslinked polyolefin separation membrane comprising ethoxysilane, vinylmethyldimethoxysilane, vinyl-tris (2-methoxyethoxy) silane, vinylmethyldiethoxysilane, or at least two or more of them.
  • the crosslinking catalyst is dibutyl tin dilaurate, dibutyl tin diacetate, stannous acetate, stannous caprylic acid, zinc naphthenate, zinc caprylate, cobalt naphthenate, ethylamine, dibutyl amine, hexyl An amine, pyridine, sulfuric acid, hydrochloric acid, toluene sulfonic acid, acetic acid, stearic acid, maleic acid, or a mixture of two or more of these.
  • the content of the crosslinking catalyst is 0.1 to 10 parts by weight based on 100 parts by weight of the carbon-carbon double bond-containing alkoxy silane, and relates to a method for producing a crosslinked polyolefin separator.
  • step (S3) further comprising the step of extracting the diluent and removing the interstitial film, relates to a method for producing a crosslinked polyolefin separator.
  • the thirteenth embodiment is any one of the first to twelfth embodiments,
  • step (S4) 70 to 90 °C temperature and 70 to 90% relative humidity conditions, further comprising the step of crosslinking the heat-resistant product, relates to a method for producing a crosslinked polyolefin separation membrane.
  • Another aspect of the present invention provides a crosslinked polyolefin separator according to the following embodiments.
  • MD means the heat shrinkage in the MD direction of the crosslinked polyolefin separator
  • TD means the heat shrinkage in the TD direction of the crosslinked polyolefin separator
  • the thermal shrinkage is calculated by the formula:
  • Heat shrinkage ratio (initial length-length after heat shrink treatment for 120 ° C / 1hr) / (initial length) X 100.
  • the 15th embodiment is the 14th embodiment
  • the separator relates to a crosslinked polyolefin separator, which is for a lithium secondary battery.
  • the method of manufacturing a crosslinked polyolefin separation membrane simultaneously performs a diluent extraction process and a hydrocrosslinking process, and then heat-fixes the resulting crosslinked product, resulting in high melt down temperature and improved thermal shrinkage. It is possible to provide a crosslinked polyolefin separation membrane and a method for manufacturing the same.
  • connection when a part is "connected” to another part, this includes not only “directly connected” but also “indirectly connected” with another member in between. .
  • connection implies an electrochemical connection as well as a physical connection.
  • the term "the combination (s) of these" contained on the surface of the marki form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the marki form, It means to include one or more selected from the group consisting of the above components.
  • the present invention relates to a crosslinked polyolefin separation membrane and a method for manufacturing the same.
  • the separator used in the lithium secondary battery shows excellent safety when the difference between the shutdown temperature and the meltdown temperature is large.
  • the shutdown temperature should be decreased in the direction of decreasing the melt down temperature in the direction of increasing.
  • the present inventors used a crosslinked polyolefin porous membrane to prepare a separator having a higher melt down temperature.
  • the present inventors have found that the existing crosslinked polyolefin porous membrane increases the heat shrinkage rate when the crosslinking process is performed after heat-setting the polyolefin subjected to the silane grafting reaction.
  • the internal stress is strongly operated at a high temperature (about 100 ° C.) or higher. Accordingly, the effect of the heat setting performed before the water crossing becomes insufficient, and the heat shrinkage rate at high temperature becomes very high. That is, as the water cross-linking was performed after heat-setting, a problem of increasing the heat shrinkage rate was found because the heat-setting effect was weakened because the properties of the porous membrane were changed.
  • the present inventors intend to provide a crosslinked polyolefin separation membrane having improved thermal contraction rate and a method of manufacturing the same by simultaneously performing diluent extraction and hydrocrosslinking, and then heat-setting the resulting crosslinked product.
  • the present invention can provide a crosslinked polyolefin separation membrane with improved thermal contraction rate and a method of manufacturing the same by proceeding with diluent extraction and crosslinking at the same time, and subsequently heat-setting the crosslinked product.
  • a polyolefin, a diluent, an initiator, and a carbon-carbon double bond-containing alkoxy silane are introduced and mixed in an extruder, and then extruded to prepare a silane-grafted polyolefin composition (S1).
  • the polyolefin is polyethylene; Polypropylene; Polybutylene; Polypentene; Polyhexene; Polyoctene; Copolymers of two or more of ethylene, propylene, butene, pentene, 4-methylpentene, hexene, and octene; Or mixtures thereof.
  • the polyethylene includes low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), etc.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • the silane-grafted polyolefin is polyethylene; Polypropylene; Polybutylene; Polypentene; Polyhexene; Polyoctene; Copolymers of two or more of ethylene, propylene, butene, pentene, 4-methylpentene, hexene, and octene; Or mixtures thereof.
  • the polyethylene includes low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), etc.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • the weight average molecular weight of the polyolefin may be 200,000 to 1,000,000 or 220,000 to 700,000, or 250,000 to 500,000.
  • a separator having excellent strength and heat resistance can be finally obtained while ensuring uniformity and film forming processability of the separator film.
  • the diluent may be a liquid or solid paraffin oil, wax, soybean oil, or the like, which is generally used for preparing a wet separator.
  • a diluent capable of liquid-liquid phase separation with polyolefin may also be used, for example, dibutyl phthalate, dihexyl phthalate, Phthalic acid esters such as dioctyl phthalate; Aromatic ethers such as diphenyl ether and benzyl ether; Fatty acids having 10 to 20 carbon atoms such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid; Fatty acid alcohols having 10 to 20 carbon atoms such as palmitic acid alcohol, stearic acid alcohol, and oleic acid alcohol; Palmitic acid mono-, di-, or triester, stearic acid mono-, di-, or triester.
  • Saturated and unsaturated fatty acids having 4 to 26 carbon atoms of fatty acid groups such as mono-, di-, or triester, linoleic acid mono-, di-, or triester, or one double bond of unsaturated fatty acid substituted with epoxy Or two or more fatty acids, 1 to 8 hydroxy groups, may be a fatty acid esters ester-linked with alcohol having 1 to 10 carbon atoms;
  • the diluent may be used alone or as a mixture containing two or more of the above-mentioned components.
  • the diluent content may be 100 to 350 parts by weight, or 125 to 300 parts by weight, or 150 to 250 parts by weight based on 100 parts by weight of the polyolefin content.
  • the porosity decreases and the pore size decreases as the polyolefin content increases, and the permeability decreases significantly due to less interconnection between the pores, and the viscosity of the polyolefin composition rises to increase the extrusion load.
  • the problems that may be difficult to be processed may be reduced, and as the polyolefin content is small, the kneading property of the polyolefin and the diluent is lowered, so that the polyolefin is not thermodynamically kneaded in the diluent and is extruded in the form of a gel.
  • the problems of the back can be reduced.
  • the carbon-carbon double bond-containing alkoxy silane is a crosslinking agent that causes a silane crosslinking reaction, and is grafted into a polyolefin by a vinyl group, and undergoes a crosslinking reaction by an alkoxy group to crosslink the polyolefin. Do it.
  • R 1 , R 2 , and R 3 are each independently an alkoxy group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms, wherein at least one of R 1 , R 2 , and R 3 is An alkoxy group;
  • R is a vinyl group, an acryloxy group, a methacryloxy group, or an alkyl group having 1 to 20 carbon atoms, wherein at least one hydrogen of the alkyl group is a vinyl group, an acryl group, an acryloxy group, a methacryloxy group, or methacryl Substituted with a group.
  • R may further include an amino group, an epoxy group or an isocyanate group.
  • the carbon-carbon double bond-containing alkoxy silane is vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, (3-methacryloxypropyl) trimethoxysilane, (3-methacryloxypropyl) triethoxysilane, vinylmethyldimethoxysilane, vinyl-tris (2-methoxyethoxy) silane, vinylmethyldiethoxysilane, or at least two or more thereof.
  • the content of the carbon-carbon double bond group-containing alkoxy silane may be 0.01 to 1 part by weight, or 0.05 to 0.7 parts by weight based on 100 parts by weight of the total amount of the polyolefin and the diluent.
  • the content of the carbon-carbon double bond group-containing alkoxy silane satisfies the above numerical range, the content of the alkoxy silane is low because the content of the silane is low due to the low grafting rate and the crosslinking is lowered. Etc. can be prevented.
  • the initiator may be used without limitation as long as it is an initiator capable of generating radicals.
  • Non-limiting examples of the initiator 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane (2,5-dimethyl-2,5-di (tert-butylperoxy) hexane) , (DHBP)), benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-ter-butyl peroxide, dicumyl peroxide, cumyl peroxide, hydrogen peroxide, potassium persulfate, and the like.
  • the content of the initiator may be 0.1 to 5 parts by weight, or 0.5 to 4 parts by weight, or 1 to 2 parts by weight based on 100 parts by weight of the alkoxy group-containing vinylsilane.
  • the silane graft rate may be lowered as the content of the initiator is low, or the content of the initiator may be prevented from crosslinking between polyolefins in the extruder.
  • the silane-grafted polyolefin composition may further include general additives for improving specific functions, such as surfactants, oxidative stabilizers, UV stabilizers, antistatic agents, nucleating agents, etc., as necessary. May be included.
  • reaction-extruded silane-grafted polyolefin composition is molded and stretched in a sheet form (S2).
  • reaction extruded silane grafted polyolefin composition is extruded using an extruder equipped with a tee-die or the like, and then cooled extrudates using a general casting or calendering method using water cooling and air cooling. Can be formed.
  • the stretching may be carried out in a roll manner or a tender manner sequential or simultaneous stretching.
  • the draw ratio may be three times or more, or four to ten times, respectively, in the longitudinal and transverse directions.
  • the stretching ratio satisfies the above numerical range, the orientation in one direction is not sufficient, and at the same time, the property balance between the longitudinal and transverse directions is broken, thereby preventing the problem of a decrease in tensile strength and puncture strength, and the total stretching ratio is in the numerical range. As it satisfies, it is possible to prevent the problem that unstretched or pore formation does not occur.
  • the stretching temperature may vary depending on the melting point of the polyolefin used, the concentration and type of diluent.
  • the stretching temperature is 70 to 160 ° C., or 90 to 140 ° C. for longitudinal stretching (MD), Or it may be 100 to 130 °C, in the case of transverse stretching (TD) may be 90 to 180 °C, or 110 to 160 degrees or 120 to 150 °C.
  • the stretching temperature satisfies the numerical range, as the stretching temperature has a low temperature range, there is no softness, so that fracture or non-stretching can be prevented, and the stretching temperature is high. This can prevent partial overstretching or differences in properties.
  • the stretched sheet is placed in an extraction tank containing a crosslinking catalyst to extract a diluent and cross-link (S3).
  • the heat cross-linking is performed after the water cross-linking is performed first. At this time, if heat-setting is performed in a state in which the water bridge is maximized, the thermal contraction rate can be improved because the physical properties of the final porous membrane are subjected to heat history in an unchanged state.
  • the extraction tank comprises water and an extraction solvent.
  • the crosslinking catalyst can be dissolved in the extraction solvent in the extraction tank.
  • the crosslinking catalyst can be dissolved in water in the extraction tank.
  • the -Si-O-CH 3 group in the silane-grafted polyolefin composition may be hydrolyzed with water to be substituted with -Si-OH.
  • the extraction tank may be divided into two layers. Specifically, an extraction solvent having a high specific gravity is located in the lower layer, and water may be present in the upper layer. As the water is located in the upper layer compared to the extraction solvent, the extraction solvent can be prevented from volatilization.
  • a porous membrane is formed by extraction of a diluent in an extraction water tank containing a crosslinking catalyst, and at the same time, a crosslinking reaction occurs.
  • the diluent present in the silane-grafted polyolefin composition is removed from the extraction solvent layer in the extraction tank, and the diluent site removed at the same time is replaced by a crosslinking catalyst.
  • the silane-grafted composition containing the crosslinking catalyst reacts with water present in the upper layer in the extraction tank to cause a crosslinking reaction.
  • the crosslinking catalyst may be present in 0.1 to 10 parts by weight, or 0.5 to 2 parts by weight, of 100 parts by weight of the alkoxy silane containing the carbon-carbon double bond group.
  • the extraction tank may further include alcohol.
  • the alcohol does not react directly with Si-O-CH 3 but can dissolve the crosslinking catalyst.
  • the weight ratio of the water to alcohol may be 95: 5 to 80: 20, or 90: 10 to 85: 15.
  • the crosslinking catalyst may be more soluble and the extraction solvent may be prevented from volatilization.
