WO2024091010A1 - 분리막용 중합체 조성물 및 이를 포함하는 이차전지 - Google Patents

분리막용 중합체 조성물 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2024091010A1
WO2024091010A1 PCT/KR2023/016715 KR2023016715W WO2024091010A1 WO 2024091010 A1 WO2024091010 A1 WO 2024091010A1 KR 2023016715 W KR2023016715 W KR 2023016715W WO 2024091010 A1 WO2024091010 A1 WO 2024091010A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
chain
formula
separator
combination
Prior art date
Application number
PCT/KR2023/016715
Other languages
English (en)
French (fr)
Inventor
조승완
이고은
김영수
김진영
장보옥
이남주
노명준
오세욱
권세만
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2024091010A1 publication Critical patent/WO2024091010A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymer composition, a slurry composition containing the same, a separator, and a secondary battery.
  • Lithium secondary batteries have a high energy density, so they are widely used in the electrical, electronics, communications, and computer industries. Following small lithium secondary batteries for portable electronic devices, their application areas are expanding to high-capacity secondary batteries such as hybrid vehicles and electric vehicles. there is.
  • Lithium-ion secondary batteries are insulated by a separator, but internal or external battery anomalies or shocks can cause a short circuit between the anode and cathode, causing heat generation and explosion, so ensuring the thermal/chemical safety of the separator is very important. .
  • polyolefin-based films are widely used as separators, but polyolefin has the disadvantage of severe heat shrinkage at high temperatures and weak mechanical properties.
  • inorganic particles are coated with a binder on one or both sides of the porous separator substrate, giving the inorganic particles the function of suppressing the shrinkage rate of the substrate.
  • a safer separator can be manufactured through the coating layer.
  • the coating layer In order to ensure excellent battery characteristics, the coating layer must be uniformly coated and at the same time, strong adhesion to the substrate is required.
  • Patent Document 1 Republic of Korea Patent No. 10-1430975
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2006-0072065
  • the present invention seeks to provide a slurry composition with excellent properties using a polymer composition.
  • the present invention seeks to provide a separator with excellent heat resistance by applying the slurry composition and a battery with excellent performance using the separator.
  • One aspect of the present application is a particulate polymer containing a carboxyl group or an alcohol group
  • a polymer composition is provided.
  • the chain polymer contains an alcohol group
  • the chain polymer contains a carboxyl group
  • Another aspect of the present application is the polymer composition
  • a slurry composition is provided.
  • Another aspect of the present application includes the slurry composition
  • a separation membrane is provided.
  • Another aspect of the present application includes the separator,
  • Another aspect of the present application includes coating a slurry composition containing the polymer composition and inorganic particles on a porous substrate and drying it;
  • Crosslinking at a temperature of 50°C or higher including,
  • a method for manufacturing a separation membrane is provided.
  • the polymer composition of the present invention can improve the heat resistance of a separator. Additionally, a battery with excellent characteristics can be implemented.
  • the polymer composition of one aspect of the present application includes a particulate polymer containing a carboxyl group or an alcohol group; and a chain polymer containing a carboxyl group or an alcohol group.
  • the chain polymer may contain an alcohol group
  • the chain polymer may contain a carboxyl group
  • the particulate polymer may be particles of various shapes, in particular, may be circular particles, and may have an average diameter of 100 nm to 2 ⁇ m.
  • the chain polymer is dissolved in a solvent, so the physical form of the chain polymer may not be observed with the naked eye. That is, it may be in liquid form dissolved in a solvent.
  • the particulate polymer may be dispersed in the solvent, and the chain polymer may be dissolved in the solvent and may be mixed with each other.
  • any solvent may be used as long as it can disperse the particulate polymer and disperse or dissolve the chain polymer.
  • water may be used.
  • the particle-type polymer and the chain-type polymer may include one or more monomer units selected from the group consisting of acrylate-based monomer units and acrylic acid-based monomer units.
  • Monomer units of the acrylate series include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and propyl acrylate ( propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, butyl methacrylate, sec -Butyl acrylate, sec-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, hexyl hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, and stearyl. It may be formed by polymerizing one or more types selected from the group consisting of methacrylate (stearyl methacrylate).
  • the acrylate-based monomer unit may be formed by copolymerizing two or more types of acrylate-based monomers.
  • the acrylate-based monomer unit may be formed by copolymerizing two or more types selected from the group consisting of butyl acrylate, methyl methacrylate, and butyl methacrylate.
  • the acrylic acid-based monomer unit may be formed by polymerizing one or more types selected from the group consisting of acrylic acid and methacrylic acid.
  • the particulate polymer may further include a hydroxy acrylate-based monomer unit.
  • the particulate polymer may be a copolymer containing an acrylate-based monomer unit and an acrylic acid-based monomer unit, or a copolymer containing an acrylate-based monomer unit and a hydroxyacrylate-based monomer unit.
  • the particulate polymer is a copolymer containing an acrylate-based monomer unit and an acrylic acid-based monomer unit, 70% by weight or more and 95% by weight or less of acrylate-based monomer based on 100% by weight of the total weight of the copolymer. It may contain units and more than 5% by weight and less than 30% by weight of acrylic acid-based monomer units.
  • the particulate polymer is a copolymer containing an acrylate-based monomer and a hydroxy acrylate-based monomer unit, 70% by weight or more and 95% by weight or less of acrylic based on 100% by weight of the total weight of the copolymer. It may include a rate-based monomer unit and 5% by weight or more and 30% by weight or less of a hydroxyacrylate-based monomer unit.
  • chain polymer may further include a vinyl alcohol-based monomer unit.
  • the chain polymer may be a polymer composed only of acrylic acid monomer units, a copolymer containing an acrylate-based monomer and a vinyl alcohol-based monomer unit, or a copolymer containing an acrylate-based monomer unit and an acrylic acid-based monomer unit. It may be a combination.
  • the chain polymer is a copolymer containing an acrylate-based monomer unit and a vinyl alcohol-based monomer unit, 40% by weight or less of acrylate-based monomer units and 60% by weight based on 100% by weight of the total weight of the copolymer. It may contain more than % of vinyl alcohol-based monomer units.
  • the chain polymer includes an acrylate-based monomer and an acrylic acid-based monomer unit, 30% by weight or less of acrylate-based monomer units and 70% by weight based on 100% by weight of the total weight of the chain polymer. It may contain one or more acrylic acid-based monomer units.
  • the hydroxy acrylate series monomer unit of the particle-type polymer is from the group consisting of 2-hydroxy ethyl acrylate and 2-hydroxy ethyl methacrylate. It may be formed by polymerizing one or more selected types.
  • the particulate polymer contains 5% by weight or more and 10% by weight or less of acrylonitrile monomer units, acrylamide monomer units, or these, based on 100% by weight of the total weight of the particulate polymer. It may additionally include a combination of .
  • the acrylonitrile monomer unit may be formed by polymerizing one or more types selected from the group consisting of acrylonitrile and methacrylonitrile, and the acrylamide monomer unit may be formed of one type selected from the group consisting of acrylamide and methacrylamide. These may be formed by polymerization.
  • the particulate polymer may include a monomer repeating unit represented by Formula 1 or Formula 2 below.
  • R 1 is hydrogen; methyl or a combination thereof
  • R 2 is hydrogen; linear or branched hydrocarbons having 1 to 20 carbon atoms; or a combination thereof,
  • R 3 is hydrogen; methyl or a combination thereof
  • R 4 is hydrogen; linear or branched hydrocarbons having 1 to 20 carbon atoms; or a combination thereof,
  • Formulas 1 and 2 may represent the weight fraction of each repeating unit.
  • the chain polymer may include a monomer repeating unit represented by Formula 3 or Formula 4 below.
  • R 5 is hydrogen; methyl or a combination thereof
  • R 6 is hydrogen; linear or branched hydrocarbons having 1 to 20 carbon atoms; or a combination thereof,
  • R 7 is hydrogen; methyl or a combination thereof
  • R 8 is hydrogen; linear or branched hydrocarbons having 1 to 20 carbon atoms; or a combination thereof,
  • Formulas 3 and 4 may represent the weight fraction of each repeating unit.
  • the weight ratio of the particle-type polymer and the chain-type polymer (weight of the particle-type polymer: weight of the chain-type polymer) may be 1:9 to 9:1.
