WO2020080897A1 - 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지 - Google Patents

시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지 Download PDF

Info

Publication number
WO2020080897A1
WO2020080897A1 PCT/KR2019/013770 KR2019013770W WO2020080897A1 WO 2020080897 A1 WO2020080897 A1 WO 2020080897A1 KR 2019013770 W KR2019013770 W KR 2019013770W WO 2020080897 A1 WO2020080897 A1 WO 2020080897A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrolyte battery
aqueous electrolyte
separator
containing polymer
Prior art date
Application number
PCT/KR2019/013770
Other languages
English (en)
French (fr)
Inventor
박동훈
황윤태
이용만
류진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19874540.8A priority Critical patent/EP3845594A4/en
Priority to US17/283,789 priority patent/US20210380778A1/en
Priority to CN201980067312.5A priority patent/CN112867760B/zh
Publication of WO2020080897A1 publication Critical patent/WO2020080897A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a dispersant for a nonaqueous electrolyte battery separator comprising a cyanoethyl group-containing polymer, a nonaqueous electrolyte battery separator using the same, and a nonaqueous electrolyte battery.
  • non-aqueous electrolyte batteries having high voltage and high energy density have been attracting attention as power sources for mobile terminals such as notebook computers or mobile phones, or power sources for hybrid vehicles and electric vehicles.
  • a nonaqueous electrolyte battery typified by a lithium ion secondary battery has a high capacity and a high energy density, a large current flows during internal or external short circuit of the battery, and the battery generates heat due to Joule heat generated at that time, or an electrolyte solution
  • the separator containing these porous substrates generates heat during short circuit, and when the temperature rises, the separator melts, clogging the micropores, preventing the movement of ions, so that no current flows, and congestion of the battery is suppressed.
  • the heat-resistant porous layer uses a cyanoethyl group-containing polymer as a dispersant for evenly dispersing the inorganic substance and the inorganic substance.
  • a dispersing agent has an appropriate level, it is possible to sufficiently secure the stability of the battery separator and when the dispersing ability is poor. Since the inorganic material is not evenly distributed, it is difficult to sufficiently secure the thermal stability of the separator.
  • a non-aqueous electrolyte battery separator dispersant a non-aqueous electrolyte battery separator using the same, and a non-aqueous electrolyte battery separator that can further improve the heat resistance of the separator by not only firmly adhering the inorganic filler when forming the heat-resistant porous layer of the separator, but also effectively dispersing it It is intended to provide an electrolyte cell.
  • the present specification includes a cyanoethyl group-containing polymer comprising a first repeating unit represented by the following formula (1), a second repeating unit represented by the following formula (2), and a third repeating unit represented by the following formula (3): ;
  • a dispersant composition for a non-aqueous electrolyte battery separator wherein a ratio of the number of repetitions of the fourth repetition unit to the total number of repetitions of the first to fourth repetition units in the cyanoethyl group-containing polymer is 1: 10000 or less.
  • R1 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R21 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R22 is an oxyethylene group
  • R31 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R32 is an oxyethylene group
  • R41 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R42 is an oxyethylene group.
  • the ratio of the number of repeats of the second repeating unit to the total number of repeating of the first to fourth repeating units is about 0.70 or more and about 0.95
  • the lower limit may be about 0.70 or more, or about 0.72 or more, or about 0.74 or more
  • the upper limit may be about 0.95 or less, or about 0.9 or less, or about 0.87 or less.
  • the ratio of the number of repetitions of the third repetition unit to the total number of repetitions of the first to fourth repetition units, that is, the amidoethyl substitution rate may be about 0.001 or more and about 0.070 or less, and the lower limit thereof is about 0.001 or more, Or about 0.003 or more, or about 0.010 or more, and an upper limit thereof may be about 0.070 or less, or about 0.060 or less, or about 0.050 or less.
  • the R1, R21, R31 and R41 may be hydrogen or methyl.
  • the weight average molecular weight value of the cyanoethyl group-containing polymer is 100,000 to 500,000 g / mol, and a lower limit thereof may be about 200,000 g / mol or more, or about 240,000 g / mol or more, and The upper limit may be about 500,000 g / mol or less, or about 450,000 g / mol or less, or about 410,000 g / mol or less.
  • a separator for a non-aqueous electrolyte battery is provided.
  • the heat-resistant porous layer may further include an inorganic filler.
  • the inorganic filler may be selected from the group consisting of inorganic oxides, inorganic nitrides, poorly soluble ion crystal fine particles, covalent crystals, clay, materials derived from mineral resources, lithium titanium phosphate, and combinations thereof.
  • the porous substrate is one selected from the group consisting of polyolefin resin, polyester resin, polyacetal resin, polyamide resin, polycarbonate resin, polyimide resin, polyether ether ketone resin, polyether sulfone resin, and combinations thereof. It may be a substrate comprising a resin.
  • a non-aqueous electrolyte battery including a positive electrode, a negative electrode, the separator for the non-aqueous electrolyte battery, and an electrolyte.
  • first and second are used to describe various components, and the terms are used only to distinguish one component from another component.
  • each layer or element when each layer or element is referred to as being formed “on” or “above” each layer or element, it means that each layer or element is formed directly on top of each layer or element, or other It means that a layer or element can be additionally formed between each layer, on an object or substrate.
  • Dispersant composition for non-aqueous electrolyte battery separator Dispersant composition for non-aqueous electrolyte battery separator
  • a cyanoethyl group comprising a first repeating unit represented by the following formula (1), a second repeating unit represented by the following formula (2), and a third repeating unit represented by the following formula (3)
  • a dispersant composition for a non-aqueous electrolyte battery separator is provided in which the ratio of the number of repetitions of the fourth repetition unit to the total number of repetitions of the first to fourth repetition units in the cyanoethyl group-containing polymer is 1: 10000 or less.
  • R1 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R21 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R22 is an oxyethylene group
  • R31 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R32 is an oxyethylene group
  • R41 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R42 is an oxyethylene group.
  • oxyethylene means -O-CH 2 -CH 2- .
  • the substitution rate of the aminoethyl group or the substitution rate of the carboxyethyl group is adjusted to a specific range, not only the bonding of the inorganic filler can be strengthened, but also the dispersibility of the inorganic filler is increased, thereby improving the heat resistance of the separator. It was confirmed through experiments and the invention was completed.
  • a cyanoethyl group-containing polymer or the like acts as a binder for firmly adhering an inorganic filler, but according to the proportion of each repeating unit constituting such a cyanoethyl group-containing polymer.
  • the bonding property of the inorganic filler or the dispersibility of the inorganic filler is not specifically known.
  • the cyanoethyl group-containing polymer according to one aspect of the present invention can serve as a binder for firmly adhering an inorganic filler when forming a heat-resistant porous layer of a separator, and can also serve as a dispersant capable of effectively dispersing an inorganic filler. Accordingly, it is possible to implement a separator having significantly improved bonding and heat resistance compared to the prior art.
  • a cyanoethyl group comprising a first repeating unit represented by the following formula (1), a second repeating unit represented by the following formula (2), and a third repeating unit represented by the following formula (3)
  • a dispersant composition for a non-aqueous electrolyte battery separator is provided in which the ratio of the number of repetitions of the fourth repetition unit to the total number of repetitions of the first to fourth repetition units in the cyanoethyl group-containing polymer is 1: 10000 or less.
  • R1 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R21 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R22 is an oxyethylene group
  • R31 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R32 is an oxyethylene group
  • R41 is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • R42 is an oxyethylene group.
  • cyanoethyl group-containing polymers can be prepared basically by Michael addition reaction of acrylonitrile with a polymer having a hydroxyl group in a molecule as indicated by the following scheme.
  • Polymer-OH represents a polymer having a hydroxyl group
  • Polymer-O-CH 2 -CH 2 -CN represents a cyanoethyl group-containing polymer.
  • the cyanoethyl group-containing polymer is, for example, a polymer having a hydroxyl group in a molecule dissolved in water, and a basic catalyst such as caustic soda, sodium carbonate, and / or quaternary ammonium hydroxide is added. Then, it can be prepared by continuously adding acrylonitrile and reacting at about 0 to about 60 ° C for about 2 to about 12 hours.
  • the raw material, the polymer having a hydroxyl group in the molecule and the acrylonitrile may be added simultaneously with the catalyst, or the polymer having the hydroxyl group in the molecule is first introduced, and a catalyst is added thereto to create a reaction environment, A method of adding acrylonitrile can also be used.
  • Acrylonitrile may be added in an amount of about 1 to about 10 parts by weight, preferably about 5 to about 10 parts by weight with respect to about 1 part by weight of the polymer having a hydroxyl group.
  • reaction conditions such as temperature, time, and content of reactants may vary in terms of controlling the substitution ratio of the cyanoethyl group.
  • acrylonitrile may also serve as a solvent.
  • a dilute solvent that does not react with acrylonitrile such as isopropyl alcohol, methyl ethyl ketone, or acetone, may be further added.
  • the cyanoethyl group substitution rate may be adjusted through the type or amount of the catalyst, the pH of the reaction system, and the like, for example, in the production process, after preparing an aqueous solution of a polymer having hydroxyl groups such as polyvinyl alcohol. It can also be improved by adding the basic catalyst aqueous solution first, and then adding acrylonitrile.
  • the terminal cyano group (or nitryl group, -CN) of the cyanoethyl group introduced by the above reaction is converted into an amide group by hydrolysis reaction under acidic or basic catalytic conditions.
  • the amide group can also be converted to a carboxy group by a hydrolysis reaction.
  • the reaction for introducing the cyanoethyl group is quaternary. It may be more preferable to proceed under weak basic conditions in which an ammonium-based catalyst such as ammonium hydroxide is used.
  • the quaternary ammonium hydroxide compound may specifically include, for example, a quaternary ammonium hydroxide compound containing at least one of an alkyl group having 1 to 5 carbon atoms and an aryl group having 6 to 10 carbon atoms, ,
  • the carbon number of the alkyl group is 1 to 4, the aryl group may be more preferably a benzyl or phenyl group.
  • the hydrolysis reaction may be performed for about 1 to about 24 hours at a temperature condition of about 25 to about 60 ° C. and a pH condition of about 8 to about 11, and a method of adjusting the pH by adding an acid
  • the hydrolysis reaction can be terminated.
  • such a cyanoethyl group-containing polymer can also be prepared by Michael addition reaction of acrylonitrile, acrylamide and a polymer having a hydroxyl group in a molecule, as shown in the following scheme.
  • the acrylonitrile and acrylic are continued. It can be prepared by adding an amide and reacting at about 0 to about 60 ° C for about 2 to about 12 hours.
  • the raw material, a polymer having a hydroxyl group in the molecule, and acrylonitrile and acrylamide may be simultaneously added together with the catalyst, or a polymer having a hydroxyl group in the molecule is introduced first, and a catalyst is added thereto to add a reaction environment.
  • a method of adding acrylonitrile and acrylamide may be used.
  • Acrylonitrile may be added in an amount of about 1 to about 10 parts by weight, preferably about 5 to about 10 parts by weight with respect to about 1 part by weight of the polymer having a hydroxyl group.
  • acrylamide may be added in an amount of about 0.5 to about 5 parts by weight, preferably about 1 to about 3 parts by weight, with respect to about 1 part by weight of the polymer having a hydroxyl group.
  • reaction conditions such as temperature, time, and content of reactants may vary in terms of controlling the substitution ratio.
  • acrylonitrile and acrylamide can also serve as a solvent.
  • dipropyl solvents that have not reacted with acrylonitrile and acrylamide such as isopropyl alcohol, methyl ethyl ketone, and acetone, may be further added. .
  • the cyanoethyl group substitution rate and the amidoethyl group substitution rate may be adjusted through the type or amount of the catalyst, the pH of the reaction system, and the like, for example, in the manufacturing process, having hydroxyl groups such as polyvinyl alcohol.
  • the basic catalyst aqueous solution may be added first, and then acrylonitrile and acrylamide may be added at different time points to improve.
  • substitution rate change of the cyanoethyl group, amidoethyl group, or carboxyethyl group according to the hydrolysis reaction of the terminal cyano group (or nitrile group, -CN) or amide group is already as described above.
  • the cyanoethyl group-containing polymer according to an example of the present invention can be obtained by the reaction of a hydroxyl group-containing polymer and acrylonitrile as before, and is used for the reaction of a hydroxyl group-containing polymer with acrylonitrile and acrylamide.
  • the reaction solution is separated into two layers of an organic layer containing a water layer and a cyanoethyl group-containing polymer.
  • the organic layer is taken out, water is added thereto to precipitate a product, and a crude product of the cyanoethyl group-containing polymer is precipitated.
  • a cyanoethyl group-containing polymer having a by-product bis-cyanoethyl ether content of 0.5% by weight or less is obtained.
  • the polymer having a hydroxyl group which is used as a raw material in the above-described manufacturing process, can be used without any particular limitation as long as it is possible to perform a Michael addition reaction with acrylonitrile, and specifically, for example, pullulan, cellulose, and dihydrate Sugars, such as hydroxypropyl pullulan, hydroxyethyl cellulose, hydroxypropyl cellulose, and starch, polyvinyl alcohol, etc. can be sufficient, Preferably it can be polyvinyl alcohol.
  • polyvinyl alcohol has a strong adhesive strength between inorganic fillers and flexibility, so that it is possible to prevent defects such as cracks when bending or folding the separator.
  • the first repeating unit portion represented by Formula 1 is a polymer having a hydroxyl group in the above reaction formula, that is, in Polymer-OH, to a cyanoethyl group It may mean a portion in which hydroxyl groups remain as they are due to no substitution.
  • the second repeating unit part represented by the formula (2) is substituted with a cyanoethyl group in a polymer having a hydroxyl group in the above reaction formula, that is, Polymer-OH, It may mean the part in which the noethyl group is introduced.
  • the third repeating unit portion represented by the formula (3) is substituted with an amidoethyl group in a polymer having a hydroxyl group, that is, Polymer-OH, in the above reaction formula, amide It may mean a portion in which a group is introduced, or a portion converted to an amide group by hydrolysis after the cyanoethyl group is introduced.
  • the fourth repeating unit part represented by the formula (4) is a polymer having a hydroxyl group in the above reaction formula, that is, in a polymer-OH, a cyanoethyl group, or amidoethyl After the group is introduced, it may mean a portion converted to a carboxy group by hydrolysis.
  • the cyanoethyl group-containing polymer used in the non-aqueous electrolyte battery separator according to an aspect of the present invention is a first repeating unit in which hydroxyl groups remain due to no substitution, and a second repeating unit into which a cyanoethyl group is introduced.
  • a third repeating unit in which an amidoethyl group is introduced, and at the same time, a fourth repeating unit in which a carboxyethyl group is introduced is about 1: 10000 or less with respect to the total number of repeats of the first to fourth repeating units, or about It may or may not include 1: 100000 or less.
  • substantially not included means that a very small amount of carboxyethyl group may be introduced by hydrolysis of a cyanoethyl group or an amidoethyl group, but detection is not made according to the detection limit of the actual detection device. do.
  • the cyanoethyl group-containing polymer according to an aspect of the present invention includes all of the first, second, and third repeating units, and does not substantially include the fourth repeating unit, so that the non-aqueous electrolyte battery separator is heat-resistant porous
  • the inorganic filler can be firmly adhered to, and the dispersibility of the inorganic filler can be improved to further improve the heat resistance.
  • the inorganic filler can be effectively dispersed by interactions such as hydrogen bonding with the inorganic filler.
  • substitution ratio of the ethyl group is adjusted to a specific range, the substitution ratio of the carboxyethyl group generated by hydrolysis thereof is also naturally high, and there is a problem in that the bonding strength and dispersibility are lowered.
  • the cyanoethyl group-containing polymer uses a quaternary ammonium hydroxide or the like as a catalyst as described above in the course of polymerization or post-polymerization, carboxyethyl from an amidoethyl group.
  • the hydrolysis reaction to be converted into a group can be effectively suppressed, and accordingly, the substitution ratio of the amidoethyl group can be adjusted to a specific range, and at the same time, the substitution ratio of the carboxyethyl group is about 1: 10000 or less, or about 1 It can be adjusted to: 100,000 or less, or substantially prevent carboxyethyl groups from being introduced.
  • the ratio of the number of repeats of the second repeating unit to the total number of repeating of the first to fourth repeating units is about 0.70 or more and about 0.95
  • the lower limit may be about 0.70 or more, or about 0.72 or more, or about 0.74 or more
  • the upper limit may be about 0.95 or less, or about 0.9 or less, or about 0.87 or less.
  • the repetition number ratio of the above-described second repeating unit is the repetition number ratio of the cyanoethyl group introduced into the hydroxyl group of Polymer-OH in the above reaction formula, and may mean the cyanoethyl group substitution rate of the cyanoethyl group-containing polymer. have.
