WO2024080826A1 - 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지 - Google Patents

공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지 Download PDF

Info

Publication number
WO2024080826A1
WO2024080826A1 PCT/KR2023/015824 KR2023015824W WO2024080826A1 WO 2024080826 A1 WO2024080826 A1 WO 2024080826A1 KR 2023015824 W KR2023015824 W KR 2023015824W WO 2024080826 A1 WO2024080826 A1 WO 2024080826A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mol
copolymer composition
weight
negative electrode
Prior art date
Application number
PCT/KR2023/015824
Other languages
English (en)
French (fr)
Inventor
박소현
박지혜
권현지
박찬수
김균태
조민기
김창범
권세만
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2024080826A1 publication Critical patent/WO2024080826A1/ko

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copolymer composition that can be used as a binder, a slurry containing the same, an electrode, and a secondary battery.
  • Lithium secondary batteries have a high energy density, so they are widely used in the electrical, electronics, communications, and computer industries. Following small lithium secondary batteries for portable electronic devices, their application areas are expanding to high-capacity secondary batteries such as hybrid vehicles and electric vehicles. there is.
  • lithium secondary batteries are required to have higher capacity and longer lifespan characteristics.
  • An example of a method for increasing the capacity of lithium secondary batteries is using an active material containing silicon atoms for the negative electrode.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2016-0024921
  • the present invention seeks to provide a copolymer composition that can produce a slurry composition with excellent binding force and ability to inhibit electrode swelling.
  • the present invention seeks to provide an electrode (particularly a negative electrode) with excellent performance to which the slurry composition is applied and a secondary battery including the electrode with excellent capacity retention per cycle.
  • One aspect of the present application is a first copolymer comprising a vinyl alcohol monomer unit and a vinyl amine monomer unit;
  • a second copolymer comprising a vinyl alcohol monomer unit and an acrylic acid salt-based monomer unit
  • a copolymer composition is provided.
  • Negative active material containing,
  • Another aspect of the present application is a current collector
  • a negative electrode active material layer containing the copolymer composition formed on the current collector
  • the copolymer composition of the present invention can be used in a negative electrode slurry to increase the binding force with the negative electrode current collector, suppress negative electrode expansion, and improve the capacity maintenance rate per cycle of a secondary battery.
  • Figure 1 shows the crosslinking mechanism of the copolymer composition of the present invention in which glutalaldehyde was used as a crosslinking agent.
  • the copolymer composition according to one aspect of the present application includes a first copolymer comprising a vinyl alcohol monomer unit and a vinyl amine series monomer unit, a vinyl alcohol monomer unit, and an acrylic acid salt. It may include a second copolymer containing a series of monomer units and a crosslinking agent.
  • the crosslinking agent crosslinks the first copolymer and the second copolymer having a polar functional group, thereby increasing the adhesion between the active material and the current collector and minimizing structural changes and damage to the electrode due to changes in the volume of the active material. .
  • the first copolymer further includes at least one selected from the group consisting of vinyl acetate monomer units and N-vinylformamide series monomer units
  • the second copolymer is acrylic. It may further include one or more selected from acrylate-based monomer units and vinyl acetate monomer units.
  • the first copolymer contains a hydroxyl group and an amine group, and when used as a binder of a slurry for a negative electrode, it can form a strong hydrogen bond with silicon, which is a negative electrode active material, and coordinate bonds with the current collector of the negative electrode, thereby forming a bond between the silicon and the current collector. It can increase cohesion.
  • the second copolymer is based on an ethylene skeleton structure, which provides flexibility to the binder of the negative electrode slurry and can suppress the volume change of silicon, which is the negative electrode active material.
  • the alkali metal ion substituted at the end of the acrylic acid salt-based monomer unit may contribute to improving ionic conductivity.
  • the stretched chains can interact with the negative electrode active material to form a porous electrode with a dense structure and enable the formation of a stable SEI layer.
  • the hydroxyl group of the first copolymer and the carboxyl group of the second copolymer can be chemically and/or physically cross-linked, thereby suppressing the volume change of silicon, which is a negative electrode active material.
  • the vinyl amine series monomer unit of the first copolymer may be at least one selected from the group consisting of vinyl amine and 1-methylvinyl amine. It is not limited.
  • the monomer unit of the acrylic acid salt series of the second copolymer may be one or more selected from the group consisting of acrylic acid and methacrylic acid, but is not limited thereto.
  • the N-vinylformamide series monomer unit of the first copolymer is selected from the group consisting of N-vinylformamide and N-Isopropenylformamide. It may be one or more selected ones, but is not limited thereto.
  • the acrylate-based monomer units of the second copolymer include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, and isopropyl acrylate.
  • based on the total content of 100 mol% of the first copolymer 50 mol% or more and 90 mol% or less of the monomer units of the vinyl alcohol and 1 mol% or more and 50 mol% or less of the vinyl form It may contain an amide (N-vinylformamide) series monomer unit.
  • the acrylic acid based on the total content of the second copolymer of 100 mol%, 1 mol% or more and 30 mol% or less of the monomer units of the vinyl alcohol and 50 mol% or more and 90 mol% or less of the acrylic acid ( It may contain monomer units of the acrylic acid (acrylic acid) salt series.
  • the content of the first copolymer and the second copolymer can be adjusted by changing the degree of hydrolysis during the manufacturing process of the first copolymer and the second copolymer.
  • the first copolymer may include a monomer repeating unit represented by Formula 1 below
  • the second copolymer may include a monomer repeating unit represented by Formula 2 below.
  • x, y, m and n represent the mol% of each monomer unit.
  • R 1 and R 2 are different from or the same as each other and are each independently hydrogen or a linear or branched hydrocarbon having 1 to 5 carbon atoms,
  • R 3 is a hydroxyl (-OH) group
  • M is an alkali metal
  • a, b, c and d represent the mol% of each monomer unit.
  • M in Formula 2 may be any one selected from the group consisting of lithium (Li), potassium (K), and sodium (Na), but is not limited thereto.
  • R 1 and R 2 may each independently be selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl and n-pentyl, It is not limited to this.
  • 10% by weight or more and 90% by weight or less of the first copolymer and 10% by weight or more and 90% by weight or less of the second copolymer may include.
  • the binding force of the negative electrode can be further improved when used as a negative electrode binder.
  • the higher the content ratio of the second copolymer within the content range of the first copolymer and the second copolymer of the copolymer composition the higher the dispersibility and stability of the slurry for the negative electrode when used as a negative electrode binder. It can be improved further.
  • the content of the first copolymer and the second copolymer in the copolymer composition exceeds the scope of the present application, when used as a negative electrode binder, one or more of the dispersion stability of the negative electrode slurry composition, the binding force of the negative electrode, and the characteristics of the secondary battery are affected. This may deteriorate.
  • electrodes with low adhesion to the current collector may be detached during the drying process and rolling process, and when the rolling density of the electrode is increased, separation of the applied slurry and the electrode may occur.
  • low adhesion to the electrode plates when driving the battery may cause the electrodes wet and expanded in the electrolyte to detach, which may reduce the driving stability of the battery.
  • the first copolymer may be a random or block copolymer
  • the second copolymer may be a random or block copolymer
  • the number average molecular weight of the first copolymer may be 10,000 or more and 1,000,000 or less
  • the number average molecular weight of the second copolymer may be 10,000 or more and 1,000,000 or less.
  • the first copolymer may be produced by hydrolysis of a copolymer containing monomer units of vinyl acetate and monomer units of the N-vinylformamide series.
  • the vinyl acetate monomer unit and the N-vinylformamide series monomer unit of the first copolymer are respectively a vinyl alcohol monomer unit and a vinyl amine series monomer unit. May be hydrolyzed.
  • the second copolymer may be produced by hydrolysis of a copolymer containing an acrylate-based monomer unit and a vinyl acetate monomer unit.
  • the acrylate-based monomer units and vinyl acetate monomer units of the second copolymer may be hydrolyzed into acrylic acid salt-based monomer units and vinyl alcohol monomer units, respectively.
  • An alkali metal hydroxide may be used for hydrolysis to prepare the first copolymer and the second copolymer, but is not limited thereto.
  • the crosslinking agent may include two or more aldehyde groups.
  • the cross-linking agent may be glutaraldehyde, succinaldehyde, glyoxal dialdehyde, adipic dialdehyde, or a combination thereof.
  • Figure 1 shows the expected crosslinking mechanism of the copolymer composition of the present invention in which glutalaldehyde was used as a crosslinking agent.
  • the crosslinking agent may be included in an amount of 0.7% by weight or more and 2.8% by weight or less, based on 100% by weight of the total weight of the copolymer composition.
  • the copolymer composition may be included at 1% by weight, 1.5% by weight, 2% by weight, or 2.5% by weight.
  • the cross-linking rate may increase when cross-linking is performed under the same pH.
  • the binding power of the copolymer composition may be greatly reduced when crosslinked under the same pH.
  • the electrode expansion rate may increase significantly, thereby reducing the lifespan of the lithium secondary battery to which the copolymer is applied.
  • the pH of the copolymer composition may be 6 or more and 12 or less.
  • the crosslinking rate may decrease. Additionally, as the pH of the copolymer composition increases, the binding rate of the slurry composition using the copolymer composition may increase.
  • the electrode expansion rate of the electrode using the copolymer composition increases significantly, which may reduce battery performance and lifespan.
  • the pH of the copolymer composition can be adjusted by adding a pH adjuster to the copolymer composition.
  • any pH adjuster (particularly an acidic substance) that can adjust the pH of the copolymer composition to 6 or more and 12 or less can be used.
  • maleic acid, acrylic acid, or a combination thereof as monomers may be used, and polyacrylic acid as a polymer may be used.
  • the crosslinking rate of the first copolymer and the second copolymer of the copolymer composition may be 45% or more and 80% or less.
  • it may be 50% or more and 80% or less.
  • a negative electrode slurry according to another aspect of the present application may include the above copolymer composition and a negative electrode active material.
  • the copolymer composition can be used as a binder for a negative electrode.
  • Peel strength between the negative electrode active material layer formed using the negative electrode slurry and the copper current collector may be 10 dyne/cm 2 or more and 15 dyne/cm 2 or less.
  • the negative electrode active material may be a compound containing one or more types selected from the group consisting of carbon-based materials, silicon, alkali metals, alkaline earth metals, group 13 elements, group 14 elements, transition metals, and rare earth elements, preferably silicon. Alternatively, it may be a compound containing silicon.
  • the carbon-based material includes, for example, artificial graphite, natural graphite, hard carbon, and soft carbon, but is not limited thereto.
  • the type of the negative electrode active material containing silicon is not particularly limited as long as it is silicon or a compound containing silicon, but is preferably Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (Y is an alkali metal , an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, or a combination thereof, but not Si.) and a Si-C composite.
  • the negative electrode active material containing silicon when using a mixture of a negative electrode active material containing silicon and another negative electrode active material as the negative electrode active material, the negative electrode active material containing silicon may be included in more than 8% by weight of the total weight of the negative electrode active material.
  • the negative electrode active material may be included in an amount of 50 to 90% by weight, preferably 60 to 80% by weight, based on the total weight of the negative electrode active material layer.
  • the negative active material is included in less than 50% by weight, the energy density decreases, making it impossible to manufacture a high energy density battery, and if it is included in more than 90% by weight, the content of the conductive material and binder decreases, resulting in a decrease in electrical conductivity. Adhesion between the electrode active material layer and the current collector may be reduced.
  • the copolymer composition binder of the present application may be included in an amount of 1 to 35% by weight based on the total weight of the anode slurry. If the copolymer is less than 1% by weight, the physical properties of the negative electrode may deteriorate and the negative electrode active material and the conductive material may fall off, and if the copolymer exceeds 35% by weight, the ratio of the negative electrode active material and the conductive material may be relatively reduced, resulting in reduced battery capacity. , the electrical conductivity of the cathode may decrease.
  • the negative electrode slurry may contain additional polymers in addition to the copolymer composition of the present application.
  • the polymer specifically includes, for example, polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyacrylic acid metal salt (Metal-PAA), polymethacrylic acid (PMA), and polymethyl methacrylate.
  • PMMA polyacrylamide
  • PAM polymethacrylamide
  • PAN polyacrylonitrile
  • PI polyimide
  • chitosan Chosan
  • starch polyvinylpyrrolidone, Tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluoroelastomer, hydroxypropylcellulose, regenerated cellulose and various copolymers thereof, etc. Examples include, but are not limited to.
  • a negative electrode according to another aspect of the present application may include a current collector and a negative electrode active material layer including the copolymer composition of the present application formed on the current collector.
  • the negative electrode active material layer may additionally include a conductive material.
  • the conductive material is used to further improve the conductivity of the negative electrode active material.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives, etc. may be used.
