WO2018012877A1 - 고분자, 및 이를 포함하는 전해질과 리튬 전지 - Google Patents

고분자, 및 이를 포함하는 전해질과 리튬 전지 Download PDF

Info

Publication number
WO2018012877A1
WO2018012877A1 PCT/KR2017/007461 KR2017007461W WO2018012877A1 WO 2018012877 A1 WO2018012877 A1 WO 2018012877A1 KR 2017007461 W KR2017007461 W KR 2017007461W WO 2018012877 A1 WO2018012877 A1 WO 2018012877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
polymer
Prior art date
Application number
PCT/KR2017/007461
Other languages
English (en)
French (fr)
Inventor
정명환
김경수
유용찬
한만석
김태정
조이랑
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to CN201780043150.2A priority Critical patent/CN109476838A/zh
Priority to US16/315,034 priority patent/US11183709B2/en
Publication of WO2018012877A1 publication Critical patent/WO2018012877A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/326Polymers modified by chemical after-treatment with inorganic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • It relates to a polymer and an electrolyte and a lithium battery containing the polymer.
  • Lithium batteries are used as power sources for portable electronic devices such as video cameras, mobile phones, and notebook computers.
  • Rechargeable lithium secondary batteries are more than three times higher in energy density per unit weight and can be charged faster than conventional lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries and nickel zinc batteries.
  • an organic electrolyte is used for a lithium battery.
  • the organic electrolyte is prepared by dissolving lithium salt in an organic solvent.
  • the organic electrolyte has a risk of explosion at high temperatures and has problems such as leakage and requires a gel or a solid electrolyte.
  • Representative gels or solid electrolytes are polymer electrolytes.
  • the polymer electrolyte includes a polymer such as polyethylene oxide (PEO).
  • PEO polyethylene oxide
  • polymer electrolytes containing polyethylene oxide have poor ion conductivity, thermal properties, and mechanical properties.
  • One aspect is to provide new polymers.
  • Another aspect is to provide an electrolyte comprising the polymer.
  • Another aspect is to provide a lithium battery comprising the polymer.
  • a polymer represented by the following formula (1) is provided:
  • CY is a 6 membered to 30 membered ring group, comprising a carbon atom of C 2 -C 30, optionally including one or more heteroatoms,
  • the 6 to 30 membered ring group is an unsubstituted or substituted C3-C30 cycloalkyl ring, an unsubstituted or substituted C3-C30 heterocycloalkyl ring, an unsubstituted or substituted C6-C30 aryl ring, or an unsubstituted A substituted or substituted C2-C30 heteroaryl ring,
  • X1, X2 and X4 are each independently covalently bonded; Unsubstituted or substituted C1-C4 alkylene group; Or a linking group containing a hetero atom,
  • X3 is a repeating unit containing a hetero atom
  • X 5 - is an anionic functional group
  • M + is a cation
  • G 1 and G 2 are independently of each other -O-, -S-, or -OC 6 H 5- ,
  • a 1, and A 2 is a group (crosslinkable functional group) group crosslinking
  • a is 2 to 5
  • n1 is 2 to 100
  • n2 is 1 to 300.
  • An electrolyte comprising a lithium salt is provided.
  • a lithium battery comprising the organic electrolyte according to the above is provided.
  • the ion conductivity, thermal and mechanical properties of the electrolyte may be improved.
  • FIG. 1 is a schematic diagram of a lithium battery according to an exemplary embodiment.
  • lithium battery 2 negative electrode
  • a specific process order may be performed differently from the described order.
  • two processes described in succession may be performed substantially simultaneously or in the reverse order of the described order.
  • the polymer is represented by Formula 1:
  • CY is a 6-membered to 30-membered ring group comprising a C2-C30 carbon atom, optionally comprising one or more heteroatoms, wherein the 6- to 30-membered ring group is unsubstituted or Substituted C3-C30 cycloalkyl ring, unsubstituted or substituted C3-C30 heterocycloalkyl ring, unsubstituted or substituted C6-C30 aryl ring, or unsubstituted or substituted C2-C30 heteroaryl ring
  • X1, X2 and X4 are covalently bonded to each other independently; Unsubstituted or substituted C1-C4 alkylene group; Or a linking group containing a hetero atom, X 3 is a repeating unit including a hetero atom, X 5 ⁇ is an anionic functional group, M + is a cation, and G 1 and G 2 are independently of each other —O— , -S-
  • the polymer may be improved in mechanical properties by including two or more ring groups (CY), flexibility may be improved by including a repeating unit (X3) containing a hetero atom. Accordingly, the polymer may provide improved ion conductivity, thermal and mechanical properties by controlling the length of the polymer by simultaneously including a repeating unit (X3) including a ring group (CY) and a hetero atom. It can be adjusted easily. Therefore, physical properties of the electrolyte and the lithium battery including the polymer may be improved.
  • the substituents of the C3-C30 cycloalkyl ring, C3-C30 heterocycloalkyl ring, C6-C30 aryl ring, C2-C30 heteroaryl ring and C2-C30 alkylene group are each independently substituted with hydrogen, halogen, halogen or Unsubstituted alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms substituted or unsubstituted with halogen, alkenyl groups having 2 to 20 carbon atoms substituted or unsubstituted with halogen, and 3 to 3 carbon atoms unsubstituted or substituted with halogen
  • R 11 and R 15 are substituted with a halogen independently of one another or unsubstituted alkylene group having 1 to 20 carbon atoms; Alkenylene group having 2 to 20 carbon atoms which is unsubstituted or substituted with halogen; An alkynylene group having 2 to 20 carbon atoms which is unsubstituted or substituted with halogen; A cycloalkylene group having 3 to 12 carbon atoms unsubstituted or substituted with halogen; An arylene group having 6 to 40 carbon atoms unsubstituted or substituted with halogen; Heteroarylene group having 2 to 40 carbon atoms unsubstituted or substituted with halogen; An alkylarylene group having 7 to 15 carbon atoms unsubstituted or substituted with halogen; Or an aralkylene group having 7 to 15 carbon atoms unsubstituted or substituted with halogen,
  • R 12 , R 13 , R 14 and R 16 are each independently hydrogen; halogen; An alkyl group having 1 to 20 carbon atoms unsubstituted or substituted with halogen; Alkenyl groups having 2 to 20 carbon atoms unsubstituted or substituted with halogen; An alkynyl group having 2 to 20 carbon atoms which is unsubstituted or substituted with halogen; A cycloalkyl group having 3 to 12 carbon atoms unsubstituted or substituted with halogen; An aryl group having 6 to 40 carbon atoms unsubstituted or substituted with halogen; C2-C40 heteroaryl group unsubstituted or substituted with halogen; An alkylaryl group having 7 to 15 carbon atoms unsubstituted or substituted with halogen; Trialkylsilyl group having 7 to 15 carbon atoms unsubstituted or substituted with halogen; Or an aralkyl group having 7 to
  • a halogen substituted with an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, aryl group, heteroaryl group, alkylaryl group, trialkylsilyl group, or aralkyl group included in a polar functional group including a hetero atom is fluorine.
  • polymer represented by Chemical Formula 1 may be represented by Chemical Formula 2:
  • CY1 and CY2 are independently of each other an unsubstituted or substituted C6-C30 cycloalkyl ring, an unsubstituted or substituted C3-C30 heterocycloalkyl ring, an unsubstituted or substituted C6-C30 aryl ring, or An unsubstituted or substituted C2-C30 heteroaryl ring, wherein W1, Y1, Y3, Z1, and Z3 are each independently a covalent bond; Unsubstituted or substituted C1-C4 alkylene group; Or a linking roup including a hetero atom, Y2 and Z2 are each independently a repeating unit including a hetero atom, Y5 - and Z4 - are anionic functional groups, M + is a cation, and G 1 and G 2 is independently from each other —O—, —S—, or —OC 6 H 5 —, A 1 , and A 2 are crosslinkable functional group groups, n
  • polymer represented by Chemical Formula 1 may be represented by Chemical Formula 3:
  • Ar 1 and Ar 2 independently of each other comprise an unsubstituted or substituted C6-C30 aryl ring, or an unsubstituted or substituted C2-C30 heteroaryl ring, wherein W1, Y1, Y3, Z1 and Z3 Are covalently bonded to each other independently; Unsubstituted or substituted C1-C4 alkylene group; Or a linking roup including a hetero atom, Y2 and Z2 are each independently a repeating unit including a hetero atom, Y5 - and Z4 - are anionic functional groups, M + is a cation, and G 1 and G 2 is independently from each other —O—, —S—, or —OC 6 H 5 —, A 1 , and A 2 are crosslinkable functional group groups, n 3 is from 1 to 100, n 4 and n 5 are Independently of each other is 1 to 300.
  • polymer represented by Chemical Formula 1 may be represented by Chemical Formula 4 below:
  • G 1 and G 2 are each independently —O—, —S—, or —OC 6 H 5 —
  • a 1 , and A 2 are crosslinkable functional group groups
  • n 3 is 1 to 100 N4 and n5 are 1 to 300 independently of each other.
  • the unsubstituted or substituted C1-C4 alkylene group in the polymer may be an unsubstituted or substituted methylene group.
  • the substituent of the unsubstituted or substituted C1-C4 alkylene group may be a methyl group, an ethyl group, or the like.
  • an unsubstituted or substituted C1-C4 alkylene group can be a dimethylmethylene group.
  • a vinyl group in which the crosslinking group is unsubstituted or substituted with halogen an allyl group unsubstituted or substituted with halogen, an ethynyl group unsubstituted or substituted with halogen, Or an epoxy group unsubstituted or substituted with halogen.
  • the halogen may be F.
  • the polymer may be represented by the following Chemical Formulas 5 to 17:
  • n6 is 2 to 100, and n7 and n8 are independently of each other 2 to 300.
  • n6 is 2 to 100 and n7 and n8 may be independently 2 to 200.
  • n6 may be 2 to 100, and n7 and n8 may be independently 2 to 100.
  • n6 is 2 to 70, and n7 and n8 may be 2 to 100 independently of each other.
  • n6 is 5 to 50, and n7 and n8 may be 10 to 100 independently of each other.
  • a and b of "carbon number a to b" mean carbon number of a specific group. That is, the functional group may include carbon atoms from a to b.
  • an "alkyl group having 1 to 4 carbon atoms” means an alkyl group having 1 to 4 carbon atoms, that is, CH 3- , CH 3 CH 2- , CH 3 CH 2 CH 2- , (CH 3 ) 2 CH-, CH 3 CH 2 CH 2 CH 2 —, CH 3 CH 2 CH (CH 3 ) — and (CH 3 ) 3 C—.
  • radicals may include mono-radical or di-radical, depending on the context.
  • the substituent should be understood as a diradical.
  • a specific substituent in the group that requires the two connection points is -CH 2-, -CH 2 CH 2 - comprises a di-radical, such as, -CH 2 CH (CH 3) CH 2-,.
  • Other radical nomenclature, such as "achillene" clearly indicates that the radical is diradical.
  • alkyl group or "alkylene group” means a branched or unbranched aliphatic hydrocarbon group. In one embodiment, the alkyl group may be substituted or unsubstituted.
  • Alkyl group includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. It is not necessarily limited to these, each of which may be optionally substituted or unsubstituted.
  • the alkyl group may have 1 to 6 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms may be, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, pentyl, 3-pentyl, hexyl, and the like.
  • cycloalkyl group means a fully saturated carbocycle ring or ring system.
  • cyclopropyl cyclobutyl
  • cyclopentyl cyclohexyl
  • alkenyl group refers to a hydrocarbon group containing 2 to 20 carbon atoms including at least one carbon-carbon double bond, an ethenyl group, 1-propenyl group, 2-propenyl group, 2-methyl- 1-propenyl group, 1-butenyl group, 2-butenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, and the like.
  • the alkenyl group may be substituted or unsubstituted.
  • the alkenyl group may have 2 to 40 carbon atoms.
  • alkynyl group refers to a hydrocarbon group containing 2 to 20 carbon atoms including at least one carbon-carbon triple bond, an ethynyl group, 1-propynyl group, 1-butynyl group, 2-butynyl group And the like, but are not limited to these.
  • the alkynyl group may be substituted or unsubstituted.
  • the alkynyl group may have 2 to 40 carbon atoms.
  • aromatic refers to a ring or ring system having a conjugated pi electronic system, and refers to a carbocyclic aromatic (eg phenyl group) and heterocyclic aromatic group (eg pyridine) Include.
  • carbocyclic aromatic eg phenyl group
  • heterocyclic aromatic group eg pyridine
  • the term includes monocyclic or fused polycyclic rings (ie rings that share adjacent pairs of atoms) if the entire ring system is aromatic.