  • the weight ratio of the particle-type polymer and the chain-type polymer may be 7:3 to 3:7, 4:6 to 6:4, or 5:5. .
  • the particle-type polymer and the chain-type polymer may be linked to each other through an ester bond.
  • particle-type polymer and the chain-type polymer may be connected to each other by hydrogen bonds.
  • connection (bond) between the particulate polymer and the chain polymer by the ester bond and/or hydrogen bond may be formed by a reaction between the carboxyl group and alcohol group contained in the particulate polymer and the chain polymer.
  • the heat resistance of the separation membrane to which the polymer composition of the present application is applied can be improved.
  • the particulate polymer can be synthesized by emulsion polymerization.
  • the chain polymer can be synthesized by hydrolyzing a prepolymer synthesized by emulsion polymerization or by solution polymerization.
  • the vinyl acetate monomer unit can become a vinyl alcohol-based monomer unit through hydrolysis.
  • the degree of hydrolysis may be 70% or more.
  • the degree of hydrolysis may be 70% or more, 80% or more, or 90% or more.
  • an aqueous metal hydroxide solution can be used.
  • NaOH, KOH, LiOH, etc. can be used.
  • the number average molecular weight of the particulate polymer may be 5,000 to 10,000,000, and the number average molecular weight of the chain polymer may be 5,000 to 10,000,000.
  • the fluidity of the composition may increase, resulting in reduced dispersibility and the heat resistance characteristics of the separator may be reduced. If the number average molecular weight of the particle-type polymer or chain-type polymer exceeds 10,000,000, the viscosity is too high for use and the pores of the separator may be blocked, thereby reducing air permeability and resistance.
  • a slurry composition according to another aspect of the present application may include the polymer composition and inorganic particles.
  • the inorganic particles may be used without limitation as long as they are insulating particles, and may preferably be high dielectric constant insulating particles.
  • the inorganic particles include Al 2 O 3 , AlOOH, SiO 2 , TiO 2 , ZrO 2 , ZnO, NiO, CaO, SnO 2 , Y 2 O 3 , MgO, BaTiO 3 , CaTiO 3 , SrTiO 3 , SiC , Li 3 PO 4 , Pb(Zr,Ti)O 3 (PZT), (Pb,La)(Zr,Ti)O 3 (PLZT), or mixtures thereof.
  • the size of the inorganic particles is not particularly limited, but for example, the average particle diameter may be 0.01 ⁇ m to 30 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m. If the average particle diameter of the inorganic particles is less than the above preferred range, dispersibility may be low, and if it exceeds the above preferred range, the thickness of the coating layer after coating may become thick and mechanical properties may be reduced.
  • the shape of the inorganic particles is not particularly limited and may be, for example, spherical, oval, plate-shaped or irregular.
  • a separator according to another aspect of the present application may include the slurry composition.
  • the heat shrinkage rate measured immediately after the crosslinking step may be 1 to 2% in both the MD (Machine direction) direction and the TD (Transverse direction) direction.
  • the thermal contraction rate measured by leaving the product at 150°C for 1 hour may be within 5% in both the MD and TD directions.
  • a separator can be manufactured by coating the slurry composition on at least one side of a porous base film, or by preparing the slurry composition in the form of a film and laminating it to a porous base film.
  • the separator may be used as a separator for secondary batteries, for example, as a separator for lithium secondary batteries.
  • a method of manufacturing a separator according to another aspect of the present application may include the steps of coating a slurry composition containing the polymer composition of the present application and inorganic particles on a porous substrate, drying it, and crosslinking at a temperature of 50° C. or higher.
  • the drying temperature of the coating and drying steps may be 40°C or higher and 80°C or lower.
  • it may be 40°C or higher, 50°C or higher, 60°C or higher, or 70°C or higher.
  • reaction time of the coating and drying steps may be 1 minute or more and 30 minutes or less.
  • it may be 5 minutes or less, 10 minutes or less, 15 minutes or less, 20 minutes or less, or 25 minutes or less.
  • the temperature of the crosslinking step may be 50°C or higher and 100°C or lower.
  • it may be 50°C or higher, 60°C or higher, 70°C or higher, or 80°C or higher.
  • reaction time of the crosslinking step may be 30 minutes or more and 5 hours or less.
  • it may be at least 1 hour, at least 2 hours, or at least 3 hours.
  • An example of a separator manufacturing method includes the steps of: (a) dissolving or dispersing the polymer composition in a solvent to prepare a polymer solution; (b) adding and mixing inorganic particles to the polymer solution of step a); and (c) coating and drying at least one region selected from the group consisting of the surface of the polyolefin-based separator substrate and a portion of the pores in the substrate with the mixture of step b).
  • the polymer composition is prepared and prepared in the form of a polymer solution dissolved or dispersed in an appropriate solvent.
  • the solvent has a low boiling point. This is to facilitate solvent removal after uniform mixing.
  • usable solvents include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone (NMP), cyclohexane, water, or mixtures thereof. More preferably, it can be used in a water-dispersed state.
  • composition of the mixture consisting of inorganic particles and polymers is not greatly limited, but the thickness, pore size, and porosity of the finally manufactured organic/inorganic composite porous separator of the present invention can be adjusted accordingly.
  • the separator of the present invention can be obtained by coating the prepared mixture of inorganic particles and polymers on the prepared polyolefin-based separator substrate and then drying it.
  • the method of coating the mixture of inorganic particles and polymers on the polyolefin-based separator substrate can be a conventional coating method known in the art, for example, dip coating, die coating, roll ) A variety of methods can be used, such as coating, comma coating, or a mixture of these methods.
  • a mixture of inorganic particles and polymers on a polyolefin-based separator substrate it can be applied to both sides of the separator substrate or can be selectively applied to only one side.
  • lithium ions can be transmitted not only through the separator substrate but also through the porous active layer, and when an internal short circuit occurs due to an external impact, the above-mentioned safety improvement effect can be exhibited. .
  • the secondary battery may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution.
  • the secondary battery can be manufactured according to a common method known in the art. For example, in one embodiment, it is manufactured by assembling the electrode and a separator, and then injecting an electrolyte into the assembly.
  • the cathode active material can be any conventional cathode active material that can be used in the anode of a secondary battery, non-limiting examples of which include lithiated magnesium oxide and lithium cobalt.
  • lithium intercalation materials such as lithiated cobalt oxide, lithiated nickel oxide, or complex oxides formed by a combination thereof.
  • the negative electrode active material can be a conventional negative electrode active material that can be used in the negative electrode of a conventional electrochemical device, non-limiting examples of which include lithium metal or lithium alloy and carbon, petroleum coke,
  • lithium adsorption materials such as activated carbon, graphite, or other carbons.
  • the above-described positive electrode active materials are each used as a positive current collector, that is, a foil made of aluminum, nickel, or a combination thereof, and a negative current collector, that is, made of copper, gold, nickel, or a copper alloy, or a combination thereof. Both electrodes are formed by attaching them to a foil.
  • the electrolyte solution is a salt with the same structure as A+B-, where A+ contains an ion consisting of an alkali metal cation such as Li+, Na+, K+ or a combination thereof, and B- contains PF6-, BF4-, Cl-, Br Propylene carbonate is a salt containing anions such as -, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 - or a combination thereof.
  • PC ethylene carbonate
  • EC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide Acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl It is preferable that it is dissolved and dissociated in an organic solvent consisting of carbonate (ethyl methyl carbonate, EMC), gamma butyrolactone (GBL), or a mixture thereof.
  • EMC ethyl methyl carbonate
  • GBL gamma butyrolactone
  • reaction vessel 370 parts by weight of distilled water and 0.1 to 3.0 parts by weight of an emulsifier based on 100 parts by weight of the monomer mixture were added and stirred, and the temperature was raised to 75°C while injecting high-purity nitrogen gas.
  • a continuous emulsion polymerization reaction was carried out by adding 0.15 parts by weight of ammonium persulfate, a decomposition initiator, to a reaction vessel prepared at 75°C, and 0.15 parts by weight of the monomer mixture based on 100 parts by weight of the monomer mixture.
  • particulate polymer A1 was prepared as a monomer mixture by setting the ratio of butyl acrylate monomer, methacrylate monomer, butyl methacrylate, and acrylic acid (AA) monomer to 10:25:55:10, and the monomer A particle-type polymer was prepared by mixing butylacrylate monomer, methacrylate monomer, butyl methacrylate, and 2-hydroxy ethyl acrylate (2-Hydroxy Ethyl Acrylate, HEA) monomer at a ratio of 10:25:55:10.