  • the conductive material may be included in an amount of 5 to 30% by weight, preferably 15 to 25% by weight, based on the total weight of the negative electrode active material layer. If the conductive material is included in less than 5% by weight, the electrical conductivity of the cathode is lowered. If it is contained in excess of 30% by weight, the ratio of the silicon-based negative active material to the binder is relatively reduced, thereby reducing battery capacity. Since the content of the binder must be increased to maintain the negative electrode active material layer, the content of the negative electrode active material is reduced, resulting in high energy density. batteries cannot be manufactured.
  • the negative electrode active material layer includes the copolymer composition of the present application, so that volume expansion of the negative electrode active material that occurs during charging and discharging of the secondary battery can be suppressed and the capacity maintenance rate per cycle can be improved.
  • the negative electrode includes the steps of (a) preparing a composition for forming a negative electrode active material layer containing a negative electrode active material and the copolymer composition of the present application, and (b) applying the composition for forming a negative electrode active material layer on a negative electrode current collector and then drying it. It can be manufactured through
  • the composition for forming the negative electrode active material layer is manufactured in a negative electrode slurry state, and the solvent for producing the slurry state must be easy to dry, and can well dissolve the binder of the copolymer composition of the present application, but does not dissolve the negative electrode active material and is in a dispersed state. It is most desirable to be able to maintain it.
  • the solvent according to the present application can be water or an organic solvent, and the organic solvent is at least one selected from the group consisting of methylpyrrolidone, dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran.
  • Organic solvents containing are applicable.
  • composition for forming the negative electrode active material layer can be mixed in a conventional manner using a conventional mixer, such as a rate mixer, high-speed shear mixer, or homomixer.
  • Step (b) is a step of manufacturing a negative electrode for a lithium secondary battery by applying the composition for forming a negative electrode active material layer prepared in step (a) on the negative electrode current collector and drying it.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • the composition for forming the negative electrode active material layer prepared in step (a) is applied on the negative electrode current collector, and can be coated on the current collector with an appropriate thickness depending on the thickness to be formed, preferably within the range of 10 to 300 ⁇ m. You can choose.
  • the method of applying the composition for forming the negative electrode active material layer in the slurry form is not limited, for example, doctor blade coating, dip coating, gravure coating, slit die coating ( Slit die coating, spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating method, etc. It can be manufactured by performing.
  • a negative electrode for a secondary battery (particularly, a lithium secondary battery) with a negative electrode active material layer finally formed can be manufactured.
  • a battery according to another aspect of the present disclosure may include a current collector and a negative electrode in which the negative electrode active material layer is formed on the current collector.
  • the battery may be a secondary battery (particularly, a lithium secondary battery) including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution.
  • a secondary battery particularly, a lithium secondary battery
  • the secondary battery may have a capacity retention rate of 80% or more when charging and discharging are repeated for 500 cycles.
  • it may be 83% or higher, 85% or higher, or 90% or higher.
  • the secondary battery may have an electrode expansion rate of 60% or less when charging and discharging are repeated for 500 cycles.
  • it may be 55% or less, 50% or less, 45% or less, or 40% or less.
  • composition of the positive electrode, separator, and electrolyte of the lithium secondary battery is not particularly limited in the present invention and follows what is known in the field.
  • the positive electrode includes a positive electrode active material formed on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon or nickel on the surface of aluminum or stainless steel. , titanium, silver, etc. can be used.
  • the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface to increase adhesion with the positive electrode active material.
  • the cathode active material constituting the cathode active material layer can be any cathode active material available in the art.
  • the positive electrode active material layer may further include a binder, a conductive material, a filler, and other additives in addition to the positive electrode active material, and the conductive material is the same as that described above for the negative electrode for a lithium secondary battery.
  • the binder is polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymethyl methacrylate (PMMA), polyacrylamide (PAM), Polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), chitosan, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof, but are not limited thereto.
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid
  • PMA polymethacrylic acid
  • PMA polymethyl methacrylate
  • the separator may be made of a porous substrate. Any porous substrate commonly used in electrochemical devices can be used. For example, a polyolefin-based porous membrane or non-woven fabric can be used, but it is not specifically limited thereto. That is not the case.
  • the separator is made of polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, It may be a porous substrate made of any one selected from the group consisting of polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalate, or a mixture of two or more of these.
  • the electrolyte solution of the lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and a solvent.
  • the solvent used includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte.
  • the lithium salt is a material that is easily soluble in the non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiC 4 BO 8 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 ) ⁇ 2NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate imide, etc. may be used.
  • Non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 -Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene
  • the organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing secondary dissociation groups, etc. may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
  • non-aqueous electrolyte may further contain other additives for the purpose of improving charge/discharge characteristics, flame retardancy, etc.
  • additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivatives, sulfur, quinone imine dye, N-substituted oxazolyl.
  • the lithium secondary battery according to the present invention is capable of lamination stacking and folding processes of separators and electrodes in addition to the general winding process.
  • the battery case may be cylindrical, prismatic, pouch-shaped, or coin-shaped.
  • Vinyl acetate and N-vinyl formamide were continuously supplied to a nitrogen-blown reactor and reacted at 60°C to produce a copolymer of vinyl acetate and vinyl formamide (PVAc-co-PVNF). was synthesized.
  • the mixture containing the synthesized PVAc-co-PVNF was recovered and added to methanol in which KOH was dissolved to hydrolyze the acetate functional group of PVAc-co-PVNF to produce a copolymer of vinyl alcohol and N-vinylformamide (PVOH-co -PVNF) was obtained in the form of a swollen gel.
  • the obtained gel was pulverized into fine particles, washed with methanol, added to methanol in which an alkaline catalyst was dissolved, further hydrolyzed, and washed to remove soluble salts and by-products to produce the first copolymer of vinyl alcohol and vinylamine. (PVOH-co-PVAm) was obtained.
  • first copolymer and the second copolymer at a weight ratio of 70:30 (weight of the first copolymer: weight of the second copolymer), add a pH adjuster (polyacrylic acid) to reach the desired pH, and then Based on 100% by weight of the total weight of the polymer composition, 0.5 to 3% by weight of glutaraldehyde, a crosslinking agent, was added and stirred to prepare a copolymer composition.
  • a pH adjuster polyacrylic acid
  • a negative electrode slurry was prepared by mixing 80 g of artificial graphite, 16 g of SiOx, 1 g of carbon nanotubes, 3 g of a binder containing the copolymer composition prepared in Preparation Example 3, and distilled water as electrode active materials.
  • the prepared negative electrode slurry was uniformly applied on a copper current collector, dried at 110°C, rolled, and heated in a vacuum oven at 110°C for more than 4 hours to prepare a negative electrode.
  • a non-aqueous electrolyte containing a lithium salt was used as an electrolyte, a polyolefin separator was interposed between the positive electrode and the negative electrode, and a lithium secondary battery was manufactured without distinguishing the form into a pouch or coin cell type.
  • LiPF 6 electrolyte As the non-aqueous electrolyte, LiPF 6 electrolyte was dissolved at a concentration of 1M in a solvent mixed with ethylene carbonate: ethylmethyl carbonate: diethyl carbonate in a volume ratio of 3:5:2.
  • a lithium secondary battery was manufactured according to Preparation Example 4 using the prepared copolymer composition.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that 3% by weight of glutaraldehyde, a crosslinking agent, was added based on 100% by weight of the total weight of the copolymer composition. did.
  • a lithium secondary battery was prepared in the same manner as Example 1, except that 0.5% by weight of glutaraldehyde, a crosslinking agent, was added based on 100% by weight of the total weight of the copolymer composition. did.
  • crosslinking rates of the first and second copolymers of the copolymer compositions used in Examples 1 to 3 and Comparative Examples 1 to 4 were measured/calculated through gel content measurement.
  • the crosslinking rate of the first and second copolymers of the binder composition was determined by washing the copolymer compositions of Examples 1 to 3 and Comparative Examples 1 to 4 prepared by Preparation Example 3 with MeOH. Approximately 3g was applied on a glass plate and then coated with a glass rod.
  • the copolymer composition was crosslinked by vacuum heat treatment at 110°C for more than 12 hours to prepare a film.
  • the Erlenmeyer flask was cooled in a low-temperature water bath for 5 minutes, and the Al dish was weighed and placed on a hot plate.
  • the solution in the cooled Erlenmeyer flask was filtered using filter paper in the prepared beaker. Afterwards, 10 ml of the filtered solution was taken with a pipette, placed on an Al dish, dried at 165°C for 30 minutes, and the mass was measured.
  • the crosslinking rate (gel content) was calculated according to Equation 1 below.
  • Crosslinking rate (gel content) (%) 100-(mass of filtered solution after drying/mass of film crosslinked with copolymer composition (0.7 g))*500
  • the dried mass of the filtered solution of Equation 1 was obtained by subtracting the mass of the Al dish from the mass of the Al dish containing the filtered solution dried at 165°C for 30 minutes.
  • the negative electrode slurry containing the copolymer composition used in Examples 1 to 3 and Comparative Examples 1 to 4 prepared according to Preparation Example 4 was placed in a 30 ml vial and left at room temperature for 7 days to check whether there was a phase separation phenomenon unlike the initial state. did.
  • the copper current collector of the manufactured negative electrode and the negative electrode slurry layer formed on the copper current collector were attached to an acrylic plate. After peeling at 180°, the binding force was measured using UTM.
  • the lithium secondary batteries prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were charged and discharged three times at 25°C with a charge/discharge current density of 0.1C, a charge end voltage of 4.8V, and a discharge end voltage of 2.7V. did.
  • the charge and discharge current density was set to 1C
  • the charge end voltage was 4.8V
  • the discharge end voltage was 2.7V
  • charge and discharge were performed 500 times to measure the capacity retention rate.
  • Capacity maintenance rate (%) (Discharge capacity after 500 cycles / Discharge capacity after 3 cycles) * 100
  • the cell was disassembled to confirm the change in the thickness of the negative electrode, and the effect of suppressing silicon expansion of the copolymer composition binder used in Examples 1 to 3 and Comparative Examples 1 to 4 was compared.
  • Electrode expansion rate (%) (Cathode thickness after 200 cycles - Vacuum-dried cathode thickness before assembly)/Vacuum-dried cathode thickness before assembly * 100
  • Disassembly of the cell was carried out in an Ar-filled glovebox, the cathode was rinsed with acetonitrile and transferred in a vacuum tube to a glovebox connected to the XPS chamber, and the sample was not exposed to air.
  • XPS was performed using Kratos Axis Supra Carbon 1s, sulfur 2p and fluorine 1s regions were scanned at high resolution with a step size of 0.1 eV.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative example 2 Comparative Example 3 Comparative Example 4 pH of copolymer composition 7 9 12 7 7 3 5 Crosslinking rate (%) of copolymer composition 80 60 50 87 55 90 85 Slurry stability (%) One 0.5 0 One One 5 3 Cohesion (dyne/cm 2 ) 11.2 12 14 5.5 13 5.3 7.4 500 cycle capacity maintenance rate (%) 91 87 83 87 83 85 83 500 cycle electrode expansion rate (%) 38 52 55 31 57 30 34 LiF content after formation (%) 78 78 80 79 77 76 79
  • the measured value of the slurry stability is more than 3% (i.e., the height of the phase separated layer increases), such as when the copolymer composition binder of Comparative Examples 3 and 4 with a pH of less than 6 is used, the stability of the slurry is significantly lowered.
  • the fairness of cathode manufacturing may deteriorate, making it difficult to apply it to actual processes.
  • the binding force of the copolymer composition binder decreased.
  • the capacity retention rate of the batteries of Examples 1 to 3 and Comparative Examples 1 to 4 after 500 cycles of charging and discharging improved as pH increased and the crosslinking rate decreased, but it was measured that the capacity retention rate decreased above pH 9.
  • the electrode expansion rate was lower than when the copolymer composition binder of Examples 1 and 2 with a pH of 6 or more was used, so the electrode expansion inhibition ability was excellent.
  • the degree of crosslinking increases, most of the functional groups that contribute to the improvement of binding force are crosslinked, resulting in a decrease in the capacity retention rate of the battery.
  • LiF content on the battery cathode surface of Examples 1 to 3 and Comparative Examples 1 to 4 was measured to be 80% or less.
  • the copolymer composition of the present application can form an SEI layer stably at an early stage, thereby improving the performance of a secondary battery.
  • the copolymer binder composition of the present application which is a mixture of the first copolymer, the second copolymer, and a certain amount of crosslinking agent, is crosslinked by appropriately adjusting the pH, thereby maintaining the dispersion stability of the negative electrode slurry composition balanced in an appropriate range, the binding force of the negative electrode, and It was confirmed that it had the characteristics of a secondary battery (capacity retention rate and electrode expansion rate).
  • any one or more of the dispersion stability of the negative electrode slurry composition, the binding force of the negative electrode, and the characteristics of the secondary battery may be insufficient for actual use in secondary batteries. It was found to be inappropriate.
  • the copolymer composition of the present invention can be used in a negative electrode slurry to increase binding force with the negative electrode current collector, suppress negative electrode expansion, and improve the capacity maintenance rate per cycle of a secondary battery.