  • aryl group means an aromatic ring or ring system in which the ring backbone contains only carbon (ie, two or more fused rings sharing two adjacent carbon atoms). If the aryl group is a ring system, then each ring in the system is aromatic.
  • aryl groups include, but are not limited to, phenyl groups, biphenyl groups, naphthyl groups, phenanthrenyl groups, naphthacenyl groups, and the like. The aryl group may be substituted or unsubstituted.
  • heteroaryl group means an aromatic ring system having one ring or a plurality of fused rings and wherein one or more ring atoms is not carbon, ie a heteroatom.
  • one or more heteroatoms may be present in only one ring.
  • heteroatoms include, but are not necessarily limited to, oxygen, sulfur and nitrogen.
  • the heteroaryl group may be a furanyl group, a thienyl group, an imidazolyl group, a quinazolinyl group, a quinolinyl group, a quinolinyl group, an isoquinolinyl group, or a quinoxyl group.
  • It may be a salinyl group (quinoxalinyl), pyridinyl (pyridinyl), pyrrolyl (pyrrolyl), oxazolyl group (oxazolyl), indolyl group, and the like, but is not limited thereto.
  • aralkyl group and “alkylaryl group” means an aryl group connected as a substituent via an alkylene group, such as an aralkyl group having 7 to 14 carbon atoms, and the like. Benzyl group, 2-phenylethyl group, 3- Phenylpropyl group, naphthylalkyl group, but not limited to these.
  • the alkylene group is a lower alkylene group (ie, an alkylene group having 1 to 4 carbon atoms).
  • a "cycloalkenyl group” is a carbocyclic ring or ring system having one or more double bonds, which is a ring system without an aromatic ring. For example, it is a cyclohexenyl group.
  • heterocyclyl group herein is a non-aromatic ring or ring system comprising one or more heteroatoms in the ring backbone.
  • Halogen as used herein is a stable element belonging to Group 17 of the Periodic Table of the Elements, for example fluorine, chlorine, bromine or iodine, in particular fluorine and / or chlorine.
  • a substituent is derived by exchanging one or more hydrogens in another group or group in an unsubstituted mother group.
  • any functional group is considered to be "substituted,” it is an alkyl group having 1 to 40 carbon atoms, an alkenyl group having 2 to 40 carbon atoms, a cycloalkyl group having 3 to 40 carbon atoms, a cycloalkyl having 3 to 40 carbon atoms. It means that it is substituted with at least one substituent selected from an alkenyl group, an alkyl group having 1 to 40 carbon atoms, and an aryl group having 7 to 40 carbon atoms.
  • a functional group is described as “optionally substituted,” it is meant that the functional group can be substituted with the substituents described above.
  • the weight average molecular weight measured by Gel Permeation Chromatography (GPC) for the polystyrene standard sample of the polymer may be 5000 to 300,000 daltons.
  • the weight average molecular weight of the polymer may be 5000 to 200,000 daltons.
  • the weight average molecular weight of the polymer may be 5000 to 100,000 daltons.
  • the polymer weight average molecular weight may be 10000 to 100,000 dalton.
  • the polymer weight average molecular weight may be 15000 to 100,000 dalton.
  • the glass transition temperature (Tg) of the polymer may be -20 ° C or more.
  • the glass transition temperature (Tg) of the polymer may be -15 °C to 100 °C.
  • the glass transition temperature (Tg) of the polymer may be -10 °C to 100 °C.
  • the glass transition temperature (Tg) of the polymer may be -10 °C to 100 °C.
  • the electrolyte may provide improved ion conductivity, thermal properties, and mechanical properties by including the polymer represented by Formulas 1 to 17. Therefore, physical properties of the lithium battery including the electrolyte may be improved.
  • the molar ratio of the repeating unit including the heteroatom of lithium of the lithium salt to the polymer represented by Formulas 1 to 17 in the electrolyte may be 1: 1 to 1:20.
  • Lithium salt in the electrolyte is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N (LiFTSI), LiC 4 F 9 SO 3 , LiAlO 2 , LiAlCl 4 , LiN (C ⁇ F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) ( 2 ⁇ x ⁇ 20, 2 ⁇ y ⁇ 20), LiCl, and LiI;
  • the present invention is not necessarily limited thereto, and may be used as long as it can be used as a lithium salt of an electrolyte in the art.
  • the lithium salt may be LiTFSI.
  • the electrolyte including the polymer of Formulas 1 to 17 and the lithium salt may be a gel electrolyte, a solid electrolyte, or a liquid electrolyte as the polymer electrolyte.
  • the polymer electrolyte may be a gel electrolyte or a polymer electrolyte.
  • the gel electrolyte or the solid electrolyte may implement a self-standing film.
  • the electrolyte may optionally include an organic solvent.
  • the organic solvent included in the electrolyte may be a low boiling point solvent.
  • the low boiling point solvent means a solvent having a boiling point of 200 ° C. or lower at 25 ° C. and 1 atmosphere.
  • the organic solvent contained in the electrolyte is selected from the group consisting of dialkyl carbonates, cyclic carbonates, linear or cyclic esters, linear or cyclic amides, aliphatic nitriles, linear or cyclic ethers and derivatives thereof. It may include one or more.
  • the organic solvent is dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl propyl carbonate, ethyl propyl carbonate, diethyl carbonate (DEC), dipropyl carbonate, propylene carbonate (PC), ethylene carbonate (EC) , Butylene carbonate, ethyl propionate, ethyl butyrate, acetonitrile, succinitrile (SN), dimethyl sulfoxide, dimethylformamide, dimethylacetamide, gamma-valerolactone, gamma-butyrolactone and tetrahydrofuran It may include one or more selected from the group consisting of, but not necessarily limited to any low boiling point solvent that can be used in the art.
  • the ionic conductivity of the electrolyte may be at least from 20 °C 7 ⁇ 10 -7 S / cm.
  • the ionic conductivity of the electrolyte may be 1 ⁇ 10 ⁇ 6 S / cm or more at 20 ° C.
  • the ion conductivity of the electrolyte may be 5.6 ⁇ 10 ⁇ 6 S / cm or more at 20 ° C.
  • the ionic conductivity of the electrolyte may be 6 ⁇ 10 ⁇ 6 S / cm or more at 20 ° C.
  • the ionic conductivity of the electrolyte may be 7 ⁇ 10 ⁇ 6 S / cm or more at 20 ° C.
  • the electrolyte may include a crosslinking product of the polymer represented by Chemical Formulas 1 to 17.
  • the electrolyte may include a polymerization product polymerized by a crosslinkable functional group group of a polymer represented by Chemical Formulas 1 to 17. Such a polymerization product may be produced when the electrolyte is exposed to high temperature or the like.
  • Lithium battery according to another embodiment of the positive electrode; An anode disposed between the cathode and the anode and the cathode, wherein at least one of the cathode, anode and electrolyte comprises the polymer described above.
  • the lithium battery is not particularly limited in form, and includes lithium secondary batteries as well as lithium primary batteries such as lithium ion batteries, lithium ion polymer batteries, lithium sulfur batteries, and the like.
  • the negative electrode may include graphite.
  • the anode may include a nickel-containing layered lithium transition metal oxide.
  • lithium battery is more than 3.80V It can have a high voltage of.
  • lithium battery is more than 4.0V It can have a high voltage of.
  • a lithium battery is more than 4.35V It can have a high voltage of.
  • the lithium battery may include a polymerization product of a polymer represented by Chemical Formulas 1 to 17.
  • the electrolyte of a lithium battery may include a polymerization product polymerized by a crosslinkable functional group group of a polymer represented by Chemical Formulas 1 to 16.
  • Such a polymerization product may be produced when the lithium battery is exposed to high temperature or the like.
  • the lithium battery may be manufactured by the following method.
  • the anode is prepared.
  • a cathode active material composition in which a cathode active material, a conductive material, a binder, and a solvent are mixed is prepared.
  • the positive electrode active material composition may optionally include a polymer represented by Chemical Formulas 1 to 16.
  • the cathode active material composition is directly coated on a metal current collector to prepare a cathode plate.
  • the cathode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a cathode plate.
  • the anode is not limited to the above enumerated forms and may be in any form other than the foregoing.
  • the positive electrode active material is a lithium-containing metal oxide, any one of those commonly used in the art can be used without limitation.
  • cobalt, manganese, nickel and may be selected from one or more kinds of the compound oxide of metals and lithium and are selected from a combination thereof, and specific examples, Li a A 1 - b B b D 2 ( wherein Wherein 0.90 ⁇ a ⁇ 1.8, and 0 ⁇ b ⁇ 0.5); Li a E 1 - b B b O 2 - ( in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05) c D c; LiE 2 - b B b O 4 - ( in the above formula, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05) c D c; Li a Ni 1 -b - c Co b B c D ⁇ (wherein 0.90 ⁇ a a
  • A is Ni, Co, Mn, or a combination thereof
  • B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof
  • D is O, F, S, P, or a combination thereof
  • E is Co, Mn, or a combination thereof
  • F is F, S, P, or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof
  • Q is Ti, Mo, Mn, or a combination thereof
  • I is Cr, V, Fe, Sc, Y, or a combination thereof
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • LiCoO 2 , LiMn x O 2x (x 1, 2), LiNi 1 - x Mn x O 2x (0 ⁇ x ⁇ 1), LiNi 1- x- y Co x Mn y O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5), LiFePO 4, and the like.
  • those having a coating layer on the surface of the lithium-containing metal oxide may be used as the cathode active material, or may be used by mixing a compound having a coating layer on the surface of the lithium-containing metal oxide and the lithium-containing metal oxide.
  • the coating layer may comprise a coating element compound of oxide of coating element, hydroxide, oxy hydroxide of coating element, oxycarbonate of coating element, or hydroxycarbonate of coating element.
  • the compounds constituting these coating layers may be amorphous or crystalline.
  • the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr or a mixture thereof may be used.
  • the coating layer forming process may use any coating method as long as it can be coated with the above compounds by a method that does not adversely affect the physical properties of the positive electrode active material (for example, spray coating or dipping method). Detailed descriptions thereof will be omitted since they can be understood by those skilled in the art.
  • Carbon black, graphite fine particles, etc. may be used as the conductive material, but is not limited thereto. Any conductive material may be used as long as it can be used as a conductive material in the art.
  • binder examples include vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene and mixtures thereof, or styrene butadiene rubber polymers. It can be used, but not limited to these, any one that can be used as a binder in the art can be used.
  • N-methylpyrrolidone N-methylpyrrolidone, acetone or water may be used, but not limited thereto, and any solvent may be used as long as it can be used in the art.
  • the content of the positive electrode active material, the conductive material, the binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
  • a negative electrode active material composition is prepared by mixing a negative electrode active material, a conductive material, a binder, and a solvent.
  • the negative electrode active material composition may optionally include a polymer represented by Chemical Formulas 1 to 16.
  • the negative electrode active material composition is directly coated and dried on a metal current collector to prepare a negative electrode plate.
  • the negative electrode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a negative electrode plate.
  • the negative electrode active material may be used as long as it can be used as a negative electrode active material of a lithium battery in the art.
  • it may include one or more selected from the group consisting of lithium metal, a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
  • the metal alloyable with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y alloy (The Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth Element or a combination thereof, not Si), Sn-Y alloy (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element or combination thereof, and not Sn. ) And the like.
  • the transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.
  • the non-transition metal oxide may be SnO 2 , SiO x (0 ⁇ x ⁇ 2), or the like.
  • the carbonaceous material may be crystalline carbon, amorphous carbon or a mixture thereof.