  • A2 was prepared.
  • a reaction vessel 0.1 to 3.0 parts by weight of emulsifier were added to 250 parts by weight of distilled water and 100 parts by weight of monomer mixture, stirred, and the temperature was raised to 65°C while injecting high-purity nitrogen gas.
  • a pre-polymer was prepared by adding 0.35 parts by weight of potassium persulfate, a decomposition initiator, to a reaction vessel prepared at 65°C and 0.35 parts by weight of the monomer mixture based on 100 parts by weight of the monomer mixture, respectively, to proceed with a continuous emulsion polymerization reaction.
  • the copolymer pre-polymer prepared by emulsion polymerization was heated to 60°C in 2 to 5 times the alcohol solvent to expand or dissolve.
  • polymer B1 having an alcohol functional group was prepared by adding an aqueous metal hydroxide (NaOH) solution and hydrolyzing it.
  • NaOH aqueous metal hydroxide
  • High-purity nitrogen gas was injected into the reaction vessel for 250 parts by weight of distilled water and 100 parts by weight of acrylic acid (AA) monomer, and the temperature was raised to 65°C.
  • a continuous solution polymerization reaction was performed by adding 0.3 ammonium persulfate, a decomposition initiator, to a reaction vessel prepared at 65°C.
  • Polymer composition C1 for a separator binder was prepared by mixing the chain polymer B1 with the particle polymer A1 prepared in Preparation Example 1 and Preparation Example 2, respectively.
  • polymer composition C2 for a separator binder was prepared by mixing the chain polymer B2 with the particle polymer A2 prepared in Preparation Example 1 and Preparation Example 3, respectively.
  • This mixture was sufficiently dispersed using a ball mill method or a mechanical stirrer to prepare a slurry.
  • the slurry for porous film coating prepared in Preparation Example 5 was applied to a polyolefin porous substrate (polyethylene (PE), polypropylene (PP), etc.) to form an inorganic coating layer.
  • a polyolefin porous substrate polyethylene (PE), polypropylene (PP), etc.
  • Various coating methods can be used, such as dip coating, die coating, gravure coating, and comma coating.
  • the thickness of the inorganic coating layer was 1 to 6 ⁇ m on one side or both sides. If the thickness is less than 1 ⁇ m, there is a problem that the heat resistance of the separator is significantly reduced, and if the thickness exceeds 6 ⁇ m, the separator is too thick and the battery is damaged. was able to reduce the energy density and increase resistance.
  • Polymer composition C1 for a binder was prepared according to Preparation Example 4 by mixing the particulate polymer A1 and chain polymer B1 prepared in Preparation Example 1 and Preparation Example 2, respectively, at a solid weight ratio of 4:6.
  • a slurry for porous film coating was prepared according to Preparation Example 5, and the prepared slurry for porous film coating was coated and dried according to Preparation Example 6 to prepare a separator.
  • a crosslinking step was performed at 80°C for 1 hour.
  • the separator was manufactured in the same manner as in Example 1, except that the reaction time of the crosslinking step was 3 hours.
  • a separation membrane was prepared in the same manner as in Example 1, except that the solid weight ratio of particle-type polymer A1 and chain-type polymer B1 was set to 5:5.
  • a separation membrane was manufactured in the same manner as in Example 2, except that the solid weight ratio of particle-type polymer A1 and chain-type polymer B1 was set to 5:5.
  • Polymer composition C2 for a binder was prepared according to Preparation Example 4 by mixing the particulate polymer A2 and chain polymer B2 prepared in Preparation Example 1 and Preparation Example 3, respectively, at a solid weight ratio of 5:5.
  • a slurry for porous film coating was prepared according to Preparation Example 5, and the prepared slurry for porous film coating was coated and dried according to Preparation Example 6 to prepare a separator.
  • a cross-linking step was performed at 80°C for 1 hour.
  • the separator was manufactured in the same manner as in Example 5, except that the reaction time of the crosslinking step was 3 hours.
  • a separator was prepared in the same manner as in Example 5, except that the solid weight ratio of particle-type polymer A2 and chain-type polymer B2 was set to 6:4.
  • a separation membrane was prepared in the same manner as in Example 6, except that the solid weight ratio of particle-type polymer A2 and chain-type polymer B2 was set to 6:4.
  • a separator was manufactured in the same manner as in Example 1, except that the crosslinking step was not performed when manufacturing the separator.
  • a separator was manufactured in the same manner as in Example 7, except that the crosslinking step was not performed.
  • the heat shrinkage rate of each prepared sample was measured after leaving it in an oven at 150°C for 1 hour.
  • the thermal contraction rate of the separators of Examples 1 to 8 is [(length in MD and TD directions after drying and crosslinking step - length in MD and TD directions of separator after leaving in an oven at 150°C for 1 hour)/drying and crosslinking step. length in the MD and TD directions]*100.
  • the thermal contraction rate of the separators of Comparative Examples 1 and 2 was [(length in MD and TD directions after drying step - length in MD and TD directions of separator after leaving in an oven at 150°C for 1 hour)/MD and TD after drying step. Length of direction]*100.
  • the thermal contraction rate in the TD and MD directions of the separator prepared using the polymer compositions of Examples 1 to 8 and Comparative Examples 1 and 2 measured after leaving the separator that had undergone the crosslinking step in an oven at 150 ° C. for 1 hour was 5. It was within %.
  • the heat shrinkage rate in the TD and MD directions could be within 4% or within 3%.
  • the separators of Comparative Examples 1 and 2 that did not undergo a crosslinking step had thermal contraction rates in the TD and MD directions of 7 to 8% measured after being left in an oven at 150° C. for 1 hour.
  • the polymer composition of the present invention can improve the heat resistance of a separator. Additionally, a battery with excellent characteristics can be implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 카르복실기 또는 알코올기를 포함하는 입자형 중합체; 및 카르복실기 또는 알코올기를 포함하는 사슬형 중합체;를 포함하는 중합체 조성물과 이를 포함하는 슬러리 조성물, 분리막 및 이차전지에 관한 것이다(단, 상기 입자형 중합체가 카르복실기를 포함하는 경우, 상기 사슬형 중합체는 알코올기를 포함하고, 상기 입자형 중합체가 알코올기를 포함하는 경우, 상기 사슬형 중합체는 카르복실기를 포함한다).

Description

분리막용 중합체 조성물 및 이를 포함하는 이차전지
본 발명은 중합체 조성물 및 이를 포함하는 슬러리 조성물, 분리막 및 이차전지에 관한 것이다.
리튬 이차전지는 에너지 밀도가 높아서 전기, 전자, 통신 및 컴퓨터 산업분야에 광범위하게 사용되고 있으며, 휴대 전자기기용 소형 리튬 이차전지에 이어 하이브리드 자동차, 전기 자동차 등 고용량 이차전지 등으로도 그 응용분야가 확대되고 있다.
리튬이온 이차전지는 분리막에 의해 절연화되어 있지만, 내부 혹은 외부의 전지이상현상이나 충격에 의해 양극과 음극의 단락이 발생되어 발열 및 폭발 가능성이 있으므로 분리막의 열적/화학적 안전성의 확보는 매우 중요하다.
현재 분리막으로 폴리올레핀 계열의 필름이 널리 사용되고 있으나 폴리올레핀은 고온에서 열수축이 심하며 기계적 특성이 취약한 단점이 있다.
이러한 폴리올레핀 계열 분리막의 안정성 향상을 위해 폴리올레핀 다공성 기재 필름에 무기물 입자와 바인더로 이루어진 혼합물을 코팅한 다공성 분리막이 개발되어 있다.
즉, 폴리올레핀 계열 분리막의 고온에 의한 열수축 및 덴드라이트에 의한 전지의 불안정성을 억제하기 위해 다공성 분리막 기재 단면 혹은 양면에 무기물 입자를 바인더와 함께 코팅함으로써 무기물 입자가 기재의 수축율을 억제하는 기능을 부여함과 동시에 코팅층에 의해 보다 안전한 분리막을 제조할 수 있다.
우수한 전지 특성의 확보를 위하여, 코팅층은 균일하게 코팅이 되어야 하는 동시에 기재와의 강력한 접착력이 요구되고 있다.