  • the alcohol may include methanol, ethanol, propanol, isopropyl alcohol, butanol, pentaol, hexanol, or a mixture of two or more of them.
  • the temperature of the extraction tank may be 40 ° C or higher, or 45 ° C or higher, or 50 ° C or higher.
  • the temperature of the extraction tank is controlled to 40 ° C. or more as described above, the reaction rate of the water molecules is increased, so that the water crosslinking reaction may occur more quickly.
  • the crosslinking catalyst is added to promote the silane crosslinking reaction.
  • the crosslinking catalyst may be a carboxylate, organic base, inorganic acid and organic acid of a metal such as tin, zinc, iron, lead, cobalt.
  • a metal such as tin, zinc, iron, lead, cobalt.
  • the crosslinking catalyst include, but are not limited to, dibutyl tin dilaurate, dibutyl tin diacetate, stannous acetate, stannous capric acid, zinc naphthenate, zinc caprylate, and the like. And cobalt naphthenic acid.
  • the organic base examples include ethylamine, dibutyl amine, hexyl amine, pyridine, etc.
  • the inorganic acids include sulfuric acid and hydrochloric acid
  • the organic acids include toluene sulfonic acid, acetic acid, and stearic acid. And maleic acid.
  • the crosslinking catalyst may be used alone or a mixture of two or more of them.
  • the content of the crosslinking catalyst is 0.1 to 10 parts by weight, or 0.5 to 5 parts by weight, or 1 to 2 parts by weight based on 100 parts by weight of the carbon-carbon double bond-containing alkoxy silane You can.
  • the content of the crosslinking catalyst satisfies the above numerical range, a desired level of silane crosslinking reaction may occur, and an undesirable side reaction in the lithium secondary battery is not caused.
  • there is no cost problem such as waste of the crosslinking catalyst.
  • a diluent may be extracted from the porous membrane using an extraction solvent and the porous membrane may be dried.
  • the extraction solvent may be an organic solvent.
  • the extraction solvent is not particularly limited as long as it can extract the diluent, but methyl ethyl ketone, methylene chloride, hexane, etc. having high extraction efficiency and fast drying are suitable.
  • the extraction method may be any or a combination of all common solvent extraction methods such as immersion method, solvent spray (ultrasonic spray) method, ultrasonic (ultrasonic method).
  • the content of the residual diluent after the extraction treatment should preferably be 1% by weight or less.
  • the content of the residual diluent can be influenced by the extraction temperature and extraction time, and in order to increase the solubility of the diluent and the organic solvent, the extraction temperature is preferably high, but considering the safety problem caused by boiling of the organic solvent, 40 ° C or less is preferable. . If the extraction temperature is below the freezing point of the diluent, the extraction efficiency is greatly reduced, so it must be higher than the freezing point of the diluent.
  • the extraction time depends on the thickness of the porous membrane to be produced, but in the case of a porous membrane of 5 to 15 ⁇ m thickness, 2 to 4 minutes is suitable.
  • the diluent can be extracted and the hydrocrosslinking can proceed simultaneously.
  • the porous membrane may be that the water crosslinking proceeds by more than 10% after extraction.
  • a separate crosslinking process is not required because diluent extraction and crosslinking are performed simultaneously. Accordingly, it is advantageous in economical aspects such as cost and time.
  • wrinkles are generated in the width direction of the separation membrane according to mutual attraction, whereas in the case where diluent extraction and cross-linking are simultaneously performed as in the present invention, wrinkles are caused because the shrinkage in the width direction is not large. Instead, a separator having a flat surface can be produced.
  • the heat setting is to fix the porous membrane and apply heat to forcibly hold the porous membrane to be contracted to remove residual stress.
  • the silane-grafted polyolefin composition when the silane-grafted polyolefin composition is molded and stretched, heat setting is performed to prevent inertia to return to the original state.
  • heat setting step in order to remove the above-described stress, heat is applied to the stretched sheet to melt to a certain degree to remove such stress.
  • the present invention it is effective in improving the heat shrinkage rate since it is heat-set after the cross-linking and the polymer stretching stress are maximized before the heat-setting step.
  • the silane is grafted to the polyolefin main chain as in the prior art
  • a cross-linking reaction in the polyolefin also occurs, and the melting temperature of the separation membrane itself is fixed after heat fixation. Since it is higher than in one case, the heat setting temperature (for example, 130 ° C. or higher) performed in the present invention can also be increased. Accordingly, the heat shrinkage rate can be further improved.
  • the heat setting temperature when the polyolefin is polyethylene, the heat setting temperature may be 120 to 150 ° C or 123 to 138 ° C or 125 to 133 ° C.
  • the heat setting temperature satisfies the above numerical range, rearrangement of the polyolefin molecules may occur to remove residual stress of the porous membrane, and it is possible to reduce the problem of clogging the pores of the porous membrane due to partial melting. have.
  • the time of the heat setting temperature may be 10 to 120 seconds, 20 to 90 seconds, and eh may be 30 to 60 seconds.
  • rearrangement of the polyolefin molecules may occur to remove residual stress of the porous membrane, and it is possible to reduce the problem of clogging of the porous membrane due to partial melting.
  • 70 to 90 °C temperature and 70 to 90% relative humidity conditions may further include the step of crosslinking the heat-setting result.
  • the above step is optional and is for aging.
  • the water crosslinking may be performed at 60 to 100 ° C, or 65 to 95 ° C, or 70 to 90 ° C.
  • the hydrocrosslinking may be performed for 6 to 50 hours at a humidity of 60 to 95%.
  • a diluent may be extracted and the step of removing the interstitial film may be further included.
  • the present invention is placed on a sheet stretched by the step (S2) the aqueous dispersion liquid coated with a predetermined amount of a crosslinking catalyst is coated and then wound together, and then the diluent extraction to remove the interstitial film to crosslink the porous membrane Can promote.
  • a crosslinking reaction may occur to a certain degree before extraction.
  • it is possible to increase the degree of freedom in the process such as adjusting the concentration, temperature and speed of the catalyst in the extraction tank.
  • the interstitial film may include polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, polybutylene terephthalate, or a mixture of two or more of them.
  • the following crosslinked polyolefin separation membrane is provided.
  • One aspect of the present invention is a crosslinked polyolefin separation membrane in which the heat shrinkage (120 ° C./1 hr) in the MD direction and the TD direction satisfies the following formula;
  • MD means the heat shrinkage in the MD direction of the crosslinked polyolefin separator
  • TD means the heat shrinkage in the TD direction of the crosslinked polyolefin separator
  • the thermal shrinkage is calculated by the formula:
  • Heat Shrinkage Rate (Initial Length-Length after Heat Shrink Treatment for 120 ° C / 1hr) / (Initial Length) X 100.
  • the present invention is a crosslinked polyolefin separation membrane, and has a high melt down temperature.
  • the present invention is a separation membrane in which the sum of heat shrinkage in the MD direction and heat shrinkage in the TD direction is 10% or less, and can provide a crosslinked polyolefin separation membrane having high heat resistance.
  • the separator may be for a lithium secondary battery.
  • vinyl triethoxysilane is 0.7 parts by weight based on 100 parts by weight of the total amount of the polyolefin and the diluent, and 2,5-dimethyl-2,5- as an initiator.
  • Di- (tert-butylperoxy) hexane (2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, (DHBP)) is based on 100 parts by weight of the alkoxysilane containing the carbon-carbon double bond. 2 parts by weight was added and mixed. Then, the reaction was extruded at a temperature of 200 °C to prepare a silane-grafted polyethylene composition.
  • the prepared silane grafted polyethylene composition was molded into a sheet form through a tee die and a cold casting roll, and then biaxially stretched using a tenter type stretching machine of TD stretching after MD stretching.
  • the MD stretching ratio was 5.5 times, and the TD stretching ratio was 5.0 times.
  • the stretching temperature was 105 ° C for MD and 125 ° C for TD.
  • the stretched sheet was placed in an extraction water tank in which the cross-linking catalyst dibutyl tin dilaurate was dispersed, and the diluent was extracted using methylene chloride.
  • the extraction tank contains 140 kg of methylene chloride and 100 kg of water, and the content of the crosslinking catalyst is 2 parts by weight based on 100 parts by weight of the alkoxy silane containing the carbon-carbon double bond group.
  • the temperature of the extraction tank was 70 ° C. Accordingly, a water cross-linking reaction occurred simultaneously with the diluent extraction in the extraction water tank.
  • the film was heat-set at 128 ° C from a draw ratio of 1.3 to 1.1 times to prepare a porous membrane.
  • the porous membrane was crosslinked once again for 48 hours at 85 ° C. and 85% relative humidity, thereby preparing a cross-linked polyethylene separator having a thickness of 12 ⁇ m.
  • a crosslinked polyolefin separation membrane was prepared in the same manner as in Example 1, except for the following.
  • an aqueous dispersion containing 5 parts by weight based on 100 parts by weight of the alkoxy silane containing the carbon-carbon double bond containing dibutyl tin dilaurate as a crosslinking catalyst is coated and dried (S company PET film, 50um), and wound with the stretched sheet. Then, the sheet was placed in an extraction tank in which dibutyl tin dilaurate, a crosslinking catalyst, was dispersed in 1 part by weight based on 100 parts by weight of the alkoxy silane containing the carbon-carbon double bond group, and the diluent was extracted using methylene chloride. , After this, the interleaving film was also removed. At this time, the temperature of the extraction tank was 50 ° C. On the other hand, diluent extraction and crosslinking reaction occurred simultaneously in the extraction tank.
  • a crosslinked polyolefin separation membrane was prepared in the same manner as in Example 1, except for the following.
  • a porous membrane was prepared by heat-setting at a draw ratio of 1.5 to 1.2 at 130 ° C.
  • the porous membrane was cross-linked for 48 hours at 85 ° C. and 85% relative humidity, thereby preparing a cross-linked polyethylene separator having a thickness of 12 ⁇ m.
  • triethoxyvinylsilane is 0.7 parts by weight based on 100 parts by weight of the total amount of the polyolefin and the diluent, and 2,5-dimethyl-2,5-di- (as an initiator) Tert-butylperoxy) hexane (2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, (DHBP)) is added in an amount of 2 parts by weight based on 100 parts by weight of the alkoxy group-containing vinylsilane. Mix. Then, the reaction was extruded at a temperature of 200 °C to prepare a silane-grafted polyethylene composition.
  • the prepared silane grafted polyethylene composition was molded into a sheet form through a tee die and a cold casting roll, and then biaxially stretched using a tenter type stretching machine of TD stretching after MD stretching.
  • the MD stretching ratio was 5.5 times, and the TD stretching ratio was 5.0 times.
  • the stretching temperature was 105 ° C for MD and 125 ° C for TD.
  • the diluent was extracted from the stretched sheet using methylene chloride. At this time, the temperature of the extraction tank was 25 ° C. In the case of Comparative Example 1, unlike in the Example, no cross-linking reaction occurred in the extraction water tank.
  • the film was heat-set at 128 ° C from a draw ratio of 1.3 to 1.1 times to prepare a porous membrane.
  • the porous membrane was cross-linked for 48 hours at 85 ° C. and 85% relative humidity, thereby preparing a cross-linked polyethylene separator having a thickness of 12 ⁇ m.
  • a crosslinked polyolefin separation membrane was prepared in the same manner as in Comparative Example 1, except for the following.
  • the film was heat-set at 130 ° C from 1.5 to 1.2 times the draw ratio to prepare a porous membrane.
  • the porous membrane was cross-linked for 48 hours at 85 ° C. and 85% relative humidity, thereby preparing a cross-linked polyethylene separator having a thickness of 12 ⁇ m.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Heat setting temperature (°C) 128 128 130 128 130 Thickness ( ⁇ m) 12 12 12 12 12 85 °C / 85% constant temperature / humidity oven Width shrinkage after 48 hours (%) 5 3 3 11 12 Aeration time (sec / 100cc) 89 108 131 313 481 Heat shrinkage rate (120 °C / 60min) MD 5 4 3 15 13 TD 4 3 2 9 5 Gel content after extraction (%) 18.8 28.4 21.1 0.4 1.1
  • Example 1 As shown in Table 1, in the case of Examples 1 to 3, it can be seen that the shrinkage rate (%) was reduced by about 50% compared to Comparative Examples 1 and 2 after 85 hours at 85 ° C and 85% constant temperature and humidity oven. In particular, Example 1 showed the lowest aeration time.
  • Example 2 using a slip sheet film, it was confirmed that it had a low ventilation time and a low width shrinkage.
  • Example 3 has a lower heat shrinkage rate than Example 1, the aeration time is high and the gel content after extraction is high. Accordingly, as the heat setting temperature is increased, a separator having a lower aeration time can be provided.
  • the thickness of the separator was measured using a thickness gauge (VL-50S-B, Mitutoyo).
  • JIS P-8117 it measured using the Gurley type air permeability meter. At this time, the time for passing 100 ml of air through a diameter of 28.6 mm and an area of 645 mm 2 was measured.
  • the heat shrinkage rate is calculated as (initial length-length after heat shrink treatment for 120 ° C / 1hr) / (initial length) ⁇ 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