  • the crystalline carbon may be graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (low temperature calcined carbon) or hard carbon (hard). carbon, mesophase pitch carbide, calcined coke, and the like.
  • the conductive material and the binder may be the same as in the case of the positive electrode active material composition.
  • the content of the negative electrode active material, the conductive material, the binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
  • the separator can be used as long as it is commonly used in lithium batteries.
  • a low resistance to the ion migration of the electrolyte and excellent in the ability to hydrate the electrolyte can be used.
  • it is selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in a nonwoven or woven form.
  • PTFE polytetrafluoroethylene
  • a rollable separator such as polyethylene or polypropylene may be used for a lithium ion battery, and a separator having excellent organic electrolyte solution impregnation ability may be used for a lithium ion polymer battery.
  • the separator may be manufactured according to the following method.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent.
  • the separator composition may be directly coated and dried on top of the electrode to form a separator.
  • the separator film separated from the support may be laminated on the electrode to form a separator.
  • the polymer resin used for preparing the separator is not particularly limited, and any materials used for the binder of the electrode plate may be used.
  • any materials used for the binder of the electrode plate may be used.
  • vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate or mixtures thereof and the like can be used.
  • the electrolyte is a polymer electrolyte containing a polymer.
  • the electrolyte may be a liquid electrolyte, a gel electrolyte or a solid electrolyte, depending on the content of the solvent.
  • the electrolyte may be prepared by mixing a polymer represented by Chemical Formulas 1 to 16 with lithium salts.
  • a polymer electrolyte composition is prepared by adding a polymer represented by Chemical Formulas 1 to 16 and a lithium salt to an organic solvent. After the polymer electrolyte composition is directly coated on the positive electrode or the negative electrode, the solvent may be removed to form an electrolyte film.
  • the polymer electrolyte composition may be cast on a separate support, the solvent removed, and then peeled off the support to produce an electrolyte film.
  • the electrolyte film may be prepared by heating and melting the polymer, followed by adding and mixing lithium salts to prepare a polymer electrolyte composition, and then cooling the polymer without using an organic solvent.
  • the electrolyte is not limited to the above enumerated forms but may be in a form other than the foregoing forms.
  • the electrolyte can be used impregnated in the separator.
  • an electrolyte impregnated in the separator may be prepared by pressing both sides of the laminate.
  • the electrolyte may be used on at least one side of the separator.
  • a laminate may be prepared by disposing an electrolyte membrane on one side or both sides of a separator.
  • the electrolyte can be used in place of the separator.
  • an electrolyte membrane in solid form may be used instead of the separator.
  • the lithium battery 1 includes a positive electrode 3, a negative electrode 2, and a separator 4.
  • An electrolyte (not shown) is impregnated in the pores of the separator 4.
  • the positive electrode 3, the negative electrode 2, and the separator 4 described above are wound or folded to be accommodated in the battery case 5.
  • the organic electrolyte is injected into the battery case 5 and sealed with a cap assembly 6 to complete the lithium battery 1.
  • the battery case may be cylindrical, rectangular, thin film, or the like.
  • the separator may be disposed between the positive electrode and the negative electrode to form a battery structure.
  • the battery structure is stacked in a bi-cell structure, and then impregnated in the organic electrolyte, and the resultant is accommodated in a pouch and sealed to complete the lithium battery.
  • a plurality of battery structures are stacked to form a battery pack, and the battery pack may be used in any device requiring high capacity and high power. For example, it can be used in notebooks, smartphones, electric vehicles and the like.
  • the lithium battery may be used in an electric vehicle (EV) because of its excellent life characteristics and high rate characteristics.
  • EV electric vehicle
  • a hybrid vehicle such as a plug-in hybrid electric vehicle (PHEV).
  • PHEV plug-in hybrid electric vehicle
  • it can also be used in applications where a large amount of power storage is required.
  • it can be used for electric bicycles, power tools and the like.
  • DMSO Dimethyl sulfoxide
  • benzene were added to a round flask equipped with a Dean-Stark trap and a condenser in a nitrogen atmosphere. Then, 1 M of 4-fluorophenol (FP) and 1 M of K 2 CO 3 were added and reacted at 120 ° C. for 3 hours to obtain 4,4′-difluorobiphenyl ether (FDPE).
  • DMSO dimethyl sulfoxide
  • FP 4-fluorophenol
  • K 2 CO 3 4′-difluorobiphenyl ether
  • DMSO dimethyl sulfoxide
  • benzene was added to a round flask equipped with a Dean-Stark trap and a condenser in a nitrogen atmosphere. Then, 1M of 4,4'-difluorobiphenylether (FDPE), 2M of hydroxyethine (HE) (hydroxyacetylene) and 1M of K 2 CO 3 were added and reacted at 100 ° C. for 5 hours. , 4'-ethynyloxybiphenyl ether (EDPE) was obtained.
  • FDPE 4,4'-difluorobiphenylether
  • HE hydroxyethine
  • K 2 CO 3 1M of K 2 CO 3
  • 1,2-dichloroethane was added to a round flask equipped with a nitrogen atmosphere condenser. Then, 1M of 4,4'-ethynyloxybiphenyl ether (EDPE), 2.1M N-bromosuccinimide (NBS) and 0.4M of FeCl 3 were added and reacted at 25 ° C. for 12 hours for ethynyl -3,3'-dibromobiphenylether (EBDPE) was obtained.
  • EDPE 4,4'-ethynyloxybiphenyl ether
  • NBS N-bromosuccinimide
  • FeCl 3 ethynyl -3,3'-dibromobiphenylether
  • Polyethylene glycol (PEG) and ClSO 3 H were added to a circular flask equipped with a nitrogen atmosphere condenser and reacted at 25 ° C. for 6 hours. Then, 1M LiOH was added and stirred at 25 ° C. for 24 hours to form lithium sulfonate polyethylene glycol. (S-PEG) was obtained.
  • Dimethylacetamide (DMAC) and benzene were added to a round flask equipped with a Dean-Stark trap and a condenser in a nitrogen atmosphere. Then, 1 M of ethynyl-3,3'-dibromobiphenyl ether (EBDPE), 2 M of lithium sulfonate polyethylene glycol (S-PEG) and 1.2 M of K 2 CO 3 were added thereto for 6 hours at 100 ° C. Reaction gave a compound of Formula 5-1.
  • ELDPE ethynyl-3,3'-dibromobiphenyl ether
  • S-PEG lithium sulfonate polyethylene glycol
  • K 2 CO 3 1.2 M
  • Synthesis was carried out in the same manner as in Example 1, except that the value of the repeating unit n6 was changed from 4 to 9 and the values of n7 and n8 were changed from 20 to 50.
  • Synthesis was carried out in the same manner as in Example 1, except that the value of repeating unit n6 was changed from 4 to 9 and the values of n7 and n8 were changed from 20 to 70.
  • Synthesis was carried out in the same manner as in Example 1, except that the value of the repeating unit n6 was changed from 4 to 9 and the values of n7 and n8 were changed from 20 to 50.
  • the terminal substituent is changed from an acetylenyl group to a trifluoroethylenyl group
  • Synthesis was carried out in the same manner as in Example 1, except that the value of the repeating unit n6 was changed from 4 to 9 and the values of n7 and n8 were changed from 20 to 50.
  • the terminal substituent is changed from acetylenyl group to ethylenyl group
  • Synthesis was carried out in the same manner as in Example 1, except that the value of the repeating unit n6 was changed from 4 to 9 and the values of n7 and n8 were changed from 20 to 50.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 5-2 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Chemical Formula 5-3 was used instead of the polymer represented by Chemical Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 5-4 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 5-5 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 9-1 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Chemical Formula 6-1 was used instead of the polymer represented by Chemical Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 7-1 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • An electrolyte membrane was manufactured in the same manner as in Example 10, except that the polymer represented by Formula 5-6 was used instead of the polymer represented by Formula 5-1.
  • the electrolyte was solid at 25 ° C.
  • the electrolyte was solid at 25 ° C.
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 97.45 % by weight as the conductive material of artificial graphite (SFG6, Timcal) powder, 0.5% by weight, carbon black (Ketjenblack, ECP) 0.7% by weight, rubber acrylonitrile, modified acrylic ( BM-720H, Zeon Corporation) 0.25% by weight, polyvinylidene fluoride (PVdF, S6020, Solvay) 0.9% by weight, polyvinylidene fluoride (PVdF, S5130, Solvay) by mixing N-methyl-2 -Pyrrolidone solvent and then stirred for 30 minutes using a mechanical stirrer to prepare a cathode active material slurry.
  • SSG6 Timcal artificial graphite
  • the slurry was applied on a 20 ⁇ m thick aluminum current collector using a doctor blade, dried about 0.5 ⁇ m in a hot air dryer at 100 ° C., and then dried again under vacuum, 120 ° C. for 4 hours, and rolled. (roll press) to prepare a positive electrode plate.
  • the lithium battery was manufactured by disposing the electrolyte in the form of a film prepared in Example 10 on the positive electrode and the negative electrode.
  • a lithium battery was manufactured in the same manner as in Example 19, except for using the electrolytes prepared in Examples 11 to 18 instead of the electrolytes prepared in Example 10.
  • a lithium battery was manufactured in the same manner as in Example 19, except for using the electrolyte prepared in Comparative Example 2 instead of the electrolyte prepared in Example 10.
  • the conductivity of the electrolyte was measured by a 2-probe method using an impedance analyzer (Solartron 1260A Impedance / Gain-Phase Analyzer) at 25 ° C on the electrolyte in the form of films prepared in Examples 10 to 17 and Comparative Example 2. It was. The current density was 0.4 A / cm 2 , the amplitude ⁇ 10 mV, and the frequency range was 0.1 Hz to 10 KHz. Ionic conductivity was derived from the impedance measurement results of the electrolytes of Examples 9 to 16 and Comparative Example 2. The measurement results are shown in Table 1 below.
  • Example 10 to 17 and Comparative Example 2 the glass transition temperature (T g ) and decomposition temperature (T d ) of the electrolyte in the form of a film were measured by using a dynamic scanning calorimeter (DSC). The measurement results are shown in Table 1 below.
  • Electrolyte in the form of films in Examples 10 to 17 and Comparative Example 2 by a mechanized instrumented indentation test using a device equipped with a Berkovich tip (Triboindenter from Hysitron) as an indentation tip The Young's modulus and hardness of were measured. The measurement results are shown in Table 1 below.
  • Example 10 Weight average molecular weight [Dalton] n6 n7 n8 Ion Conductivity [S / cm] Tg [°C] Td [°C] Young modulus Hardness Comparative Example 2 100,000 - - - 5.5 ⁇ 10 -6 -72 160 0.6646 0.0378
  • Example 10 8,800 4 20 20 3.9 ⁇ 10 -6 3 183 0.1015 0.0128
  • Example 11 17,600 8 20 20 5.7 ⁇ 10 -6 17 207 0.4527 0.0473
  • Example 12 35,200 16 20 20 20 7.6 ⁇ 10 -7 98 325 0.2510 0.0810
  • Example 13 44,000 9 50 20 6.2 ⁇ 10 -6 One 189 0.7713 00502
  • Example 14 61,600 9 70 20 5.6 ⁇ 10 -6 8 205 0.7035 0.0427
  • Example 15 46,500 9 50 20 5.8 ⁇ 10 -6 5 216 0.7512 0.0510
  • Example 16 43,000 9 50 20 7.5 ⁇ 10 -6 -4 178
  • the electrolyte of the embodiment was improved in the glass transition temperature, decomposition temperature and hardness compared to the electrolyte of the comparative example to improve the thermal and mechanical properties.
  • the electrolyte of the embodiment provided a high ion conductivity of 7.6 ⁇ 10 -7 S / cm or more, it was possible to adjust the ion conductivity, elastic modulus, viscosity, glass transition temperature and the like according to the values of n6, n7, n8.
  • the lithium batteries prepared in Examples 19 to 27 were charged at a constant current until the voltage reached 4.2 V (vs. Li) at a current of 0.2 C at 25 ° C., followed by 0.05 C rate while maintaining 4.2 V in the constant voltage mode. Cut-off at the current of Subsequently, it was confirmed that the lithium battery was operated by performing a charge / discharge cycle of discharging at a constant current of 0.2 C rate until the voltage reached 2.85 V (vs. Li).
  • the ionic conductivity, thermal properties and mechanical properties of the electrolyte can be improved.