또한, 최근의 고용량 및 고출력화에 대응하기 위해서는, 종래의 분리막의 내열성을 더욱 개선할 필요가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-1430975호
(특허문헌 2) 대한민국 공개특허공보 제10-2006-0072065호
이에 본 발명은 중합체 조성물을 사용하여 우수한 특성의 슬러리 조성물을 제공하고자 한다.
또한, 본 발명은 상기 슬러리 조성물이 적용되어 내열성이 우수한 분리막 및 상기 분리막이 사용된 우수한 성능의 전지를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 일 측면은, 카르복실기 또는 알코올기를 포함하는 입자형 중합체; 및
카르복실기 또는 알코올기를 포함하는 사슬형 중합체;를 포함하는,
중합체 조성물을 제공한다.
(단, 상기 입자형 중합체가 카르복실기를 포함하는 경우, 상기 사슬형 중합체는 알코올기를 포함하고,
상기 입자형 중합체가 알코올기를 포함하는 경우, 상기 사슬형 중합체는 카르복실기를 포함한다)
본원의 다른 측면은, 상기 중합체 조성물; 및
무기 입자;를 포함하는,
슬러리 조성물을 제공한다.
본원의 또 다른 측면은, 상기 슬러리 조성물을 포함하는,
분리막을 제공한다.
본원의 또 다른 측면은, 상기 분리막을 포함하는,
이차전지를 제공한다.
본원의 또 다른 측면은, 상기 중합체 조성물 및 무기 입자를 포함하는 슬러리 조성물을 다공성 기재에 코팅하고 건조시키는 단계; 및
50 ℃ 이상의 온도로 가교시키는 단계;를 포함하는,
분리막의 제조방법을 제공한다.
본 발명의 중합체 조성물은 분리막의 내열성을 개선시킬 수 있다. 또한, 우수한 특성의 전지를 구현할 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 및 "a~b"에서 "내지" 및 “~”는 ≥ a이고 ≤ b으로 정의한다.
본원의 일 측면의 중합체 조성물은 카르복실기 또는 알코올기를 포함하는 입자형 중합체; 및 카르복실기 또는 알코올기를 포함하는 사슬형 중합체;를 포함할 수 있다.
단, 상기 입자형 중합체가 카르복실기를 포함하는 경우, 상기 사슬형 중합체는 알코올기를 포함하고, 상기 입자형 중합체가 알코올기를 포함하는 경우, 상기 사슬형 중합체는 카르복실기를 포함할 수 있다.
상기 입자형 중합체는 다양한 형태의 입자일 수 있고, 특히, 원형의 입자일 수 있으며, 평균 지름이 100 nm~ 2 μm일 수 있다.
상기 사슬형 중합체는 용매에 용해되어서 사슬형 중합체의 물리적인 형태는 육안으로 관찰할 수 없을 수 있다. 즉, 용매에 용해된 액상 형태일 수 있다.
한편, 상기 입자형 중합체는 용매 내에 분산되어 있고, 상기 사슬형 중합체는 용매 내에 용해되어 있을 수 있고, 서로 혼재되어 있을 수 있다.
상기 용매로는 상기 입자형 중합체를 분산시키고, 상기 사슬형 중합체를 분산 또는 용해시킬 수 있다면 어떠한 용매라도 사용될 수 있고, 예를 들어, 물이 사용될 수 있다.
일 구현예에 있어서, 상기 입자형 중합체 및 상기 사슬형 중합체는 아크릴레이트 계열의 단량체 단위 및 아크릴산 계열의 단량체 단위로 이루어진 그룹에서 선택된 어느 하나 이상의 단량체 단위를 포함할 수 있다.
상기 아크릴레이트 계열의 단량체 단위는 예를 들어, 메틸 아크릴레이트(methyl acrylate), 메틸 메타크릴레이트(methyl methacrylate), 에틸 아크릴레이트(ethyl acrylate), 에틸 메타크릴레이트(ethyl methacrylate), 프로필 아크릴레이트(propyl acrylate), 프로필 메타크릴레이트(propyl methacrylate), 이소프로필 아크릴레이트(isopropyl acrylate), 이소프로필 메타크릴레이트(isopropyl methacrylate), 부틸 아크릴레이트(butyl acrylate), 부틸 메타크릴레이트(butyl methacrylate), sec-부틸 아크릴레이트(sec-butyl acrylate), sec-부틸 메타크릴레이트(sec-butyl methacrylate), tert-부틸 아크릴레이트(tert-butyl acrylate),tert-부틸 메타크릴레이트(tert-butyl methacrylate), 헥실 아크릴레이트(hexyl acrylate), 2-에틸헥실 아크릴레이트(2-ehtylhexyl acrylate), 라우릴 아크릴레이트(lauryl acrylate), 라우릴 메타크릴레이트(lauryl methacrylate), 스테아릴 아크릴레이트(stearyl acrylate) 및 스테아릴 메타크릴레이트(stearyl methacrylate)로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있다.
즉, 상기 아크릴레이트 계열의 단량체 단위는 2종 이상 또는 3 종 이상의 아크릴레이트 계열의 단량체가 공중합되어 형성될 수 있다.
예를 들어, 상기 아크릴레이트 계열의 단량체 단위는 부틸 아크릴레이트, 메틸 메타크릴레이트 및 부틸 메타크릴레이트로 이루어진 그룹에서 선택된 2종 이상이 공중합되어 형성될 수 있다.
상기 아크릴산 계열의 단량체 단위는 아크릴산(acrylic acid) 및 메타크릴산(methacrylic acid)으로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있다
일 구현예에 있어서, 상기 입자형 중합체는 하이드록시 아크릴레이트 계열의 단량체 단위를 추가로 포함할 수 있다.
예를 들어, 상기 입자형 중합체는 아크릴레이트 계열의 단량체 단위와 아크릴산 계열의 단량체 단위를 포함하는 공중합체이거나 아크릴레이트 계열의 단량체 단위와 하이드록시 아크릴레이트 계열의 단량체 단위를 포함하는 공중합체일 수 있다.
상기 입자형 중합체가 아크릴레이트 계열의 단량체 단위와 아크릴산 계열의 단량체 단위를 포함하는 공중합체인 경우, 상기 공중합체의 총중량 100 중량%를 기준으로 70 중량% 이상, 95 중량% 이하의 아크릴레이트 계열의 단량체 단위와 5 중량% 이상, 30 중량% 이하의 아크릴산 계열의 단량체 단위를 포함할 수 있다.
한편, 상기 입자형 중합체가 아크릴레이트 계열의 단량체와 하이드록시 아크릴레이트 계열의 단량체 단위를 포함하는 공중합체인 경우, 상기 공중합체의 총중량 100 중량%를 기준으로 70 중량% 이상, 95 중량% 이하의 아크릴레이트 계열의 단량체 단위와 5 중량% 이상, 30 중량% 이하의 하이드록시 아크릴레이트 계열의 단량체 단위를 포함할 수 있다.
또한, 상기 사슬형 중합체는 비닐 알코올 계열의 단량체 단위를 추가로 포함할 수 있다.
예를 들어, 상기 사슬형 중합체는 아크릴산 단량체 단위만으로 이루어진 중합체, 아크릴레이트 계열의 단량체와 비닐 알코올 계열의 단량체 단위를 포함하는 공중합체 또는 아크릴레이트 계열의 단량체 단위와 아크릴산 계열의 단량체 단위를 포함하는 공중합체일 수 있다.
상기 사슬형 중합체가 아크릴레이트 계열의 단량체 단위와 비닐 알코올 계열의 단량체 단위를 포함하는 공중합체인 경우, 상기 공중합체의 총중량 100 중량%를 기준으로 40 중량% 이하의 아크릴레이트 계열의 단량체 단위와 60 중량% 이상의 비닐 알코올 계열의 단량체 단위를 포함할 수 있다.
한편, 상기 사슬형 중합체가 아크릴레이트 계열의 단량체와 아크릴산 계열의 단량체 단위를 포함하는 경우, 상기 사슬형 중합체의 총중량 100 중량%를 기준으로 30 중량% 이하의 아크릴레이트 계열의 단량체 단위와 70 중량% 이상의 아크릴산 계열의 단량체 단위를 포함할 수 있다.