Abstract

본 발명은 비닐 알코올(vinyl alcohol)의 단량체 단위 및 비닐 아민(vinyl amine) 계열의 단량체 단위를 포함하는 제1 공중합체, 비닐 알코올의 단량체 단위 및 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함하는 제2 공중합체 및 가교제를 포함하는 공중합체 조성물과 공중합체 조성물을 포함하는 음극 슬러리, 음극 및 이차전지에 관한 것이다.

Description

공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
본 발명은 바인더로 사용될 수 있는 공중합체 조성물과 이를 포함하는 슬러리, 전극 및 이차전지에 관한 것이다.
리튬 이차전지는 에너지 밀도가 높아서 전기, 전자, 통신 및 컴퓨터 산업분야에 광범위하게 사용되고 있으며, 휴대 전자기기용 소형 리튬 이차전지에 이어 하이브리드 자동차, 전기 자동차 등 고용량 이차전지 등으로도 그 응용분야가 확대되고 있다.
응용 분야의 확대에 따라서, 리튬 이차전지의 고용량화와 함께 장수명 특성도 요구되고 있다. 리튬 이차전지의 고용량화를 위한 방법의 한 예로, 규소 원자를 함유하는 활물질을 음극에 이용하는 것을 들 수 있다.
종래의 탄소계 활물질에 비해 리튬 삽/탈입 양이 많은 규소 원자를 함유하는 활물질을 적용하는 경우 전지 용량의 향상을 기대할 수 있다. 다만, 규소 함유 활물질은 리튬 삽/탈입에 수반하는 체적변화가 크기 때문에, 충방전시에 음극 활물질층이 크게 팽창 수축한다.
그 결과, 음극 활물질-음극 활물질간의 전도성이 저하되거나, 음극 활물질-집전체간의 도전 패스의 차단이 일어나고, 이차전지의 사이클 특성이 악화되는 문제가 있었다.
그러나, 종래에 개발된 다양한 바인더들(PAA, PAA/CMC, Na-PAA, crosslinked PAA, Alginate, PVA 등)은 접착력이 부족하거나 전극이 너무 brittle 하여 내구성이 부족하고, 상기와 같은 부피 팽창 문제의 해결을 기대하기는 어려운 실정이다.
한편, 최근 일부 가교된 바인더를 사용하여 규소 함유 활물질의 팽창을 억제하는 연구가 진행되고 있으나, 여전히 팽창 억제가 미흡하여 SEI 층의 지속적인 파괴 및 재형성으로 인한 전극 탈리의 발생 및 리튬 이온의 소모로 인하여 전지 성능이 저하되는 문제가 나타나고 있다.
따라서, 이러한 문제를 해결하여 이차전지의 용량 유지율 확보가 가능한 바인더가 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2016-0024921호
이에 본 발명은 결착력 및 전극 팽창 억제 능력이 우수한 슬러리 조성물을 제조할 수 있는 공중합체 조성물을 제공하고자 한다.
더불어, 본 발명은 상기 슬러리 조성물이 적용된 우수한 성능의 전극(특히, 음극) 및 상기 전극을 포함하는 사이클당 용량 유지율이 우수한 이차전지를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 일 측면은, 비닐 알코올(vinyl alcohol)의 단량체 단위 및 비닐 아민(vinyl amine)계열의 단량체 단위를 포함하는 제1 공중합체;
비닐 알코올의 단량체 단위 및 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함하는 제2 공중합체; 및
가교제를 포함하는,
공중합체 조성물을 제공한다.
본원의 다른 측면은, 상기 공중합체 조성물; 및
음극 활물질;을 포함하는,
음극 슬러리를 제공한다.
본원의 또 다른 측면은, 집전체; 및
상기 집전체 상에 형성된 상기 공중합체 조성물을 포함하는 음극 활물질층;을 포함하는,
음극을 제공한다.
본원의 또 다른 측면은,
상기 음극을 포함하는,
이차전지를 제공한다.
본 발명의 공중합체 조성물은 음극 슬러리에 사용되어 음극 집전체와의 결착력을 높이며, 음극 팽창을 억제하여, 이차전지의 사이클당 용량 유지율을 개선시킬 수 있다.
도 1은 글루탈 알데하이드가 가교제로 사용된 본원의 공중합체 조성물의 가교 메커니즘(mechanism)을 나타낸다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 및 "a~b"에서 "내지" 및 “~”는 ≥ a이고 ≤ b으로 정의한다.
본원의 일 측면에 따른 공중합체 조성물은 비닐 알코올(vinyl alcohol)의 단량체 단위 및 비닐 아민(vinyl amine) 계열의 단량체 단위를 포함하는 제1 공중합체, 비닐 알코올의 단량체 단위 및 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함하는 제2 공중합체 및 가교제를 포함할 수 있다.
상기 가교제는 극성 작용기를 가지고 있는 상기 제1 공중합체 및 제2 공중합체를 가교 결합시켜서, 활물질과 집전체 간의 접착력을 증가시키고, 활물질의 부피 변화에 따른 전극의 구조 변화 및 손상을 최소화시킬 수 있다.
일 구현예에 있어서, 상기 제1 공중합체는 비닐 아세테이트의 단량체 단위 및 N-비닐포름아미드(N-vinylformamide) 계열의 단량체 단위에서 선택된 어느 하나 이상을 추가로 포함하고, 상기 제2 공중합체는 아크릴레이트(acrylate) 계열의 단량체 단위 및 비닐 아세테이트의 단량체 단위에서 선택된 어느 하나 이상을 추가로 포함할 수 있다.
상기 제1 공중합체는 수산기와 아민기를 포함하여, 음극용 슬러리의 바인더로 사용될 경우 음극 활물질인 실리콘과 강력한 수소 결합을 할 수 있고, 음극의 집전체와는 배위 결합을 하여, 실리콘과 집전체의 결착력을 높일 수 있다.
한편, 상기 제2 공중합체는 에틸렌(ethylene) 골격 구조를 기반으로 하여 음극용 슬러리의 바인더에 유연성을 부여하며, 음극 활물질인 실리콘의 부피 변화를 억제시킬 수 있다. 또한, 상기 아크릴산(acrylic acid) 염 계열의 단량체 단위의 말단에 치환된 알칼리 금속 이온은 이온 전도성을 향상시키는데 기여할 수 있다. 이 외에도, 스트레칭된 사슬이 음극 활물질과 상호작용하여 조밀한 구조의 다공성 전극을 형성할 수 있고, 안정적인 SEI 층이 형성되도록 할 수 있다.
상기 제1 공중합체의 수산기와 상기 제2 공중합체의 카르복실기는 화학적 및/또는 물리적 가교가 가능하고, 이를 통해서 음극 활물질인 실리콘의 부피 변화를 억제시킬 수 있다.
일 구현예에 있어서, 상기 제1 공중합체의 상기 비닐 아민(vinyl amine)계열의 단량체 단위는 비닐 아민 및 1-메틸비닐아민(1-methylvinyl amine)으로 이루어진 그룹에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것을 아니다.
또한, 상기 제2 공중합체의 상기 아크릴산(acrylic acid) 염 계열의 단량체 단위는 아크릴산(acrylic acid) 및 메타크릴산(methacrylic acid)으로 이루어진 그룹에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 제1 공중합체의 상기 N-비닐포름아미드(N-vinylformamide) 계열의 단량체 단위는 N-비닐포름아미드 및 N-이소프로페닐포름아미드(N-Isopropenylformamide)로 이루어진 그룹에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 제2 공중합체의 상기 아크릴레이트(acrylate)계열의 단량체 단위는 메틸아크릴레이트, 메틸 메타크릴레이트, 에틸아크릴레이트, 에틸 메타크릴레이트, 프로필아크릴레이트, 프로필 메타아크릴레이트, 이소프로필아크릴레이트, 이소프로필 메타크릴레이트, 부틸아크릴레이트, 부틸 메타크릴레이트, sec-부틸아크릴레이트, sec-부틸 메타크릴레이트, tert-부틸아크릴레이트, tert-부틸 메타크릴레이트 및 에틸헥실 메타크릴레이트로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 제1 공중합체 총 함량 100 mol%를 기준으로, 50 mol% 이상, 90 mol% 이하의 상기 비닐 알코올의 단량체 단위 및 1 mol% 이상, 50 mol% 이하의 상기 비닐포름아미드(N-vinylformamide)계열의 단량체 단위를 포함할 수 있다.
일 구현예에 있어서, 상기 제2 공중합체 총 함량 100 mol%를 기준으로, 1 mol% 이상, 30 mol% 이하의 상기 비닐 알코올의 단량체 단위 및 50 mol% 이상, 90 mol% 이하의 상기 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함할 수 있다.
상기 제1 공중합체 및 상기 제2 공중합체의 함량은 상기 제1 공중합체 및 상기 제2 공중합체의 제조 과정 중, 가수분해의 정도를 변화시켜서 조절할 수 있다.
일 구현예에 있어서, 상기 제1 공중합체는 하기 화학식 1로 표시되는 단량체 반복 단위를 포함하고, 상기 제2공중합체는 하기 화학식 2로 표시되는 단량체 반복 단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023015824-appb-img-000001
상기 화학식 1에서
0≤x≤15 mol%이고, 50≤y≤90 mol%이며, 0≤m≤30 mol%이고, 1≤n≤50 mol%이다.
상기 화학식 1의 x,y,m 및 n은 각 단량체 단위의 mol%를 나타낸다.
[화학식 2]
Figure PCTKR2023015824-appb-img-000002
상기 화학식 2에서,
R1 R2는 서로 상이하거나 동일하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5의 선형 또는 분지형 탄화수소이고,
R3는 수산화(-OH)기이며,
M은 알칼리 금속이고,
0≤a≤5 mol%이고, 50≤b≤90 mol%이며, 0≤c≤5 mol%이고, 1≤d≤30 mol%이다.
상기 화학식 2의 a, b, c 및 d는 각 단량체 단위의 mol%를 나타낸다.
또한, 상기 화학식 2의 M은 리튬(Li), 칼륨(K) 및 소듐(Na)으로 이루어진 그룹에서 선택된 어느 하나일 수 있으나, 이에 제한되지 않는다.
한편, 상기 화학식 2의 R1 R2는 각 독립적으로 수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, iso-부틸, sec-부틸, tert-부틸 및 n-펜틸로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 공중합체 조성물의 총 중량 100 중량%를 기준으로, 10 중량% 이상, 90 중량% 이하의 상기 제1 공중합체 및 10 중량% 이상, 90중량% 이하의 제2 공중합체를 포함할 수 있다.