본 발명은 (S1) 폴리올레핀, 희석제, 개시제 및 탄소-탄소 이중결합기 함유 알콕시 실란을 압출기에 투입 및 혼합한 후 압출하여 실란 그라프트된 폴리올레핀 조성물을 제조하는 단계; (S2) 상기 압출된 실란 그라프트된 폴리올레핀 조성물을 시트 형태로 성형 및 연신하는 단계; (S3) 상기 연신된 시트를 가교 촉매가 포함되어 있는 추출 수조에 넣어 희석제를 추출하고 수가교하는 단계; 및 (S4) 상기 수가교된 결과물을 열고정하는 단계;를 포함하는, 가교 폴리올레핀 분리막의 제조 방법 및 가교 폴리올레핀 분리막에 관한 것이다. 본 발명은 상기 제조방법에 따라 멜트 다운 온도가 높고 동시에 열수축률이 개선된 분리막을 제공할 수 있다.

Description

가교 폴리올레핀 분리막 및 이의 제조방법
본 발명은 가교 폴리올레핀 분리막 및 이의 제조방법에 관한 것이다.
본 출원은 2018년 9월 3일자로 출원된 한국 특허출원 번호 제10-2018-0104827호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 양극, 음극, 전해액, 분리막으로 구성되어 있으며, 이 중 분리막은 양극과 음극을 분리하여 전기적으로 절연 시키기 위한 절연성과 높은 기공도를 바탕으로 리튬 이온의 투과성을 높이기 위하여 높은 이온 전도도가 요구된다.
이러한 분리막은 또한 셧다운 온도(shut down)와 멜트 다운 온도(melt down) 사이의 간격이 넓어야 분리막을 포함하는 리튬 이차전지의 안전성이 확보될 수 있다. 이 둘 사이의 간격을 넓히기 위해서는 셧다운 온도는 감소하는 방향으로 멜트 다운 온도는 증가하는 방향으로 조절해야 한다.
멜트 다운 온도를 증가시키는 방법으로는 가교 폴리올레핀 다공성 막을 이용하는 방법이 있다. 그러나 이와 같이 가교를 통해 멜트 다운 온도를 향상시키는 경우, 형성된 분리막의 3차원 망상 구조로 인해 고온(약 100℃ 이상)에서는 상호 가교 인력 또는 내부 응력이 강하게 발생하여 열수축률이 높아지는 문제가 있다.
따라서 본 발명이 해결하고자 하는 과제는 멜트 다운 온도가 높고 동시에 열수축률이 개선된 가교 폴리올레핀 분리막 및 이의 제조방법을 제공하는 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 가교 폴리올레핀 분리막의 제조방법을 제공한다.
제1 구현예는,
(S1) 폴리올레핀, 희석제, 개시제 및 탄소-탄소 이중결합기 함유 알콕시 실란을 압출기에 투입 및 혼합한 후 압출하여 실란 그라프트된 폴리올레핀 조성물을 제조하는 단계;
(S2) 상기 압출된 실란 그라프트된 폴리올레핀 조성물을 시트 형태로 성형 및 연신하는 단계;
(S3) 상기 연신된 시트를 가교 촉매가 포함되어 있는 추출 수조에 넣어 희석제를 추출하고 수가교하는 단계; 및
(S4) 상기 수가교된 결과물을 열고정하는 단계;를 포함하는, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 추출 수조는 물 및 추출 용매를 포함하는 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제3 구현예는, 제2 구현예에 있어서,
상기 추출 수조는 알코올을 더 포함하는 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제4 구현예는, 제3 구현예에 있어서,
상기 물 대 알코올의 중량비가 95 : 5 내지 80 : 20 인 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제5 구현예는, 제3 구현예에 있어서,
상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부탄올, 펜타올, 헥산올, 또는 이들 중 2 이상의 혼합물을 포함하는 것인, 가교 폴리올레핀 분리막의 제조방법에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 추출 수조의 온도는 40 ℃ 이상인 것인, 가교 폴리올레핀 분리막의 제조방법에 관한 것이다.
제7 구현예는, 제1 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 탄소-탄소 이중결합기 함유 알콕시 실란의 함량은 상기 폴리올레핀 및 희석제 총합 100 중량부 기준으로 0.01 내지 1.0 중량부이며,
상기 개시제의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 0.1 내지 5.0 중량부인 것인, 가교 폴리올레핀 분리막의 제조방법에 관한 것이다.
제8 구현예는, 제1 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 열고정 온도는 120 내지 150 ℃인 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제9 구현예는, 제1 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 탄소-탄소 이중결합기 함유 알콕시 실란은 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐트리아세톡시실란, (3-메타아크릴옥시프로필)트리메톡시실란, (3-메타아크릴옥시프로필)트리에톡시실란, 비닐메틸디메톡시실란, 비닐-트리스(2-메톡시에톡시)실란, 비닐메틸디에톡시실란 또는 이들 중 적어도 2 이상을 포함하는 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제10 구현예는, 제1 내지 제9 구현예 중 어느 한 구현예에 있어서,
상기 가교 촉매는 디부틸 주석 디라우레이트, 디부틸 주석 디아세테이트, 초산 제1주석, 카프릴산 제1 주석, 나프텐산 아연, 카프릴산 아연, 나프텐산 코발트, 에틸아민, 디부틸 아민, 헥실 아민, 피리딘, 황산, 염산, 톨루엔 설폰산, 초산, 스테아린산, 말레산, 또는 이들 중 2 이상의 혼합물을 포함하는 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제11 구현예는, 제1 내지 제10 구현예 중 어느 한 구현예에 있어서,
상기 상기 가교 촉매의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 0.1 내지 10 중량부인 것인, 가교 폴리올레핀 분리막의 제조 방법에 관한 것이다.
제12 구현예는, 제1 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 (S2) 단계와 상기 (S3) 단계 사이에, 상기 연신된 시트 상에 가교 촉매가 함유된 수분산액이 도포된 간지 필름을 배치시키는 단계; 및
상기 (S3) 단계에서, 희석제 추출하고 상기 간지 필름을 제거하는 단계를 더 포함하는, 가교 폴리올레핀 분리막의 제조방법에 관한 것이다.
제13 구현예는, 제1 내지 제12 구현예 중 어느 한 구현예에 있어서,
상기 (S4) 단계 이후에, 70 내지 90 ℃ 온도 및 70 내지 90 % 상대 습도 조건하에서, 상기 열고정된 결과물을 수가교하는 단계를 더 포함하는, 가교 폴리올레핀 분리막의 제조방법에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예들에 따른 가교 폴리올레핀 분리막을 제공한다.
제14 구현예는,
MD 방향 및 TD 방향의 열수축률(120 ℃/1hr)이 하기 식을 만족하는 가교 폴리올레핀 분리막에 관한 것이다;
[식 1]
MD + TD ≤ 10%
상기 식에서 MD는 상기 가교 폴리올레핀 분리막의 MD 방향 열수축율을, TD는 상기 가교 폴리올레핀 분리막의 TD 방향 열수축율을 각각 의미하고,
상기 열수축율은 하기 식으로 계산한다:
열수축율 = (최초 길이 - 120℃/1hr 동안 열수축 처리 후 길이)/(최초 길이) X 100.
제15 구현예는, 제14 구현예에 있어서,
상기 분리막은 리튬 이차전지용인 것인, 가교 폴리올레핀 분리막에 관한 것이다.
본 발명의 일 실시예에 따른 가교 폴리올레핀 분리막의 제조방법은 희석제 추출 공정과 수가교 공정을 동시에 진행하고, 이 후 상기 수가교된 결과물을 열고정함으로써, 멜트 다운 온도가 높고 동시에 열수축률이 개선된 가교 폴리올레핀 분리막 및 이의 제조방법을 제공할 수 있다.
이하, 본 발명을 상세히 설명하도록 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 「연결」되어 있다고 할 때, 이는 「직접적으로 연결되어 있는 경우」뿐만 아니라 그 중간에 다른 부재를 사이에 두고 「간접적으로 연결」되어 있는 경우도 포함한다. 또한, 상기 연결은 물리적 연결뿐만 아니라 전기화학적 연결을 내포한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 경우 「포함한다(comprise)」 및/또는 「포함하는(comprising) 」은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표면에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
본 발명은 가교 폴리올레핀 분리막 및 이의 제조방법에 관한 것이다.
리튬 이차 전지에 쓰이는 분리막은 셧다운 온도와 멜트 다운 온도 차이가 큰 경우 우수한 안전성을 나타낸다. 이 때 이 둘 사이의 간격을 넓히기 위해서는 셧다운 온도는 감소하는 방향으로 멜트 다운 온도는 증가하는 방향으로 조절해야 한다.
이에 따라 본 발명자들은 보다 높은 멜트 다운 온도를 갖는 분리막을 제조하기 위하여 가교 폴리올레핀 다공성 막을 이용하였다. 본 발명자들은, 기존의 가교 폴리올레핀 다공성 막은 실란 그라프팅 반응이 진행된 폴리올레핀을 열고정한 후에 수가교 공정을 진행하는 경우, 열수축률이 증가하는 문제를 발견하였다. 구체적으로, 수가교에 따른 3차원 망상구조로 인해 고온(약 100 ℃) 이상에서 내부 응력이 강하게 작동하게 된다. 이에 따라, 수가교 전 진행한 열고정에 따른 효과는 미비해지고 고온에서의 열수축률이 매우 높아지게 된다. 즉, 열고정 이후 수가교를 진행함에 따라, 다공성 막의 물성이 변했기 때문에 열고정 효과가 약화되므로 열수축률이 증가하는 문제를 발견하였다.
본 발명자들은 이러한 문제점에 착안하여 희석제 추출과 수가교를 동시에 진행하고, 이후에 상기 수가교된 결과물을 열고정함으로써, 열수축률이 개선된 가교 폴리올레핀 분리막 및 이의 제조방법을 제공하고자 한다.
본 발명의 일 측면에 따른 가교 폴리올레핀 분리막의 제조방법은,
(S1) 폴리올레핀, 희석제, 개시제, 및 탄소-탄소 이중결합기 함유 알콕시 실란을 압출기에 투입 및 혼합한 후 압출하여 실란 그라프트된 폴리올레핀 조성물을 제조하는 단계;