한편, 상기 입자형 중합체의 하이드록시 아크릴레이트 계열의 단량체 단위는 2-하이드록시 에틸 아크릴레이트(2-hydroxy ethyl acrylate) 및 2-하이드록시 에틸 메타크릴레이트(2-hydroxy ethyl methacrylate) 로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있다.
일 구현예에 있어서, 상기 입자형 중합체는 상기 입자형 중합체 총중량 100 중량%를 기준으로 5 중량% 이상, 10 중량% 이하의 아크릴로니트릴(acrylonitrile) 단량체 단위, 아크릴아미드(acrylamide) 단량체 단위 또는 이들의 조합을 추가로 포함할 수 있다.
상기 아크릴로니트릴 단량체 단위는 아크릴로니트릴 및 메타크릴로니트릴로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있고, 상기 아크릴아미드 단량체 단위는 아크릴아미드 및 메타크릴아미드로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있다.
일 구현예에 있어서, 상기 입자형 중합체는 하기 화학식 1 또는 화학식 2로 표시되는 단량체 반복 단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023016715-appb-img-000001
상기 화학식 1에서,
R1은 수소; 메틸 또는 이들의 조합이고,
R2는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
0.05≤a≤0.3이고, 0.7≤b≤0.95이며, a+b=1이다.
[화학식 2]
Figure PCTKR2023016715-appb-img-000002
상기 화학식 2에서,
R3은 수소; 메틸 또는 이들의 조합이고,
R4는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
0.05≤c≤0.3이고, 0.7≤d≤0.095이며, c+d=1이다.
상기 화학식 1 및 2의 a, b, c 및 d는 각 반복 단위의 중량 분율을 나타낼 수 있다.
일 구현예에 있어서, 상기 사슬형 중합체는 하기 화학식 3 또는 화학식 4로 표시되는 단량체 반복 단위를 포함할 수 있다.
[화학식 3]
Figure PCTKR2023016715-appb-img-000003
상기 화학식 3에서,
R5은 수소; 메틸 또는 이들의 조합이고,
R6는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
0.6≤e≤1이고, 0≤f≤0.4이며, e+f=1이다.
[화학식 4]
Figure PCTKR2023016715-appb-img-000004
상기 화학식 4에서,
R7은 수소; 메틸 또는 이들의 조합이고,
R8는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
0.7≤g≤1이고, 0≤h≤0.3이며, g+h=1이다.
상기 화학식 3 및 4의 e, f, g 및 h는 각 반복 단위의 중량 분율을 나타낼 수 있다.
일 구현예에 있어서, 상기 입자형 중합체 및 상기 사슬형 중합체의 중량비(입자형 중합체 중량: 사슬형 중량체 중량)는 1:9~9:1일 수 있다.
예를 들어, 상기 입자형 중합체 및 상기 사슬형 중합체의 중량비(입자형 중합체 중량: 사슬형 중량체 중량)는 7:3~3:7, 4:6~6:4, 5:5일 수 있다.
일 구현예에 있어서, 상기 입자형 중합체와 상기 사슬형 중합체가 에스테르(ester) 결합에 의해서 서로 연결될 수 있다.
또한, 상기 입자형 중합체와 상기 사슬형 중합체는 수소 결합에 의해서 서로 연결될 수 있다.
상기 에스테르 결합 및/또는 수소 결합에 의한 상기 입자형 중합체와 상기 사슬형 중합체의 연결(결합)은 상기 입자형 중합체와 상기 사슬형 중합체에 포함된 카르복실기와 알코올기의 반응에 의해 형성될 수 있다.
이러한 상기 입자형 중합체와 상기 사슬형 중합체의 결합에 의해서 본원의 중합체 조성물이 적용된 분리막의 내열성을 향상시킬 수 있다.
일 구현예에 있어서, 상기 입자형 중합체는 유화 중합법에 의해서 합성될 수 있다. 상기 사슬형 중합체는 유화 중합법에 의해서 합성된 프리폴리머(prepolymer)를 가수분해시킴으로써 합성되거나, 용액 중합법에 의해서 합성될 수 있다.
즉, 비닐 아세테이트 단량체 단위는 가수분해를 통해서 비닐 알코올 계열의 단량체 단위가 될 수 있다.
상기 가수분해의 정도는 70% 이상일 수 있다.
예를 들어, 상기 가수분해의 정도는 70% 이상, 80% 이상, 90% 이상일 수 있다.
상기 가수분해 반응을 위해서는 금속 수산화물 수용액이 사용될 수 있다. 예를 들어, NaOH, KOH, LiOH 등을 사용할 수 있다.
일 구현예에 있어서, 상기 입자형 중합체의 수평균 분자량은 5,000~ 10,000,000이고, 상기 사슬형 중합체의 수평균 분자량은 5,000~10,000,000일 수 있다.
상기 입자형 중합체 및 사슬형 중합체의 수평균 분자량이 5,000미만인 경우 조성물의 유동성이 커져서 분산성이 저하될 수 있고 분리막의 내열 특성이 저하될 수 있다. 상기 입자형 중합체 및 사슬형 중합체의 수평균 분자량이 10,000,000 초과일 경우에는 사용하기에 점도가 너무 높고 분리막의 기공을 막아 통기도와 저항이 저하될 수 있다.
본원의 다른 측면에 따른 슬러리 조성물은 상기 중합체 조성물 및 무기 입자를 포함할 수 있다.
상기 무기 입자는 절연체 입자라면 제한없이 사용될 수 있으며, 바람직하게는 고유전율 절연체 입자일 수 있다.
상기 무기 입자의 구체적인 예로는, Al2O3, AlOOH, SiO2, TiO2, ZrO2, ZnO, NiO, CaO, SnO2, Y2O3, MgO, BaTiO3, CaTiO3, SrTiO3, SiC, Li3PO4, Pb(Zr,Ti)O3(PZT), (Pb,La)(Zr,Ti)O3(PLZT), 또는 이들의 혼합물을 들 수 있다.
상기 무기 입자는 크기에 특별한 제한은 없으나, 예를 들어 평균 입경이 0.01㎛ 내지 30㎛일 수 있고, 보다 바람직하게는 0.1㎛ 내지 10㎛일 수 있다. 무기 입자의 평균 입경이 상기 바람직한 범위 미만일 경우에는 분산성이 낮아질 수 있고, 상기 바람직한 범위를 초과할 경우에는 코팅된 후 코팅층의 두께가 두꺼워져 기계적 물성이 저하될 수 있다.
또한, 상기 무기 입자는 형상에 특별한 제한이 없으며, 예를 들어, 구형, 타원형, 판상형 또는 부정형일 수 있다.
본원의 다른 측면에 따른 분리막은 상기 슬러리 조성물을 포함할 수 있다.
상기 분리막에 상기 슬러리 조성물을 적용한 후, 가교 단계(열처리)를 거친 후 즉시 측정한 열수축률은 MD(Machine direction) 방향과 TD(Transverse direction) 방향으로 모두 1~2%일 수 있다.
또한, 상기 가교 단계를 거친 후, 150℃에서 1시간 방치하여 측정한 열수축률은 MD 방향과 TD 방향으로 모두 5% 이내일 수 있다.
상기 슬러리 조성물을 다공성 기재 필름의 적어도 일면에 코팅하거나, 상기 슬러리 조성물을 필름 형태로 제조하여 다공성 기재 필름에 합지시켜서 분리막을 제조할 수 있다.
한편, 상기 분리막은 이차전지용 분리막으로 사용될 수 있으며, 예를 들어 리튬 이차전지용 분리막으로 사용될 수 있다.
본원의 또 다른 측면에 따른 분리막의 제조방법은, 본원의 중합체 조성물 및 무기 입자를 포함하는 슬러리 조성물을 다공성 기재에 코팅하고, 건조시키는 단계 및 50℃ 이상의 온도로 가교시키는 단계를 포함할 수 있다.
상기 코팅 및 건조 단계의 건조 온도는 40℃ 이상, 80℃ 이하일 수 있다.
예를 들어, 40℃ 이상, 50℃ 이상, 60℃ 이상 또는 70℃ 이상 일 수 있다.
또한, 상기 코팅 및 건조 단계의 반응 시간은 1 분 이상, 30분 이하일 수 있다.
예를 들어, 5분 이하, 10분 이하, 15분 이하, 20분 이하 또는 25분 이하일 수 있다.