  • the cyanoethyl group-containing polymer according to an embodiment of the present invention is about 70 mole percent or more and about 95 mole percent or less, and its lower limit is about 70 mole percent or more, or about 72 moles % Or more, or about 74 mol% or more, and an upper limit of the cyanoethyl group may be introduced at a substitution rate of about 95 mol% or less, or about 90 mol% or less, or about 87 mol% or less.
  • the ratio of the number of repetitions of the third repetition unit to the total number of repetitions of the first to fourth repetition units, that is, the amidoethyl substitution rate may be about 0.001 or more and about 0.070 or less, and the lower limit thereof is about 0.001 or more, Or about 0.003 or more, or about 0.010 or more, and an upper limit thereof may be about 0.070 or less, or about 0.060 or less, or about 0.050 or less.
  • the repeating number ratio of the above-mentioned third repeating unit is a ratio of the repeating number of the amide group introduced by the amidation reaction after the cyanoethyl group is introduced into the hydroxyl group of Polymer-OH in the above reaction formula, and contains the cyanoethyl group. It may mean the substitution rate of the amidoethyl group of the polymer.
  • the cyanoethyl group-containing polymer according to an embodiment of the present invention is about 0.1 mol% or more and about 7.0 mol% or less, and the lower limit thereof is about 0.1 mol% or more, or about 0.3.
  • Molar% or more or about 1.0 mol% or more, the upper limit of which is about 7.0 mol% or less, or about 6.0 mol% or less, or about 5.0 mol% or less with a substitution rate, may be introduced amidoethyl group .
  • the cyanoethyl group-containing polymer having a cyanoethyl group substitution rate within the above range can effectively disperse the adhesive while improving the adhesion of the inorganic filler.
  • the cyanoethyl group substitution rate and the amidoethyl group substitution rate are calculated from the nitrogen content of the cyanoethyl group-containing polymer measured by the Kjeldahl method, or the NMR data for the sample is measured, and the area value of the peak is determined. Can be calculated and derived.
  • the weight average molecular weight value of the cyanoethyl group-containing polymer may be about 100,000 to about 500,000 g / mol.
  • the weight average molecular weight value can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • the composition which is used to form a heat-resistant porous layer in a non-aqueous electrolyte battery separator, includes not only the above-mentioned cyanoethyl group-containing polymer, but also an ethylene-vinyl acetate copolymer (EVA, structural unit derived from vinyl acetate) as necessary.
  • EVA ethylene-vinyl acetate copolymer
  • acrylate copolymer styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), polyurethane, polyvinylidene fluoride-hexafluoropropylene , Polyvinylidenefluoride-trichloroethylene, polyvinylidenefluoride-chlorotrifluoroethylene copolymer, polyvinylidenefluoride-hexafluoropropylene, polyvinylidenefluoride-trichloroethylene, cellulose acetate, cellulose Resins such as acetate butyrate and cellulose acetate propionate may be further included.
  • SBR styrene-butadiene rubber
  • PVB polyvinyl butyral
  • PVP polyvinylpyrrolidone
  • polyurethane polyvinylidene fluoride-hexafluoropropylene
  • the resin may be mixed in an amount of about 10 to about 1,000 parts by weight compared to 100 parts by weight of the cyanoethyl group-containing polymer.
  • the separator for a non-aqueous electrolyte battery may include a porous layer and a heat-resistant porous layer including the dispersant composition for a non-aqueous electrolyte battery separator.
  • the heat-resistant porous layer may further include an inorganic filler.
  • the separator for a non-aqueous electrolyte battery of the present invention may be a separator having a heat-resistant porous layer including the dispersant composition and an inorganic filler, and a porous substrate, wherein the heat-resistant porous layer is one side of the surface of the porous substrate It may be formed on a surface or both sides, and may have a structure having a large number of pores due to voids between inorganic fillers therein.
  • the heat-resistant porous layer When the heat-resistant porous layer is formed on only one side of the surface of the porous substrate, it may be provided on either the anode side surface or the cathode side surface.
  • the inorganic filler is not particularly limited as long as it has a melting point of about 200 ° C. or higher, and has high electrical insulation, is electrochemically stable, and is stable in an electrolyte or a solvent used in a slurry for forming a heat-resistant porous layer.
  • Such inorganic fillers are, for example, iron oxide, SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 , BaTiO 3 , ZrO, PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN- PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 and other inorganic oxide fine particles; Inorganic nitride fine particles such as aluminum nitride and silicon nitride; Poorly soluble ion crystal fine particles such as calcium fluoride, barium fluoride, and barium sulfate; Covalent crystal fine particles such as silicon and diamond; Clay fine particles such as talc and montmorillonite; Materials derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mul
  • the particle size of the inorganic filler is not particularly limited, but to form a heat-resistant porous layer having a uniform thickness, and to obtain an appropriate porosity, an average particle diameter of about 5 nm to about 5 ⁇ m may be used, preferably, Any of about 0.01 to about 1 ⁇ m can be used.
  • the average particle diameter can be measured by a measuring device based on a laser diffraction scattering method.
  • the diameter of the inorganic filler is too small, dispersibility may be lowered, which may cause problems in controlling physical properties of the separator.
  • the diameter of the inorganic filler is too large, the strength of the heat-resistant porous layer is lowered, a problem that the smoothness of the surface may be lowered, and also the heat-resistant porous layer to be produced may be thickened, thereby deteriorating mechanical properties. .
  • the method for forming the heat-resistant porous layer is not particularly limited, for example, by preparing a slurry in which the inorganic filler is dispersed in the above-described dispersant composition, coating it on a porous substrate, and then drying and removing the solvent, etc. Can be used.
  • the solvent used in the dispersant composition is not particularly limited as long as it can dissolve the aforementioned cyanoethyl group-containing polymer, and for example, acetone, tetrahydrofuran, cyclohexanone, ethylene glycol monomethyl ether, methyl ethyl ketone, Acetonitrile, perfuryl alcohol, tetrahydrofurfuryl alcohol, methyl acetoacetate, nitromethane, N, N-dimethylformamide (DMF), N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene carbo Nate, and the like.
  • acetone tetrahydrofuran
  • cyclohexanone ethylene glycol monomethyl ether
  • methyl ethyl ketone ethylene glycol monomethyl ether
  • methyl ethyl ketone Acetonitrile
  • perfuryl alcohol tetrahydrofurfuryl alcohol
  • Such a solvent may be used in a ratio of about 300 to about 5,000 parts by weight relative to 100 parts by weight of the cyanoethyl group-containing polymer and resin component.
  • a known stirrer, disperser, pulverizer, etc. can be used, and specifically, a ball mill method can be used.
  • the relative content ratio between the dispersant composition in the slurry and the inorganic filler is not particularly limited, and may be adjusted differently according to the thickness, average pore diameter, and porosity of the heat-resistant porous layer to be produced.
  • the content of the inorganic filler in the heat-resistant porous layer may be about 50% by weight or more, or about 95% by weight or less.
  • the proportion of pores in the heat-resistant porous layer may be small, resulting in a decrease in battery performance or insufficient heat resistance, and when the content of the inorganic filler is too high, the heat-resistant porous layer It becomes vulnerable, and there may be a problem that handling becomes difficult.
  • the heat-resistant porous layer can be made low-resisting because the ion conduction path is secured by pores.
  • the average pore diameter is not particularly limited as long as lithium ions in the electrolyte described below can pass, but from the viewpoint of the mechanical strength of the heat-resistant porous layer, about 5 nm to about 5 ⁇ m, preferably about 0.1 to about 3 ⁇ m
  • porosity can be in the range of about 5 to about 95%, preferably about 20 to about 70%.
  • the average pore diameter can be measured by a mercury intrusion type porosity meter, and the porosity is obtained by determining the true density (d) of the inorganic filler, the volume (v) of the heat-resistant porous layer, and the mass (m) of the heat-resistant porous layer, It can be calculated by the following equation.
  • the heat-resistant porous layer having the average pore diameter value and porosity value in the above range can be obtained by controlling the particle size or content of the inorganic filler, as described above.
  • the porous substrate may include a thermoplastic resin component.
  • the porous base material of the thermoplastic resin component may be melted when the temperature rises above a certain level, thereby closing pores, thereby preventing ion movement and preventing current from flowing, thereby suppressing heat generation or ignition.
  • Thermoplastic resins that can be used as the porous substrate include polyolefin resins such as low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, and polypropylene; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; It may be a polyacetal resin, polyamide resin, polycarbonate resin, polyimide resin, polyether ether ketone resin, polyether sulfone resin, or a combination thereof.
  • the porous substrate may preferably have a film form, and the thickness is not particularly limited, but is preferably about 2 to about 50 ⁇ m. If the thickness is too thin, there may be a problem that it is difficult to maintain mechanical properties, and when the thickness is too thick, a problem that acts as a resistive layer may occur.
  • the average pore diameter and porosity of the porous substrate are not particularly limited, but the average pore diameter may be about 0.1 to about 30 ⁇ m, and the porosity may be about 10% to about 90%.
  • the average pore diameter can be measured in the same manner as for the heat-resistant porous layer.
  • porosity can be calculated by obtaining the true density (d) of the porous substrate, the volume (v) of the porous substrate and the mass (m) of the porous substrate, and the following equation.
  • a conventional coating method in the art can be used, and any method that can achieve the required layer thickness or coating area is not particularly limited.
  • gravure coater method reverse roll coater method, transfer roll coater method, kiss coater method, deep coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast coater method, Methods such as a die coater method, a screen printing method, and a spray coating method can be used.
  • the total thickness of the nonaqueous electrolyte battery separator obtained as described above is not particularly limited, and may be adjusted in consideration of the use and performance of the battery, from the viewpoint of more reliably separating the positive electrode and the negative electrode, from about 2 to about 55 ⁇ m. It can be within range.
  • the non-aqueous electrolyte battery according to an aspect of the present invention may include a positive electrode, a negative electrode, a separator for the non-aqueous electrolyte battery, and an electrolyte.
  • the nonaqueous electrolyte battery can be produced by disposing the separator for the nonaqueous electrolyte battery between the positive electrode and the negative electrode, and impregnating the electrolyte solution therewith.
  • the surface provided with the heat-resistant porous layer may be arranged to be located on either the anode side or the cathode side.
  • the nonaqueous electrolyte battery of the present invention includes, for example, a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the positive electrode and the negative electrode may be prepared by applying an electrode mixture in which a positive electrode or a negative electrode active material and a conductive agent are dispersed in a solution in which a binder is generally dissolved in a current collector.
  • the layered structure lithium-containing transition metal oxide is, for example, LiCoO 2 or LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0.2), etc., at least Co, Ni and Mn Oxide containing (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/5 Mn 1/5 Co 1/5 O 2, etc. ) And the like.
  • negative electrode active materials include, for example, lithium metals, lithium alloys such as lithium aluminum alloys, carbonaceous materials capable of absorbing and releasing lithium, coke such as graphite, phenol resins, and furan resins, carbon fibers, And glassy carbon, pyrolytic carbon, and activated carbon.
  • the positive electrode current collector for example, a thin metal body made of aluminum, nickel, or a combination thereof can be used
  • the negative electrode current collector is, for example, copper, gold, nickel, copper alloy, or A thin metal body or the like produced by a combination of these can be used.
  • the conductive agent is, for example, carbon black such as acetylene black and Ketjen black; Metal fibers such as aluminum and nickel; Natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, and the like can be used. Among them, acetylene black and ketjen black, which can secure desired conductivity with a small amount of compounding, can be preferably used.
  • the binder can be used a variety of known binders, for example, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, styrene-butadiene copolymer, polyacrylonitrile, poly Vinyl alcohol or the like can be used.
  • binders for example, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, styrene-butadiene copolymer, polyacrylonitrile, poly Vinyl alcohol or the like can be used.
  • the binder may be dissolved in a solvent, for example, N-methyl-2-pyrrolidone (NMP) may be used as the solvent.
  • NMP N-methyl-2-pyrrolidone
  • an electrolyte a solution in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it is difficult to dissociate in a solvent to form Li + ions and cause side reactions such as decomposition in a voltage range used as a battery.
  • Inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCnF 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 (where Rf represents a fluoroalkyl group), etc.
  • Preferred lithium salts are LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as the battery.
  • cyclic carbonate esters such as propylene carbonate and ethylene carbonate
  • chain carbonate esters such as ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate and dipropyl carbonate, or mixtures thereof may be exemplified, but is not limited thereto.
  • the volume ratio of the cyclic carbonate ester and the chain carbonate ester is preferably from about 4: 1 to about 1: 4 from the viewpoint of optimization of dielectric constant and viscosity.
  • the form of the non-aqueous electrolyte battery of the present invention may be a polyhedral shape or a cylindrical shape using a steel can, an aluminum can, or the like as an exterior body (exterior can), or a package battery using a laminate film deposited with metal as an exterior body. It is not particularly limited.
  • the separator composition for a non-aqueous electrolyte battery of the present invention can not only firmly adhere the inorganic filler when forming the heat-resistant porous layer of the separator, but also effectively disperse it to further improve the heat resistance of the separator.
  • the cyanoethyl substitution rate was calculated as a percentage of the number of moles of hydroxyl groups originally present per repeat unit of the polymer after obtaining the nitrogen content through the Kjeldahl Method for the cyanoethylated polyvinyl alcohol produced in the following Synthesis Example. Did.
  • the amidoethyl substitution rate was calculated by obtaining the H 1 -NMR spectrum of the sample and calculating the area of the peak corresponding to hydrogen bound to the nitrogen atom.
  • the carboxyethyl substitution rate was calculated by obtaining the IR spectrum of the sample and calculating the area of the peak corresponding to the carboxyl group (-COO-).
  • the weight average molecular weight value was analyzed through GPC, and the measurement conditions of GPC are as follows.
  • the average particle diameter of the slurry was measured through a particle size analyzer (Mastersizer, Malvern).
  • the settling rate of the slurry was measured using LUMiSizer equipment.
  • the substitution rate of the cyanoethyl group was 75.3 mol%, the substitution rate of the amidoethyl group was 4.2 mol%, and a peak corresponding to the carboxyl group in the IR spectrum could not be observed. (Mw: 390,000)
  • the substitution rate of the cyanoethyl group was 76.2 mol%, and the substitution rate of the amidoethyl group was 3.1 mol%, and a peak corresponding to the carboxyl group in the IR spectrum could not be observed. (Mw: 362,000)
  • the substitution rate of the cyanoethyl group was 74.5 mol%, and the substitution rate of the amidoethyl group was 3.5 mol%, and a peak corresponding to the carboxyl group in the IR spectrum could not be observed. (Mw: 402,000)
  • the substitution rate of the cyanoethyl group was 74.3 mol%, and the substitution rate of the amidoethyl group was 5.0 mol%, and a peak corresponding to the carboxyl group in the IR spectrum could not be observed. (Mw: 399,000)
  • PVA polyvinyl alcohol
  • AN Acrylonitrile
  • benzyl trimethylammonium hydroxide (4.18 wt% aqueous solution) was added thereto, and maintained for 50 minutes.
  • the weight average molecular weight value of the obtained product sample was confirmed to be about 250,000 g / mol.
  • a cyanoethylated polyvinyl alcohol having a weight average molecular weight value of about 250,000 g / mol, a cyanoethyl substitution rate of about 83 mol%, and an amide substitution rate of 0 mol% was prepared.
  • the particle size was measured using a particle size analyzer.
  • the slurry prepared in Examples and Comparative Examples was measured using a dispersion stability disperser (LUMiSizer) at 1,000 rpm while measuring the sedimentation rate of alumina at 25 ° C, and the results are shown in Table 1 below.
  • LiMiSizer dispersion stability disperser
  • a negative electrode slurry was prepared by mixing artificial graphite, carbon black, CMC, and binder with water in a weight ratio of 96: 1: 1: 2.
  • the negative electrode slurry was coated on a copper foil having a thickness of 50 ⁇ m, dried at 80 ° C. for 1 hour or more, and then pressed to prepare a negative electrode.
  • the prepared cyanoethyl group-containing polymer and the slurry of inorganic particles were applied to one surface of a polyethylene porous substrate using a doctor blade and dried to prepare a separator having a porous coating layer.
  • the negative electrode and the separator were put in a lamination equipment to adhere, and the sample was peeled at a rate of 100 mm / min using a UTM equipment, and the force required to peel the adhesive surface between the electrode and the separator was measured.
  • the slurry prepared using the cyanoethyl group-containing polymer according to an embodiment of the present application has excellent dispersing power, and can better disperse alumina, compared to the comparative example. You can see that it settles more slowly.
  • the separation membrane prepared using such a cyanoethyl group-containing polymer it can be clearly confirmed that the adhesion is very excellent between the electrode and the separation membrane, especially in the case of Examples 1-4, about 30% better than the comparative example It can be clearly confirmed that the adhesive force can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 이를 사용한 비수전해질 전지 세퍼레이터, 및 비수전해질 전지에 관한 것이다.