(S2) 상기 압출된 실란 그라프트된 폴리올레핀 조성물을 시트 형태로 성형 및 연신하는 단계;
(S3) 상기 연신된 시트를 가교 촉매가 포함되어 있는 추출 수조에 넣어 희석제를 추출하고 수가교하는 단계; 및
(S4) 상기 수가교된 결과물을 열고정하는 단계;를 포함한다.
기존의 공정은 희석제를 추출하여 제조한 다공성 막에 먼저 열고정하고, 이 후 수가교 반응을 진행하여 가교 폴리올레핀 분리막을 제조하였다. 그러나 이와 같은 방법은 열고정을 통해 열이력을 제공하는 효과가, 열고정 이후에 수가교를 진행함에 따라 사라지게 되어 높은 열수축률을 갖게 되는 문제가 있다. 즉, 열고정 이후에 수가교를 거치면서 다공성 막의 물성이 변하기 때문에, 수가교 전에 진행하였던 열고정의 효과가 미비하다.
그러나 본 발명은 이러한 문제점에 착안하여 희석제 추출과 수가교를 동시에 진행하고, 이후에 상기 수가교된 결과물을 열고정함으로써, 열수축률이 개선된 가교 폴리올레핀 분리막 및 이의 제조방법을 제공할 수 있다.
이하, 본 발명에 따른 분리막의 제조 방법을 구체적으로 살펴보겠다.
먼저, 폴리올레핀, 희석제, 개시제, 및 탄소-탄소 이중결합기 함유 알콕시 실란을 압출기에 투입 및 혼합한 후 압출하여 실란 그라프트된 폴리올레핀 조성물을 제조한다(S1).
본 발명의 구체적인 일 실시양태에 있어서, 상기 폴리올레핀은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐; 폴리헥센; 폴리옥텐; 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 및 옥텐 중 2종 이상의 공중합체; 또는 이들의 혼합물일 수 있다.
특히, 상기 폴리에틸렌으로는 저밀도폴리에틸렌(LDPE), 선형저밀도폴리에틸렌(LLDPE), 고밀도폴리에틸렌(HDPE) 등이 있으며, 이 중에서 결정도가 높고 수지의 용융점이 높은 고밀도폴리에틸렌이 가장 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 실란 그라프트된 폴리올레핀은 폴리에틸렌; 폴리프로필렌; 폴리부틸렌; 폴리펜텐; 폴리헥센; 폴리옥텐; 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 및 옥텐 중 2종 이상의 공중합체; 또는 이들의 혼합물일 수 있다.
특히, 상기 폴리에틸렌으로는 저밀도폴리에틸렌(LDPE), 선형저밀도폴리에틸렌(LLDPE), 고밀도폴리에틸렌(HDPE) 등이 있으며, 이 중에서 결정도가 높고 수지의 용융점이 높은 고밀도폴리에틸렌이 가장 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 폴리올레핀의 중량평균분자량은 200,000 내지 1,000,000 또는 220,000 내지 700,000, 또는 250,000 내지 500,000일 수 있다. 본 발명에서는 200,000 내지 1,000,000의 중량평균분자량을 가지는 고분자량의 폴리올레핀을 분리막 제조의 출발물질로 사용함으로써, 분리막 필름의 균일성 및 제막 공정성을 확보하면서 최종적으로 강도 및 내열성이 우수한 분리막을 얻을 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 희석제는 습식 분리막 제조에 일반적으로 사용되는 액체 또는 고체 파라핀 오일, 왁스, 대두유(soybean oil)등을 사용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 희석제로는 폴리올레핀과 액-액 상분리를 할 수 있는 희석제도 사용 가능하며, 예를 들어, 디부틸 프탈레이트(dibutyl phthalate), 디헥실 프탈레이트(dihexyl phthalate), 디옥틸 프탈레이트(dioctyl phthalate) 등의 프탈산 에스테르(phthalic acid ester)류; 디페닐 에테르(diphenyl ether), 벤질 에테르(benzyl ether) 등의 방향족 에테르류; 팔미트산, 스테아린산, 올레산, 리놀레산, 리놀렌산 등의 탄소수 10 내지 20개의 지방산류; 팔미트산알코올, 스테아린산알코올, 올레산알코올 등의 탄소수 10 내지 20개의 지방산 알코올류; 팔미트산 모노-, 디-, 또는 트리에스테르, 스테아린산 모노-, 디-, 또는 트리에스테르. 올레산모노-, 디-, 또는 트리에스테르, 리놀레산 모노-, 디-, 또는 트리에스테르 등의 지방산 그룹의 탄소수가 4 내지 26개인 포화 및 불포화 지방산, 또는 불포화 지방산의 이중결합이 에폭시로 치환된 1개 혹은 2개 이상의 지방산이, 히드록시기가 1 내지 8개이며, 탄소수가 1 내지 10개인 알코올과 에스테르 결합된 지방산 에스테르류;일 수 있다.
상기 희석제는 전술한 성분들을 단독 또는 2종 이상 포함하는 혼합물로 사용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 희석제 함량은 상기 폴리올레핀 함량 100 중량부를 기준으로 100 내지 350 중량부, 또는 125 내지 300 중량부, 또는 150 내지 250 중량부 일 수 있다. 희석제의 총 함량이 상기 수치범위를 만족하는 경우, 폴리올레핀 함량이 많음에 따라 기공도가 감소하고 기공 크기가 작아지며 기공 간의 상호연결이 적어 투과도가 크게 떨어지고, 폴리올레핀 조성물의 점도가 올라가 압출 부하의 상승으로 가공이 어려울 수 있는 문제가 감소될 수 있으며, 폴리올레핀 함량이 작음에 따라 폴리올레핀과 희석제의 혼련성이 저하되어 폴리올레핀이 희석제에 열역학적으로 혼련되지 않고 겔 형태로 압출되어 발생하는 연신시 파단 및 두께 불균일 등의 문제를 감소시킬 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 탄소-탄소 이중결합기 함유 알콕시 실란은 실란 가교 반응을 일으키는 가교제로서, 비닐기에 의해 폴리올레핀에 그라프트화 되고, 알콕시기에 의해 수가교 반응이 진행되어 폴리올레핀을 가교시키는 역할을 한다.
본 발명의 구체적인 일 실시양태에 있어서, 하기 화학식 1로 표시되는 화합물을 포함할 수 있다:
[화학식 1]
Figure PCTKR2019011328-appb-img-000001
상기 화학식 1에서, 상기 R 1, R 2, 및 R 3은 각각 독립적으로 탄소수 1 내지 10의 알콕시기 또는 탄소수 1 내지 10의 알킬기이고, 이때 상기 R 1, R 2, 및 R 3 중 적어도 하나는 알콕시기이고;
상기 R은 비닐기, 아크릴옥시기, 메타아크릴옥시기, 또는 탄소수 1 내지 20의 알킬기이고, 이때 상기 알킬기의 적어도 하나의 수소가 비닐기, 아크릴기, 아크릴옥시기, 메타아크릴옥시기 또는 메타크릴기로 치환된다.
한편, 상기 R은 추가적으로, 아미노기, 에폭시기 또는 이소시아네이트기를 더 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 탄소-탄소 이중결합기 함유 알콕시 실란은 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐트리아세톡시실란, (3-메타아크릴옥시프로필)트리메톡시실란, (3-메타아크릴옥시프로필)트리에톡시실란, 비닐메틸디메톡시실란, 비닐-트리스(2-메톡시에톡시)실란, 비닐메틸디에톡시실란, 또는 이들 중 적어도 2 이상을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 탄소-탄소 이중결합기 함유 알콕시 실란의 함량은 폴리올레핀과 희석제의 총합 100 중량부 기준으로 0.01 내지 1 중량부, 또는 0.05 내지 0.7 중량부 일 수 있다. 상기 탄소-탄소 이중결합기 함유 알콕시 실란의 함량이 상기 수치 범위를 만족하는 경우, 실란의 함량이 작아 그라프트율이 떨어져 가교가 낮아지거나 실란 함량이 많아 미반응 실란이 잔존하여 압출 시트의 외관이 불량해지는 문제 등을 방지할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 개시제는 라디칼 생성이 가능한 개시제라면 제한없이 사용가능하다. 상기 개시제의 비제한적인 예로는, 2,5-다이메틸-2,5-다이-(3차-뷰틸퍼옥시)헥세인(2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, (DHBP)), 벤조일 퍼옥사이드, 아세틸 퍼옥사이드, 디라우릴 퍼옥사이드, 디-ter-부틸 퍼옥사이드, 디쿠밀 퍼옥시드, 쿠밀 퍼옥사이드, 하이드로전 퍼옥사이드, 포타슘 퍼설페이트 등이 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 개시제의 함량은 상기 알콕시기 함유 비닐실란 100 중량부 기준으로, 0.1 내지 5 중량부, 또는 0.5 내지 4 중량부, 또는 1 내지 2 중량부 일 수 있다. 상기 개시제의 함량이 상기 수치범위를 만족하는 경우, 개시제의 함량이 낮음에 따라 실란 그라프트율이 저하되거나, 개시제의 함량이 많음에 따라 압출기 내에서 폴리올레핀 간에 가교되는 문제를 방지할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 실란 그라프트된 폴리올레핀 조성물은 필요에 따라, 계면 활성제, 산화안정제, UV 안정제, 대전 방지제, 기핵제(nucleating agent) 등 특정 기능 향상을 위한 일반적인 첨가제들이 더 포함될 수 있다.
다음으로, 상기 반응압출된 실란 그라프트된 폴리올레핀 조성물을 시트 형태로 성형 및 연신한다(S2).
예를 들어, 반응압출된 실란 그라프트된 폴리올레핀 조성물을 티-다이 등을 설치한 압출기 등을 이용하여 압출하고, 이후 수냉, 공냉식을 이용한 일반적인 캐스팅(casting) 혹은 캘린더링 방법을 사용하여 냉각 압출물을 형성할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기와 같이 연신하는 단계를 거침으로써 개선된 기계적 강도 및 천공 강도를 가지는 분리막을 제공할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 연신은 롤 방식 또는 텐더 방식 축차 또는 동시 연신으로 수행할 수 있다. 상기 연신비는 종방향 및 횡방향으로 각각 3배 이상, 또는 4배 내지 10배일 수 있다. 연신비가 상기 수치범위를 만족하는 경우, 한쪽 방향의 배향이 충분하지 않고 동시에 종방향 및 횡방향 간의 물성 균형이 깨져 인장강도 및 천공강도가 저하되는 문제를 방지할 수 있으며, 총 연신비가 상기 수치범위를 만족함에 따라, 미연신 또는 기공 형성이 일어나지 않는 문제를 방지할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 연신 온도는 사용된 폴리올레핀의 융점, 희석제의 농도 및 종류에 따라 달라질 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 예를 들어, 사용된 폴리올레핀이 폴리에틸렌이며, 희석제가 액체 파라핀인 경우, 상기 연신 온도는 종연신(MD)의 경우 70 내지 160℃, 또는 90 내지 140℃, 또는 100 내지 130℃ 일 수 있으며, 횡연신(TD)의 경우 90 내지 180℃, 또는 110 내지 160도℃ 또는 120 내지 150℃ 일 수 있다.