한편, 상기 가교 단계의 온도는 50℃ 이상, 100 ℃ 이하일 수 있다. 예를 들어, 50℃ 이상, 60℃ 이상, 70℃ 이상 또는 80℃ 이상일 수 있다.
또한, 상기 가교 단계의 반응 시간은 30 분 이상, 5 시간 이하일 수 있다.
예를 들어, 1 시간 이상, 2 시간 이상 또는 3 시간 이상일 수 있다
분리막 제조의 한 예로, (a) 상기 중합체 조성물을 용매에 용해 또는 분산시켜서 고분자 용액을 제조하는 단계; (b) 무기물 입자를 상기 단계 a)의 고분자 용액에 첨가 및 혼합하는 단계; 및 (c) 폴리올레핀 계열 분리막 기재의 표면 및 기재 중 기공부 일부로 구성된 군으로부터 선택된 1종 이상의 영역을 상기 단계 b)의 혼합물로 코팅 및 건조하는 단계를 포함할 수 있다.
우선, 1) 상기 중합체 조성물을 적절한 용매에 용해 또는 분산시킨 고분자 용액 형태로 제조 및 준비한다.
용매로는 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합 이후 용매 제거를 용이하게 하기 위해서이다. 사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N- 메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 또는 이들의 혼합체 등이 있다. 더욱 바람직하게는 물에 수분산된 상태로 사용할 수 있다.
2) 제조된 고분자 용액에 무기물 입자를 첨가 및 분산시켜 무기물 입자 및 고분자 혼합물을 제조한다.
고분자 용액 및 무기물 입자의 분산 공정을 실시하는 것이 바람직하다. 분산 방법으로는 통상적인 방법을 사용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다.
무기물 입자 및 고분자로 구성되는 혼합물의 조성은 크게 제약이 없으나, 이에 따라 최종 제조되는 본 발명의 유/무기 복합 다공성 분리막의 두께, 기공 크기 및 기공도를 조절할 수 있다.
즉, 고분자(P) 대비 무기물 입자(I)의 비(ratio = I/P)가 증가할수록 분리막의 기공도가 증가하게 되며, 이는 동일한 고형분 함량(무기물 입자 중량+고분자 중량)에서 분리막의 두께가 증가되는 결과를 초래하게 된다. 또한, 무기물 입자들간의 기공 형성 가능성이 증가하여 기공 크기가 증가하게 되는데, 이때 무기물 입자의 크기(입경)가 커질수록 무기물들 사이의 간격(interstitial distance)이 커지므로, 기공 크기가 증가하게 된다.
3) 제조된 무기물 입자 및 고분자의 혼합물을 준비된 폴리올레핀 계열 분리막 기재상에 코팅하고 이후 건조함으로써, 본 발명의 분리막을 얻을 수 있다.
이때, 무기물 입자 및 고분자의 혼합물을 폴리올레핀 계열 분리막 기재 상에 코팅하는 방법은 당업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다. 또한, 무기물 입자 및 고분자의 혼합물을 폴리올레핀 계열 분리막 기재 상에 코팅시, 상기 분리막 기재의 양면 모두에 실시할 수 있으며 또는 한 면에만 선택적으로 실시할 수 있다.
상기 분리막을 이차전지에 사용되는 경우, 분리막 기재뿐만 아니라 다공성 형태의 활성층을 통해 리튬 이온이 전달될 수 있을 뿐만 아니라, 외부 충격에 의해 내부 단락이 발생하는 경우에는 전술한 안전성 향상 효과를 나타낼 수 있다.
또한, 상기 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재된 상기 분리막 및 전해액을 포함할 수 있다.
상기 이차전지는 당 업계에 알려진 통상적인 방법에 따라 제조할 수 있으며, 일 실시예를 들면, 상기 전극과 분리막을 개재(介在)하여 조립하고, 이후 조립체에 전해액을 주입하여 제조한다.
상기 분리막과 함께 적용될 전극으로는 크게 제한이 없으나, 양극활물질은 이차전지의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 이의 비제한적인 예로는 리튬 망간 산화물(lithiated magnesium oxide), 리튬 코발트 산화물(lithiated cobalt oxide), 리튬 니켈 산화물 (lithiated nickel oxide) 또는 이들의 조합에 의해서 형성되는 복합 산화물 등과 같이 리튬 흡착 물질(lithium intercalation material) 등이 있다. 또한, 음극활물질은 종래 전기 화학 소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 이들의 비제한적인 예로는 리튬 금속, 또는 리튬 합금과 카본(carbon), 석유 코크(petroleum coke), 활성화 카본(activated carbon), 그래파이트(graphite) 또는 기타 카본류 등과 같은 리튬 흡착 물질 등이 있다. 전술한 양 전극활물질을 각각 양극 전류 집전체, 즉 알루미늄, 니켈 또는 이들의 조합에 의해서 제조되는 호일(foil) 및 음극 전류 집전체, 즉 구리, 금, 니켈 혹은 구리 합금 혹은 이들의 조합에 의해서 제조되는 호일에 결착시킨 형태로 양 전극을 구성한다.
상기 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온이나 이들의 조합으로 이루어진 이온을 포함하고, B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온이나 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸카보네이트(diethyl carbonate, DEC), 디메틸카보네이트(dimethyl carbonate, DMC), 디프로필카보네이트(dipropyl carbonate, DPC), 디메틸설프옥사이드(dimethyl sulfoxide), 아세토니트릴 (acetonitrile), 디메톡시에탄(dimethoxyethane), 디에톡시에탄 (diethoxyethane), 테트라하이드로퓨란 (tetrahydrofuran), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 에틸메틸카보네이트(ethyl methyl carbonate, EMC), 감마 부티로락톤(GBL) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 및 해리된 것이 바람직하다.
상기 분리막을 전지에 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination) 및 접음(folding) 공정이 가능하다.
이하, 실시예를 이용하여 본원을 좀 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
[제조예 1]입자형 중합체 A1및 A2의 제조
반응 용기에 증류수 370 중량부와, 단량체 혼합물 100 중량부에 대하여 유화제 0.1~3.0 중량부를 넣어 교반시키고, 고순도 질소 기체를 주입시키면서 75℃로 승온시켰다. 75℃로 준비된 반응 용기에 분해형 개시제인 과황산암모늄을 단량체 혼합물 100 중량부에 대하여 0.15 중량부와 단량체 혼합물을 각각 첨가하여 연속적인 유화 중합 반응을 진행시켰다.
한편, 단량체 혼합물로 부틸아크릴레이트 단량체, 메타아크릴레이트 단량체, 부틸메타크릴레이트 및 아크릴산(Acrylic acid, AA) 단량체의 중랑비를 10:25:55:10으로 하여 입자형 중합체 A1을 제조하고, 단량체 혼합물로 부틸아크릴레이트 단량체, 메타아크릴레이트 단량체, 부틸메타크릴레이트 및 2-하이드록시 에틸 아크릴레이트(2-Hydroxy Ethyl Acrylate, HEA) 단량체의 중랑비를 10:25:55:10으로 하여 입자형 중합체 A2를 제조하였다.
[제조예 2]사슬형 중합체 B1의 제조
반응용기에 증류수 250 중량부와 단량체 혼합물 100 중량부에 대하여 유화제 0.1~3.0 중량부를 넣어 교반시키고, 고순도 질소 기체를 주입시키면서 65℃로 승온시켰다. 65℃로 준비된 반응 용기에 분해형 개시제인 과황산칼륨을 단량체 혼합물 100 중량부에 대하여 0.35 중량부와 단량체 혼합물을 각각 첨가하여 연속적인 유화 중합 반응을 진행하여, pre-polymer를 준비하였다.
한편, 단량체 혼합물로 비닐아세테이트와 메타아크릴레이트계의 중랑비를 65:35로 하여 사용하였다.
유화 중합으로 제조된 공중합체 pre-polymer는 2~5배수의 알코올 용매에서 60℃로 가열하여 팽창 또는 용해시켰다.
이후, 금속수산화물 (NaOH) 수용액을 첨가하여 가수 분해시킴으로써 알코올 작용기를 가지는 고분자 B1을 제조하였다.
[제조예 3]사슬형 중합체 B2의 제조
반응용기에 증류수 250 중량부와 아크릴산(Acrylic acid, AA) 단량체100 중량부에 대하여 고순도 질소 기체를 주입시키면서 65℃로 승온시켰다. 65℃로 준비된 반응 용기에 분해형 개시제인 과황산암모늄을 0.3 첨가하여 연속적인 용액 중합 반응을 진행시켰다.