Description

시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
관련 출원(들)과의 상호 인용
본 출원은 2018년 10월 19일자 한국 특허 출원 제 10-2018-0125501 호 및 2019년 10월 29일자 한국 특허 출원 제 10-2018-0130144호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 이를 사용한 비수전해질 전지 세퍼레이터, 및 비수전해질 전지에 관한 것이다.
최근, 노트북 컴퓨터 또는 휴대 전화 등의 모바일 단말용 전원 또는 하이브리드 자동차, 전기자동차용 전원으로서 고전압, 고에너지 밀도를 갖는 비수전해질 전지, 특히 리튬 이온 이차 전지가 주목받고 있다. 리튬 이온 이차 전지로 대표되는 비수전해질 전지는 고용량 및 고에너지 밀도를 갖고 있기 때문에, 전지의 내부 단락시 또는 외부 단락시에 대전류가 흐르고, 그 때에 발생하는 주울열에 의해 전지가 발열하는 문제나, 전해액 분해에 수반하는 가스 발생에 의한 전지의 팽창이나 특성 열화의 문제가 있다.
현행의 리튬 이온 이차 전지에서는 이러한 문제를 해결하기 위해서 폴리프로필렌 또는 폴리에틸렌 필름 등, 미세 구멍을 갖는 다공성 기재를 포함하는 세퍼레이터를 양극과 음극의 사이에 개재시키고 있다. 이들 다공성 기재를 포함하는 세퍼레이터는 단락시에 발열하여 온도가 상승하면 세퍼레이터가 용융하여 그 미세 구멍이 막혀서, 이온의 이동이 저지되므로 전류가 흐르지 않게 되어, 전지의 폭주가 억제된다.
오늘날, 리튬 이온 이차 전지의 용도가 확대됨에 따라, 보다 내열성이 높은 전지, 특히 내부 단락이 생긴 경우의 내열성의 향상이 요구되고 있다. 특히, 전지 내부 단락이 생긴 경우, 국부적인 발열에 의해서 단락 부분에서는 600 ℃ 이상의 온도가 되는 경우가 있고, 이 때문에 폴리올레핀계 필름 등의 미세 구멍을 갖는 다공성 기재를 포함하는 종래의 세퍼레이터에서는 단락시의 열에 의해서 단락 부분의 세퍼레이터가 수축 또는 용융하여, 전지는 발연, 발화, 폭발과 같은 위험에 노출되게 된다.
이러한 세퍼레이터의 열수축 또는 열용융에 의한 단락을 방지하여, 전지의 신뢰성을 높이는 기술로서, 예를 들면 폴리올레핀계 필름 등의 미세 구멍을 갖는 다공성 기재의 한쪽면 또는 양면(표면과 이면)에 내열성 다공질 층을 구비한 다층 구조의 세퍼레이터가 제안되고 있다.
한편, 내열성 다공질 층은 무기물과 상기 무기물을 고르게 분산하기 위한 분산제로서 시아노에틸 기 함유 중합체를 이용하는데, 분산제의 분산능이 적정 수준이 되어야 전지 세퍼레이터의 안정성을 충분히 확보할 수 있으며, 분산능이 떨어지는 경우 무기물이 고르게 분산되지 않아 분리막의 열안정성을 충분히 확보하기 어렵다.
본 명세서는, 세퍼레이터의 내열성 다공질 층 형성 시 무기 충전재를 견고하게 접착시킬 뿐만 아니라 이를 효과적으로 분산하여 세퍼레이터의 내열성을 더욱 향상시킬 수 있는, 비수전해질 전지 세퍼레이터용 분산제, 이를 사용한 비수전해질 전지 세퍼레이터, 및 비수전해질 전지를 제공하고자 한다.
본 명세서는, 하기 화학식 1로 표시되는 제1 반복 단위, 하기 화학식 2로 표시되는 제2 반복 단위, 및 하기 화학식 3으로 표시되는 제3 반복 단위를 포함하는, 시아노에틸 그룹 함유 중합체를 포함하며; 상기 시아노에틸 그룹 함유 중합체 내에서 상기 제1 내지 제4 반복 단위 총 반복 수에 대한 상기 제4 반복 단위 반복 수의 비율이, 1:10000 이하인, 비수전해질 전지 세퍼레이터용 분산제 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019013770-appb-I000001
상기 화학식 1에서,
R1은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
[화학식 2]
Figure PCTKR2019013770-appb-I000002
상기 화학식 2에서,
R21은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R22는, 옥시에틸렌 그룹이고,
[화학식 3]
Figure PCTKR2019013770-appb-I000003
상기 화학식 3에서,
R31은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R32는, 옥시에틸렌 그룹이고,
[화학식 4]
Figure PCTKR2019013770-appb-I000004
상기 화학식 4에서,
R41은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R42는, 옥시에틸렌 그룹이다.
이 때, 상기 시아노에틸 그룹 함유 중합체 내에서, 상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제2 반복 단위의 반복 수 비율, 즉 시아노에틸 치환률은, 약 0.70 이상 약 0.95 이하일 수 있고, 그 하한 값은 약 0.70 이상, 또는 약 0.72 이상, 또는 약 0.74 이상일 수 있으며, 그 상한 값은 약 0.95 이하, 또는 약 0.9 이하, 또는 약 0.87 이하일 수 있다.
그리고, 상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제3 반복 단위의 반복 수 비율, 즉 아미도에틸 치환률은 약 0.001 이상 약 0.070 이하일 수 있고, 그 하한 값은 약 0.001 이상, 또는 약 0.003이상, 또는 약 0.010 이상일 수 있으며, 그 상한 값은 약 0.070 이하, 또는 약 0.060 이하, 또는 약 0.050 이하일 수 있다.
발명의 일 실시예에 따르면, 상기 R1, R21, R31 및 R41은, 각각 독립적으로, 동일하거나 상이하게, 수소 또는 메틸일 수 있다.
발명의 다른 일 실시예에 따르면, 상기 시아노에틸 그룹 함유 중합체의 중량 평균 분자량 값이 100,000 내지 500,000 g/mol, 그 하한은 약 200,000 g/mol 이상, 또는 약 240,000 g/mol 이상일 수 있고, 그 상한은, 약 500,000 g/mol 이하, 또는 약 450,000 g/mol 이하, 또는 약 410,000 g/mol 이하일 수 있다.
한편, 발명의 다른 일 측면에 따르면, 상술한 비수전해질 전지 세퍼레이터용 분산제 조성물을 포함하는, 내열성 다공질 층; 및
다공성 기재를 포함하는,
비수전해질 전지용 세퍼레이터가 제공된다.
이 때, 상기 내열성 다공질 층은, 무기 충전재를 더 포함할 수 있다.
그리고, 이러한 무기 충전재는 무기 산화물, 무기 질화물, 난용성 이온 결정 미립자, 공유결합성 결정, 점토, 광물 자원 유래 물질, 리튬티탄포스페이트, 및 이들의 조합으로 이루어지는 군으로부터 선택되는 것일 수 있다.
그리고, 상기 다공성 기재는 폴리올레핀 수지, 폴리에스터 수지, 폴리아세탈 수지, 폴리아미드 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리에테르에테르케톤 수지, 폴리에테르술폰 수지 및 이들 조합으로 이루어진 군에서 선택되는 1종의 수지를 포함는 기재일 수 수 있다.
한편, 발명의 다른 일 측면에 따르면, 양극, 음극, 상기 비수전해질 전지용 세퍼레이터, 및 전해액을 포함하는, 비수전해질 전지가 제공될 수 있다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에" 또는 "위에" 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하 발명의 구체적인 구현예에 따른 비수전해질 전지 세퍼레이터용 분산제, 이를 사용한 비수전해질 전지 세퍼레이터, 및 비수전해질 전지에 대하여 보다 상세하게 설명하기로 한다.
비수전해질 전지 세퍼레이터용 분산제 조성물
본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 제1 반복 단위, 하기 화학식 2로 표시되는 제2 반복 단위, 및 하기 화학식 3으로 표시되는 제3 반복 단위를 포함하는, 시아노에틸 그룹 함유 중합체를 포함하며; 상기 시아노에틸 그룹 함유 중합체 내에서 상기 제1 내지 제4 반복 단위 총 반복 수에 대한 상기 제4 반복 단위 반복 수의 비율이, 1:10000 이하인, 비수전해질 전지 세퍼레이터용 분산제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2019013770-appb-I000005
상기 화학식 1에서,
R1은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
[화학식 2]
Figure PCTKR2019013770-appb-I000006
상기 화학식 2에서,
R21은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R22는, 옥시에틸렌 그룹이고,
[화학식 3]
Figure PCTKR2019013770-appb-I000007
상기 화학식 3에서,
R31은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R32는, 옥시에틸렌 그룹이고,
[화학식 4]
Figure PCTKR2019013770-appb-I000008
상기 화학식 4에서,
R41은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R42는, 옥시에틸렌 그룹이다.
상기에서 옥시에틸렌이라 함은, -O-CH2-CH2-를 의미한다.
본 발명의 발명자들은 비수전해질 전지 세퍼레이터의 내열성 다공질 층 중에 무기 충전재의 분산제로 사용되는 시아노에틸 기 함유 중합체에 있어서, 중합체를 구성하는 각 반복 단위의 비율, 즉 시아노에틸 기의 치환률과 더불어, 아미노에틸 기의 치환률이나, 카르복시에틸 기의 치환률이 특정 범위로 조절됨에 따라, 무기 충전재의 접합이 강화될 수 있을 뿐 아니라, 무기 충전재의 분산성이 높아지게 되어, 세퍼레이터의 내열성이 향상되는 것을 실험을 통하여 확인하고 발명을 완성하였다.
비수전해질 전지 세퍼레이터에 있어서, 시아노에틸 기 함유 중합체 등이 무기 충전재를 견고하게 접착하기 위한 바인더 역할을 수행하는 것은 잘 알려져 있으나, 그러한 시아노에틸 기 함유 중합체를 구성하는 각 반복 단위의 비율에 따른 무기 충전재의 접합성 혹은 무기 충전재의 분산성에 대해서는 구체적으로 알려진 바 없다.
본 발명의 일 측면에 따른 시아노에틸 기 함유 중합체는, 세퍼레이터의 내열성 다공질 층 형성 시 무기 충전재를 견고하게 접착하기 위한 결합제 역할 뿐 아니라, 무기 충전재를 효과적으로 분산시킬 수 있는 분산제로서의 역할도 수행할 수 있고, 이에 따라 종전 기술 대비 현저히 향상된 접합성과 내열성을 가진 세퍼레이터를 구현할 수 있게 된다.
본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 제1 반복 단위, 하기 화학식 2로 표시되는 제2 반복 단위, 및 하기 화학식 3으로 표시되는 제3 반복 단위를 포함하는, 시아노에틸 그룹 함유 중합체를 포함하며; 상기 시아노에틸 그룹 함유 중합체 내에서 상기 제1 내지 제4 반복 단위 총 반복 수에 대한 상기 제4 반복 단위 반복 수의 비율이, 1:10000 이하인, 비수전해질 전지 세퍼레이터용 분산제 조성물이 제공된다.
[화학식 1]
Figure PCTKR2019013770-appb-I000009
상기 화학식 1에서,
R1은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
[화학식 2]
Figure PCTKR2019013770-appb-I000010
상기 화학식 2에서,
R21은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R22는, 옥시에틸렌 그룹이고,
[화학식 3]
Figure PCTKR2019013770-appb-I000011
상기 화학식 3에서,
R31은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R32는, 옥시에틸렌 그룹이고,
[화학식 4]
Figure PCTKR2019013770-appb-I000012
상기 화학식 4에서,
R41은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
R42는, 옥시에틸렌 그룹이다.