상기 연신 온도가 상기 수치범위를 만족하는 경우, 상기 연신 온도가 낮은 온도 범위를 가짐에 따라 연질성(softness)이 없어 파단이 일어나거나 미연신이 일어나는 문제를 방지할 수 있으며 연신 온도가 높음에 따라 발생하는 부분적인 과연신 또는 물성 차이를 방지할 수 있다.
이 후, 상기 연신된 시트를 가교 촉매가 포함되어 있는 추출 수조에 넣어 희석제를 추출하고 수가교한다(S3).
본 발명은 열고정 이후 수가교를 진행함에 따라 다공성 막의 물성이 변하는 것을 방지하기 위하여, 수가교를 먼저 진행한 후에 열고정을 진행한다. 이 때, 수가교를 최대로 진행시킨 상태에서 열고정을 진행하면, 최종 다공성 막의 물성은 변하지 않는 상태에서 열이력을 받기 때문에 열수축률을 개선할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 추출 수조는 물 및 추출 용매를 포함하는 것이다. 본 발명에서 가교 촉매는 상기 추출 수조 내 추출 용매에 용해될 수 있다. 본 발명에서 가교 촉매는 상기 추출 수조 내 물에 용해될 수 있다. 본 발명에 따른 추출 수조 내에서는 실란 그라프트된 폴리올레핀 조성물 내 -Si-O-CH 3기가 물과 가수분해 반응하여 -Si-OH로 치환될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 추출 수조는 2층으로 구분될 수 있다. 구체적으로, 비중이 높은 추출 용매가 하층에 위치하고, 물이 상층에 존재할 수 있다. 물이 추출 용매에 비해 상층에 위치함에 따라 추출 용매가 휘발되는 것을 막을 수 있다.
본 발명에서는 가교 촉매가 포함되어 있는 추출 수조 내에서 희석제 추출에 의해 다공성 막이 형성됨과 동시에 수가교 반응이 일어난다. 구체적으로, 추출 수조 내 추출 용매 층에서 실란 그라프트된 폴리올레핀 조성물 내 존재하는 희석제가 제거되고 동시에 제거된 희석제 자리는 가교 촉매로 치환된다. 이후, 상기 가교 촉매를 포함하는 실란 그라프트된 조성물이 추출 수조 내 상층에 존재하는 물과 반응하여 수가교 반응을 일으킨다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 가교 촉매는 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 0.1 내지 10 중량부, 또는 0.5 내지 2 중량부로 존재할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 추출 수조는 알코올을 더 포함할 수 있다. 상기 알코올은 Si-O-CH 3와 직접적으로 반응하지는 않지만 가교 촉매를 용해시킬 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 물 대 알코올의 중량비는 95 : 5 내지 80 : 20, 또는 90 : 10 내지 85 : 15일 수 있다. 상기 수치 범위에서 가교 촉매가 보다 잘 용해될 수 있으며 추출 용매가 휘발되는 것을 막을 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부탄올, 펜타올, 헥산올, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
상기 추출 수조의 온도는 40 ℃ 이상, 또는 45 ℃ 이상, 또는 50 ℃ 이상일 수 있다. 본 발명에서 추출 수조 내 가교 촉매만 존재하더라도 수가교 반응은 진행될 수 있다. 다만, 상기와 같이 추출 수조의 온도를 40 ℃ 이상으로 제어하는 경우, 물 분자의 반응 속도가 빨라져 수가교 반응이 보다 빠르게 일어날 수 있다.
본 발명에서 상기 가교 촉매는 실란가교 반응을 촉진시키기 위하여 첨가되는 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 가교 촉매는 주석, 아연, 철, 연, 코발트 등의 금속의 카르복실산염, 유기염기, 무기산 및 유기산이 사용될 수 있다. 상기 가교 촉매의 비제한적인 예로 상기 금속의 카르복실산염으로는 디부틸 주석 디라우레이트, 디부틸 주석 디아세테이트, 초산 제1주석, 카프릴산 제1 주석, 나프텐산 아연, 카프릴산 아연, 나프텐산 코발트 등이 있고, 상기 유기 염기로는 에틸아민, 디부틸 아민, 헥실 아민, 피리딘 등이 있고, 상기 무기산으로는 황산, 염산 등이 있으며, 상기 유기산으로는 톨루엔 설폰산, 초산, 스테아린산, 말레산 등이 있을 수 있다. 또한 상기 가교 촉매는 이들 중 단독 또는 2 이상의 혼합물을 사용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 가교 촉매의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 0.1 내지 10 중량부, 또는 0.5 내지 5 중량부, 또는 1 내지 2 중량부 일 수 있다. 상기 가교 촉매의 함량이 상기 수치범위를 만족하는 경우, 소망하는 수준의 실란 가교 반응이 일어날 수 있으며, 리튬 이차전지 내에서의 원하지 않는 부반응을 일으키지 않는다. 또한, 가교 촉매가 낭비되는 등의 비용적인 문제가 발생하지 않는다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 막에서 추출 용매를 사용하여 희석제를 추출하고 상기 다공성 막을 건조할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 추출 용매는 유기 용매일 수 있다.
예를 들어, 상기 추출 용매는 상기 희석제를 추출해낼 수 있는 것이면 특별히 제한되지 않으나, 추출 효율이 높고 건조가 빠른 메틸 에틸 케톤, 메틸렌 클로라이드, 헥산 등이 적당하다.
본 발명이 구체적인 일 실시양태에 있어서, 상기 추출방법은 침적(immersion) 방법, 용제 스프레이(solvent spray) 방법, 초음파(ultrasonic) 법 등 일반적인 모든 용매추출 방법이 각각 또는 복합적으로 사용될 수 있다. 추출 처리 후 잔류 희석제의 함량은 바람직하게는 1 중량% 이하이어야 한다. 잔류 희석제의 함량이 1 중량%를 초과하면 물성이 저하되고 다공성 막의 투과도가 감소한다. 잔류 희석제의 함량은 추출 온도와 추출 시간에 영향을 받을 수 있으며, 희석제와 유기용매의 용해도 증가를 위해, 추출 온도는 높은 것이 좋으나 유기용매의 끓음에 의한 안전성 문제를 고려할 때 40℃ 이하가 바람직하다. 상기 추출 온도가 희석제의 응고점 이하이면 추출 효율이 크게 떨어지므로 희석제의 응고점보다는 반드시 높아야 한다.
또한, 추출 시간은 제조되는 다공성 막의 두께에 따라 다르나, 5 내지 15㎛ 두께의 다공성 막의 경우에는, 2 내지 4분이 적당하다.
본 발명은 전술한 바와 같이, 희석제를 추출함과 동시에 수가교를 진행할 수 있다. 이 때, 상기 다공성 막은 추출 이후 수가교가 10% 이상 진행된 것일 수 있다. 본 발명에서는 희석제 추출과 수가교가 동시에 진행되기 때문에 별도의 수가교 공정이 필요 없다. 이에 따라 비용, 시간 등의 경제적 측면에서 유리하다. 또한, 열고정 후 수가교 진행하는 경우에 상호 인력에 따라 분리막의 폭 방향으로 주름이 발생하는데 반해, 본 발명과 같이 희석제 추출과 수가교가 진행이 동시에 일어나는 경우에는 폭 방향 수축률이 크지 않아 주름이 발생하지 않고 평평한 표면을 갖는 분리막을 제조할 수 있다.
이 후, 상기 수가교된 결과물을 열고정한다(S4).
상기 열고정은 다공성 막을 고정시키고 열을 가하여, 수축하려는 다공성 막을 강제로 잡아 주어 잔류 응력을 제거하는 것이다.
본 발명에서는 실란 그라프트된 폴리올레핀 조성물을 성형 및 연신하는 경우 원래대로 돌아가려는 관성을 막기 위하여 열고정을 수행한다. 열고정 단계에서는 전술한 응력을 제거하기 위하여 연신된 시트에 열을 가해 소정 정도로 용융시켜 이러한 응력을 제거한다.
그러나 만약 종래와 같이 열고정 후 수가교를 진행하게 되는 경우 종래 열고정 온도(예를 들면, 130℃ 이하)에서는. 열고정 이후 가교가 진행되면 고분자 피브릴 내 분자의 가교로 인해 응력이 존재하고 이러한 응력은 약한 열고정 상태에서는 풀어줄 수 없어 결과적으로 열수축률을 높이게 된다.
반면, 본 발명에서는 열고정 전(前) 단계에서 가교와 고분자 연신 응력을 최대한 받게 한 후에 열고정하므로 열수축률을 개선하는 데에 효과적이다. 즉, 종래와 같이 단지 폴리올레핀 주쇄에 실란 그라프트된 상태와 달리, 본 발명 폴리올레핀 주쇄에 실란이 그라프트됨은 물론 폴리올레핀 내 가교 반응도 일어난 상태이므로 분리막 자체의 용융 온도가 열고정 후(後) 수가교 진행한 경우에 비해 높기 때문에, 본 발명에서 수행하는 열고정 온도(예를 들어, 130℃ 이상) 또한 높일 수 있다. 이에 따라 열수축률을 보다 개선할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 폴리올레핀이 폴리에틸렌인 경우, 상기 열고정 온도는 120 내지 150℃ 또는 123 내지 138℃ 또는 125 내지 133 ℃일 수 있다. 폴리올레핀이 폴리에틸렌인 경우에 상기 열고정 온도가 상기 수치 범위를 만족하는 경우, 폴리올레핀 분자의 재배열이 일어나 다공성 막의 잔류 응력을 제거할 수 있으며, 부분적 용융에 따라 다공성 막의 기공이 막히는 문제를 감소시킬 수 있다.
본 발명이 구체적인 일 실시양태에 있어서, 상기 열고정 온도의 시간은 10 내지 120초, 20 내지 90초, eh는 30 내지 60 초 일 수 있다. 상기 시간에서 열고정 하는 경우, 폴리올레핀 분자의 재배열이 일어나 다공성 막의 잔류 응력을 제거할 수 있으며, 부분적 용융에 따라 다공성 막의 기공이 막히는 문제를 감소시킬 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 (S4) 단계 이후에, 70 내지 90 ℃ 온도 및 70 내지 90 % 상대 습도 조건하에서, 상기 열고정된 결과물을 수가교하는 단계를 더 포함할 수 있다. 다만, 상기 단계는 선택적이며, 에이징을 하기 위한 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 수가교는 60 내지 100 ℃, 또는 65 내지 95 ℃, 또는 70 내지 90℃에서 수행될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 수가교는 습도 60 내지 95% 에서 6 내지 50 시간 동안 수행될 수 있다.