상기 공중합체 조성물의 상기 제1 공중합체와 상기 제2 공중합체의 함량 범위 내에서 상기 제1 공중합체의 함량의 비율이 높아질수록, 음극 바인더로 사용될 경우 음극의 결착력을 더욱 향상시킬 수 있다.
또한, 상기 공중합체 조성물의 상기 제1 공중합체와 상기 제2 공중합체의 함량 범위 내에서 상기 제2 공중합체의 함량의 비율이 높아질수록, 음극 바인더로 사용될 경우 음극용 슬러리의 분산성 및 안정성을 더욱 향상시킬 수 있다.
상기 공중합체 조성물 중 상기 제1 공중합체와 상기 제2 공중합체의 함량이 본원의 범위를 벗어날수록, 음극 바인더로 사용될 경우 음극 슬러리 조성물의 분산 안정성, 음극의 결착력 및 이차전지의 특성 중 어느 하나 이상이 저하될 수 있다.
특히, 집전체와 결착력이 낮은 전극은 건조 공정과 압연 공정에서 탈리 현상이 발생할 수 있으며, 전극의 압연밀도를 더 높였을 때 도포된 슬러리와 전극이 분리되는 현상이 발생할 수 있다. 또한, 전지 구동시 극판과의 낮은 결착력은 전해질에 습윤 팽창된 전극이 탈리되어 전지의 구동 안정성이 저하될 수 있다.
일 구현예에 있어서, 상기 제1 공중합체는 랜덤 또는 블록 공중합체이고, 상기 제2 공중합체는 랜덤 또는 블록 공중합체일 수 있다.
일 구현예에 있어서, 상기 제1 공중합체의 수평균 분자량이 10,000 이상, 1,000,000 이하이고, 상기 제2 공중합체의 수평균 분자량이 10,000 이상, 1,000,000 이하일 수 있다.
한편, 상기 제1 공중합체는 비닐 아세테이트의 단량체 단위 및 N-비닐포름아미드(N-vinylformamide)계열의 단량체 단위를 포함하는 공중합체의 가수분해에 의해서 제조될 수 있다.
즉, 제1 공중합체의 비닐 아세테이트의 단량체 단위 및 N-비닐포름아미드(N-vinylformamide)계열의 단량체 단위는 각각 비닐 알코올(vinyl alcohol)의 단량체 단위 및 비닐 아민(vinyl amine)계열의 단량체 단위로 가수 분해될 수 있다.
또한, 상기 제2 공중합체는 아크릴레이트(acrylate)계열의 단량체 단위 및 비닐 아세테이트의 단량체 단위를 포함하는 공중합체의 가수분해에 의해서 제조될 수 있다.
즉, 상기 제2 공중합체의 아크릴레이트(acrylate) 계열의 단량체 단위 및 비닐 아세테이트의 단량체 단위는 각각 아크릴산(acrylic acid) 염 계열의 단량체 단위 및 비닐 알코올의 단량체 단위로 가수분해될 수 있다.
상기 제1 공중합체와 상기 제2 공중합체의 제조를 위한 가수분해에는 알칼리 금속 수산화물이 사용될 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 가교제는 2 이상의 알데하이드(aldehyde) 기를 포함할 수 있다.
예를 들어, 상기 가교제는 글루탈 알데하이드(glutaraldehyde), 석시널알데하이드(succinaldehyde), 글록살알데하이드(glyoxal dialdehyde), 아디픽디알데하이드(adipic dialdehyde) 또는 이들의 조합일 수 있다.
도 1에 글루탈 알데하이드가 가교제로 사용된 본원의 공중합체 조성물의 예상되는 가교 메커니즘을 나타내었다.
일 구현예에 있어서, 상기 가교제는 상기 공중합체 조성물의 총 중량 100 중량%를 기준으로, 0.7 중량% 이상, 2.8 중량% 이하 포함될 수 있다.
예를 들어, 상기 공중합체 조성물의 총 중량 100 중량%를 기준으로, 1 중량%, 1.5 중량%, 2 중량% 또는 2.5 중량% 포함될 수 있다.
상기 가교제의 함량이 높아질수록, 동일한 pH 하에서 가교되는 경우, 가교율이 높아질 수 있다.
한편, 상기 가교제의 함량이 본원의 함량 범위를 상회하면 동일한 pH 하에서 가교된 경우, 상기 공중합체 조성물의 결착력이 크게 저하될 수 있다.
또한, 상기 가교제의 함량이 본원의 함량 범위를 하회하면, 동일한 pH 하에서 가교된 경우, 전극 팽창률이 크게 높아져서 공중합체가 적용된 리튬 이차 전지의 수명을 저하시킬 수 있다.
일 구현예에 있어서, 상기 공중합체 조성물의 pH가 6 이상, 12 이하일 수 있다.
상기 공중합체 조성물의 pH가 높아짐에 따라서, 가교율은 낮아질 수 있다. 또한, 상기 공중합체 조성물의 pH가 높아짐에 따라서, 상기 공중합체 조성물이 사용된 슬러리 조성물의 결착률이 높아질 수 있다.
한편, 상기 공중합체 조성물의 pH가 6을 하회하는 경우, 상기 공중합체 조성물을 포함하는 슬러리의 안정성이 크게 저하되어, 제품 생산에 부적합할 수 있다.
또한, 상기 공중합체 조성물의 pH가 12를 상회하는 경우, 상기 공중합체 조성물을 사용하는 전극의 전극 팽창률이 크게 높아져서 전지의 성능 및 수명이 저하될 수 있다.
상기 공중합체 조성물의 pH는 상기 공중합체 조성물에 pH 조절제를 추가하여 조절될 수 있다.
상기 pH 조절제로는 상기 공중합체 조성물의 pH를 6 이상, 12 이하로 조절할 수 있는 어떠한 pH 조절제(특히, 산성 물질)이라도 사용될 수 있다.
예를 들어, 모노머인 말레익산, 아크릴산 또는 이들의 조합이 사용될 수 있고, 중합체인 폴리아크릴산이 사용될 수 있다.
또한, 상기 공중합체 조성물의 상기 제1 공중합체와 상기 제2 공중합체의 가교율은 45% 이상, 80% 이하일 수 있다.
예를 들어, 50% 이상, 80% 이하일 수 있다.
본원의 다른 측면에 따른 음극 슬러리는 상기 공중합체 조성물 및 음극 활물질을 포함할 수 있다.
즉, 상기 공중합체 조성물은 음극용 바인더로 사용될 수 있다.
상기 음극 슬러리를 사용하여 형성한 음극 활물질층과 구리 집전체 간의 박리강도(peel strength)는 10 dyne/cm2 이상일 수 있고, 15 dyne/cm2 이하일 수 있다.
상기 음극 활물질은 탄소계 물질, 실리콘, 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속 및 희토류 원소로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 화합물일 수 있으며, 바람직하게는 실리콘 또는 실리콘을 포함하는 화합물일 수 있다.
상기 탄소계 물질은 예를 들어, 인조 흑연, 천연 흑연, 하드 카본, 소프트 카본 등을 들 수 있으나 이에 한정되는 것은 아니다. 상기 실리콘을 포함하는 음극 활물질은 실리콘 또는 실리콘을 포함하는 화합물이라면 그 종류를 특별히 제한하는 것은 아니나, 바람직하게는 Si, SiOx(0<x<2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님.) 및 Si-C 복합체로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 상기 음극 활물질로 실리콘을 포함하는 음극 활물질과 다른 음극 활물질을 혼합하여 사용하는 경우, 상기 실리콘을 포함하는 음극 활물질은 상기 음극 활물질의 전체 중량의 8중량% 이상 포함될 수 있다.
상기 음극 활물질은 음극 활물질층의 총 중량에 대하여 50 내지 90 중량%, 바람직하게는 60 내지 80 중량%로 포함될 수 있다.
상기 음극 활물질이 50 중량% 미만으로 포함되면 에너지 밀도가 감소하여 고에너지 밀도의 전지를 제조할 수 없으며, 90 중량%를 초과하여 포함되면 도전재 및 바인더의 함량이 감소하여 전기 전도성이 감소하고, 전극 활물질층과 집전체간의 접착력이 감소될 수 있다.
한편, 본원의 공중합체 조성물 바인더는 음극 슬러리 총 중량에 대하여 1 내지 35 중량%로 포함될 수 있다. 상기 공중합체가 1중량% 미만이면 음극의 물리적 성질이 저하되어 음극 활물질과 도전재가 탈락될 수 있고, 35 중량%를 초과하면 음극 활물질과 도전재의 비율이 상대적으로 감소하여 전지 용량이 감소될 수 있고, 음극의 전기 전도성이 저하될 수 있다.
또한, 상기 음극 슬러리는 본원의 공중합체 조성물 외에 추가로 고분자를 포함할 수 있다. 상기 고분자는 구체적으로 예를 들어, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA) 폴리아크릴산 금속염(Metal-PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 키토산(Chitosan), 전분, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 하이드록시프로필셀룰로오스, 재생 셀룰로오스 및 이들의 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
본원의 또 다른 측면에 따른 음극은 집전체 및 상기 집전체 상에 형성된 본원의 공중합체 조성물을 포함하는 음극 활물질층을 포함할 수 있다.
상기 음극 활물질층은 도전재를 추가로 포함할 수 있다. 상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위해 사용된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.
상기 도전재는 음극 활물질층의 총 중량에 대하여 5 내지 30 중량%, 바람직하게는 15 내지 25 중량%로 포함될 수 있다. 상기 도전재가 5 중량% 미만으로 포함되면 음극의 전기 전도성이 낮아진다. 30 중량%를 초과하여 포함되면 실리콘계 음극 활물질과 바인더의 비율이 상대적으로 감소하여 전지 용량이 감소되며, 음극 활물질층 유지를 위하여 바인더의 함량을 증가시켜야 하기 때문에 음극 활물질의 함량이 감소하여 고에너지 밀도의 전지를 제조할 수 없다.
본원의 음극은 음극 활물질층이 본원의 공중합체 조성물을 포함하여, 이차전지의 충방전시 발생하는 음극 활물질의 부피 팽창을 억제할 수 있고, 사이클당 용량 유지율을 향상시킬 수 있다.
상기 음극은 (a)음극 활물질 및 본원의 공중합체 조성물을 포함하는 음극 활물질층 형성용 조성물을 제조하는 단계 및 (b)음극 집전체 상에 상기 음극 활물질층 형성용 조성물을 도포 후 건조하는 단계를 통해서 제조될 수 있다.
상기 음극 활물질층 형성용 조성물은 음극 슬러리 상태로 제조되며, 슬러리 상태로 제조하기 위한 용매는 건조가 용이해야 하며, 본원의 공중합체 조성물 바인더를 잘 용해시킬 수 있되, 음극 활물질은 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다.
본원에 따른 용매는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 메틸피롤리돈, 디메틸포름아미드, 이소프로필알콜, 아세토니트릴, 메탄올, 에탄올, 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 유기 용매가 적용 가능하다.