이러한 시아노에틸 기 함유 중합체는, 기본적으로는 하기 반응식으로 표시된 바와 같이 아크릴로니트릴과 분자 내에 수산 기를 갖는 중합체와의 마이클 부가 반응에 의해서 제조될 수 있다.
[반응식]
Figure PCTKR2019013770-appb-I000013
상기 반응식 중, Polymer-OH는 수산 기를 갖는 중합체, Polymer-O-CH2-CH2-CN은 시아노에틸 기 함유 중합체를 나타낸다.
더욱 구체적으로, 시아노에틸 기 함유 중합체는, 예를 들면, 분자 내에 수산 기를 갖는 중합체를 물에 용해하고, 가성 소다, 탄산 나트륨, 및/또는 4급 암모늄 히드록시드 등의 염기성 촉매를 첨가한 후, 계속해서 아크릴로니트릴을 첨가하고, 약 0 내지 약 60℃에서 약 2 내지 약 12시간 반응을 행함으로써 제조될 수 있다.
이 때, 원료인, 분자 내에 수산 기를 갖는 중합체와 아크릴로니트릴은, 상기 촉매와 함께 동시에 투입할 수도 있고, 분자 내에 수산 기를 갖는 중합체를 먼저 투입하고, 여기에 촉매를 가해 반응 환경을 만든 후, 아크릴로니트릴을 투입하는 방법을 사용할 수도 있다.
아크릴로니트릴은, 상기 수산 기를 갖는 중합체 약 1중량부에 대하여, 약 1 내지 약 10중량부, 바람직하게는 약 5 내지 약 10중량부로 첨가될 수 있다.
그러나, 본 발명이 반드시 여기에 한정되는 것은 아니며, 온도, 시간, 및 반응물의 함량 등 구체적인 반응 조건은 시아노에틸 기의 치환 비율을 조절하기 위한 측면에서 달라질 수 있다.
이 때, 아크릴로니트릴은 용제로서의 역할도 겸할 수 있는데, 필요에 따라서 이소프로필알콜, 메틸에틸케톤, 아세톤 등, 아크릴로니트릴과 반응하지 않은 희석 용제를 더 첨가할 수도 있다.
그리고, 시아노에틸 기 치환률은, 촉매의 종류나 투입량, 반응 계의 pH 등을 통해 조절할 수도 있으며, 예를 들어, 제조 과정에서, 폴리비닐알콜 등의 수산 기를 갖는 중합체의 수용액을 제조한 후에, 염기성 촉매 수용액을 먼저 첨가하고, 나중에 아크릴로니트릴을 투입함으로써 향상시킬 수도 있다.
한편, 상기와 같은 반응에 의해 도입된 시아노에틸 그룹의 말단 시아노 그룹(혹은, 나이트릴 그룹, -CN)은, 산성, 혹은 염기성 촉매 조건 하에서, 가수 분해 반응에 의해, 아미드 그룹으로 변환될 수 있고, 또한 아미드 그룹은 다시 가수 분해 반응에 의해, 카르복시 그룹으로 변환될 수 있다. 이러한 가수 분해 반응을 고려하였을 때, 아미드 그룹과 카르복시 그룹의 치환 비율을 적절한 정도로 조절하여, 시아노에틸 함유 중합체의 접합력과 분산성을 향상시키기 위해서는, 상기 시아노에틸 기를 도입하기 위한 반응을 4급 암모늄 히드록시드 등, 암모늄 계열 촉매가 사용되는 약한 염기성 조건에서 진행시키는 것이 더욱 바람직할 수 있다.
이러한 4급 암모늄 히드록시드 화합물은 구체적으로 예를 들어, 탄소 수가 1 내지 5인 알킬 그룹 및 탄소 수 6 내지 10의 아릴 그룹 중 어느 하나 이상을 포함하는 4급 암모늄 히드록시드 화합물을 들 수 있고, 상기 알킬 그룹의 탄소 수는 1 내지 4인 것, 상기 아릴 그룹은 벤질 혹은 페닐 그룹인 것이 더욱 바람직할 수 있다.
이 때, 상기 가수 분해 반응은, 약 25 내지 약 60 ℃의 온도 조건 및 약 8 내지 약 11의 pH 조건에서, 약 1 내지 약 24 시간 동안 진행될 수 있으며, 산을 첨가하여 pH를 조절하는 방법에 의해 가수 분해 반응을 종결시킬 수 있다.
그리고, 이러한 시아노에틸 기 함유 중합체는, 다른 예로, 하기 반응식으로 표시된 바와 같이 아크릴로니트릴, 아크릴아미드와 분자 내에 수산 기를 갖는 중합체와의 마이클 부가 반응에 의해서도 제조될 수 있다.
[반응식]
Figure PCTKR2019013770-appb-I000014
이 때, 상기 반응에서, 아크릴로니트릴과 아크릴아미드의 상대적인 첨가량을 다르게 하여, 각각 시아노에틸 기와 아미도에틸 기의 치환율을 다르게 조절할 수 있게 된다.
더욱 구체적으로 예를 들면, 분자 내에 수산 기를 갖는 중합체를 물에 용해하고, 가성 소다, 탄산 나트륨, 및/또는 4급 암모늄 히드록시드 등의 염기성 촉매를 첨가한 후, 계속해서 아크릴로니트릴 및 아크릴아미드를 첨가하고, 약 0 내지 약 60℃에서 약 2 내지 약 12시간 반응을 행함으로써 제조될 수 있다.
이 때, 원료인, 분자 내에 수산 기를 갖는 중합체와 아크릴로니트릴 및 아크릴아미드는, 상기 촉매와 함께 동시에 투입할 수도 있고, 분자 내에 수산 기를 갖는 중합체를 먼저 투입하고, 여기에 촉매를 가해 반응 환경을 만든 후, 아크릴로니트릴 및 아크릴아미드를 투입하는 방법을 사용할 수도 있다.
아크릴로니트릴은, 상기 수산 기를 갖는 중합체 약 1중량부에 대하여, 약 1 내지 약 10중량부, 바람직하게는 약 5 내지 약 10중량부로 첨가될 수 있다.
그리고, 아크릴아미드는, 상기 수산 기를 갖는 중합체 약 1중량부에 대하여, 약 0.5 내지 약 5 중량부, 바람직하게는 약 1 내지 약 3 중량부로 첨가될 수 있다.
그러나, 본 발명이 반드시 여기에 한정되는 것은 아니며, 온도, 시간, 및 반응물의 함량 등 구체적인 반응 조건은 치환 비율을 조절하기 위한 측면에서 달라질 수 있다.
이 때, 아크릴로니트릴 및 아크릴아미드는 용제로서의 역할도 겸할 수 있는데, 필요에 따라서 이소프로필알콜, 메틸에틸케톤, 아세톤 등, 아크릴로니트릴 및 아크릴아미드와 반응하지 않은 희석 용제를 더 첨가할 수도 있다.
그리고, 시아노에틸 기 치환률 및 아미도에틸 기 치환률은, 촉매의 종류나 투입량, 반응 계의 pH 등을 통해 조절할 수도 있으며, 예를 들어, 제조 과정에서, 폴리비닐알콜 등의 수산 기를 갖는 중합체의 수용액을 제조한 후에, 염기성 촉매 수용액을 먼저 첨가하고, 나중에 아크릴로니트릴 및 아크릴아미드를 각각 시점을 달리하여 투입함으로써 향상시킬 수도 있다.
말단 시아노 그룹(혹은, 니트릴 그룹, -CN)이나, 아미드 그룹의 가수 분해 반응에 따른 시아노에틸 그룹, 아미도에틸 그룹, 혹은 카르복시에틸 그룹의 치환률 변화에 대해서는 이미 상술한 바와 같다.
즉, 본원발명의 일 예에 따른, 시아노에틸 기 함유 중합체는, 기존과 같이 수산기 함유 중합체와 아크릴로니트릴의 반응에 의해서도 얻어질 수 있고, 수산기 함유 중합체와 아크릴로니트릴 및 아크릴아미드의 반응에 의해서도 얻어질 수 있다.
반응 종료 후, 반응액은 수층과 시아노에틸 기 함유 중합체를 포함하는 유기층의 2층으로 분리되는데, 유기층을 취출하고, 이것에 물을 가하여 생성물을 석출시킴으로써, 시아노에틸 기 함유 중합체의 조생성물을 얻을 수 있다. 이 조생성물을 대량의 물로 세정하거나, 재용해/재석출을 반복함으로써, 부생성물인 비스-시아노에틸 에테르 함유량이 0.5중량% 이하인 시아노에틸 기 함유 중합체가 얻어진다.
상술한 제조 공정에서 원료로 사용되는, 수산 기를 갖는 중합체는, 아크릴로니트릴과의 마이클 첨가 반응이 가능한 것이면 어느 중합체도 특별한 제한 없이 사용 가능하며, 구체적으로 예를 들어, 풀루란, 셀룰로오스, 디히드록시프로필 풀루란, 히드록시에틸 셀룰로오스, 히드록시프로필 셀룰로오스, 전분 등의 당류나 폴리비닐알콜 등일 수 있고, 바람직하게는, 폴리비닐알콜일 수 있다.
이 중, 폴리비닐알콜은 무기 충전재 상호간에 접착시키는 힘이 강하고, 또한 유연성이 있어, 세퍼레이터를 구부리거나 접을 때에 깨짐 등 불량이 발생하는 것을 방지할 수 있다.
본 발명의 일 측면에 따른 시아노에틸 기 함유 중합체에 있어서, 상기 화학식 1로 표시되는 제1 반복 단위 부분은, 위 반응식 중, 수산 기를 갖는 중합체, 즉, Polymer-OH에서, 시아노에틸 그룹에 의한 치환이 일어나지 않아 수산 기가 그대로 잔존하는 부분을 의미할 수 있다.
그리고, 상기 시아노에틸 기 함유 중합체에 있어서, 상기 화학식 2로 표시되는 제2 반복 단위 부분은, 위 반응식 중, 수산 기를 갖는 중합체, 즉, Polymer-OH에서, 시아노에틸 그룹으로 치환되어, 시아노에틸 그룹이 도입된 부분을 의미할 수 있다.
그리고, 상기 시아노에틸 기 함유 중합체에 있어서, 상기 화학식 3으로 표시되는 제3 반복 단위 부분은, 위 반응식 중, 수산 기를 갖는 중합체, 즉, Polymer-OH에서, 아미도에틸 그룹으로 치환되어, 아미드 그룹이 도입된 부분, 또는 시아노에틸 그룹이 도입된 이후 가수분해에 의해 아미드 그룹으로 전환된 부분을 의미할 수 있다.
그리고, 상기 시아노에틸 기 함유 중합체에 있어서, 상기 화학식 4로 표시되는 제4 반복 단위 부분은, 위 반응식 중, 수산 기를 갖는 중합체, 즉, Polymer-OH에서, 시아노에틸 그룹, 혹은 아미도에틸 그룹이 도입된 이후, 가수분해에 의해 카르복시 그룹으로 전환된 부분을 의미할 수 있다.
본 발명의 일 측면에 따른 비수전해질 전지 세퍼레이터에 사용되는 시아노에틸 기 함유 중합체는, 이와 같이, 치환이 이루어지지 않아 수산 기가 잔존하는 제1 반복 단위, 시아노에틸 그룹이 도입된 제2 반복 단위, 및 아미도에틸 그룹이 도입된 제3 반복 단위를 모두 포함하는 동시에 카르복시에틸 그룹이 도입된 제4 반복 단위를 상기 제1 내지 제4 반복 단위 총 반복 수에 대하여 약 1:10000 이하, 혹은 약 1:100000 이하로 포함하거나, 혹은 실질적으로 포함하지 않을 수 있다.
여기서 실질적으로 포함하지 않는다 함은, 시아노에틸 그룹 혹은 아미도에틸 그룹의 가수분해에 의해 극미량의 카르복시에틸 그룹이 도입될 가능성이 있으나, 실제 검출 장치의 검출 한계에 따라 검출이 이루어지지 않는 것을 의미한다.
본 발명의 일 측면에 따른 시아노에틸 기 함유 중합체는, 제1, 제2, 및 제3 반복 단위를 모두 포함하는 동시에, 제4 반복 단위를 실질적으로 포함하지 않아, 비수전해질 전지 세퍼레이터에 내열성 다공질층 형성 시, 무기 충전재를 견고하게 접착할 수 있으며, 무기 충전재의 분산성을 향상시켜 내열성을 더욱 크게 향상시킬 수 있다.
특히, 상기 제3 반복 단위, 즉 아미도에틸 그룹이 도입된 경우, 무기 충전재와 수소 결합 등의 상호 작용에 의해, 무기 충전재를 효과적으로 분산시킬 수 있는 것으로 생각되는데, 이러한 효과를 구현하기 위하여 아미도에틸 그룹의 치환 비율을 특정 범위로 조절하는 경우, 그의 가수 분해에 의해 생성되는 카르복시에틸 그룹의 치환률 역시 자연스럽게 높아지게 되어, 오히려 접합력과 분산성이 저하되는 문제점이 있다.
그러나, 본 발명의 일 실시예 따른 시아노에틸 기 함유 중합체는, 중합 혹은 중합 이후의 처리 과정 등에서 상술한 바와 같이 4급 암모늄 히드록시드 등을 촉매로 사용하기 때문에, 아미도에틸 그룹으로부터 카르복시에틸 그룹으로 전환되는 가수분해 반응을 효과적으로 억제할 수 있고, 이에 따라 아미도에틸 그룹의 치환 비율을 특정 범위로 조절할 수 있으면서도, 그와 동시에 카르복시에틸 그룹의 치환 비율을 약 1:10000 이하, 혹은 약 1:100000 이하로 조절하거나, 혹은 카르복시에틸 그룹이 도입되는 것을 실질적으로 막을 수 있다.
이 때, 상기 시아노에틸 그룹 함유 중합체 내에서, 상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제2 반복 단위의 반복 수 비율, 즉 시아노에틸 치환률은, 약 0.70 이상 약 0.95 이하일 수 있고, 그 하한 값은 약 0.70 이상, 또는 약 0.72 이상, 또는 약 0.74 이상일 수 있으며, 그 상한 값은 약 0.95 이하, 또는 약 0.9 이하, 또는 약 0.87 이하일 수 있다.
상술한 제2 반복 단위의 반복 수 비율은, 상기 반응식에서 Polymer-OH의 수산 기에 도입된 시아노에틸 기의 반복 수 비율로, 시아노에틸 기 함유 중합체의 시아노에틸 기 치환률을 의미할 수 있다. 이를 몰% 단위로 정리하면, 본 발명의 일 실시예에 따른 시아노에틸 기 함유 중합체는, 약 70 몰% 이상 약 95 몰% 이하로, 그 하한 값은 약 70 몰% 이상, 또는 약 72 몰% 이상 또는 약 74 몰% 이상일 수 있으며, 그 상한 값은 약 95 몰% 이하, 또는 약 90 몰% 이하, 또는 약 87 몰% 이하의 치환률로, 시아노에틸 기가 도입된 것일 수 있다.
그리고, 상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제3 반복 단위의 반복 수 비율, 즉 아미도에틸 치환률은 약 0.001 이상 약 0.070 이하일 수 있고, 그 하한 값은 약 0.001 이상, 또는 약 0.003이상, 또는 약 0.010 이상일 수 있으며, 그 상한 값은 약 0.070 이하, 또는 약 0.060 이하, 또는 약 0.050 이하일 수 있다.