[제조예 4]바인더용 중합체 조성물 C1 및 C2의 제조
상기 제조예 1 및 제조예 2에 의해서 각각 준비된 입자형 고분자 A1에 사슬형 고분자 B1을 혼합하여 분리막 바인더용 중합체 조성물 C1을 제조하였다.
한편, 상기 제조예 1 및 제조예 3에 의해서 각각 준비된 입자형 고분자 A2에 사슬형 고분자 B2를 혼합하여 분리막 바인더용 중합체 조성물 C2를 제조하였다.
[제조예 5]다공막 코팅용 슬러리의 제조
무기입자 (알루미나, 평균 입경 0.5㎛)와 제조예 4에 의해서 제조된 분리막 바인더용 중합체 조성물 C1 또는 C2를 고형분 중량비로 8:2가 되도록 혼합한 후, 증류수를 고형분 농도가 35 중량%가 되도록 추가하여 혼합하였다.
이 혼합물을 볼밀법 또는 메커니컬 교반기를 통해 충분히 분산하여 슬러리를 제조하였다
[제조예 6]분리막의 제조
폴리올레핀 다공성 기재(폴리에틸렌(PE), 폴리프로필렌(PP) 등)에 제조예 5에 의해서 제조된 다공막 코팅용 슬러리를 도포하여 무기물 코팅층을 형성하였다.
코팅 방법으로는 딥(dip)코팅, 다이(die)코팅, 그라비아(gravure)코팅, 콤마(comma)코팅 등 다양한 방식을 이용할 수 있다.
또한, 코팅 후 온풍, 열풍, 진공건조, 적외선 건조 등의 방법으로 건조시켰고, 건조 온도 범위는 40~80℃이었다.
상기 무기물 코팅층의 두께는 단면 혹은 양면에 1~6㎛ 이었고, 두께가 1㎛ 미만인 경우에는 분리막의 내열성이 현저히 감소하는 문제가 있고, 두께가 6㎛을 초과할 경우에는 분리막의 두께가 너무 두꺼워 전지의 에너지밀도를 감소시키고 저항을 증가시킬 수 있었다.
[실시예 1]
제조예 1 및 제조예 2에 의해서 각각 제조한 입자형 중합체 A1 및 사슬형 중합체 B1를 고형분 중량비로 4:6이 되도록 하여 제조예 4에 따라서 바인더용 중합체 조성물 C1을 준비하였다.
이후, 제조예 5에 따라서 다공막 코팅용 슬러리를 제조하였고, 준비된 다공막 코팅용 슬러리를 제조예 6에 따라 코팅 및 건조하여 분리막을 준비하였다.
이후, 80 ℃에서 1시간 동안 가교 단계를 수행하였다.
[실시예 2]
분리막 제조 시, 가교 단계의 반응 시간을 3시간으로 한 것을 제외하고는 실시예 1과 동일하게 분리막을 제조하였다.
[실시예 3]
입자형 중합체 A1 및 사슬형 중합체 B1를 고형분 중량비로 5:5가 되도록 한 것을 제외하고는 실시예 1과 동일하게 분리막을 제조하였다.
[실시예 4]
입자형 중합체 A1 및 사슬형 중합체 B1를 고형분 중량비로 5:5가 되도록 한 것을 제외하고는 실시예 2와 동일하게 분리막을 제조하였다.
[실시예 5]
제조예 1 및 제조예 3에 의해서 각각 제조한 입자형 중합체 A2 및 사슬형 중합체 B2를 고형분 중량비로 5:5가 되도록 하여 제조예 4에 따라서 바인더용 중합체 조성물 C2를 준비하였다.
이후, 제조예 5에 따라서 다공막 코팅용 슬러리를 제조하였고, 준비된 다공막 코팅용 슬러리를 제조예 6에 따라 코팅 및 건조하여 분리막을 준비하였다.
이후, 80 ℃에서 1시간 동안 가교 단계를 수행하였다.
[실시예 6]
분리막 제조 시, 가교 단계의 반응 시간을 3시간으로 한 것을 제외하고는 실시예 5와 동일하게 분리막을 제조하였다.
[실시예 7]
입자형 중합체 A2 및 사슬형 중합체 B2를 고형분 중량비로 6:4가 되도록 한 것을 제외하고는 실시예 5와 동일하게 분리막을 제조하였다.
[실시예 8]
입자형 중합체 A2 및 사슬형 중합체 B2를 고형분 중량비로 6:4가 되도록 한 것을 제외하고는 실시예 6과 동일하게 분리막을 제조하였다.
[비교예 1]
분리막 제조 시, 가교 단계를 거치지 않은 것을 제외하고는 실시예 1과 동일하게 분리막을 제조하였다.
[비교예 2]
분리막 제조 시, 가교 단계를 거치지 않은 것을 제외하고는 실시예 7과 동일하게 분리막을 제조하였다.
실시예 1 내지 8과 비교예 1 및 2의 바인더용 중합체 조성물, 입자형 중합체 및 사슬형 중합체의 고형분 중량비 및 가교 단계의 조건을 하기 표 1에 나타내었다.
바인더용 중합체 조성물 입자형 중합체 및 사슬형 중합체의 고형분 중량비 가교 단계
반응 시간(80 ℃)
(hr)
실시예 1 C1 4 : 6 1
실시예 2 C1 4 : 6 3
실시예 3 C1 5 : 5 1
실시예 4 C1 5 : 5 3
실시예 5 C2 5 : 5 1
실시예 6 C2 5 : 5 3
실시예 7 C2 6 : 4 1
실시예 8 C2 6 : 4 3
비교예 1 C1 4 : 6 0
비교예 2 C2 6 : 4 0
[평가예 1]분리막의 열수축률
실시예 1 내지 8과 비교예 1 및 2의 분리막의 가로 및 세로 크기가 5 x 5 cm인 시료를 준비했다.
각각의 준비된 시료를 150℃의 오븐에 1 시간 방치한 후의 열수축률을 측정하였다.
즉, 실시예 1 내지 8의 분리막의 열수축율은 [(건조 및 가교 단계 후 MD 및 TD 방향의 길이-150℃의 오븐에 1 시간 방치 후의 분리막의MD 및 TD 방향의 길이)/건조 및 가교 단계 후 MD 및 TD 방향의 길이]*100으로 계산하였다.
한편, 비교예 1 및 2의 분리막의 열수축율은 [(건조 단계 후 MD 및 TD 방향의 길이-150℃의 오븐에 1 시간 방치 후의 분리막의MD 및 TD 방향의 길이)/건조 단계 후 MD 및 TD 방향의 길이]*100으로 계산하였다.
그 계산 결과를 하기 표 2에 나타내었다.
바인더용 중합체 조성물 150℃ 에서의
열수축률(%)
[MD/TD]
실시예 1 4/4
실시예 2 2/2
실시예 3 5/5
실시예 4 4/4
실시예 5 5/5
실시예 6 3/3
실시예 7 4/5
실시예 8 2/3
비교예 1 8/8
비교예 2 7/8
실시예 1 내지 8과 비교예 1 및 2의 중합체 조성물을 사용하여 제조한 분리막에 있어서, 가교 단계를 거친 분리막이 가교 단계를 거치지 않은 코팅 분리막에 비해 열수축률이 감소함을 확인할 수 있었다.
상기 가교 단계를 거친 분리막을 150 ℃의 오븐에서 1시간 동안 방치한 후 측정된 실시예 1 내지 8과 비교예 1 및 2의 중합체 조성물을 사용하여 제조한 분리막의 TD 및 MD 방향의 열수축률은 5% 이내였다.
특히, 가교 단계를 3 시간동안 진행시킨 경우, TD 및 MD 방향의 열수축율이 4% 이내, 3% 이내가 될 수도 있었다.
반면, 가교 단계를 거치지 않은 비교예 1 및 2의 분리막은 150 ℃의 오븐에서 1시간 동안 방치한 후 측정된 TD 및 MD 방향의 열수축률이 7~8%였다.
이를 통해 가교 단계를 거친 분리막은 가교 단계를 하지 않은 분리막에 비해 내열성이 향상되는 것을 확인할 수 있다.