Abstract

상기 화학식 1 로 표시되는 고분자, 및 상기 고분자를 포함하는 전해질과 리튬전지가 제시된다.

Description

고분자, 및 이를 포함하는 전해질과 리튬 전지
고분자 및 상기 고분자를 포함하는 전해질과 리튬전지에 관한 것이다.
리튬전지는 비디오 카메라, 휴대폰, 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 사용된다. 재충전이 가능한 리튬이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하다.
리튬전지에는 일반적으로 유기전해액이 사용된다. 유기전해액은 리튬염이 유기용매에 용해되어 제조된다. 유기전해액은 고온에서 폭발 위험이 있으며 누액 등의 문제가 있어 겔 또는 고체 전해질이 요구된다.
대표적인 겔 또는 고체전해질은 고분자 전해질이다. 고분자 전해질은 폴리에틸렌옥사이드(PEO)와 같은 고분자를 포함한다. 그러나, 폴리에틸렌옥사이드를 포함하는 고분자 전해질은 이온전도도, 열적 물성 및 기계적 물성이 부진하였다.
따라서, 이온전도도, 열적 물성 및 기계적 물성이 향상된 고분자 및 이를 포함하는 고분자 전해질이 요구된다.
한 측면은 새로운 고분자를 제공하는 것이다.
다른 한 측면은 상기 고분자를 포함하는 전해질을 제공하는 것이다.
또 다른 한 측면은 상기 고분자를 포함하는 리튬전지를 제공하는 것이다.
한 측면에 따라,
하기 화학식 1 로 표시되는 고분자가 제공된다:
<화학식 1>
Figure PCTKR2017007461-appb-I000001
상기 식에서,
CY는 C2-C30의 탄소원자를 포함하며, 선택적으로 하나 이상의 헤테로원자를 포함하는, 6원자 내지 30원자 고리기(membered ring group)이며,
상기 6원자 내지 30원자고리기는 비치환된 또는 치환된 C3-C30 시클로알킬 고리, 비치환된 또는 치환된 C3-C30 헤테로시클로알킬 고리, 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며,
X1, X2 및 X4는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking group)이며,
X3는 헤테로 원자를 포함하는 반복단위이며,
X5-는 음이온성 작용기이며, M+은 양이온이며,
G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며,
A1, 및 A2는 가교기(crosslinkable functional group)기이며,
a는 2 내지 5이고, n1은 2 내지 100이며, n2는 1 내지 300이다.
다른 한 측면에 따라,
상기에 따른 고분자; 및
리튬염을 포함하는 전해질이 제공된다.
양극; 음극; 및
상기에 따른 유기전해액을 포함하는 리튬전지가 제공된다.
한 측면에 따르면 새로운 구조의 고분자를 사용함에 의하여 전해질의 이온전도도, 열적 물성 및 기계적 물성이 향상될 수 있다.
도 1은 예시적인 구현예에 따른 리튬전지의 모식도이다.
<도면의 주요 부분에 대한 부호의 설명>
1: 리튬전지 2: 음극
3: 양극 4: 세퍼레이터
5: 전지케이스 6: 캡 어셈블리
이하에서 예시적인 구현예들에 따른 고분자 및 이를 포함하는 전해질 및 리튬전지에 관하여 더욱 상세히 설명한다.
본 명세서에 개시된 창의적 사상은 다양한 변환을 가할 수 있고 여러 가지 구현예를 가질 수 있는 바, 특정 구현예들을 상세한 설명에 상세하게 설명하고 필요한 경우 특정 구현예들을 도면에 예시한다. 본 명세서의 창의적 사상의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 구현예들을 참조하면 명확해질 것이다. 그러나 본 명세서의 창의적 사상은 이하에서 개시되는 구현예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하의 구현예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 구현예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 구현예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
일구현예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
이하, 필요한 경우에, 첨부된 도면을 참조하여 본 발명의 구현예들을 상세히 설명하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 명세서에 개시된 창의적 사상이 반드시 도시된 바에 한정되지 않는다.
일구현예에 따른 고분자는 하기 화학식 1 로 표시된다:
<화학식 1>
Figure PCTKR2017007461-appb-I000002
상기 식에서, CY는 C2-C30의 탄소원자를 포함하며, 선택적으로 하나 이상의 헤테로원자를 포함하는, 6원자 내지 30원자 고리기(membered ring group)이며, 상기 6원자 내지 30원자고리기는 비치환된 또는 치환된 C3-C30 시클로알킬 고리, 비치환된 또는 치환된 C3-C30 헤테로시클로알킬 고리, 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며, X1, X2 및 X4는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking group)이며, X3는 헤테로 원자를 포함하는 반복단위이며, X5-는 음이온성 작용기이며, M+은 양이온이며, G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며, A1, 및 A2는 가교기(crosslinkable functional group)기이며, a는 2 내지 5이고, n1은 1 내지 100이며, n2는 1 내지 300이다. 상기 -C6H5-는 페닐렌기이다.
상기 고분자는 2 이상의 고리기(CY)를 포함함에 의하여 기계적 물성이 향상될 수 있으며, 헤테로 원자를 포함하는 반복단위(X3)를 포함함에 의하여 유연성이 향상될 수 있다. 따라서, 상기 고분자는 고리기(CY)와 헤테로 원자를 포함하는 반복단위(X3)를 동시에 포함함에 의하여 이들의 길이를 조절하여 향상된 이온전도도, 열적 물성 및 기계적 물성을 제공할 수 있으며, 상기 물성들을 용이하게 조절할 수 있다. 따라서, 상기 고분자를 포함하는 전해질 및 리튬전지의 물성도 향상될 수 있다.
고분자에서 상기 C3-C30 시클로알킬 고리, C3-C30 헤테로시클로알킬 고리, C6-C30 아릴 고리, C2-C30 헤테로아릴 고리 및 C2-C30 알킬렌기의 치환기가 서로 독립적으로 수소, 할로겐, 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 할로겐으로 치환 또는 비치환된 탄소수 3 내지 20의 시클로알케닐기, 할로겐으로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로사이클릴기, 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기, 또는 하나 이상의 헤테로원자를 포함하는 극성작용기일 수 있다.
예를 들어, 헤테로원자를 포함하는 극성작용기는 -F, -Cl, -Br, -I, -C(=O)OR16, -OR16, -OC(=O)OR16, -R15OC(=O)OR16, -C(=O)R16, -R15C(=O)R16, -OC(=O)R16, -R15OC(=O)R16, -C(=O)-O-C(=O)R16, -R15C(=O)-O-C(=O)R16, -SR16, -R15SR16, -SSR16, -R15SSR16, -S(=O)R16, -R15S(=O)R16, -R15C(=S)R16, -R15C(=S)SR16, -R15SO3R16, -SO3R16, -NNC(=S)R16, -R15NNC(=S)R16, -R15N=C=S, -NCO, -R15-NCO, -NO2, -R15NO2, -R15SO2R16, -SO2R16,
Figure PCTKR2017007461-appb-I000003
선택된 하나 이상을 포함하며,
R11 및 R15가 서로 독립적으로 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬렌기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴렌기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴렌기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬렌기이고,
R12, R13, R14 및 R16이 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기; 할로겐으로 치환 또는 비치환된 탄소수 3 내지 12의 시클로알킬기; 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기; 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 알킬아릴기; 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 트리알킬실릴기; 또는 할로겐으로 치환 또는 비치환된 탄소수 7 내지 15의 아랄킬기이다.
예를 들어, 헤테로원자를 포함하는 극성작용기에 포함된 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 아릴기, 헤테로아릴기, 알킬아릴기, 트리알킬실릴기, 또는 아랄킬기에 치환된 할로겐은 불소(F)일 수 있다.
예를 들어, 상기 화학식 1로 표시되는 고분자가 하기 화학식 2로 표시될 수 있다:
<화학식 2>
Figure PCTKR2017007461-appb-I000004
상기 식에서, CY1 및 CY2는 서로 독립적으로 비치환된 또는 치환된 C6-C30 시클로알킬 고리, 비치환된 또는 치환된 C3-C30 헤테로시클로알킬 고리, 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며, W1, Y1, Y3, Z1 및 Z3는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며, Y2 및 Z2는 서로 독립적으로 헤테로 원자를 포함하는 반복단위이며, Y5- 및 Z4-는 음이온성 작용기이며, M+은 양이온이며, G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며, A1, 및 A2는 가교기(crosslinkable functional group)기이며, n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
예를 들어, 상기 화학식 1로 표시되는 고분자가 하기 화학식 3으로 표시될 수 있다:
<화학식 3>
Figure PCTKR2017007461-appb-I000005
상기 식에서, Ar1 및 Ar2는 서로 독립적으로 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며, W1, Y1, Y3, Z1 및 Z3는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며, Y2 및 Z2는 서로 독립적으로 헤테로 원자를 포함하는 반복단위이며, Y5- 및 Z4-는 음이온성 작용기이며, M+은 양이온이며, G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며, A1, 및 A2는 가교기(crosslinkable functional group)기이며, n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
예를 들어, 상기 화학식 1로 표시되는 고분자가 하기 화학식 4로 표시될 수 있다:
<화학식 4>
Figure PCTKR2017007461-appb-I000006
상기 식에서, R1, R2, R3, R4, R9 및 R10은 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 할로겐으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이며, W1, R5, R7, R11, 및 R13은 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며, R6 및 R12는 서로 독립적으로 -R15-O-, 또는 -C(=O)O-이며, R15는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 10의 알킬렌기이며, Y5- 및 Z4-는 -SO3 -, -CO2 -, 또는 -P(=O)(OH)O- 이며, Ma+ 및 Mb+는 서로 독립적으로 수소 이온 또는 알칼리 금속 양이온이며, G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며, A1, 및 A2는 가교기(crosslinkable functional group)기이며, n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
예를 들어, 고분자에서 비치환된 또는 치환된 C1-C4 알킬렌기가, 비치환된 또는 치환된 메틸렌기일 수 있다. 비치환된 또는 치환된 C1-C4 알킬렌기의 치환기는 메틸기, 에틸기 등일 수 있다. 예를 들어, 비치환된 또는 치환된 C1-C4 알킬렌기가 디메틸메틸렌기일 수 있다.
예를 들어, 고분자에서 가교기가 할로겐으로 치환 또는 비치환된 비닐기(vinyl group), 할로겐으로 치환 또는 비치환된 알릴기(allyl group), 할로겐으로 치환 또는 비치환된 에티닐기(ethynyl group), 또는 할로겐으로 치환 또는 비치환된 에폭시기(epoxy group)일 수 있다. 예를 들어, 상기 할로겐은 F일 수 있다.
예를 들어, 유기전해액에서 헤테로원자를 포함하는 연결기(linking group)가 -O-, -S-, -S(=O)-, -S(=O)2-, -C(=O)-, -Si(E1)(E2)-, 또는 -P(=O)(E3)-이며, E1, E2, 및 E3는 서로 독립적으로 수소, 할로겐, 또는 할로겐으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 할로겐으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기일 수 있다.
예를 들어, 상기 고분자는 하기 화학식 5 내지 17로 표시될 수 있다:
<화학식 5>
Figure PCTKR2017007461-appb-I000007
<화학식 6>
Figure PCTKR2017007461-appb-I000008
<화학식 7>
Figure PCTKR2017007461-appb-I000009
<화학식 8>
Figure PCTKR2017007461-appb-I000010
<화학식 9>
Figure PCTKR2017007461-appb-I000011
<화학식 10>
Figure PCTKR2017007461-appb-I000012
<화학식 11>
Figure PCTKR2017007461-appb-I000013
<화학식 12>
Figure PCTKR2017007461-appb-I000014
<화학식 13>
Figure PCTKR2017007461-appb-I000015
<화학식 14>
Figure PCTKR2017007461-appb-I000016
<화학식 15>
Figure PCTKR2017007461-appb-I000017
<화학식 16>
Figure PCTKR2017007461-appb-I000018
<화학식 17>
Figure PCTKR2017007461-appb-I000019
상기 식들에서, n6은 2 내지 100이며, n7 및 n8는 서로 독립적으로 2 내지 300이다. 예를 들어, n6은 2 내지 100이며, n7 및 n8는 서로 독립적으로 2 내지 200일 수 있다. 예를 들어, n6은 2 내지 100이며, n7 및 n8는 서로 독립적으로 2 내지 100일 수 있다. 예를 들어, n6은 2 내지 70이며, n7 및 n8는 서로 독립적으로 2 내지 100일 수 있다. 예를 들어, n6은 5 내지 50이며, n7 및 n8는 서로 독립적으로 10 내지 100일 수 있다.
본 명세서에서, "탄소수 a 내지 b"의 a 및 b는 특정 작용기(group)의 탄소수를 의미한다. 즉, 상기 작용기는 a 부터 b까지의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 4의 알킬기"는 1 내지 4의 탄소를 가지는 알킬기, 즉, CH3-, CH3CH2-, CH3CH2CH2-, (CH3)2CH-, CH3CH2CH2CH2-, CH3CH2CH(CH3)- and (CH3)3C-를 의미한다.
특정 라디칼에 대한 명명법은 문맥에 따라 모노라디칼(mon-radical) 또는 디라디칼(di-radical)을 포함할 수 있다. 예를 들어, 치환기가 나머지 분자에 대하여 두개의 연결지점을 요구하면, 상기 치환기는 디라디칼로 이해되어야 한다. 예를 들어, 2개의 연결지점을 요구하는 알킬기로 특정된 치환기는 -CH2-, -CH2CH2 -, -CH2CH(CH3)CH2-, 등과 같은 디라디칼을 포함한다. "아킬렌"과 같은 다른 라디칼 명명법은 명확하게 상기 라디칼이 디라디칼임을 나타낸다.