상술한 제3 반복 단위의 반복 수 비율은, 상기 반응식에서 Polymer-OH의 수산 기에 시아노에틸 기가 도입된 후, 아미드화 반응에 의해 아미드 그룹이 도입된 반복 수의 비율로, 시아노에틸 기 함유 중합체의 아미도에틸 기 치환률을 의미할 수 있다. 이를 몰% 단위로 정리하면, 본 발명의 일 실시예에 따른 시아노에틸 기 함유 중합체는, 약 0.1 몰% 이상 약 7.0 몰% 이하, 그 하한 값은 약 0. 1 몰% 이상, 또는 약 0.3 몰% 이상, 또는 약 1.0 몰% 이상일 수 있으며, 그 상한 값은 약 7.0 몰% 이하, 또는 약 6.0 몰% 이하, 또는 약 5.0 몰% 이하의 치환률로, 아미도에틸 기가 도입된 것일 수 있다.
상기 범위의 시아노에틸 기 치환률을 가지는 시아노에틸 기 함유 중합체는, 무기 충전재의 접착력을 향상시킬 수 있으면서도, 이를 효과적으로 분산시킬 수 있게 된다.
여기에서, 시아노에틸 기 치환률 및 아미도에틸 기 치환률은 Kjeldahl method에 의해 측정한 시아노에틸 기 함유 중합체의 질소 함유량으로부터 산출하거나, 시료에 대한 NMR 데이터를 측정하고, 피크의 면적 값을 계산하여 도출할 수 있다.
그리고, 상기 시아노에틸 그룹 함유 중합체의 중량 평균 분자량 값은, 약 100,000 내지 약 500,000 g/mol일 수 있다. 상기 범위의 치환률과, 중합체의 분자량 등 복합적인 요소에 의해, 무기 충전재의 접착력을 향상시킬 수 있으며, 또한, 이를 효과적으로 분산시킬 수 있게 된다.
이 때, 중량 평균 분자량 값은, 폴리스티렌을 표준으로 사용한 겔 투과 크로마토그래피(GPC)에 의해 측정될 수 있다.
한편, 비수전해질 전지 세퍼레이터에 내열성 다공질 층 형성하기 위해 사용되는, 조성물은, 상술한 시아노에틸 기 함유 중합체 뿐만 아니라, 필요에 따라서 에틸렌-아세트산비닐 공중합체(EVA, 아세트산비닐 유래의 구조 단위가 20 내지 35몰%인 것), 아크릴레이트 공중합체, 스티렌부타디엔고무(SBR), 폴리비닐부티랄(PVB), 폴리비닐피롤리돈(PVP), 폴리우레탄, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴플루오라이드-트리클로로에틸렌, 폴리비닐리덴플루오라이드-클로로트리플루오로에틸렌 공중합체, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌, 폴리비닐리덴플루오라이드-트리클로로에틸렌, 셀룰로오스아세테이트, 셀룰로오스아세테이트부티레이트, 셀룰로오스아세테이트프로피오네이트 등의 수지를 더 포함할 수 있다.
이들 수지를 추가로 사용하는 경우, 시아노에틸 기 함유 중합체 100중량부 대비, 상기 수지를 약 10 내지 약 1,000 중량부로 혼합하여 사용할 수 있다.
비수전해질 전지용 세퍼레이터
한편, 본 발명의 일 측면에 따른, 비수전해질 전지용 세퍼레이터는 상술한 비수전해질 전지 세퍼레이터용 분산제 조성물을 포함하는 내열성 다공질 층과, 다공성 기재를 포함할 수 있다.
그리고, 상기 내열성 다공질 층은, 무기 충전재를 더 포함할 수 있다.
구체적으로, 본 발명의 비수전해질 전지용 세퍼레이터는, 상기 분산제 조성물과 무기 충전재를 포함하는 내열성 다공질 층, 및 다공성 기재를 구비하는 세퍼레이터일 수 있는데, 이 때, 상기 내열성 다공질 층은, 다공성 기재 표면의 한쪽면 또는 양면에 형성될 수 있고, 내부에 무기 충전재 사이의 공극에 기인하는 다수의 기공을 갖는 구조를 가질 수 있다.
내열성 다공질 층을 다공성 기재 표면의 한쪽 면에만 형성하는 경우에는, 양극 측 표면 또는 음극 측 표면 중 어디에 설치해도 무방하다.
한편, 상기 무기 충전재는 약 200 ℃ 이상의 융점을 갖고, 전기 절연성이 높고, 전기 화학적으로 안정적이고, 전해액이나, 내열성 다공질 층 형성용 슬러리에 이용하는 용매에 안정적인 것이라면 특별히 제한되지 않는다.
이러한 무기 충전재는, 예를 들어, 산화철, SiO2(실리카), Al2O3(알루미나), TiO2, BaTiO3, ZrO, PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3 등의 무기 산화물 미립자; 질화알루미늄, 질화규소 등의 무기 질화물 미립자; 불화칼슘, 불화바륨, 황산바륨 등의 난용성의 이온 결정 미립자; 실리콘, 다이아몬드 등의 공유결합성 결정 미립자; 탈크, 몬모릴로나이트 등의 점토 미립자; 베마이트, 제올라이트, 인회석, 카올린, 멀라이트, 스피넬, 올리빈, 견운모, 벤토나이트 등의 광물 자원 유래 물질 또는 리튬티탄포스페이트(LixTiy(PO4)3, 식 중, x 및 y는 0<x<2, 0<y<3을 만족하는 수임); 또는 이들의 조합 등을 들 수 있다.
상기 무기 충전재의 입경은 특별히 제한되지 않으나, 균일한 두께의 내열성 다공질 층을 형성함과 동시에, 적절한 공극률을 얻기 위해서, 평균 입경이 약 5 nm 내지 약 5 ㎛인 것이 사용될 수 있고, 바람직하게는, 약 0.01 내지 약 1 ㎛인 것이 사용될 수 있다.
한편 여기서, 평균 입경은 레이저 회절 산란법에 기초하는 측정 장치에 의해 측정될 수 있다.
무기 충전재의 직경이 너무 작은 경우, 분산성이 저하되어 세퍼레이터의 물성을 조절하기 어려운 문제점이 발생할 수 있다.
그리고, 무기 충전재의 직경이 너무 큰 경우, 내열성 다공질 층의 강도가 저하되고, 표면의 평활성이 저하되는 문제점이 발생할 수 있고, 또한 제조되는 내열성 다공질 층이 두꺼워져서 기계적인 물성이 저하될 우려가 있다.
한편, 내열성 다공질 층을 형성하는 방법에는, 특별히 제한은 없지만, 예를 들면, 상술한 분산제 조성물에 무기 충전재를 분산시킨 슬러리를 준비하여, 이를 다공성 기재 상에 코팅한 후, 용매를 건조 제거 방법 등을 사용할 수 있다.
여기서, 분산제 조성물에 사용되는 용매는 상술한 시아노에틸 기 함유 중합체를 용해할 수 있는 것이라면 특별히 제한되지 않으며, 일례로 아세톤, 테트라히드로퓨란, 시클로헥사논, 에틸렌글리콜모노메틸에테르, 메틸에틸케톤, 아세토니트릴, 퍼퓨릴알콜, 테트라히드로퍼퓨릴알콜, 메틸아세토아세테이트, 니트로메탄, N,N-디메틸포름아미드(DMF), N-메틸-2-피롤리돈, γ-부티로락톤, 프로필렌카르보네이트 등일 수 있다.
이러한 용매는 시아노에틸 기 함유 중합체 및 수지 성분 100 중량부 대비, 약 300 내지 약 5,000 중량부 비율로 사용될 수 있다.
그리고, 상술한 분산제 조성물에 무기 충전재를 분산시키는 방법으로서는 공지된 교반기, 분산기, 분쇄기 등을 사용할 수 있고, 구체적으로 볼 밀 법을 이용할 수 있다.
상기 슬러리 중의 분산제 조성물과 무기 충전재 간의 상대적 함량비는 특별히 제한되지 않으며, 제조하고자 하는 내열성 다공질 층의 두께, 평균 기공 직경 및 기공도에 따라 다르게 조절할 수 있다.
구체적으로, 내열성 다공질 층 중 무기 충전재의 함량은 약 50 중량% 이상, 또는 약 95 중량% 이하일 수 있다.
무기 충전재의 함량이 너무 낮은 경우, 내열성 다공질 층 중의 기공의 비율이 작아져 전지 성능이 저하되거나, 충분한 내열성이 얻어지지 않는 문제점이 발생할 수 있고, 무기 충전재의 함량이 너무 높은 경우, 내열성 다공질 층이 취약해져서, 취급이 어려워지는 문제점이 발생할 수 있다.
한편, 내열성 다공질 층은 기공에 의해 이온 전도 경로가 확보되기 때문에 저-저항화가 가능해진다. 평균 기공 직경은 후술한 전해액 중의 리튬 이온이 통과할 수 있는 크기이면 특별히 한정되지 않지만, 내열성 다공질 층의 기계적 강도의 관점에서, 약 5 nm 내지 약 5 ㎛, 바람직하게는 약 0.1 내지 약 3 ㎛일 수 있고, 기공도는 약 5 내지 약 95 %, 바람직하게는 약 20 내지 약 70 %의 범위 내일 수 있다.
여기서, 평균 기공 직경은 수은 압입식 세공 측정기에 의해 측정할 수 있고, 기공도는 무기 충전재의 진밀도(d), 내열성 다공질 층의 부피(v) 및 내열성 다공질 층의 질량(m)을 구하고, 이하의 식에 의해 산출될 수 있다.
기공도(%)={1-m/(vd)}×100
상기 범위의 평균 기공 직경 값 및 기공도 값을 갖는 내열성 다공질 층은, 상술한 바와 같이, 무기 충전재의 입경이나 함량을 제어함으로써 얻을 수 있다.
한편, 다공성 기재는 열가소성 수지 성분을 포함하는 것일 수 있다.
열가소성 수지 성분을 다공성 기재는, 온도가 일정 이상 상승하면 용융하여 기공이 닫힐 수 있으며, 이에 따라 이온의 이동이 저지되고, 전류가 흐르지 않게 되어, 발열이나 발화를 억제할 수 있다.
다공성 기재로 사용될 수 있는 열가소성 수지는 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지; 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스터 수지; 폴리아세탈 수지, 폴리아미드 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리에테르에테르케톤 수지, 폴리에테르술폰 수지, 또는 이것들의 조합한 것일 수 있다.
한편, 상기 다공성 기재는 바람직하게는 막의 형태를 가질 수 있고, 그 두께는 특별히 제한되지 않지만, 약 2 내지 약 50 ㎛ 정도가 바람직하다. 두께가 너무 얇은 경우, 기계적 물성을 유지하기 어려운 문제점이 있을 수 있고, 두께가 너무 두꺼운 경우, 저항층으로서 작용하는 문제점이 발생할 수 있다.
또한, 다공성 기재의 평균 기공 직경 및 기공도는 특별히 제한은 없지만, 평균 기공 직경은 약 0.1 내지 약 30 ㎛, 기공도는 약 10 % 내지 약 90 %인 것이 바람직할 수 있다.
기공 크기가 너무 작거나, 기공도가 너무 낮은 경우, 이온 전도성이 나빠지는 문제가 발생할 수 있고, 평균 기공 직경이 너무 크거나, 기공도가 너무 높은 경우, 기계적 강도가 저하되어, 기재로서의 기능을 할 수 없게 되는 문제점이 발생할 수 있다.
평균 기공 직경은 내열성 다공질 층의 경우와 동일하게 하여 측정할 수 있다. 한편, 기공도는 다공성 기재의 진밀도(d), 다공성 기재의 부피(v) 및 다공성 기재의 질량(m)을 구하고, 이하의 식에 의해 산출될 수 있다.
기공도(%)={1-m/(vd)}×100
한편, 상기 슬러리를 다공성 기재 상에 코팅하는 방법으로서는 당해 기술분야에 있어서 통상의 도포법을 사용할 수 있고, 필요로 하는 층두께나 도포 면적을 실현할 수 있는 방법이면 특별히 한정하지 않는다. 예를 들면 그라비아 코터법, 리버스롤 코터법, 트랜스퍼롤 코터법, 키스 코터법, 디프 코터법, 나이프 코터법, 에어닥터 코터법, 블레이드 코터법, 로드 코터법, 스퀴즈 코터법, 캐스트 코터법, 다이 코터법, 스크린 인쇄법, 스프레이 도포법 등의 방식을 사용할 수 있다.
상기와 같이 얻어진 비수전해질 전지 세퍼레이터의 전체 두께는 특별히 제한되지 않고, 전지의 용도 및 성능을 고려하여 조절될 수 있는데, 양극과 음극을 보다 확실하게 분리하기 위한 관점에서, 약 2 내지 약 55 ㎛의 범위 내일 수 있다.
비수전해질 전지
한편, 본 발명의 일 측면에 따른 비수전해질 전지는 양극, 음극, 상술한 비수전해질 전지용 세퍼레이터 및 전해액을 포함할 수 있다.
구체적으로, 양극과 음극의 사이에 상기 비수전해질 전지용 세퍼레이터를 배치하고, 여기에 전해액을 함침시킴으로써 비수전해질 전지를 제조할 수 있다.
내열성 다공질 층이 다공성 기재의 한쪽 면에만 구비된 비수전해질 전지용 세퍼레이터를 이용하는 경우, 내열성 다공질 층을 구비하는 면을 양극 측, 또는 음극 측 중 어디에 위치하도록 배치하여도 무방하다.
본 발명의 비수전해질 전지는, 예를 들어, 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 중합체 이차 전지, 또는 리튬 이온 중합체 이차 전지 등을 포함하는 리튬 이차 전지를 들 수 있다.
한편, 상기 양극 및 음극은 일반적으로 바인더를 녹인 용액에 양극 혹은 음극 활 물질 및 도전제를 분산시킨 전극 합제를 집전체에 도포함으로써 제조될 수 있다.