또한, 가교 단계의 반응 시간이 1시간에서 3시간으로 길어지면, 내열성 향상의 효과가 더욱 향상됨을 확인할 수 있었다.
즉, 본원의 중합체 조성물을 사용한 우수한 내열성의 분리막을 제조하여 이차전지의 성능을 개선시킬 수 있음을 알 수 있었다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 중합체 조성물은 분리막의 내열성을 개선시킬 수 있다. 또한, 우수한 특성의 전지를 구현할 수 있다.

Claims (13)

  1. 카르복실기 또는 알코올기를 포함하는 입자형 중합체; 및
    카르복실기 또는 알코올기를 포함하는 사슬형 중합체;를 포함하는,
    중합체 조성물.
    (단, 상기 입자형 중합체가 카르복실기를 포함하는 경우, 상기 사슬형 중합체는 알코올기를 포함하고,
    상기 입자형 중합체가 알코올기를 포함하는 경우, 상기 사슬형 중합체는 카르복실기를 포함한다)
  2. 제1항에 있어서,
    상기 입자형 중합체 및 상기 사슬형 중합체는 아크릴레이트 계열의 단량체 단위 및 아크릴산 계열의 단량체 단위로 이루어진 그룹에서 선택된 어느 하나 이상의 단량체 단위를 포함하는,
    중합체 조성물.
  3. 제2항에 있어서,
    상기 입자형 중합체는 하이드록시 아크릴레이트 계열의 단량체 단위를 추가로 포함하고,
    상기 사슬형 중합체는 비닐 알코올 계열의 단량체 단위를 추가로 포함하는,
    중합체 조성물.
  4. 제3항에 있어서,
    상기 입자형 중합체는 아크릴로니트릴(acrylonitrile) 단량체 단위, 아크릴아미드(acrylamide) 단량체 단위 또는 이들의 조합을 추가로 포함하는,
    중합체 조성물.
  5. 제1항에 있어서,
    상기 입자형 중합체는 하기 화학식 1 또는 화학식 2로 표시되는 단량체 반복 단위를 포함하는,
    중합체 조성물.
    [화학식 1]
    Figure PCTKR2023016715-appb-img-000005
    상기 화학식 1에서,
    R1은 수소; 메틸 또는 이들의 조합이고,
    R2는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
    0.05≤a≤0.3이고, 0.7≤b≤0.95이며, a+b=1이다.
    [화학식 2]
    Figure PCTKR2023016715-appb-img-000006
    상기 화학식 2에서,
    R3은 수소; 메틸 또는 이들의 조합이고,
    R4는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
    0.05≤c≤0.3이고, 0.7≤d≤0.095이며, c+d=1이다.
  6. 제1항에 있어서,
    상기 사슬형 중합체는 하기 화학식 3 또는 화학식 4로 표시되는 단량체 반복 단위를 포함하는,
    중합체 조성물.
    [화학식 3]
    Figure PCTKR2023016715-appb-img-000007
    상기 화학식 3에서,
    R5은 수소; 메틸 또는 이들의 조합이고,
    R6는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
    0.6≤e≤1이고, 0≤f≤0.4이며, e+f=1이다.
    [화학식 4]
    Figure PCTKR2023016715-appb-img-000008
    상기 화학식 4에서,
    R7은 수소; 메틸 또는 이들의 조합이고,
    R8는 수소; 탄소수 1 내지 20의 선형 또는 분지형 탄화수소; 또는 이들의 조합이며,
    0.7≤g≤1이고, 0≤h≤0.3이며, g+h=1이다.
  7. 제1항에 있어서,
    상기 입자형 중합체 및 상기 사슬형 중합체의 중량비(입자형 중합체 중량: 사슬형 중량체 중량)이 1:9~9:1인,
    중합체 조성물.
  8. 제1항에 있어서,
    상기 입자형 중합체와 상기 사슬형 중합체가 에스테르(ester) 결합에 의해서 서로 연결되는,
    중합체 조성물.
  9. 제1항에 있어서,
    상기 입자형 중합체는 유화 중합법에 의해서 합성되고,
    상기 사슬형 중합체는 유화 중합법에 의해서 합성된 프리폴리머(prepolymer)를 가수분해시키거나, 용액 중합법에 의해서 합성되는,
    중합체 조성물.
  10. 제1항 내지 제9항 중 어느 한 항의 중합체 조성물; 및
    무기 입자;를 포함하는,
    슬러리 조성물.
  11. 제10항의 슬러리 조성물을 포함하는,
    분리막.
  12. 제11항의 분리막을 포함하는,
    이차전지.
  13. 제1항 내지 제9항 중 어느 한 항의 중합체 조성물 및 무기 입자를 포함하는 슬러리 조성물을 다공성 기재에 코팅하고 건조시키는 단계; 및
    50 ℃ 이상의 온도로 가교시키는 단계;를 포함하는,
    분리막의 제조방법.
PCT/KR2023/016715 2022-10-26 2023-10-26 분리막용 중합체 조성물 및 이를 포함하는 이차전지 WO2024091010A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0139396 2022-10-26
KR1020220139396A KR102558668B1 (ko) 2022-10-26 2022-10-26 분리막용 중합체 조성물 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2024091010A1 true WO2024091010A1 (ko) 2024-05-02

Family

ID=87433036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016715 WO2024091010A1 (ko) 2022-10-26 2023-10-26 분리막용 중합체 조성물 및 이를 포함하는 이차전지

Country Status (2)

Country Link
KR (1) KR102558668B1 (ko)
WO (1) WO2024091010A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558668B1 (ko) * 2022-10-26 2023-07-27 주식회사 한솔케미칼 분리막용 중합체 조성물 및 이를 포함하는 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861117B1 (ko) * 2008-02-13 2008-09-30 전남대학교산학협력단 하이드록시기와 카르복실기를 포함하는 공중합체 바인더를 사용한 염료감응형 태양전지 및 그 제조방법
KR20170087315A (ko) * 2016-01-20 2017-07-28 주식회사 엘지화학 전기화학소자용 복합 분리막 및 이를 제조하는 방법
KR20190062924A (ko) * 2017-11-29 2019-06-07 에스케이아이이테크놀로지주식회사 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지
JP2021535545A (ja) * 2019-05-09 2021-12-16 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びそれを含む電気化学素子
KR102432637B1 (ko) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
KR102558668B1 (ko) * 2022-10-26 2023-07-27 주식회사 한솔케미칼 분리막용 중합체 조성물 및 이를 포함하는 이차전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
KR101430975B1 (ko) 2013-08-21 2014-08-18 에스케이씨 주식회사 내열성이 우수한 이차전지용 분리막

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861117B1 (ko) * 2008-02-13 2008-09-30 전남대학교산학협력단 하이드록시기와 카르복실기를 포함하는 공중합체 바인더를 사용한 염료감응형 태양전지 및 그 제조방법
KR20170087315A (ko) * 2016-01-20 2017-07-28 주식회사 엘지화학 전기화학소자용 복합 분리막 및 이를 제조하는 방법
KR20190062924A (ko) * 2017-11-29 2019-06-07 에스케이아이이테크놀로지주식회사 이차전지용 복합분리막 및 이를 포함하는 리튬이차전지
JP2021535545A (ja) * 2019-05-09 2021-12-16 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びそれを含む電気化学素子
KR102432637B1 (ko) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
KR102558668B1 (ko) * 2022-10-26 2023-07-27 주식회사 한솔케미칼 분리막용 중합체 조성물 및 이를 포함하는 이차전지

Also Published As

Publication number Publication date
KR102558668B1 (ko) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2023063461A1 (ko) 분리막용 공중합체 및 이를 포함하는 이차전지
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2020197102A1 (ko) 전기화학소자용 세퍼레이터의 제조방법
WO2022158951A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2022071775A1 (ko) 리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2024076199A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2024049190A1 (ko) 바인더 조성물, 상기 바인더 조성물 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2023074967A1 (ko) 분리막용 공중합체 및 이를 포함하는 이차전지
WO2019245202A1 (ko) 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자
WO2022015118A1 (ko) 전지 셀 및 이의 제조방법
WO2020251286A1 (ko) 세퍼레이터의 제조방법 및 이에 의해 제조된 세퍼레이터
WO2020080774A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2024076191A1 (ko) 분리막용 공중합체 및 이를 포함하는 이차전지