한편, 본 발명의 구체적인 일 실시양태에 있어서, 상기 (S2) 단계와 상기 (S3) 단계 사이에, 상기 연신된 시트 상에 가교 촉매가 함유된 수분산액이 도포된 간지 필름(間紙, interleaving film)을 배치시키는 단계; 및
상기 (S3) 단계에서, 희석제 추출하고 상기 간지 필름을 제거하는 단계를 더 포함할 수 있다.
본 발명은 가교 촉매가 소정량 포함된 수분산액이 도포된 간지 필름을 (S2) 단계에 의해 연신된 시트 상에 배치한 후 함께 와인딩하고, 이 후 희석제 추출 상기 간지 필름을 제거하여 다공성 막의 가교를 촉진할 수 있다.
전술한 바와 같이 같이 간지 필름을 배치하면 추출 이전에 가교 반응이 소정 정도 일어날 수 있다. 또한, 추출 수조 내 촉매의 농도, 온도, 속도 조절 등 공정 자유도를 높일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 간지 필름은 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리카보네이트, 폴리부틸렌 테레프탈레이트, 또는 이들 중 2 이상의 혼합물을 포함할 수 있다.
본 발명의 다른 일 측면에 따르면, 하기 가교 폴리올레핀 분리막을 제공한다.
본 발명의 일 측면은 MD 방향 및 TD 방향의 열수축률(120 ℃/1hr)이 하기 식을 만족하는 가교 폴리올레핀 분리막이다;
[식 1]
MD + TD ≤ 10%
상기 식에서 MD는 상기 가교 폴리올레핀 분리막의 MD 방향 열수축율을, TD는 상기 가교 폴리올레핀 분리막의 TD 방향 열수축율을 각각 의미하고,
상기 열수축율은 하기 식으로 계산한다:
열수축률 = (최초 길이 - 120℃/1hr 동안 열수축 처리 후 길이)/(최초 길이) X 100.
상기와 같이 본 발명은 가교 폴리올레핀 분리막으로서, 높은 멜트 다운 온도를 가진다. 이와 함께 본 발명은 MD 방향 열수축률과 TD 방향 열수축률의 합이 10% 이하인 분리막으로서, 내열성이 높은 가교 폴리올레핀 분리막을 제공할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 분리막은 리튬 이차전지용일 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 아니 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
먼저 압출기에 폴리올레핀으로는 중량평균분자량이 300,000이며 융점이 135℃인 고밀도 폴리에틸렌(대한유화, VH035) 48 kg/hr, 희석제로는 액체 파라핀 오일 (극동유화, LP 350F, 68cSt) 112 kg/hr을 투입 및 혼합하였다. 이 때, 상기 폴리에틸렌 : 희석제의 중량비는 30 : 70 이었다. 한편, 상기 압출기에 탄소-탄소 이중결합기 함유 알콕시 실란으로는 비닐트리에톡시실란을 상기 폴리올레핀 및 상기 희석제 총합 100 중량부 기준으로 0.7 중량부, 개시제로는 2,5-다이메틸-2,5-다이-(3차-뷰틸퍼옥시)헥세인(2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, (DHBP))를 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 2 중량부 더 투입하고 혼합하였다. 이후, 200 ℃의 온도 조건으로 반응 압출하여 실란 그라프트된 폴리에틸렌 조성물을 제조하였다.
제조된 실란 그라프트된 폴리에틸렌 조성물을 티-다이와 냉각 캐스팅 롤을 지나 시트 형태로 성형하고, 이 후 MD 연신 후 TD 연신의 텐터형 축차연신기로 이축 연신하였다. MD 연신비는 5.5배, TD 연신비는 5.0배로 하였다. 연신 온도는 MD가 105 ℃, TD가 125 ℃이었다.
상기 연신된 시트를 가교 촉매 디부틸 주석 디라우레이트가 수분산 되어 있는 추출수조에 넣어 메틸렌 클로라이드를 이용해 상기 희석제를 추출하였다. 이 때 추출 수조에는 메틸렌 클로라이드 140 kg, 물 100 kg 포함되어 있으며, 상기 가교 촉매의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 2 중량부 첨가하였다. 이 때, 추출 수조의 온도는 70 ℃ 이었다. 이에 따라, 상기 추출 수조에서 희석제 추출과 동시에 수가교 반응이 일어났다.
이 후 128 ℃에서 연신비 1.3배에서 1.1배로 열고정하여 다공성 막을 제조하였다. 상기 다공성 막을 85 ℃, 85% 상대 습도 조건에서 48 시간 동안 한번 더 수가교하여, 두께 12 ㎛의 가교 폴리에틸렌 분리막을 제조하였다.
실시예 2
하기 내용을 제외하고는 실시예 1과 동일한 방법으로 가교 폴리올레핀 분리막을 제조하였다.
상기 연신된 시트의 일면에 가교 촉매인 디부틸 주석 디라우레이트가 포함된 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 5 중량부 함유된 수분산액이 도포 및 건조된 간지 필름(S社 PET film, 50um)을 배치하고, 상기 연신된 시트와 와인딩 하였다. 이후, 상기 시트를 가교 촉매인 디부틸 주석 디라우레이트가 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 1 중량부로 수분산되어 있는 추출 수조에 넣고, 메틸렌 클로라이드를 이용하여 희석제를 추출하고, 이 후 상기 간지 필름도 제거하였다. 이 때 추출 수조의 온도는 50 ℃ 이었다. 한편, 상기 추출 수조에서 희석제 추출 및 수가교 반응이 동시에 일어났다.
실시예 3
하기 내용을 제외하고는 실시예 1과 동일한 방법으로 가교 폴리올레핀 분리막을 제조하였다.
연신된 시트에서 희석제를 추출과 동시에 수가교 한 후, 130 ℃에서 연신비 1.5배에서 1.2배로 열고정하여 다공성 막을 제조하였다. 상기 다공성 막을 85 ℃, 85% 상대 습도 조건에서 48 시간 동안 수가교하여, 두께 12 ㎛의 가교 폴리에틸렌 분리막을 제조하였다.
비교예 1
먼저 압출기에 폴리올레핀으로는 중량평균분자량이 300,000이며 융점이 135℃인 고밀도 폴리에틸렌(대한유화, VH035) 시간당 48 kg, 희석제로는 액체 파라핀 오일 (극동유화, LP 350F, 68cSt) 시간당 112 kg을 투입 및 혼합하였다. 이 때, 상기 폴리에틸렌 : 희석제의 중량비는 30 : 70 이었다. 한편, 상기 압출기에 알콕시기 함유 비닐실란으로는 트리에톡시비닐실란을 상기 폴리올레핀 및 상기 희석제 총합 100 중량부 기준으로 0.7 중량부, 개시제로는 2,5-다이메틸-2,5-다이-(3차-뷰틸퍼옥시)헥세인(2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, (DHBP))를 상기 알콕시기 함유 비닐실란 100 중량부 기준으로 2 중량부 더 투입하고 혼합하였다. 이후, 200 ℃의 온도 조건으로 반응 압출하여 실란 그라프트된 폴리에틸렌 조성물을 제조하였다.
제조된 실란 그라프트된 폴리에틸렌 조성물을 티-다이와 냉각 캐스팅 롤을 지나 시트 형태로 성형하고, 이 후 MD 연신 후 TD 연신의 텐터형 축차연신기로 이축 연신하였다. MD 연신비는 5.5배, TD 연신비는 5.0배로 하였다. 연신 온도는 MD가 105 ℃, TD가 125 ℃이었다.
상기 연신된 시트를 메틸렌 클로라이드를 이용해 상기 희석제를 추출하였다. 이 때, 추출 수조의 온도는 25℃ 이었다. 비교예 1의 경우, 실시예와 달리 추출 수조에서 수가교 반응은 일어나지 않았다.
이 후 128 ℃에서 연신비 1.3배에서 1.1배로 열고정하여 다공성 막을 제조하였다. 상기 다공성 막을 85 ℃, 85% 상대 습도 조건에서 48 시간 동안 수가교하여, 두께 12 ㎛의 가교 폴리에틸렌 분리막을 제조하였다.
비교예 2
하기 내용을 제외하고는 비교예 1과 동일한 방법으로 가교 폴리올레핀 분리막을 제조하였다.
연신된 시트에서 희석제를 추출하였다. 비교예 1의 경우, 실시예와 달리 추출 수조에서 수가교 반응은 일어나지 않았다.
이 후, 130 ℃에서 연신비 1.5배에서 1.2배로 열고정하여 다공성 막을 제조하였다. 상기 다공성 막을 85 ℃, 85% 상대 습도 조건에서 48 시간 동안 수가교하여, 두께 12 ㎛의 가교 폴리에틸렌 분리막을 제조하였다.
실험예
실시예 및 비교예에 따라 제조된 분리막에 대한 평가 결과를 하기 표 1에 나타내었다.
실시예1 실시예2 실시예 3 비교예1 비교예2
열고정 온도(℃) 128 128 130 128 130
두께(㎛) 12 12 12 12 12
85℃/ 85% 항온항습 오븐 48시간 이후 폭 수축률(%) 5 3 3 11 12
통기시간(sec/100cc) 89 108 131 313 481
열수축률(120℃/60min) MD 5 4 3 15 13
TD 4 3 2 9 5
추출 후 겔함량(%) 18.8 28.4 21.1 0.4 1.1
표 1에 나타낸 바와 같이, 실시예 1 내지 3의 경우 85℃, 85% 항온항습 오븐 48시간 이후 폭 수축률(%)이 비교예 1 내지 2에 비해 약 50% 감소된 것을 확인할 수 있다. 특히 실시예 1은 가장 낮은 통기시간을 나타내었다.
한편, 간지 필름을 사용한 실시예 2의 경우 낮은 통기 시간을 가짐과 동시에 낮은 폭 수축률을 가짐을 확인할 수 있었다.
표 1에서 나타낸 바와 같이, 실시예 3이 실시예 1에 비해 낮은 열수축률을 가지는 반면, 통기시간이 높고, 추출 후 겔함량이 높다. 이에 따라, 열고정 온도를 높임에 따라 통기시간이 보다 낮은 분리막을 제공할 수 있다.
상기 표 1에서 각 평가의 구체적인 측정 방법은 하기와 같다.
1) 분리막의 두께 측정 방법
분리막의 두께는 두께측정기 (Mitutoyo社, VL-50S-B)를 이용하여 측정하였다.
2) 통기도 측정 방법
JIS P-8117에 따라, Gurley식 공기 투과도계를 이용하여 측정하였다. 이때, 직경 28.6 mm, 면적 645 ㎟를 공기 100 ml가 통과하는 시간을 측정하였다.
3) 열수축률 측정 방법
상기 열수축율은 (최초 길이 - 120℃/1hr 동안 열수축 처리 후 길이)/(최초 길이) X 100으로 산정한다.
4) 겔 함량 측정 방법
20ml의 바이알에 칭량된 가교 분라막 샘플을(중량: WO mg) 100 메쉬의 철망봉지에 넣고 1,2,4-트리클로로벤젠을 가교 분리막 샘플이 충분히 잠기게 할 정도로(약 10ml)를 넣어 온도 130 ℃에서 2 시간이상 가열했다. 이 후 100 메쉬의 철망으로 여과되지 않은 미(未)용해 가교 분리막 샘플을 자일렌(xylene) 용액에 2회 washing한 후, 120 ℃의 열풍 오븐 내에서 12 시간 건조시켰다. 건조한 미(未)용해 성분을 칭량해(중량: W mg), 하기 식 2를 이용해 산출하였다:
[식 2]
겔함량(%)=(W/WO)Х100.