양극 활 물질로서, Li1+xMO2(-0.1<x<0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, Sn 등)의 화학식으로 대표되는 층상 구조의 리튬 함유 전이 금속 산화물, LiMn2O4이나 그의 원소의 일부를 다른 원소로 치환한 스피넬 구조의 리튬망간 산화물, LiMPO4(M: Co, Ni, Mn, Fe 등)로 표시되는 올리빈형 화합물 등을 이용하는 것이 모두 가능하다.
상기 층상 구조의 리튬 함유 전이 금속 산화물은, 예를 들어, LiCoO2나 LiNi1-xCox-yAlyO2(0.1≤x≤0.3, 0.01≤y≤0.2) 등 외, 적어도 Co, Ni 및 Mn을 포함하는 산화물(LiMn1/3Ni1/3Co1/3O2, LiMn5/12Ni5/12Co1/6O2, LiNi3/5Mn1/5Co1/5O2 등) 등을 들 수 있다.
한편, 음극 활 물질은, 예를 들어, 리튬 금속, 리튬알루미늄 합금 등의 리튬 합금, 리튬을 흡장·방출할 수 있는 탄소질 재료, 흑연, 페놀 수지, 푸란 수지 등의 코우크스류, 탄소 섬유, 유리상 탄소, 열분해 탄소, 활성탄 등을 들 수 있다.
한편, 양극 집전체는, 예를 들어, 알루미늄, 니켈 또는 이들의 조합에 의해 제조되는 박형 금속체 등이 이용될 수 있고, 음극 집전체는, 예를 들어, 구리, 금, 니켈, 구리 합금 또는 이들의 조합에 의해 제조되는 박형 금속체 등이 이용될 수 있다.
한편, 도전제는, 예를 들어, 아세틸렌 블랙, 케첸 블랙 등의 카본 블랙; 알루미늄, 니켈 등의 금속 섬유; 천연 흑연, 열팽창 흑연, 탄소 섬유, 산화루테늄, 산화티탄 등이 사용될 수 있다. 이들 중에서도, 소량의 배합으로 원하는 도전성을 확보할 수 있는 아세틸렌 블랙, 케첸 블랙이 바람직하게 사용될 수 있다.
한편, 바인더는 공지된 각종 바인더를 사용할 수 있고, 일례로 폴리테트라플루오로에틸렌, 폴리불화비닐리덴, 카르복시메틸셀룰로오스, 플루오로올레핀 공중합체 가교 중합체, 스티렌-부타디엔 공중합체, 폴리아크릴로니트릴, 폴리비닐알콜 등이 사용될 수 있다.
상기 바인더는 용제에 녹인 것을 이용할 수도 있는데, 용제로서는 예를 들면 N-메틸-2-피롤리돈(NMP) 등이 사용될 수 있다.
한편, 전해액으로서는 리튬 염을 유기 용매에 용해한 용액이 이용된다. 리튬 염으로서는 용매 중에서 해리하여 Li+이온을 형성하고, 전지로서 사용되는 전압 범위에서 분해 등의 부 반응을 일으키기 어려운 것이면 특별히 제한은 없다.
예를 들면 LiClO4, LiPF6, LiBF4, LiAsF6, LiSbF6 등의 무기 리튬 염, LiCF3SO3, LiCF3CO2, Li2C2F4(SO3)2, LiN(CF3SO2)2, LiC(CF3SO2)3, LiCnF2n+1SO3(n≥2), LiN(RfOSO2)2(식 중, Rf는 플루오로알킬기를 나타냄) 등의 유기 리튬 염 등을 사용할 수 있다. 바람직한 리튬 염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3, Li(CF3SO2)2N이다.
한편, 전해액에 이용하는 유기 용매로서는 상기한 리튬 염을 용해하고, 전지로서 사용되는 전압 범위에서 분해 등의 부반응을 일으키지 않는 것이면 특별히 제한은 없다. 예를 들면 프로필렌카보네이트, 에틸렌카보네이트 등의 환상 탄산 에스터, 에틸메틸카보네이트, 디에틸카보네이트, 디메틸카보네이트, 디프로필카보네이트 등의 쇄상 탄산 에스터, 또는 이들의 혼합물을 예시할 수 있지만 이것에 한정되는 것은 아니다.
환상 탄산 에스터와 쇄상 탄산 에스터의 혼합물을 이용하는 경우, 환상 탄산 에스터와 쇄상 탄산 에스터의 부피 비는, 유전율과 점성의 최적화의 관점에서, 약 4:1 내지 약 1:4인 것이 바람직하다.
한편, 본 발명의 비수전해질 전지의 형태로서는 스틸 캔, 알루미늄 캔 등을 외장체(외장 캔)로 사용한 다면체 형이나 원통형 등일 수도 있고, 금속을 증착한 라미네이트 필름을 외장체로 한 패키지 전지일 수도 있으나, 특별히 제한되지 않는다.
본 발명의 비수전해질 전지용 세퍼레이터 조성물은, 세퍼레이터의 내열성 다공질 층 형성 시 무기 충전재를 견고하게 접착시킬 뿐만 아니라 이를 효과적으로 분산하여 세퍼레이터의 내열성을 더욱 향상시킬 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
시아노에틸 치환률은, 하기 합성예에서 생성된 시아노에틸화 폴리비닐알콜에 대하여, Kjeldahl Method를 통해 질소 함유량을 구한 후, 중합체의 반복 단위당 원래 존재하였던 수산 기의 몰수에 대한 % 비율로 산출하였다.
아미도에틸 치환률은 시료의 H1-NMR 스펙트럼을 얻은 후, 질소 원자에 결합된 수소에 해당하는 피크의 면적을 계산하여 산출하였다.
카르복시에틸 치환률은 시료의 IR 스펙트럼을 얻은 후, 카르복실 그룹(-COO-)에 해당하는 피크의 면적을 계산하여 산출하였다.
중량 평균 분자량 값은, GPC를 통해 분석하였으며, GPC의 측정 조건은 하기와 같다.
장치: 겔 침투 크로마토그래피 GPC (측정 기기 명: Alliance e2695; 제조사: WATERS)
검출기: 시차 굴절률 검출기 (측정 기기 명: W2414; 제조사: WATERS)
칼럼: DMF 칼럼
유속: 1 mL/분
칼럼 온도: 65℃
주입량: 0.100 mL
표준화 시료: 폴리스티렌
슬러리의 평균 입경은 입도 분석기(Mastersizer, Malvern社)를 통해 측정하였다.
슬러리의 침강 속도는 LUMiSizer 장비를 이용하여 측정하였다.
<실시예>
아크릴아미드 단량체를 사용한 중합체의 제조
실시예 1-1
폴리비닐알콜(PVA) 1 중량부, Acrylonitrile (AN) 6 중량부, 아크릴아미드 2 중량부, 촉매로 벤질트리메틸암모늄 히드록시드(3.83 wt% 수용액) 1.32 중량부를 교반기 장착 반응기에 투입하고, 50℃에서 90 분 간 유지하며 반응을 진행하였다.
여기에 아세톤 3 중량부와 물 0.3 중량부를 가하고, 40분 동안 교반한 후, 아세트산(25 wt% 수용액) 0.088 중량부를 투입하여 반응을 종결하고, 시아노에틸 그룹 및 아미도에틸 그룹이 도입된 폴리비닐알콜을 수득하였다.
시아노에틸 그룹의 치환률은 75.3 몰%, 아미도에틸 그룹의 치환률은 4.2 몰% 이었으며, IR 스펙트럼에서 카르복실 그룹에 해당하는 피크는 관찰할 수 없었다.(Mw: 390,000)
실시예 1-2
폴리비닐알콜(PVA) 1 중량부, Acrylonitrile (AN) 6 중량부, 아크릴아미드 2 중량부, 촉매로 벤질트리메틸암모늄 히드록시드(5.5 wt% 수용액) 1.32 중량부를 교반기 장착 반응기에 투입하고, 50℃에서 90 분 간 유지하며 반응을 진행하였다.
여기에 아세톤 3 중량부와 물 0.3 중량부를 가하고, 40분 동안 교반한 후, 아세트산(25 wt% 수용액) 0.088 중량부를 투입하여 반응을 종결하고, 시아노에틸 그룹 및 아미도에틸 그룹이 도입된 폴리비닐알콜을 수득하였다.
시아노에틸 그룹의 치환률은 76.2 몰%, 아미도에틸 그룹의 치환률은 3.1 몰% 이었으며, IR 스펙트럼에서 카르복실 그룹에 해당하는 피크는 관찰할 수 없었다.(Mw: 362,000)
실시예 1-3
폴리비닐알콜(PVA) 1 중량부, Acrylonitrile (AN) 6 중량부, 아크릴아미드 2 중량부, 촉매로 벤질트리메틸암모늄 히드록시드(6.49 wt% 수용액) 1.32 중량부를 교반기 장착 반응기에 투입하고, 50℃에서 90 분 간 유지하며 반응을 진행하였다.
여기에 아세톤 3 중량부와 물 0.3 중량부를 가하고, 40분 동안 교반한 후, 아세트산(25 wt% 수용액) 0.088 중량부를 투입하여 반응을 종결하고, 시아노에틸 그룹 및 아미도에틸 그룹이 도입된 폴리비닐알콜을 수득하였다.
시아노에틸 그룹의 치환률은 74.5 몰%, 아미도에틸 그룹의 치환률은 3.5 몰% 이었으며, IR 스펙트럼에서 카르복실 그룹에 해당하는 피크는 관찰할 수 없었다.(Mw: 402,000)
실시예 1-4
폴리비닐알콜(PVA) 1 중량부, Acrylonitrile (AN) 6 중량부, 아크릴아미드 3 중량부, 촉매로 벤질트리메틸암모늄 히드록시드(3.83 wt% 수용액) 1.32 중량부를 교반기 장착 반응기에 투입하고, 50℃에서 90 분 간 유지하며 반응을 진행하였다.
여기에 아세톤 3 중량부와 물 0.3 중량부를 가하고, 40분 동안 교반한 후, 아세트산(25 wt% 수용액) 0.088 중량부를 투입하여 반응을 종결하고, 시아노에틸 그룹 및 아미도에틸 그룹이 도입된 폴리비닐알콜을 수득하였다.
시아노에틸 그룹의 치환률은 74.3 몰%, 아미도에틸 그룹의 치환률은 5.0 몰% 이었으며, IR 스펙트럼에서 카르복실 그룹에 해당하는 피크는 관찰할 수 없었다.(Mw: 399,000)
상기 실시예 1 내지 4에서 제조된 시아노에틸 그룹 함유 중합체의 특징을 하기 표 1에 정리하였다.
Figure PCTKR2019013770-appb-T000001
마이클 반응 후 일정시간 방치한 중합체의 제조
중합체 제조
폴리비닐알콜(PVA) 30 g, Acrylonitrile (AN) 135 g을 교반기 장착 반응기에투입하고, 50℃로 유지하였다.
여기에 1차로, 벤질트리메틸암모늄 하이드록사이드(4.18 wt% 수용액) 6.6g을 투입하고, 50분 간 유지하였다.
다시, 2차로, 벤질트리메틸암모늄 하이드록사이드(4.18 wt% 수용액) 33.3g을 투입하고, 50분 간 유지하였다.
여기에 아세톤 72 g과 물 9 g을 가하고 10시간 동안 반응을 진행하면서, 반응 시간에 따라 생성물 시료를 채취하였다.
얻어진, 생성물 시료의 중량 평균 분자량 값은 약 250,000g/mol로 확인되었다.
결과를 하기 표 2에 정리하였으며, 하기 표에 정리된 시간은, 물과 아세톤을 투입한 시점을 기준으로 한다.
비교예로는, 중량 평균 분자량 값이 약 250,000 g/mol이고, 시아노에틸 치환률이 약 83 몰%이며, 아미드 치환률이 0 몰%인, 시아노에틸화 폴리비닐알콜을 준비하였다.
Figure PCTKR2019013770-appb-T000002
슬러리 제조
아세톤 320 중량부에 상기 실시예 및 비교예 각각으로부터 얻은 폴리비닐알콜계 중합체 1중량부, 바인더로, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 7중량부를 첨가하고 50℃에서 12시간 용해시켰다. 이에 무기물 입자로, 수 평균 입경이 500nm인 Al2O3 72 중량부를 첨가하고 볼 밀 법을 이용하여 슬러리를 제조하고, 슬러리의 입경 특성 및 침강 속도를 측정하였다.
입경 특성 측정
상기에서 제조된 슬러리 조성물에 대하여, 입경 분석기를 이용하여, 입경을 측정하였다.
침강 속도 측정
바인더의 분산력을 확인하기 위해 실시예 및 비교예에서 제조한 슬러리를 분산 안정성 분산기(LUMiSizer)를 이용하여 1,000 rpm으로 회전시키면서 25℃에서 알루미나의 침강 속도를 측정하고, 그 결과를 하기 표 1에 나타내었다. 참고로, 시아노에틸 기 함유 중합체의 분산력이 우수할수록 알루미나가 잘 분산되어 느리게 침강된다.
측정 결과를 하기 표 3에 정리하였다.
접착력 실험용 전극 제조
인조 흑연, 카본 블랙, CMC, 바인더를 96:1:1:2의 중량비로 물과 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 50 ㎛의 두께를 갖는 구리 호일 위에 코팅하고 80℃에서 1 시간 이상 건조시킨 후 압연(pressing)하여 음극을 제조하였다.
상기에서 제조한 시아노에틸 기 함유 중합체와 무기물 입자의 슬러리를 닥터 블레이드를 이용하여 폴리에틸렌 다공성 기재의 일면에 도포하고 건조하여 다공성 코팅층이 형성된 분리막을 준비하였다.
상기 음극과 분리막을 라미네이션 장비에 넣어 접착시키고, 이 샘플을 UTM 장비를 이용하여 100 mm/min의 속도로 박리하면서, 전극과 분리막의 접착면이 박리되는데 필요한 힘을 측정하였다.
측정 결과를 하기 표 3에 정리하였다.
Figure PCTKR2019013770-appb-T000003
상기 표를 참고하면, 본원의 일 실시예에 따른 시아노에틸 기 함유 중합체를 이용하여 제조된 슬러리는, 비교예에 비해, 분산력이 우수하여, 알루미나를 잘 분산시킬 수 있으며, 이에 따라 비교예보다 더 느리게 침강되는 것을 확인할 수 있다.
또한, 이러한 시아노에틸 기 함유 중합체를 이용하여 제조된 분리막은, 전극과 분리막 사이에 접착력이 매우 우수한 것을 명확히 확인할 수 있으며, 특히 실시예 1-4 등의 경우, 비교예 보다 30% 가량 더 우수한 접착력을 구현할 수 있는 것을 명확히 확인할 수 있다.