상기 음극 활물질층 형성용 조성물의 혼합은 통상의 혼합기, 예컨대 레이트스 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.
상기 (b)단계는 음극 집전체 상에 상기 (a)단계에서 제조한 음극 활물질층 형성용 조성물을 도포 후 건조하여 리튬 이차전지용 음극을 제조하는 단계이다.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.
상기 (a)단계에서 제조한 음극 활물질층 형성용 조성물은 음극 집전체 상에 도포되며, 형성하고자 하는 두께에 따라 적절한 두께로 집전체에 코팅할 수 있으며, 바람직하게는 10 내지 300μm 범위 내에서 적절히 선택할 수 있다.
이때 상기 슬러리 형태의 음극 활물질층 형성용 조성물을 도포하는 방법은 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating)방법 등을 수행하여 제조할 수 있다.
도포 후 건조하여 최종적으로 음극 활물질층이 형성된 이차전지(특히, 리튬 이차전지)용 음극을 제조할 수 있다.
본원의 또 다른 측면에 따른 전지는 집전체 및 상기 집전체 상에 상기 음극 활물질층이 형성된 음극을 포함할 수 있다.
상기 전지는 양극, 상기 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액을 포함하는 이차전지(특히, 리튬 이차전지)일 수 있다.
상기 이차전지는 충방전을 500 사이클 반복하였을 때, 용량 유지율이 80% 이상일 수 있다.
예를 들어, 83% 이상, 85% 이상 또는 90% 이상일 수 있다.
또한, 상기 이차전지는 충방전을 500 사이클 반복하였을 때, 전극 팽창률이 60% 이하일 수 있다.
예를 들어, 55% 이하, 50% 이하, 45% 이하 또는 40% 이하일 수 있다.
상기 리튬 이차전지의 양극, 분리막 및 전해액의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.
양극은 양극 집전체 상에 형성된 양극 활물질을 포함한다.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
양극 활물질층을 구성하는 양극 활물질은 당해 기술분야에서 이용 가능한 모든 양극 활물질이 사용 가능하다. 이러한 양극 활물질의 구체적인 예로서, 리튬 금속; LiCoO2 등의 리튬 코발트계 산화물; Li1+xMn2-xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간계 산화물; Li2CuO2 등의 리튬 구리산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1-xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈계 산화물; LiMn2-xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물; Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물; 황 또는 디설파이드 화합물; LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4 등의 인산염; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
이 때, 상기 양극 활물질층은 양극 활물질 이외에 바인더, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있으며, 상기 도전재는 상기 리튬 이차전지용 음극에 상술한 내용과 동일하다.
또한, 상기 바인더는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 키토산(Chitosan), 전분, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무 및 이들의 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 분리막은 다공성 기재로 이루어질 수 있는데, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 분리막은, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아마이드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌 옥사이드, 폴리페닐렌 설파이드, 및 폴리에틸렌 나프탈레이트로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 이루어진 다공성 기재일 수 있다.
상기 리튬 이차전지의 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성되어 있으며, 용매로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.
상기 리튬염은 상기 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, LiC4BO8, LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2F)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)·2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 이미드 등이 사용될 수 있다.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이차성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
또한, 비수계 전해액에는 충·방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.
본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination stack) 및 접음(folding) 공정이 가능하다. 그리고 상기 전지케이스는 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 실시예를 이용하여 본원을 좀 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
[제조예 1] 제1 공중합체의 제조
질소를 불어넣은 반응기에 비닐아세테이트(vinyl acetate) 및 N-비닐포름아미드(N-vinyl formamide)를 연속적으로 공급하여 60℃에서 반응시켜서 비닐아세테이트와 비닐포름아미드의 공중합체(PVAc-co-PVNF)를 합성하였다.
합성된 PVAc-co-PVNF를 함유하는 혼합물을 회수하여 KOH가 용해되어 있는 메탄올에 투입하여 PVAc-co-PVNF의 아세테이트 작용기를 가수분해하여 비닐알코올과 N-비닐포름아미드의 공중합체(PVOH-co-PVNF)를 팽윤된 겔의 형태로 수득하였다.
수득한 겔을 분쇄하여 미립자화한 후 메탄올로 세정하고, 알칼리 촉매가 용해되어 있는 메탄올에 투입하여 추가로 가수분해시키고, 세척하여 가용성 염 및 부산물을 제거하여 비닐알코올과 비닐아민의 제1 공중합체(PVOH-co-PVAm)를 얻었다.
[제조예 2] 제2 공중합체의 제조
반응기에 증류수 1,050g 및 알킬디페닐옥사이드 디설포네이트(alkyldiphenyloxide disulfonate) 10g을 넣고, 질소를 불어넣어 주면서 1시간 동안 교반하였다.
이후 과황산칼륨(potassium persulfate) 2.5g을 넣고 60℃까지 반응기를 승온시킨 후, 비닐아세테이트(vinylacetate) 110g 및 에틸아크릴레이트(ethylacrylate) 330g을 3시간 동안 적하하고 2시간동안 온도를 유지하면서 반응을 종결시켜 고형분 30 중량% 비닐아세테이트-에틸아크릴레이트 공중합체를 얻었다.
반응기에 고형분 30%의 비닐아세테이트-에틸아크릴레이트 공중합체 100g, 에탄올 150g, 수산화물 및 유기염을 넣고 60℃에서 4시간 동안 교반하면서 가수분해를 진행하였다.
가수분해 종료 후, 침전된 가수분해물을 증류수에 녹이고 80℃로 승온하여 8시간 동안 교반 및 스트리핑하여 제2 공중합체를 제조하였다.
[제조예 3] 공중합체 조성물 제조
제1 공중합체와 제2 공중합체의 중량비(제1 공중합체의 중량: 제2 공중합체의 중량)을 70:30으로 혼합하고, pH 조절제(폴리아크릴산)를 원하는 pH가 되도록 첨가한 후, 공중합체 조성물 총중량 100 중량%를 기준으로 가교제인 글루탈알데하이드를 0.5~3 중량% 투입하고 교반하여 공중합체 조성물을 제조하였다.
[제조예 4] 리튬이차전지의 제조
전극 활물질로 인조 흑연 80g, SiOx 16g, 탄소나노튜브 1g, 제조예 3에 의해서 제조된 공중합체 조성물을 포함하는 바인더 3g, 증류수를 혼합하여 음극 슬러리를 제조하였다.
제조한 음극 슬러리를 구리 집전체 상에 균일하게 도포한 후 110℃에서 건조하여 나온 합제를 압연하고, 110℃ 진공오븐에서 4시간 이상 가열 처리하여 음극을 제조하였다.
이후, 리튬염이 포함된 비수계 전해액을 전해질로 사용하고 양극과 상기 음극 사이에 폴리올레핀 분리막을 개재시킨 후 리튬 이차전지를 파우치 또는 코인셀 타입으로 형태를 구분하지 않고 리튬 이차전지를 제조하였다.
상기 비수전해질로는 에틸렌카보네이트: 에틸메틸카보네이트: 디에틸카보네이트가 3:5:2의 부피비로 혼합한 용매에 LiPF6 전해질을 1M의 농도로 용해시킨 것을 사용하였다.
[실시예 1]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, pH를 7로 조절하고, 공중합체 조성물 총중량 100 중량%를 기준으로 가교제인 글루탈알데하이드를 1.5 중량% 투입하였다.
제조된 공중합체 조성물을 사용하여 제조예 4에 따라서 리튬 이차전지를 제조하였다.