본 명세서에서, "알킬기" 또는 "알킬렌기"라는 용어는 분지된 또는 분지되지 않은 지방족 탄화수소기를 의미한다. 일 구현예에서 알킬기는 치환되거나 치환되지 않을 수 있다. 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등을 포함하나 반드시 이들로 한정되지 않으며, 이들 각각은 선택적으로 치환되거나 치환되지 않을 수 있다. 일 구현예에서 알킬기는 1 내지 6의 탄소원자를 가질 수 있다. 예를 들어, 탄소수 1 내지 6의 알킬기는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소-부틸, sec-부틸, 펜틸, 3-펜틸, 헥실 등일 수 있으나 반드시 이들로 한정되지 않는다.
본 명세서에서, "시클로알킬기"라는 용어는 완전히 포화된 카보사이클 고리 또는 고리시스템을 의미한다. 예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실을 의미한다.
본 명세서에서, "알케닐기"라는 용어는 적어도 하나의 탄소-탄소 이중결합을 포함하는 2 내지 20의 탄소원자를 포함하는 탄화수소기로서 에테닐기, 1-프로페닐기, 2-프로페닐기, 2-메틸-1-프로페닐기, 1-부테닐기, 2-부테닐기, 시클로프로페닐기, 시클로펜테닐기, 시클로헥세닐기, 시클로헵테닐기 등을 포함하나 이들로 한정되지 않는다. 일 구현예에서, 알케닐기는 치환되거나 치환되지 않을 수 있다. 일 구현예에서, 알케닐기는 2 내지 40의 탄소원자를 가질 수 있다.
본 명세서에서, "알키닐기"라는 용어는 적어도 하나의 탄소-탄소 삼중결합을 포함하는 2 내지 20의 탄소원자를 포함하는 탄화수소기로서 에티닐기, 1-프로피닐기, 1-부티닐기, 2-부티닐기 등을 포함하나 이들로 한정되지 않는다. 일 구현예에서, 알키닐기는 치환되거나 치환되지 않을 수 있다. 일 구현예에서, 알키닐기는 2 내지 40의 탄소원자를 가질 수 있다.
본 명세서에서, "방향족"이라는 용어는 공액(conjugated) 파이 전자 시스템을 가지는 고리 또는 고리 시스템을 의미하며, 탄소고리 방향족(예를 들어, 페닐기) 및 헤테로고리 방향족기 (예를 들어, 피리딘)을 포함한다. 상기 용어는 전체 고리 시스템이 방향족이라면, 단일환고리 또는 융화된 다환고리(즉, 인접하는 원자쌍을 공유하는 고리)를 포함한다.
본 명세서에서, "아릴기"라는 용어는 고리 골격이 오직 탄소만을 포함하는 방향족 고리 또는 고리 시스템(즉, 2개의 인접하는 탄소 원자들을 공유하는 2 이상의 융화된(fused) 고리)을 의미한다. 상기 아릴기가 고리 시스템이면, 상기 시스템에서 각각의 고리는 방향족이다. 예를 들어, 아릴기는 페닐기, 비페닐기, 나프틸기, 페날트레닐기(phenanthrenyl), 나프타세닐기(naphthacenyl) 등을 포함하나 이들로 한정되지 않는다. 상기 아릴기는 치환되거나 치환되지 않을 수 있다.
본 명세서에서, "헤테로아릴기"라는 용어는 하나의 고리 또는 복수의 융화된 고리를 가지며, 하나 이상의 고리 원자가 탄소가 아닌, 즉 헤테로원자인, 방향족 고리 시스템을 의미한다. 융화된 고리 시스템에서, 하나 이상의 헤테로원자는 오직 하나의 고리에 존재할 수 있다. 예를 들어, 헤테로원자는 산소, 황 및 질소를 포함하나 반드시 이들로 한정되지 않는다. 예를 들어, 헤테로아릴기는 퓨라닐기(furanyl), 티에닐기(thienyl), 이미다졸릴기(imidazolyl), 퀴나졸리닐기(quinazolinyl), 퀴놀리닐기(quinolinyl), 이소퀴놀리닐기(isoquinolinyl), 퀴녹살리닐기(quinoxalinyl), 피리디닐기(pyridinyl), 피롤릴기(pyrrolyl), 옥사졸릴기(oxazolyl), 인돌릴기(indolyl), 등일 수 있으나 이들로 한정되지 않는다.
본 명세서에서, "아랄킬기", "알킬아릴기"라는 용어는 탄소수 7 내지 14의 아랄킬기 등과 같이, 알킬렌기를 경유하여 치환기로서 연결된 아릴기를 의미하며, 벤질기, 2-페닐에틸기, 3-페닐프로필기, 나프틸알킬기를 포함하나 이들로 한정되지 않는다. 일 구현에에서, 알킬렌기는 저급 알킬렌기(즉, 탄소수 1 내지 4의 알킬렌기)이다.
본 명세서에서, "시클로알케닐기"는 하나 이상의 이중결합을 가지는 카보사이틀 고리 또는 고리시스템으로서, 방향족 고리가 없는 고리 시스템이다. 예를 들어, 시클로헥세닐기이다.
본 명세서에서 "헤테로사이클릴기"는 고리 골격에 하나 이상의 헤테로원자를 포함하는 비방향족 고리 또는 고리시스템이다.
본 명세서에서 "할로겐"은 원소주기율표의 17족에서 속하는 안정한 원소로서 예를 들어, 불소, 염소, 브롬 또는 요오드이며, 특히 불소 및/또는 염소이다.
본 명세서에서, 치환기는 치환되지 않는 모그룹(mother group)에서 하나 이상의 수소가 다른 원자나 작용기를 교환됨에 의하여 유도된다. 다르게 기재하지 않으면, 어떠한 작용기가 "치환된"것으로 여겨질 때, 그것은 상기 작용기가 탄소수 1 내지 40의 알킬기, 탄소수 2 내지 40의 알케닐기, 탄소수 3 내지 40의 시클로알킬기, 탄소수 3 내지 40의 시클로알케닐기, 탄소수 1 내지 40의 알킬기, 탄소수 7 내지 40의 아릴기에서 선택된 하나 이상의 치환기로 치횐됨을 의미한다. 작용기가 "선택적으로 치환된다"고 기재되는 경우에, 상기 작용기가 상술한 치환기로 치환될 수 있다는 것을 의미한다.
예를 들어, 상기 고분자의 폴리스티렌 표준시료에 대하여 GPC(Gel Permeation Chromatography)에 의하여 측정한 중량평균분자량이 5000 내지 300,000 dalton일 수 있다. 예를 들어, 상기 고분자 중량평균분자량이 5000 내지 200,000 dalton일 수 있다. 예를 들어, 상기 고분자 중량평균분자량이 5000 내지 100,000 dalton일 수 있다. 예를 들어, 상기 고분자 중량평균분자량이 10000 내지 100,000 dalton일 수 있다. 예를 들어, 상기 고분자 중량평균분자량이 15000 내지 100,000 dalton일 수 있다.
예를 들어, 상기 고분자의 유리전이온도(Tg)가 -20℃ 이상일 수 있다. 예를 들어, 상기 고분자의 유리전이온도(Tg)가 -15℃ 내지 100℃일 수 있다. 예를 들어, 상기 고분자의 유리전이온도(Tg)가 -10℃ 내지 100℃일 수 있다. 예를 들어, 상기 고분자의 유리전이온도(Tg)가 -10℃ 내지 100℃일 수 있다.
다른 구현예에 따른 전해질을 상술한 고분자; 및 리튬염을 포함한다.
전해질은 화학식 1 내지 17로 표시되는 고분자를 포함함에 의하여 향상된 이온전도도, 열적 특성 및 기계적 특성을 제공할 수 있다. 따라서, 전해질을 포함하는 리튬전지의 물성이 향상될 수 있다.
전해질에서 리튬염의 리튬 대 화학식 1 내지 17로 표시되는 고분자의 헤테로원자를 포함하는 반복단위의 몰비는 1:1 내지 1:20일 수 있다. 예를 들어, 전해질에서 LiTFSi 대 에틸렌옥사이드 반복단위 ((EO)n)의 몰비는 1:1 내지 1:20일 수 있다([Li]:[EO]=1:1~1:20). 예를 들어, 전해질에서 LiTFSi 대 에틸렌옥사이드 반복단위 ((EO)n)의 몰비는 1:2 내지 1:15일 수 있다([Li]:[EO]=1:2~1:15). 예를 들어, 전해질에서 LiTFSi 대 에틸렌옥사이드 반복단위 ((EO)n)의 몰비는 1:2 내지 1:10일 수 있다([Li]:[EO]=1:2~1:10). 예를 들어, 전해질에서 LiTFSi 대 에틸렌옥사이드 반복단위 ((EO)n)의 몰비는 1:3 내지 1:10일 수 있다([Li]:[EO]=1:3~1:10).
전해질에서 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N(LiFTSI), LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x + 1SO2)(CyF2y + 1SO2)(2≤x≤20, 2≤y≤20), LiCl 및 LiI로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 전해질의 리튬염으로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬염은 LiTFSI 일 수 있다.
화학식 1 내지 17의 고분자 및 리튬염을 포함하는 전해질은 고분자 전해질로서 겔 전해질, 고체 전해질 또는 액체 전해질일 수 있다. 고분자 전해질이 유기 용매를 포함하지 않거나 소량 포함하는 경우에 고분자 전해질은 겔 전해질 또는 고분자 전해질일 수 있다. 겔 전해질 또는 고체 전해질은 자립막(self-standing film)을 구현할 수 있다.
전해질이 선택적으로 유기용매를 포함할 수 있다. 전해질이 포함하는 유기용매는 저비점용매일 수 있다. 상기 저비점용매는 25℃, 1기압에서 비점이 200℃ 이하인 용매를 의미한다.
예를 들어, 전해질이 포하하는 유기용매는 디알킬카보네이트, 고리형카보네이트, 선형 또는 고리형 에스테르, 선형 또는 고리형 아미드, 지방족 니트릴, 선형 또는 고리형 에테르 및 이들의 유도체로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 보다 구체적으로, 유기용매는 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 아세토니트릴, 석시노니트릴(SN), 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 하나 이상을 포함할 수 있으나 반드시 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 저비점 용매라면 모두 가능하다.
전해질의 이온전도도가 20℃에서 7×10-7 S/cm 이상일 수 있다. 예를 들어, 전해질의 이온전도도가 20℃에서 1×10-6 S/cm 이상일 수 있다. 예를 들어, 전해질의 이온전도도가 20℃에서 5.6×10-6 S/cm 이상일 수 있다. 예를 들어, 전해질의 이온전도도가 20℃에서 6×10-6 S/cm 이상일 수 있다. 예를 들어, 전해질의 이온전도도가 20℃에서 7×10-6 S/cm 이상일 수 있다.
전해질은 화학식 1 내지 17로 표시되는 고분자의 가교반응 생성물을 포함할 수 있다. 전해질은 화학식 1 내지 17로 표시되는 고분자의 가교기(crosslinkable functional group)기에 의하여 중합된 중합생성물을 포함할 수 있다. 이러한 중합생성물은 전해질이 고온 등에 노출될 경우 생성될 수 있다.
다른 구현예에 따른 리튬전지는 양극; 음극 및 양극과 음극 사이에 배치되는 전해질을 포함하며, 상기 양극, 음극 및 전해질 중 하나 이상이 상술한 고분자를 포함한다. 리튬전지는 그 형태가 특별히 제한되지는 않으며, 리튬이온전지, 리튬이온폴리머전지, 리튬설퍼전지 등과 같은 리튬이차전지는 물론, 리튬일차 전지도 포함한다.
예를 들어, 리튬전지에서 음극은 흑연을 포함할 수 있다. 예를 들어, 리튬전지에서 양극이 니켈 함유 층상구조 리튬전이금속 산화물을 포함할 수 있다. 예를 들어, 리튬전지는 3.80V 이상 의 고전압을 가질 수 있다. 예를 들어, 리튬전지는 4.0V 이상 의 고전압을 가질 수 있다. 예를 들어, 리튬전지는 4.35V 이상 의 고전압을 가질 수 있다.
리튬전지는 화학식 1 내지 17로 표시되는 고분자의 중합생성물을 포함할 수 있다. 예를 들어, 리튬전지의 전해질은 화학식 1 내지 16으로 표시되는 고분자의 가교기(crosslinkable functional group)기에 의하여 중합된 중합생성물을 포함할 수 있다. 이러한 중합생성물은 리튬전지가 고온 등에 노출될 경우 생성될 수 있다.
예를 들어, 리튬전지는 다음과 같은 방법에 의하여 제조될 수 있다.
먼저 양극이 준비된다.
예를 들어, 양극활물질, 도전재, 바인더 및 용매가 혼합된 양극활물질 조성물이 준비된다. 양극활물질 조성물은 선택적으로 화학식 1 내지 16으로 표시되는 고분자를 포함할 수 있다. 상기 양극활물질 조성물이 금속 집전체 위에 직접 코팅되어 양극판이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 양극활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1 - bBbD2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1 - bBbO2 - cDc(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE2 - bBbO4 - cDc(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiaNi1 -b- cCobBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cCobBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cCobBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b-cMnbBcDα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1 -b- cMnbBcO2 - αFα(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1 -b- cMnbBcO2 - αF2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiIO2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤ 2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤ 2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
예를 들어, LiCoO2, LiMnxO2x(x=1, 2), LiNi1 - xMnxO2x(0<x<1), LiNi1 -x- yCoxMnyO2 (0≤x≤0.5, 0≤y≤0.5), LiFePO4 등이다.
물론 리튬함유 금속산화물 표면에 코팅층을 갖는 것을 양극활물질로 사용할 수 있고, 또는 리튬함유 금속산화물과 리튬함유 금속산화물 표면에 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다.
바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 사용될 수 있다.
용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
양극 활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로 음극이 준비된다.
*예를 들어, 음극활물질, 도전재, 바인더 및 용매를 혼합하여 음극활물질 조성물이 준비된다. 음극활물질 조성물은 선택적으로 화학식 1 내지 16으로 표시되는 고분자를 포함할 수 있다. 상기 음극활물질 조성물이 금속 집전체 상에 직접 코팅 및 건조되어 음극판이 제조된다. 다르게는, 상기 음극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다.
음극활물질은 당해 기술분야에서 리튬전지의 음극활물질로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
예를 들어, 상기 리튬과 합금가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다.
예를 들어, 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
예를 들어, 비전이금속 산화물은 SnO2, SiOx(0<x<2) 등일 수 있다.
예를 들어, 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
음극활물질 조성물에서 도전재 및 바인더는 상기 양극활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
음극활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로, 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다.
세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용될 수 있다. 예를 들어, 상기 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성될 수 있다. 또는, 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성될 수 있다.
세퍼레이터 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
다음으로, 상술한 전해질이 준비된다.