Claims (10)

  1. 하기 화학식 1로 표시되는 제1 반복 단위, 하기 화학식 2로 표시되는 제2 반복 단위, 및 하기 화학식 3으로 표시되는 제3 반복 단위를 포함하는, 시아노에틸 그룹 함유 중합체를 포함하며;
    상기 시아노에틸 그룹 함유 중합체 내에서 상기 제1 내지 제4 반복 단위 총 반복 수에 대한 상기 제4 반복 단위 반복 수의 비율이, 1:10000 이하인,
    비수전해질 전지 세퍼레이터용 분산제 조성물:
    [화학식 1]
    Figure PCTKR2019013770-appb-I000015
    상기 화학식 1에서,
    R1은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
    [화학식 2]
    Figure PCTKR2019013770-appb-I000016
    상기 화학식 2에서,
    R21은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
    R22는, 옥시에틸렌 그룹이고,
    [화학식 3]
    Figure PCTKR2019013770-appb-I000017
    상기 화학식 3에서,
    R31은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
    R32는, 옥시에틸렌 그룹이고,
    [화학식 4]
    Figure PCTKR2019013770-appb-I000018
    상기 화학식 4에서,
    R41은, 수소, 또는 탄소수 1 내지 3의 알킬 그룹이고;
    R42는, 옥시에틸렌 그룹이다.
  2. 제1항에 있어서,
    상기 시아노에틸 그룹 함유 중합체 내에서,
    상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제2 반복 단위의 반복 수 비율이, 0.70 이상 0.95 이하인, 비수전해질 전지 세퍼레이터용 분산제 조성물.
  3. 제1항에 있어서,
    상기 제1 내지 제4 반복 단위 총 반복 수에 대한, 상기 제3 반복 단위의 반복 수 비율이, 0.001 이상 0.070 이하인,
    비수전해질 전지 세퍼레이터용 분산제 조성물.
  4. 제1항에 있어서,
    상기 R1, R21, R31 및 R41은, 각각 독립적으로, 동일하거나 상이하게, 수소 또는 메틸인, 비수전해질 전지 세퍼레이터용 분산제 조성물.
  5. 제1항에 있어서,
    상기 시아노에틸 그룹 함유 중합체의 중량 평균 분자량 값이 100,000 내지 500,000 g/mol인, 비수전해질 전지 세퍼레이터용 분산제 조성물.
  6. 제1항 내지 제5항 중 어느 한 항의 비수전해질 전지 세퍼레이터용 분산제 조성물을 포함하는, 내열성 다공질 층; 및
    다공성 기재를 포함하는;
    비수전해질 전지용 세퍼레이터.
  7. 제6항에 있어서, 상기 내열성 다공질 층은, 무기 충전재를 더 포함하는, 비수전해질 전지용 세퍼레이터.
  8. 제7항에 있어서,
    상기 무기 충전재는 무기 산화물, 무기 질화물, 난용성 이온 결정 미립자, 공유결합성 결정, 점토, 광물 자원 유래 물질, 리튬티탄포스페이트, 및 이들의 조합으로 이루어지는 군으로부터 선택되는 비수전해질 전지용 세퍼레이터.
  9. 제6항에 있어서,
    상기 다공성 기재는 폴리올레핀 수지, 폴리에스터 수지, 폴리아세탈 수지, 폴리아미드 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리에테르에테르케톤 수지, 폴리에테르술폰 수지 및 이들 조합으로 이루어진 군에서 선택되는 1종의 수지를 포함하는 기재인, 비수전해질 전지용 세퍼레이터.
  10. 양극, 음극, 제6항의 비수전해질 전지용 세퍼레이터, 및 전해액을 포함하는, 비수전해질 전지.
PCT/KR2019/013770 2018-10-19 2019-10-18 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지 WO2020080897A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19874540.8A EP3845594A4 (en) 2018-10-19 2019-10-18 Dispersant for non-aqueous electrolyte battery separator including cyanoethyl group-containing polymer, non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery
US17/283,789 US20210380778A1 (en) 2018-10-19 2019-10-18 Dispersant For Separator Of Non-Aqueous Electrolyte Battery Including Cyanoethyl Group-Containing Polymer, Separator Of Non-Aqueous Electrolyte Battery, And Non-Aqueous Electrolyte Battery
CN201980067312.5A CN112867760B (zh) 2018-10-19 2019-10-18 包含含氰乙基的聚合物的用于非水电解液电池的隔膜的分散剂、隔膜和非水电解液电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180125501 2018-10-19
KR10-2018-0125501 2018-10-19
KR10-2018-0130144 2018-10-29
KR20180130144 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020080897A1 true WO2020080897A1 (ko) 2020-04-23