[실시예 2]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, pH를 9로 조절한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[실시예 3]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, pH를 12로 조절한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[비교예 1]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, 공중합체 조성물 총중량 100 중량%를 기준으로 가교제인 글루탈알데하이드를 3 중량% 투입한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[비교예 2]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, 공중합체 조성물 총중량 100 중량%를 기준으로 가교제인 글루탈알데하이드를 0.5 중량% 투입한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[비교예 3]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, pH를 3으로 조절한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[비교예 4]
제조예 3에 의해서 제조되는 공중합체 조성물 제조시, pH를 5로 조절한 것을 제외하고는 실시예 1과 동일하게, 리튬 이차전지를 제조하였다.
[평가예 1] 공중합체 조성물의 가교율 평가
실시예 1 내지 3과 비교예 1 내지 4에서 사용된 공중합체 조성물의 제1 공중합체 및 제2 공중합체의 가교율을 겔 함량 측정법을 통하여 측정/계산하였다.
먼저, 상기 바인더 조성물(공중합체 조성물)의 제1 공중합체 및 제2 공중합체의 가교율은 제조예 3에 의해서 제조된 실시예 1 내지 3과 비교예 1 내지 4의 공중합체 조성물을 MeOH로 세척된 유리판 위에 3g 정도 도포한 후 유리 막대로 코팅하였다.
이후, 110℃에서 12시간 이상 진공 열처리하여 공중합체 조성물을 가교시켜서 필름을 제조하였다.
건조 후 면도칼로 뜯어내고 0.7g의 필름을 250ml 삼각 플라스크에 담았다. 삼각 플라스크를 후드 안에 놓고, 증류수 100ml를 넣은 후, 70℃항온 수조에서 2시간 방치하였다.
이후, 삼각 플라스크를 저온 수조에서 5분간 식히고, Al dish는 무게 측정 후 Hot plate에 올려 두었다.
준비된 비커에 여과지를 사용해 식힌 삼각 플라스크의 용액을 여과시켰다. 이후, 여과시킨 용액을 피펫으로 10ml 취해서 Al dish에 올리고 165℃로 30분간 건조시킨 후 질량을 측정하였다.
가교율(겔 함량)은 하기의 수학식 1에 따라 계산하였다.
[식 1]
가교율(겔 함량)(%) = 100-(여과시킨 용액의 건조 후 질량/공중합체 조성물을 가교시킨 필름의 질량(0.7 g))*500
상기 수학식 1의 여과시킨 용액의 건조 후 질량은 165℃에서 30분간 건조된 여과시킨 용액이 담긴 Al dish의 질량에서 Al dish의 질량을 빼서 구했다.
[평가예 2] 음극 슬러리의 안정성 평가
제조예 4에 따라서 제조된 실시예 1 내지 3과 비교예 1 내지 4에서 사용된 공중합체 조성물이 포함된 음극 슬러리를 30ml 바이알에 담아 상온에서 7일간 방치한 후 초기 상태와 달리 상분리 현상이 있는지 확인하였다.
상분리 현상이 있다면 하기 수학식 2에 따라 안정성을 계산하였다.
[식 2]
음극 슬러리 안정성(%) = (상분리된 층의 높이/초기 슬러리 높이)*100
[평가예 3] 바인더 결착력 평가
실시예 1 내지 3과 비교예 1 내지 4에서 사용된 공중합체 조성물(바인더)의 결착력을 측정하기 위해서, 제조된 음극의 구리 집전체와 구리 집전체 상에 형성된 음극 슬러리층을 아크릴판에 부착시킨 후 180°박피하여 UTM으로 결착력을 측정하였다.
[평가예 4] 전지 성능 평가
실시예 1 내지 3과 비교예 1 내지 4에서 제조된 리튬 이차전지를 25℃에서 충방전 전류밀도를 0.1C, 충전 종지 전압을 4.8V, 방전 종지전압을 2.7V로 하여 3회 충방전을 수행하였다.
이후, 충방전 전류 밀도를 1C, 충전 종지 전압을 4.8V, 방전 종지전압을 2.7V로 하여 500회 충방전을 수행하여 용량 유지율을 측정하였다.
모든 방전은 정전류/정전압 조건으로 수행하였으며 정전압의 방전의 종지 전류는 0.005C로 하였다.
이때, 용량 유지율은 하기 수학식 3 따라 계산되었다.
[식 3]
용량 유지율(%) = (500사이클 후 방전용량 / 3사이클 후 방전 용량) * 100
또한, 충방전 평가 종료 후 셀을 분해하여 음극의 두께 변화를 확인하여, 실시예 1 내지 3과 비교예 1 내지 4에서 사용한 공중합체 조성물 바인더의 실리콘 팽창 억제 효과를 비교하였다.
이때, 전극 팽창률은 하기 수학식 4에 따라 계산되었다.
[식 4]
전극 팽창률(%) = (200사이클 후 음극 두께 - 조립 전 진공 건조된 음극 두께)/조립 전 진공 건조된 음극 두께 * 100
[평가예 5] LiF 함량 평가
실시예 1 내지 3과 비교예 1 내지 4에서 제조된 리튬 이차전지의 초기 3사이클 방전 이후 셀을 분해하여 음극 표면의 LiF 함량을 XPS로 측정하였다.
셀의 분해는 Ar이 채워진 글로브박스에서 진행되었고, 음극을 아세토니트릴로 헹구고 진공관에서 XPS 챔버에 연결된 글로브박스로 옮겼으며 샘플은 공기에 노출되지 않게 하였다.
XPS는 Kratos Axis Supra XPS를 사용하였으며, 전하 중화제를 사용하지 않고 300μm Х 700μm 크기로, 스캔은 1.0 eV 단계 크기로 측정하였다. 탄소 1s, 황 2p 및 불소 1s 영역에 대해 0.1eV 단계 크기의 고해상도로 스캔하였다.
평가예 1 내지 5에 의해서 측정된 가교율, 음극 슬러리의 안정성, 바인더 결착력, 용량 유지율, 전극 팽창률 및 LiF 함량을 하기 표 1에 나타내었다.
실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4
공중합체 조성물의 pH 7 9 12 7 7 3 5
공중합체 조성물의 가교율(%) 80 60 50 87 55 90 85
슬러리 안정성(%) 1 0.5 0 1 1 5 3
결착력(dyne/cm2) 11.2 12 14 5.5 13 5.3 7.4
500 cycle용량유지율
(%)
91 87 83 87 83 85 83
500 cycle전극팽창률
(%)
38 52 55 31 57 30 34
Formation 후 LiF 함량(%) 78 78 80 79 77 76 79
상기 표 1에 나타낸 바와 같이 실시예 1 내지 3과 비교예 1 내지 4에서 사용한 공중합체 조성물 바인더의 가교율은 pH가 높아짐에 따라서(산성에서 염기성이 되어감에 따라서) 감소하는 것을 확인할 수 있었다.
또한, 동일한 pH에서는 가교제의 함량이 증가함에 따라서, 가교율이 증가함을 확인할 수 있었다.
한편, pH가 높아짐에 따라서, 상분리된 층의 높이가 낮아지므로 슬러리의 안정성이 높아지는 것을 확인할 수 있었다.
pH 6 미만의 비교예 3 및 4의 공중합체 조성물 바인더가 사용된 경우와 같이 슬러리 안정성의 측정값이 3% 이상이면(즉, 상분리된 층의 높이가 높아지면), 슬러리의 안정성이 크게 낮아지고 음극 제조의 공정성이 저하되어 실제 공정에 적용이 어려워질 수 있다.
동일한 pH에서는 가교제의 함량의 변화는 슬러리 안정성에 영향이 없었다.
pH가 높아지고, 가교율이 낮아짐에 따라서 공중합체 조성물 바인더의 결착력이 향상되었다.
이는 가교율이 높아짐에 따라서, 결착력을 향상시키는 작용기의 가교율도 높아져서 결착력을 향상시키는 작용기들의 결착력 향상 효과가 저하되기 때문이다.
특히, pH 6 미만의 비교예 3 및 4의 공중합체 조성물 바인더가 사용된 경우, 가교도가 높아짐에 따라서 공중합체 조성물 바인더의 결착력이 크게 저하되는 것을 확인할 수 있었다.
또한, 동일한 pH에서는 가교제의 함량이 증가함에 따라서, 공중합체 조성물 바인더의 결착력이 저하되었다.
특히, 과량의 가교제가 사용된 비교예 1의 공중합체 조성물 바인더가 사용된 경우, 동일한 pH 조건의 실시예 1의 공중합체 조성물 바인더가 사용된 경우에 비하여 결착력이 크게 저하되었다.
실시예 1 내지 3과 비교예 1 내지 4의 전지의 500 cycle 충, 방전 후의 용량 유지율은 pH가 높아지고 가교율이 감소함에 따라서 향상되다가, pH 9 이상에서는 용량 유지율이 저하되는 것으로 측정되었다.
이에 비하여, 실시예 1 내지 3과 비교예 1 내지 4의 전지의 500 cycle 충, 방전 후의 전극 팽창률은 pH가 높아지고, 가교율이 낮아짐에 따라서 커지는 것으로 측정되었다.
*pH 6 미만의 비교예 3 및 4의 공중합체 조성물 바인더가 사용된 경우, pH 6 이상의 실시예 1 및 2의 공중합체 조성물 바인더가 사용된 경우에 비하여 전극 팽창률이 낮아서 전극 팽창 억제 능력은 우수하였지만, 상술한 바와 같이 가교도가 높아져서 결착력의 향상에 기여하는 작용기 대부분이 가교되어 전지의 용량 유지율이 저하된다.
한편, 과량의 가교제가 사용된 비교예 1의 공중합체 조성물 바인더가 사용된 경우, 동일한 pH 조건의 실시예 1의 공중합체 조성물 바인더가 사용된 경우에 비하여 전극 팽창률은 우수하였지만, 용량 유지율은 저하되었다.
또한, 적정량 미만의 가교제가 사용된 비교예 2의 공중합체 조성물 바인더가 사용된 경우, 동일한 pH 조건의 실시예 1의 공중합체 조성물 바인더가 사용된 경우에 비하여 전극 팽창률이 크게 증가하고, 용량 유지율이 저하되어 전지의 안정성 및 수명 특성이 저하되는 것을 확인할 수 있었다.
Formation 후, LiF의 함량은 실시예 1 내지 3과 비교예 1 내지 4의 전지 음극 표면의 LiF 함량은 모두 80% 이하로 측정되었다.
가교 이후에도 제2 공중합체의 미가교된 카르복실기가 남아있고 카르복실기는 다른 작용기들에 비하여 불소와의 수소 결합을 강하게 형성할 수 있다. 이로 인하여, 전해액 염인 LiFSi의 분해가 촉진되어 초기 SEI 층을 생성한 후, 추가적인 SEI 층의 분해를 억제할 수 있다.
즉, 본원의 공중합체 조성물은 SEI 층이 초기에 안정적으로 형성되어, 이차 전지의 성능을 향상시킬 수 있다.
결과적으로, 제1 공중합체, 제2 공중합체 및 일정 함량의 가교제가 혼합된 본원의 공중합체 바인더 조성물은 pH를 적절히 조절하여 가교시킴으로써 적절한 범위에서 균형 잡힌 음극 슬러리 조성물의 분산 안정성, 음극의 결착력 및 이차전지의 특성(용량 유지율 및 전극 팽창률)을 가짐을 확인할 수 있었다.
한편, 가교제의 함량이나 pH의 범위가 본원의 범위를 벗어나는 공중합체 바인더 조성물을 사용하는 경우 음극 슬러리 조성물의 분산 안정성, 음극의 결착력 및 이차전지의 특성 중 어느 하나 이상이 실제 이차전지에 사용되기에는 부적합한 것을 알 수 있었다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명의 공중합체 조성물은 음극 슬러리에 사용되어 음극 집전체와의 결착력을 높이며, 음극 팽창을 억제하여, 이차전지의 사이클당 용량 유지율을 개선시킬 수 있다.