전해질은 고분자를 포함하는 고분자 전해질이다. 전해질은 용매의 함량에 따라 액체 전해질, 겔 전해질 또는 고체 전해질일 수 있다. 전해질은 화학식 1 내지 16으로 표시되는 고분자와 리튬염을 혼합하여 고분자 전해질 조성물이 준비될 수 있다. 예를 들어, 화학식 1 내지 16으로 표시되는 고분자와 리튬염을 유기용매에 투입하여 고분자 전해질 조성물을 준비한다. 고분자 전해질 조성물이 양극 또는 음극 위에 직접 코팅된 후 용매가 제거되어 전해질 필름이 형성될 수 있다. 다르게는, 고분자 전해질 조성물이 별도의 지지체 상에 캐스팅되고 용매가 제거된 다음, 지지체로부터 박리되어 전해질 필름이 제조될 수 있다. 다르게는, 고분자를 가열하여 용융시킨 후 리튬염을 첨가하고 혼합하여 고분자 전해질 조성물을 준비한 후 냉각시켜 유기 용매의 사용 없이 전해질 필름이 준비될 수 있다. 상기 전해질은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
전해질은 세퍼레이터에 함침되어 사용될 수 있다. 예를 들어, 전해질과 세퍼레이터를 적층한 후 상기 적층체의 양면을 프레스하여 세퍼레이터에 함침된 전해질이 준비될 수 있다. 다르게는, 전해질은 세퍼레이터의 적어도 일면 상에 배치되어 사용될 수 있다. 예를 들어, 세퍼레이터의 일면 상 또는 양면상에 전해질막이 배치된어 적층체가 준비될 수 있다. 또 다르게는, 전해질은 세퍼레이터 대신에 사용될 수 있다. 예를 들어, 세퍼레이터 대신에 고체 형태의 전해질막이 사용될 수 있다.
도 1에서 보여지는 바와 같이 상기 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 전해질(미도시)은 세퍼레이터(4)의 기공 내에 함침된다. 상술한 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지케이스(5)에 수용된다. 이어서, 상기 전지케이스(5)에 유기전해액이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬전지(1)가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다.
양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 전지구조체가 바이셀 구조로 적층된 다음, 유기 전해액에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬전지가 완성된다.
전지구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
또한, 상기 리튬전지는 수명특성 및 고율특성이 우수하므로 전기차량(electric vehicle, EV)에 사용될 수 있다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드차량에 사용될 수 있다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용될 수 있다. 예를 들어, 전기 자전거, 전동 공구 등에 사용될 수 있다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
(첨가제의 합성)
실시예 1: 하기 화학식 5-1의 화합물 합성
<화학식 5-1>
Figure PCTKR2017007461-appb-I000020
(합성 스킴)
단계 1:
Figure PCTKR2017007461-appb-I000021
질소 분위기의 Dean-Stark 트랩과 콘덴서를 장착한 둥근 원형 플라스크에 디메틸술폭사이드(DMSO)와 벤젠을 투입하였다. 그리고, 1M의 4-플루오로페놀(FP) 및 1M의 K2CO3를 투입하고 120℃에서 3시간 동안 반응시켜 4,4'-디플루오로비페닐에테르(FDPE)를 수득하였다.
단계 2:
Figure PCTKR2017007461-appb-I000022
질소 분위기의 Dean-Stark 트랩과 콘덴서를 장착한 둥근 원형 플라스크에 디메틸술폭사이드(DMSO)와 벤젠을 투입하였다. 그리고, 1M의 4,4'-디플루오로비페닐에테르(FDPE), 2M의 하이드록시에틴(HE)(하이드록시아세틸렌) 및 1M의 K2CO3를 투입하고 100℃에서 5시간 동안 반응시켜 4,4'-에티닐옥시비페닐에테르(EDPE)를 수득하였다.
단계 3:
Figure PCTKR2017007461-appb-I000023
질소 분위기의 콘덴서를 장착한 둥근 원형 플라스크에 1,2-디클로로에탄을 투입하였다. 그리고, 1M의 4,4'-에티닐옥시비페닐에테르(EDPE), 2.1M N-브로모석신이미드(NBS) 및 0.4M의 FeCl3를 투입하고 25℃에서 12시간 동안 반응시켜 에티닐-3,3'-디브로모비페닐에테르(EBDPE)를 수득하였다.
단계 4:
Figure PCTKR2017007461-appb-I000024
질소 분위기의 콘덴서를 장착한 원형 플라스크에 폴리에틸렌글리콜(PEG), ClSO3H를 투입하고 25℃에서 6시간 동안 반응시킨 후, 1M LiOH를 투입하고 25℃에서 24시간 동안 교반하여 리튬술포네이트 폴리에틸렌글리콜(S-PEG)을 수득하였다.
단계 5:
Figure PCTKR2017007461-appb-I000025
질소 분위기의 Dean-Stark 트랩과 콘덴서를 장착한 둥근 원형 플라스크에 디메틸아세트아미드(DMAC)와 벤젠을 투입하였다. 그리고, 1M의 에티닐-3,3'-디브로모비페닐에테르(EBDPE), 2M의 리튬술포네이트 폴리에틸렌글리콜(S-PEG) 및 1.2M의 K2CO3를 투입하고 100℃에서 6시간 동안 반응시켜 화학식 5-1의 화합물을 수득하였다.
실시예 2: 하기 화학식 5-2의 화합물 합성
반복단위 n6의 값을 4에서 8로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 5-2>
Figure PCTKR2017007461-appb-I000026
실시예 3: 하기 화학식 5-3의 화합물 합성
반복단위 n6의 값을 4에서 16으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 5-3>
Figure PCTKR2017007461-appb-I000027
실시예 4: 하기 화학식 5-4의 화합물 합성
반복단위 n6의 값을 4에서 9로 변경하고, n7 및 n8의 값을 20에서 50으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 5-4>
Figure PCTKR2017007461-appb-I000028
실시예 5: 하기 화학식 5-5의 화합물 합성
반복단위 n6의 값을 4에서 9로 변경하고, n7 및 n8의 값을 20에서 70으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 5-5>
Figure PCTKR2017007461-appb-I000029
실시예 6: 하기 화학식 9-1의 화합물 합성
에테르 연결기를 디메틸에탄 연결기로 변경하고,
반복단위 n6의 값을 4에서 9로 변경하고, n7 및 n8의 값을 20에서 50으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 9-1>
Figure PCTKR2017007461-appb-I000030
실시예 7: 하기 화학식 6-1의 화합물 합성
말단치환기를 아세틸레닐기에서 트리플루오로에틸레닐기로 변경하고,
반복단위 n6의 값을 4에서 9로 변경하고, n7 및 n8의 값을 20에서 50으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 6-1>
Figure PCTKR2017007461-appb-I000031
실시예 8: 하기 화학식 7-1의 화합물 합성
말단치환기를 아세틸레닐기에서 에틸레닐기로 변경하고,
반복단위 n6의 값을 4에서 9로 변경하고, n7 및 n8의 값을 20에서 50으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 7-1>
Figure PCTKR2017007461-appb-I000032
실시예 9: 하기 화학식 5-6의 화합물 합성
단계 2에서 HO-C≡CH 대신에 HO-C6H5-C≡CH를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 합성하였다.
<화학식 5-6>
Figure PCTKR2017007461-appb-I000033
비교예 1: PEO
폴리에틸렌옥사이드(PEO, Mw=100,000, Aldrich, 181986)를 그대로 입수하여 사용하였다.
(전해질의 제조)
실시예 10: 화학식 5-1, EO:Li=6:1
실시예 1에서 제조된 화학식 5-1로 표시되는 고분자 1.15 g을 아세토니트릴 50 ml에 용해하여 고분자 용액을 얻고 여기에서 LiTFSi를 [EO]:[Li]=6:1 몰비가 되도록 투입하고 교반하면서 용해한 후 상기 용액을 테프론 접시에 부은 후 건조실의 상온에서 2일 동안 건조한 후 진공건조(60℃, overnight)하여 용매가 제거된 필름 형태의 이온전도성 고분자 전해질을 얻었다. 상기 전해질은 25℃에서 고체이며 실질적으로 용매를 비함유(solvent free) 하였다.
<화학식 5-1>
Figure PCTKR2017007461-appb-I000034
실시예 11: 화학식 5-2, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 5-2로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 5-2>
Figure PCTKR2017007461-appb-I000035
실시예 12: 화학식 5-3, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 5-3으로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 5-3>
Figure PCTKR2017007461-appb-I000036
실시예 13: 화학식 5-4, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 5-4로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 5-4>
Figure PCTKR2017007461-appb-I000037
실시예 14: 화학식 5-5, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 5-5로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 5-5>
Figure PCTKR2017007461-appb-I000038
실시예 15: 화학식 9-1, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 9-1로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 9-1>
Figure PCTKR2017007461-appb-I000039
실시예 16: 화학식 6-1, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 6-1로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 6-1>
Figure PCTKR2017007461-appb-I000040
실시예 17: 화학식 7-1, EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 7-1로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 7-1>
Figure PCTKR2017007461-appb-I000041
실시예 18: 화학식 5-6, EO:Li=6:1
상기 화학식 5-1로 표시되는 고분자 대신에 하기 화학식 5-6으로 표시되는 고분자를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
<화학식 5-6>
Figure PCTKR2017007461-appb-I000042
비교예 2: PEO , EO:Li =6:1
상기 화학식 5-1로 표시되는 고분자 대신에 폴리에틸렌옥사이드(PEO, Mw=100,000, Aldrich, 181986)를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 전해질막을 제조하였다. 상기 전해질은 25℃에서 고체였다.
(리튬 전지의 제조)
실시예 19
(음극 제조)
인조 흑연(BSG-L, Tianjin BTR New Energy Technology Co., Ltd.) 98중량%, 스티렌-부타디엔 고무(SBR)바인더(ZEON) 1.0중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.0중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극판을 제조하였다.
(양극 제조)
LiNi1 / 3Co1 / 3Mn1 / 3O2 97.45중량%, 도전재로서 인조흑연(SFG6, Timcal) 분말 0.5중량%, 카본블랙(Ketjenblack, ECP) 0.7중량%, 개질 아크릴로니트릴 고무(BM-720H, Zeon Corporation) 0.25중량%, 폴리비닐리덴플루오라이드(PVdF, S6020, Solvay) 0.9중량%, 폴리비닐리덴플루오라이드(PVdF, S5130, Solvay) 0.2중량%를 혼합하여 N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극판을 제조하였다.
상기 양극과 음극 상이에 상기 실시예 10에서 제조된 필름 형태의 전해질을 배치하여 사용하여 리튬전지를 제조하였다.
실시예 20 내지 27
실시예 10에서 제조된 전해질 대신에 실시예 11 내지 18에서 제조된 전해질을 각각 사용한 것을 제외하고는 실시예 19와 동일한 방법으로 리튬전지를 제조하였다.
비교예 3
실시예 10에서 제조된 전해질 대신에 비교예 2에서 제조된 전해질을 각각 사용한 것을 제외하고는 실시예 19와 동일한 방법으로 리튬전지를 제조하였다.
평가예 1: 이온전도도 측정
실시예 10 내지 17 및 비교예 2에서 제조된 필름 형태의 전해질에 대하여 25℃에서 임피던스 분석기(Solartron 1260A Impedance/Gain-Phase Analyzer)를 사용하여 2-프로브(probe)법으로 상기 전해질의 전도도를 측정하였다. 전류밀도는 0.4 A/cm2 이었고 진폭 ±10mV, 주파수 범위는 0.1Hz 내지 10KHz 였다. 실시예 9 내지 16 및 비교예 2의 전해질의 임피던스 측정 결과로부터 이온 전도도를 도출하였다. 측정 결과를 하기 표 1에 나타내었다.
평가예 2: 열안정성 측정
실시예 10 내지 17 및 비교예 2에서 필름 형태의 전해질의 유리전이온도(Tg) 및 분해온도(Td)를 DSC(Dynamic Scanning Calorimeter)를 사용하여 측정하였다. 측정 결과를 하기 표 1에 나타내었다.
평가예 3: 인장 물성 측정
압입팁(indentation tip)으로서 베르코비치팁(Berkovich tip)을 장착한 장치(Hysitron사의 Triboindenter)를 사용한 기계화된 압입 시험(instrumented indentation test)으로 실시예 10 내지 17 및 비교예 2에서 필름 형태의 전해질의 탄성계수(Young's modulus) 및 강도(hardness)를 측정하였다. 측정 결과를 하기 표 1에 나타내었다.
중량평균분자량[Dalton] n6 n7 n8 이온전도도[S/cm] Tg [℃] Td [℃] 탄성계수(Young modulus) 경도(hardness)
비교예 2 100,000 - - - 5.5×10-6 -72 160 0.6646 0.0378
실시예 10 8,800 4 20 20 3.9×10-6 3 183 0.1015 0.0128
실시예 11 17,600 8 20 20 5.7×10-6 17 207 0.4527 0.0473
실시예 12 35,200 16 20 20 7.6×10-7 98 325 0.2510 0.0810
실시예 13 44,000 9 50 20 6.2×10-6 1 189 0.7713 00502
실시예 14 61,600 9 70 20 5.6×10-6 8 205 0.7035 0.0427
실시예 15 46,500 9 50 20 5.8×10-6 5 216 0.7512 0.0510
실시예 16 43,000 9 50 20 7.5×10-6 -4 178 0.8110 0.0531
실시예 17 44,000 9 50 20 7.3×10-6 -5 185 0.81017 0.0517
상기 표 1에서 보여지는 바와 같이, 실시예의 전해질은 비교예의 전해질에 비하여 유리전이온도, 분해온도 및 경도가 증가하여 열적 특성 및 기계적 특성이 향상되었다.
또한, 실시예의 전해질은 7.6×10-7 S/cm 이상의 높은 이온전도도를 제공하였으며, n6, n7, n8의 값에 따라 이온전도도, 탄성계수, 점도, 유리전이온도 등의 조절이 가능하였다.
평가예 4: 상온(25℃) 충방전 특성 평가
상기 실시예 19 내지 27 에서 제조된 리튬전지를 25℃에서 0.2C rate의 전류로 전압이 4.2V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.2V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.85V(vs. Li)에 이를 때까지 0.2C rate의 정전류로 방전하는 충방전 사이클을 수행하여 리튬전지가 작동함을 확인하였다.
새로운 구조의 고분자를 사용함에 의하여 전해질의 이온전도도, 열적 물성 및 기계적 물성이 향상될 수 있다.