Family

ID=70283498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013770 WO2020080897A1 (ko) 2018-10-19 2019-10-18 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지

Country Status (5)

Country Link
US (1) US20210380778A1 (ko)
EP (1) EP3845594A4 (ko)
KR (1) KR102322612B1 (ko)
CN (1) CN112867760B (ko)
WO (1) WO2020080897A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663399A (zh) * 2022-12-28 2023-01-31 江苏卓高新材料科技有限公司 一种复合隔膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216329B1 (ko) * 2020-08-25 2021-02-17 (주)에코케미칼 2-시아노에틸기를 포함하는 유기화합물 및 이의 제조방법
US11894520B2 (en) 2022-01-13 2024-02-06 Lg Energy Solution, Ltd. Non-aqueous electrolyte including additive for non-aqueous electrolyte, and lithium secondary battery including the non-aqueous electrolyte
KR102412924B1 (ko) * 2022-03-28 2022-06-24 엘티소재주식회사 시아노에틸기 함유 중합체의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340672A (en) * 1992-07-06 1994-08-23 Fuji Photo Film Co., Ltd. Secondary battery
KR20090118089A (ko) * 2007-12-21 2009-11-17 창조우 종케 라이팡 파워 사이언스 & 테크놀로지 컴퍼니., 리미티드. 리튬 이온전지용 미세다공성 폴리머 분리막 및 그 제조방법
KR20090123894A (ko) * 2007-12-21 2009-12-02 창조우 종케 라이팡 파워 사이언스 & 테크놀로지 컴퍼니., 리미티드. 미세다공성 강화 부직포 고분자 분리막,그 제조방법 및 용도
KR20170001069A (ko) * 2015-06-25 2017-01-04 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
KR20180075912A (ko) * 2016-12-27 2018-07-05 주식회사 엘지화학 시아노에틸기 함유 중합체 및 이의 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794198A1 (en) * 1996-03-06 1997-09-10 Dai-Ichi Kogyo Seiyaku Co., Ltd. Modified polyvinyl alcohol
US8729185B2 (en) * 2011-04-05 2014-05-20 Shin-Etsu Chemical Co., Ltd. Method for producing 2-cyanoethyl group-containing organic compound
US8916283B2 (en) * 2011-04-05 2014-12-23 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR102224895B1 (ko) * 2017-03-02 2021-03-05 주식회사 엘지화학 바인더, 이를 포함하는 분리막 및 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340672A (en) * 1992-07-06 1994-08-23 Fuji Photo Film Co., Ltd. Secondary battery
KR20090118089A (ko) * 2007-12-21 2009-11-17 창조우 종케 라이팡 파워 사이언스 & 테크놀로지 컴퍼니., 리미티드. 리튬 이온전지용 미세다공성 폴리머 분리막 및 그 제조방법
KR20090123894A (ko) * 2007-12-21 2009-12-02 창조우 종케 라이팡 파워 사이언스 & 테크놀로지 컴퍼니., 리미티드. 미세다공성 강화 부직포 고분자 분리막,그 제조방법 및 용도
KR20170001069A (ko) * 2015-06-25 2017-01-04 삼성전자주식회사 리튬금속전지용 음극 및 이를 포함하는 리튬금속전지
KR20180075912A (ko) * 2016-12-27 2018-07-05 주식회사 엘지화학 시아노에틸기 함유 중합체 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845594A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663399A (zh) * 2022-12-28 2023-01-31 江苏卓高新材料科技有限公司 一种复合隔膜及其制备方法和应用

Also Published As

Publication number Publication date
EP3845594A1 (en) 2021-07-07
CN112867760B (zh) 2023-03-28
EP3845594A4 (en) 2021-12-29
KR102322612B1 (ko) 2021-11-08
CN112867760A (zh) 2021-05-28
KR20200044701A (ko) 2020-04-29
US20210380778A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2018212566A1 (ko) 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2015056907A1 (ko) 분리막 및 그를 포함하는 리튬-황 전지
WO2015030531A1 (ko) 다공성 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 음극 활물질
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2017164624A1 (ko) 표면 코팅된 양극 활물질 입자 및 이를 포함하는 이차 전지
WO2020141684A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019245343A1 (ko) 전기화학소자용 세퍼레이터, 이를 포함하는 전기화학소자 및 세퍼레이터의 제조방법
WO2024080826A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2024049190A1 (ko) 바인더 조성물, 상기 바인더 조성물 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2021133027A1 (ko) 음극용 바인더 조성물, 음극, 및 이차전지
WO2021225359A1 (ko) 기계적 강도가 향상된 고분자계 고체 전해질 및 이의 제조 방법, 및 이 고체 전해질을 포함하는 리튬 이차전지
WO2018012881A1 (ko) 이차전지 전극용 바인더, 이를 포함하는 이차전지 전극용 조성물 및 이를 이용한 이차전지
WO2023074967A1 (ko) 분리막용 공중합체 및 이를 포함하는 이차전지
WO2020130268A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2022092984A1 (ko) 비수전해질 전지 세퍼레이터용 조성물, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2019098612A1 (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지
WO2023106850A1 (ko) 고체 전해질 및 이의 제조방법
WO2023038474A1 (ko) 전기화학소자용 전극 및 이를 구비한 전기화학소자
WO2019022522A1 (ko) 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019874540

Country of ref document: EP

Effective date: 20210330

NENP Non-entry into the national phase

Ref country code: DE