Claims (14)

  1. 비닐 알코올(vinyl alcohol)의 단량체 단위 및 비닐 아민(vinyl amine) 계열의 단량체 단위를 포함하는 제1 공중합체;
    비닐 알코올의 단량체 단위 및 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함하는 제2 공중합체; 및
    가교제를 포함하는,
    공중합체 조성물.
  2. 제1항에 있어서,
    상기 제1 공중합체는 비닐 아세테이트의 단량체 단위 및 N-비닐포름아미드(N-vinylformamide) 계열의 단량체 단위에서 선택된 어느 하나 이상을 추가로 포함하고,
    상기 제2 공중합체는 아크릴레이트(acrylate) 계열의 단량체 단위 및 비닐 아세테이트의 단량체 단위에서 선택된 어느 하나 이상을 추가로 포함하는,
    공중합체 조성물.
  3. 제1항에 있어서,
    상기 비닐 아민(vinyl amine) 계열의 단량체 단위는 비닐 아민 및 1-메틸비닐아민(1-methylvinyl amine)으로 이루어진 그룹에서 선택된 어느 하나 이상이고,
    상기 아크릴산(acrylic acid) 염 계열의 단량체 단위는 아크릴산(acrylic acid) 및 메타크릴산(methacrylic acid)으로 이루어진 그룹에서 선택된 어느 하나 이상인,
    공중합체 조성물.
  4. 제2항에 있어서,
    상기 N-비닐포름아미드(N-vinylformamide) 계열의 단량체 단위는 N-비닐포름아미드 및 N-이소프로페닐포름아미드(N-Isopropenylformamide)로 이루어진 그룹에서 선택된 어느 하나 이상이고,
    상기 아크릴레이트(acrylate) 계열의 단량체 단위는 메틸아크릴레이트, 메틸 메타크릴레이트, 에틸아크릴레이트, 에틸 메타크릴레이트, 프로필아크릴레이트, 프로필 메타아크릴레이트, 이소프로필아크릴레이트, 이소프로필 메타크릴레이트, 부틸아크릴레이트, 부틸 메타크릴레이트, sec-부틸아크릴레이트, sec-부틸 메타크릴레이트, tert-부틸아크릴레이트, tert-부틸 메타크릴레이트 및 에틸헥실 메타크릴레이트로 이루어진 군에서 선택된 어느 하나 이상인,
    공중합체 조성물.
  5. 제1항에 있어서,
    상기 제1 공중합체 총 함량 100 mol%를 기준으로, 50 mol% 이상, 90 mol% 이하의 상기 비닐 알코올의 단량체 단위 및 1 mol% 이상, 50 mol% 이하의 상기 비닐아민 계열의 단량체 단위를 포함하고,
    상기 제2 공중합체 총 함량 100 mol%를 기준으로, 1 mol% 이상, 30 mol% 이하의 상기 비닐 알코올의 단량체 단위 및 50 mol% 이상, 90 mol% 이하의 상기 아크릴산(acrylic acid) 염 계열의 단량체 단위를 포함하는,
    공중합체 조성물.
  6. 제1항에 있어서,
    상기 제1 공중합체는 하기 화학식 1로 표시되는 단량체 반복 단위를 포함하고,
    상기 제2공중합체는 하기 화학식 2로 표시되는 단량체 반복 단위를 포함하는,
    공중합체 조성물.
    [화학식 1]
    Figure PCTKR2023015824-appb-img-000003
    상기 화학식 1에서
    0≤x≤15 mol%이고, 50≤y≤90 mol%이며, 0≤m≤30 mol%이고, 1≤n≤50 mol%이다.
    [화학식 2]
    Figure PCTKR2023015824-appb-img-000004
    상기 화학식 2에서, R1 R2는 서로 상이하거나 동일하고, 각각 독립적으로 수소 또는 탄소수 1 내지 5의 선형 또는 분지형 탄화수소이고,
    R3는 수산화(-OH)기이며,
    M은 알칼리 금속이고,
    0≤a≤5 mol%이고, 50≤b≤90 mol%이며, 0≤c≤5 mol%이고, 1≤d≤30 mol%이다.
  7. 제1항에 있어서,
    상기 제1 공중합체와 상기 제2 공중합체의 총 중량 100 중량%를 기준으로, 10 중량% 이상, 90 중량% 이하의 상기 제1 공중합체 및 10 중량% 이상, 90중량% 이하의 제2 공중합체를 포함하는,
    공중합체 조성물.
  8. 제1항에 있어서,
    상기 가교제는 2 이상의 알데하이드(aldehyde) 기를 포함하는,
    공중합체 조성물.
  9. 제1항에 있어서,
    상기 가교제는 공중합체 조성물의 총 중량 100 중량%를 기준으로,
    0.7 중량% 이상, 2.8 중량% 이하 포함되는,
    공중합체 조성물.
  10. 제1항에 있어서,
    상기 공중합체 조성물의 pH가 6 이상, 12 이하인,
    공중합체 조성물.
  11. 제1항에 있어서,
    상기 공중합체 조성물의 상기 제1 공중합체와 상기 제2 공중합체의 가교율은 45% 이상, 80% 이하인,
    공중합체 조성물.
  12. 제1항 내지 제11항 중 어느 한 항의 공중합체 조성물; 및
    음극 활물질;을 포함하는,
    음극 슬러리.
  13. 집전체; 및
    상기 집전체 상에 형성된 제1항 내지 제11항 중 어느 한 항의 공중합체 조성물을 포함하는 음극 활물질층;을 포함하는,
    음극.
  14. 제13항의 음극을 포함하는,
    이차전지.
PCT/KR2023/015824 2022-10-14 2023-10-13 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지 WO2024080826A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220132245A KR102558449B1 (ko) 2022-10-14 2022-10-14 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
KR10-2022-0132245 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080826A1 true WO2024080826A1 (ko) 2024-04-18