Claims (16)

  1. (S1) 폴리올레핀, 희석제, 개시제 및 탄소-탄소 이중결합기 함유 알콕시 실란을 압출기에 투입 및 혼합한 후 압출하여 실란 그라프트된 폴리올레핀 조성물을 제조하는 단계;
    (S2) 상기 압출된 실란 그라프트된 폴리올레핀 조성물을 시트 형태로 성형 및 연신하는 단계;
    (S3) 상기 연신된 시트를 가교 촉매가 포함되어 있는 추출 수조에 넣어 희석제를 추출하고 수가교하는 단계; 및
    (S4) 상기 수가교된 결과물을 열고정하는 단계;를 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  2. 제1항에 있어서,
    상기 추출 수조는 물 및 추출 용매를 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  3. 제2항에 있어서,
    상기 추출 용매는 유기 용매인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  4. 제2항에 있어서,
    상기 추출 수조는 알코올을 더 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  5. 제4항에 있어서,
    상기 물 대 알코올의 중량비가 95 : 5 내지 80 : 20 인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  6. 제4항에 있어서,
    상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부탄올, 펜타올, 헥산올, 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조방법.
  7. 제1항에 있어서,
    상기 추출 수조의 온도는 40 ℃ 이상인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조방법.
  8. 제1항에 있어서,
    상기 탄소-탄소 이중결합기 함유 알콕시 실란의 함량은 상기 폴리올레핀 및 희석제 총합 100 중량부 기준으로 0.01 내지 1.0 중량부이며,
    상기 개시제의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 0.1 내지 5.0 중량부인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조방법.
  9. 제1항에 있어서,
    상기 열고정 온도는 120 내지 150 ℃인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  10. 제1항에 있어서,
    상기 알콕시기 함유 비닐실란은 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐트리아세톡시실란, (3-메타아크릴옥시프로필)트리메톡시실란, (3-메타아크릴옥시프로필)트리에톡시실란, 비닐메틸디메톡시실란, 비닐-트리스(2-메톡시에톡시)실란, 비닐메틸디에톡시실란 또는 이들 중 적어도 2 이상을 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  11. 제1항에 있어서,
    상기 가교 촉매는 디부틸 주석 디라우레이트, 디부틸 주석 디아세테이트, 초산 제1주석, 카프릴산 제1 주석, 나프텐산 아연, 카프릴산 아연, 나프텐산 코발트, 에틸아민, 디부틸 아민, 헥실 아민, 피리딘, 황산, 염산, 톨루엔 설폰산, 초산, 스테아린산, 말레산, 또는 이들 중 2 이상의 혼합물을 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  12. 제1항에 있어서,
    상기 상기 가교 촉매의 함량은 상기 탄소-탄소 이중결합기 함유 알콕시 실란 100 중량부 기준으로 0.1 내지 10 중량부인 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조 방법.
  13. 제1항에 있어서,
    상기 (S2) 단계와 상기 (S3) 단계 사이에, 상기 연신된 시트 상에 가교 촉매가 함유된 수분산액이 도포된 간지 필름을 배치시키는 단계; 및
    상기 (S3) 단계에서, 희석제를 추출하고 상기 간지 필름을 제거하는 단계를 더 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조방법.
  14. 제1항에 있어서,
    상기 (S4) 단계 이후에, 70 내지 90 ℃ 온도 및 70 내지 90 % 상대 습도 조건하에서, 상기 열고정된 결과물을 수가교하는 단계를 더 포함하는 것을 특징으로 하는 가교 폴리올레핀 분리막의 제조방법.
  15. MD 방향 및 TD 방향의 열수축률(120 ℃/1hr)이 하기 식을 만족하는 가교 폴리올레핀 분리막;
    [식 1]
    MD + TD ≤ 10%
    상기 식에서 MD는 상기 가교 폴리올레핀 분리막의 MD 방향 열수축율을, TD는 상기 가교 폴리올레핀 분리막의 TD 방향 열수축율을 각각 의미하고,
    상기 열수축율은 하기 식으로 계산한다:
    열수축율 = (최초 길이 - 120℃/1hr 동안 열수축 처리 후 길이)/(최초 길이) X 100.
  16. 제15항에 있어서,
    상기 분리막은 리튬 이차전지용인 것을 특징으로 하는 가교 폴리올레핀 분리막.
PCT/KR2019/011328 2018-09-03 2019-09-03 가교 폴리올레핀 분리막 및 이의 제조방법 WO2020050589A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980005934.5A CN111372981B (zh) 2018-09-03 2019-09-03 交联聚烯烃隔膜及其制造方法
PL19858288.4T PL3715407T3 (pl) 2018-09-03 2019-09-03 Usieciowany separator poliolefinowy i sposób jego wytwarzania
JP2020526873A JP7024079B2 (ja) 2018-09-03 2019-09-03 架橋ポリオレフィン分離膜及びその製造方法
US16/766,116 US11673985B2 (en) 2018-09-03 2019-09-03 Crosslinked polyolefin separator and method for manufacturing the same
EP19858288.4A EP3715407B1 (en) 2018-09-03 2019-09-03 Crosslinked polyolefin separator and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180104827A KR102024321B1 (ko) 2018-09-03 2018-09-03 가교 폴리올레핀 분리막 및 이의 제조방법
KR10-2018-0104827 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050589A1 true WO2020050589A1 (ko) 2020-03-12