Claims (15)

  1. 하기 화학식 1 로 표시되는 고분자:
    <화학식 1>
    Figure PCTKR2017007461-appb-I000043
    상기 식에서,
    CY는 C2-C30의 탄소원자를 포함하며, 선택적으로 하나 이상의 헤테로원자를 포함하는, 6원자 내지 30원자 고리기(membered ring group)이며,
    상기 6원자 내지 30원자고리기는 비치환된 또는 치환된 C3-C30 시클로알킬 고리, 비치환된 또는 치환된 C3-C30 헤테로시클로알킬 고리, 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며,
    X1, X2 및 X4는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking group)이며,
    X3는 헤테로 원자를 포함하는 반복단위이며,
    X5-는 음이온성 작용기이며, M+은 양이온이며,
    G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며,
    A1, 및 A2는 가교기(crosslinkable functional group)기이며,
    a는 2 내지 5이고, n1은 1 내지 100이며, n2는 1 내지 300이다.
  2. 제1 항에 있어서, 상기 C3-C30 시클로알킬 고리, C3-C30 헤테로시클로알킬 고리, C6-C30 아릴 고리, C2-C30 헤테로아릴 고리 및 C2-C30 알킬렌기의 치환기가 서로 독립적으로 수소, 할로겐, 할로겐으로 치환 또는 비치환된 탄소수 1 내지 20의 알킬기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알케닐기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 20의 알키닐기, 할로겐으로 치환 또는 비치환된 탄소수 3 내지 20의 시클로알케닐기, 할로겐으로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로사이클릴기, 할로겐으로 치환 또는 비치환된 탄소수 6 내지 40의 아릴기, 할로겐으로 치환 또는 비치환된 탄소수 2 내지 40의 헤테로아릴기, 또는 하나 이상의 헤테로원자를 포함하는 극성작용기인 유기전해액.
  3. 제1 항에 있어서, 상기 고분자가 하기 화학식 2로 표시되는 고분자:
    <화학식 2>
    Figure PCTKR2017007461-appb-I000044
    상기 식에서,
    CY1 및 CY2는 서로 독립적으로 비치환된 또는 치환된 C6-C30 시클로알킬 고리, 비치환된 또는 치환된 C3-C30 헤테로시클로알킬 고리, 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며,
    W1, Y1, Y3, Z1 및 Z3는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며,
    Y2 및 Z2는 서로 독립적으로 헤테로 원자를 포함하는 반복단위이며,
    Y5- 및 Z4-는 음이온성 작용기이며, M+은 양이온이며,
    G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며,
    A1, 및 A2는 가교기(crosslinkable functional group)기이며,
    n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
  4. 제1 항에 있어서, 상기 고분자가 하기 화학식 3으로 표시되는 고분자:
    <화학식 3>
    Figure PCTKR2017007461-appb-I000045
    상기 식에서,
    Ar1 및 Ar2는 서로 독립적으로 비치환된 또는 치환된 C6-C30 아릴 고리, 또는 비치환된 또는 치환된 C2-C30 헤테로아릴 고리를 포함하며,
    W1, Y1, Y3, Z1 및 Z3는 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며,
    Y2 및 Z2는 서로 독립적으로 헤테로 원자를 포함하는 반복단위이며,
    Y5- 및 Z4-는 음이온성 작용기이며, M+은 양이온이며,
    G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며,
    A1, 및 A2는 가교기(crosslinkable functional group)기이며,
    n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
  5. 제1 항에 있어서, 상기 고분자가 하기 화학식 4로 표시되는 고분자:
    <화학식 4>
    Figure PCTKR2017007461-appb-I000046
    상기 식에서,
    R1, R2, R3, R4, R9 및 R10은 서로 독립적으로 수소; 할로겐; 할로겐으로 치환 또는 비치환된 탄소수 1 내지 5의 알킬기; 또는 할로겐으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기이며,
    W1, R5, R7, R11, 및 R13은 서로 독립적으로 공유결합; 비치환된 또는 치환된 C1-C4 알킬렌기; 또는 헤테로 원자를 포함하는 연결기(linking roup)이며,
    R6 및 R12는 서로 독립적으로 -R15-O-, 또는 -C(=O)O-이며, R15는 할로겐으로 치환 또는 비치환된 탄소수 2 내지 10의 알킬렌기이며,
    Y5- 및 Z4-는 -SO3 -, -CO2 -, 또는 -P(=O)(OH)O- 이며,
    Ma+ 및 Mb+는 서로 독립적으로 수소 이온 또는 알칼리 금속 양이온이며,
    G1 및 G2는 서로 독립적으로 -O-, -S-, 또는 -O-C6H5-이며,
    A1, 및 A2는 가교기(crosslinkable functional group)기이며,
    n3은 1 내지 100이며, n4 및 n5는 서로 독립적으로 1 내지 300이다.
  6. 제1 항에 있어서, 상기 가교기가 할로겐으로 치환 또는 비치환된 비닐기(vinyl group), 할로겐으로 치환 또는 비치환된 알릴기(allyl group), 할로겐으로 치환 또는 비치환된 에티닐기(ethynyl group), 또는 할로겐으로 치환 또는 비치환된 에폭시기(epoxy group)인 유기전해액.
  7. 제1 항에 있어서, 상기 헤테로 원자를 포함하는 연결기(linking group)가 -O-, -S-, -S(=O)-, -S(=O)2-, -C(=O)-, -Si(E1)(E2)-, 또는 -P(=O)(E3)-이며, E1, E2, 및 E3는 서로 독립적으로 수소, 할로겐, 또는 할로겐으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 또는 할로겐으로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기인 고분자.
  8. 제1 항에 있어서, 상기 고분자가 하기 화학식 5 내지 17로 표시되는 고분자:
    <화학식 5>
    Figure PCTKR2017007461-appb-I000047
    <화학식 6>
    Figure PCTKR2017007461-appb-I000048
    <화학식 7>
    Figure PCTKR2017007461-appb-I000049
    <화학식 8>
    Figure PCTKR2017007461-appb-I000050
    <화학식 9>
    Figure PCTKR2017007461-appb-I000051
    <화학식 10>
    Figure PCTKR2017007461-appb-I000052
    <화학식 11>
    Figure PCTKR2017007461-appb-I000053
    <화학식 12>
    Figure PCTKR2017007461-appb-I000054
    <화학식 13>
    Figure PCTKR2017007461-appb-I000055
    <화학식 14>
    Figure PCTKR2017007461-appb-I000056
    <화학식 15>
    Figure PCTKR2017007461-appb-I000057
    <화학식 16>
    Figure PCTKR2017007461-appb-I000058
    <화학식 17>
    Figure PCTKR2017007461-appb-I000059
    상기 식들에서, n6은 1 내지 100이며, n7 및 n8는 서로 독립적으로 2 내지 300이다.
  9. 제1 항에 있어서, 상기 고분자의 폴리스티렌 표준시료에 대하여 GPC(Gel Permeation Chromatography)에 의하여 측정한 중량평균분자량이 5000 내지 300,000인 고분자.
  10. 제1 항에 있어서, 상기 고분자의 유리전이온도가 -20℃ 이상인 고분자.
  11. 제1 항 내지 제10 항 중 어느 한 항에 따른 고분자; 및
    리튬염을 포함하는 전해질.
  12. 제11 항에 있어서, 상기 전해질에서 리튬염이 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(2≤x≤20, 2≤y≤20), LiCl 및 LiI로 이루어진 군에서 선택된 하나 이상을 포함하는 전해질.
  13. 제11 항에 있어서, 상기 전해질의 이온전도도가 20℃에서 7×10-7 S/cm 이상인 전해질.
  14. 제11 항에 있어서, 상기 고분자의 가교반응 생성물을 포함하는 전해질.
  15. 양극; 음극; 및 상기 양극과 음극 사이에 배치된 전해질을 포함하며,
    상기 양극, 음극 및 전해질 중 하나 이상이 상기 제1 항 내지 제10 항 중 어느 한 항에 따른 고분자를 포함하는 리튬전지.
PCT/KR2017/007461 2016-07-13 2017-07-12 고분자, 및 이를 포함하는 전해질과 리튬 전지 WO2018012877A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780043150.2A CN109476838A (zh) 2016-07-13 2017-07-12 聚合物、包括聚合物的电解质以及包括聚合物的锂电池
US16/315,034 US11183709B2 (en) 2016-07-13 2017-07-12 Polymer, electrolyte including the same, and lithium battery including the polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160088707A KR102233775B1 (ko) 2016-07-13 2016-07-13 고분자, 및 이를 포함하는 전해질과 리튬 전지
KR10-2016-0088707 2016-07-13