Family

ID=87428371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015824 WO2024080826A1 (ko) 2022-10-14 2023-10-13 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지

Country Status (2)

Country Link
KR (1) KR102558449B1 (ko)
WO (1) WO2024080826A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558449B1 (ko) * 2022-10-14 2023-07-24 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061925A (ko) * 2009-08-27 2012-06-13 다이니치 세이카 고교 가부시키가이샤 수계 슬러리 조성물, 축전 장치용 전극판 및 축전 장치
KR20190035387A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
KR20200014888A (ko) * 2017-06-07 2020-02-11 주식회사 쿠라레 비수 전해질 전지용 바인더 조성물, 그리고 그것을 사용한 비수 전해질 전지용 바인더 수용액, 비수 전해질 전지용 슬러리 조성물, 비수 전해질 전지용 전극, 및 비수 전해질 전지
JP2021535545A (ja) * 2019-05-09 2021-12-16 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びそれを含む電気化学素子
KR102432637B1 (ko) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
KR102558449B1 (ko) * 2022-10-14 2023-07-24 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105340110B (zh) 2013-06-28 2018-08-24 住友精化株式会社 非水电解质二次电池用负极合剂、含有该合剂的非水电解质二次电池用负极、具备该负极的非水电解质二次电池、以及电气设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061925A (ko) * 2009-08-27 2012-06-13 다이니치 세이카 고교 가부시키가이샤 수계 슬러리 조성물, 축전 장치용 전극판 및 축전 장치
KR20200014888A (ko) * 2017-06-07 2020-02-11 주식회사 쿠라레 비수 전해질 전지용 바인더 조성물, 그리고 그것을 사용한 비수 전해질 전지용 바인더 수용액, 비수 전해질 전지용 슬러리 조성물, 비수 전해질 전지용 전극, 및 비수 전해질 전지
KR20190035387A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 음극 활물질 및 이를 채용한 리튬 이차 전지, 및 상기 음극 활물질의 제조방법
JP2021535545A (ja) * 2019-05-09 2021-12-16 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びそれを含む電気化学素子
KR102432637B1 (ko) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
KR102558449B1 (ko) * 2022-10-14 2023-07-24 주식회사 한솔케미칼 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지

Also Published As

Publication number Publication date
KR102558449B1 (ko) 2023-07-24

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2023177169A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021235794A1 (ko) 이차전지
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019004699A1 (ko) 리튬 이차전지
WO2020055110A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2024080826A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020242138A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
WO2024076199A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2024049190A1 (ko) 바인더 조성물, 상기 바인더 조성물 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021194260A1 (ko) 음극의 제조방법
WO2021153987A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지
WO2023059015A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2022131852A1 (ko) 이차 전지 용 바인더 조성물 및 전극 합제
WO2021154039A1 (ko) 음극용 바인더 조성물, 이를 포함하는 음극 및 리튬 이차 전지
WO2021025535A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2021025544A1 (ko) 겔 고분자 전해질용 고분자, 이를 포함하는 겔 고분자 전해질 및 리튬 이차전지