Family

ID=68069239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011328 WO2020050589A1 (ko) 2018-09-03 2019-09-03 가교 폴리올레핀 분리막 및 이의 제조방법

Country Status (8)

Country Link
US (1) US11673985B2 (ko)
EP (1) EP3715407B1 (ko)
JP (1) JP7024079B2 (ko)
KR (1) KR102024321B1 (ko)
CN (1) CN111372981B (ko)
HU (1) HUE064406T2 (ko)
PL (1) PL3715407T3 (ko)
WO (1) WO2020050589A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295069B1 (ko) * 2018-08-17 2021-08-26 주식회사 엘지화학 전기화학소자용 분리막 및 이의 제조방법
CN111211275B (zh) * 2020-01-14 2022-03-11 江苏厚生新能源科技有限公司 部分交联的复合聚乙烯锂电池隔膜及其制备方法
KR102577609B1 (ko) * 2021-11-17 2023-09-13 더블유스코프코리아 주식회사 분리막의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144700A (ja) * 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JPH11172036A (ja) * 1997-12-10 1999-06-29 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
CN102134342A (zh) * 2010-12-07 2011-07-27 杭州福膜新材料科技有限公司 一种交联型聚烯烃微孔膜及其制备方法
KR20120074365A (ko) * 2010-12-28 2012-07-06 충남대학교산학협력단 이온교환막 제조 방법
KR20160129583A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR20180104827A (ko) 2017-03-14 2018-09-27 (주)승우엔지니어링 조립식 콘크리트 박스를 이용한 모듈식 토석류 유도둑

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226813A1 (en) 2008-03-07 2009-09-10 Kotaro Takita Microporous Membrane, Battery Separator and Battery
US20090226814A1 (en) 2008-03-07 2009-09-10 Kotaro Takita Microporous membrane, battery separator and battery
US20120135289A1 (en) 2010-11-29 2012-05-31 Ippei Noda Polyolefin microporous membrane and separator for lithium ion battery
US9331323B2 (en) * 2013-08-21 2016-05-03 GM Global Technology Operations LLC Cross-linked multilayer porous polymer membrane battery separators
KR101701376B1 (ko) 2013-12-16 2017-02-01 주식회사 엘지화학 친환경 수계 바인더를 이용한 고성능 복합 분리막의 제조 방법
KR101857156B1 (ko) * 2014-10-31 2018-05-11 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
CN105576172B (zh) * 2014-10-31 2018-06-22 Lg化学株式会社 交联聚烯烃隔膜及其制备方法
CN105140452A (zh) 2015-08-12 2015-12-09 深圳市星源材质科技股份有限公司 一种具有低热收缩率的聚烯烃复合微孔膜及制备方法
CN106920912A (zh) * 2017-04-14 2017-07-04 上海恩捷新材料科技股份有限公司 一种锂离子电池隔离膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144700A (ja) * 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JPH11172036A (ja) * 1997-12-10 1999-06-29 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
CN102134342A (zh) * 2010-12-07 2011-07-27 杭州福膜新材料科技有限公司 一种交联型聚烯烃微孔膜及其制备方法
KR20120074365A (ko) * 2010-12-28 2012-07-06 충남대학교산학협력단 이온교환막 제조 방법
KR20160129583A (ko) * 2015-04-30 2016-11-09 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR20180104827A (ko) 2017-03-14 2018-09-27 (주)승우엔지니어링 조립식 콘크리트 박스를 이용한 모듈식 토석류 유도둑

Also Published As

Publication number Publication date
US20200365860A1 (en) 2020-11-19
JP2021503163A (ja) 2021-02-04
CN111372981A (zh) 2020-07-03
HUE064406T2 (hu) 2024-03-28
JP7024079B2 (ja) 2022-02-22
EP3715407A1 (en) 2020-09-30
PL3715407T3 (pl) 2024-03-11
CN111372981B (zh) 2022-07-08
US11673985B2 (en) 2023-06-13
EP3715407A4 (en) 2021-01-13
EP3715407B1 (en) 2023-11-15
KR102024321B1 (ko) 2019-09-23

Similar Documents

Publication Publication Date Title
WO2015093852A1 (ko) 전기화학소자용 분리막
WO2020050589A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2015069045A1 (ko) 전기화학소자용 분리막
WO2020197198A1 (ko) 폴리올레핀 분리막 및 이의 제조방법
WO2019151812A1 (ko) 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2009139585A2 (en) Microporous polyolefin film with thermally stable porous layer at high temperature
WO2009148239A2 (en) Microporous polyolefin multilayer film and preparing method thereof
WO2020036451A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019240427A1 (ko) 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2020055188A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2019240475A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019245343A1 (ko) 전기화학소자용 세퍼레이터, 이를 포함하는 전기화학소자 및 세퍼레이터의 제조방법
WO2020130412A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2020046075A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
KR102022595B1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2019146927A1 (ko) 이차 전지용 절연판 및 그의 제조 방법
KR20200087923A (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2024096625A1 (ko) 전기화학소자용 분리막 기재 및 이를 포함하는 분리막
WO2018139805A1 (ko) 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자
WO2021091326A1 (ko) 가교 폴리올레핀 분리막, 가교 폴리올레핀 분리막의 제조방법 및 이를 포함하는 전기화학소자
WO2023090580A1 (ko) 분리막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526873

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019858288

Country of ref document: EP

Effective date: 20200622

NENP Non-entry into the national phase

Ref country code: DE