Publications (1)

Publication Number Publication Date
WO2018012877A1 true WO2018012877A1 (ko) 2018-01-18

Family

ID=60953235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007461 WO2018012877A1 (ko) 2016-07-13 2017-07-12 고분자, 및 이를 포함하는 전해질과 리튬 전지

Country Status (4)

Country Link
US (1) US11183709B2 (ko)
KR (1) KR102233775B1 (ko)
CN (1) CN109476838A (ko)
WO (1) WO2018012877A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220102756A1 (en) * 2020-09-30 2022-03-31 GM Global Technology Operations LLC Methods for forming solid gel electrolyte membranes and batteries incorporating the same
CN117543076B (zh) * 2024-01-10 2024-03-15 广东工业大学 一种氧杂加成聚醚酯基全固态聚合物电解质及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086250A (ja) * 2001-07-06 2003-03-20 Nippon Nyukazai Kk 新規な高分子電解質及びリチウム二次電池
WO2003083972A1 (en) * 2002-03-22 2003-10-09 Quallion Llc Nonaqueous liquid electrolyte
US6727024B2 (en) * 2001-03-13 2004-04-27 Institute Of Chemical Technology Polyalkylene oxide polymer composition for solid polymer electrolytes
JP2015074657A (ja) * 2013-10-04 2015-04-20 国立大学法人山口大学 ネットワークポリマー及びポリマーゲル電解質
KR20160024411A (ko) * 2014-08-25 2016-03-07 삼성전자주식회사 리튬 전지용 고분자 전해질 및 이를 구비한 리튬 전지

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108840A (en) 1989-12-08 1992-04-28 Raychem Corporation Multilayer electronic circuit article having a poly(naphthyl ether) dielectric
JP2581338B2 (ja) 1991-04-22 1997-02-12 株式会社ユアサコーポレーション 高分子固体電解質およびこれを用いた電池
US6384166B1 (en) 2000-11-16 2002-05-07 National Starch And Chemical Investment Holding Corporation Colorless polymaleates and uses thereof
JP4501328B2 (ja) 2002-01-15 2010-07-14 ダイソー株式会社 ポリマー電解質と該電解質を用いたポリマー二次電池
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
JP2004131662A (ja) * 2002-10-15 2004-04-30 Nippon Kayaku Co Ltd スルホアルキル化ポリスルホン系イオン交換樹脂及びそれを含有するイオン交換膜
KR100506096B1 (ko) * 2003-10-27 2005-08-03 삼성에스디아이 주식회사 말단 술폰산기를 포함하는 고분자 및 이를 채용한 고분자전해질과 연료 전지
ATE464667T1 (de) * 2004-05-27 2010-04-15 Dutch Polymer Inst Polymerelektrolyt, und elektrochemische einrichtung die mit solch einem polymerelektrolyt ausgestattet ist
CN100576617C (zh) * 2005-07-27 2009-12-30 旭硝子株式会社 固体高分子型燃料电池用电解质材料、电解质膜及膜电极接合体
JP4611956B2 (ja) * 2005-10-07 2011-01-12 三星エスディアイ株式会社 固体酸、高分子電解質膜および燃料電池
KR100707163B1 (ko) * 2005-10-12 2007-04-13 삼성에스디아이 주식회사 고체산, 이를 포함하는 고분자 전해질막 및 이를 채용한연료전지
FR2893623B1 (fr) * 2005-11-22 2008-02-01 Inst Nat Polytech Grenoble Preparation de films constitues par un polymere reticule ayant des groupes ioniques
KR101255538B1 (ko) * 2006-02-22 2013-04-16 삼성에스디아이 주식회사 가교성 술폰화 공중합체 및 상기 공중합체의 중합물을포함하는 연료전지
TW200901544A (en) * 2007-02-08 2009-01-01 Sumitomo Chemical Co Ion conductive composition, ion conductive film containing the same, electrode catalyst material, and fuel cell
KR20100095725A (ko) 2009-02-23 2010-09-01 광주과학기술원 말단에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에테르)로 이루어진 염제거막
WO2010111308A1 (en) * 2009-03-23 2010-09-30 Tda Research, Inc. Liquid electrolyte filled polymer electrolyte
CN102190790A (zh) 2010-03-19 2011-09-21 深圳市比克电池有限公司 梳状聚合物、电解质材料及其制备方法
KR101368870B1 (ko) 2012-05-07 2014-03-06 한국화학연구원 다분지형 아크릴계 가교제 및 포스페이트계 가소제를 함유하는 semi―IPN 타입의 고체 고분자 전해질 조성물
WO2014022224A1 (en) * 2012-08-02 2014-02-06 The Penn State Research Foundation Polymer conductor for lithium-ion batteries
FR3024145B1 (fr) * 2014-07-23 2018-03-16 Cdp Innovation Nouveaux polymeres contenant des sels de lithium ou de sodium de sulfonamides, leurs procedes de preparation et leurs utilisations comme electrolytes pour batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727024B2 (en) * 2001-03-13 2004-04-27 Institute Of Chemical Technology Polyalkylene oxide polymer composition for solid polymer electrolytes
JP2003086250A (ja) * 2001-07-06 2003-03-20 Nippon Nyukazai Kk 新規な高分子電解質及びリチウム二次電池
WO2003083972A1 (en) * 2002-03-22 2003-10-09 Quallion Llc Nonaqueous liquid electrolyte
JP2015074657A (ja) * 2013-10-04 2015-04-20 国立大学法人山口大学 ネットワークポリマー及びポリマーゲル電解質
KR20160024411A (ko) * 2014-08-25 2016-03-07 삼성전자주식회사 리튬 전지용 고분자 전해질 및 이를 구비한 리튬 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUE, Z.: "Poly(ethylene oxide)-based electrolytes for lithium-ion batteries", J. MATER. CHEM. A, 2015, pages 19218 - 19253, XP055374472, DOI: doi:10.1039/C5TA03471J *

Also Published As

Publication number Publication date
US11183709B2 (en) 2021-11-23
KR20180007544A (ko) 2018-01-23
US20190312305A1 (en) 2019-10-10
KR102233775B1 (ko) 2021-03-30
CN109476838A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2015056907A1 (ko) 분리막 및 그를 포함하는 리튬-황 전지
WO2017196105A1 (ko) 리튬금속전지용 보호음극 및 이를 포함한 리튬금속전지
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2020055110A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019027137A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2019004699A1 (ko) 리튬 이차전지
WO2019108032A1 (ko) 겔 폴리머 전해질 조성물 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2021153987A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2020162659A1 (ko) 유기 전해액, 및 이를 포함하는 이차전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2024080826A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2022169109A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2020067769A1 (ko) 고체 전해질 및 이의 제조방법
WO2019009594A1 (ko) 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차전지
WO2020197093A1 (ko) 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지
WO2021025535A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2020055122A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827947

Country of ref document: EP

Kind code of ref document: A1