WO2014092334A1 - 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자 - Google Patents

수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자 Download PDF

Info

Publication number
WO2014092334A1
WO2014092334A1 PCT/KR2013/009824 KR2013009824W WO2014092334A1 WO 2014092334 A1 WO2014092334 A1 WO 2014092334A1 KR 2013009824 W KR2013009824 W KR 2013009824W WO 2014092334 A1 WO2014092334 A1 WO 2014092334A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
coating
inorganic composite
separator
composite coating
Prior art date
Application number
PCT/KR2013/009824
Other languages
English (en)
French (fr)
Inventor
유진아
현재용
이도훈
최창현
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to DE112013005887.1T priority Critical patent/DE112013005887T5/de
Priority to JP2015512592A priority patent/JP6148331B2/ja
Priority to CN201380022732.4A priority patent/CN104272501B/zh
Priority to US14/396,028 priority patent/US9711772B2/en
Publication of WO2014092334A1 publication Critical patent/WO2014092334A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator used in an electrochemical device, and more particularly, to a porous separator using the organic / inorganic composite coating layer on a porous substrate, a manufacturing method thereof, and an electrochemical device using the same.
  • Lithium-ion secondary battery is composed of anode / cathode / membrane / electrolyte as a base, and is a energy-dense energy storage device that can be charged and discharged by reversibly converting chemical energy and electrical energy, and is widely used in small electronic equipment such as mobile phones and laptops
  • hybrid electric vehicles (HEVs) plug-in EVs
  • e-bikes energy storage
  • energy storage systems (ESS) are expanding rapidly.
  • Lithium-ion secondary batteries are stable electrochemical devices insulated by separators, but may cause heat and explosion due to internal or external battery abnormalities or shocks, which may result in heat generation and explosion. Ensuring safety is the most important consideration.
  • Polyolefin-based separators commonly used in lithium secondary batteries are porous films that function to provide pores for passage of lithium ions while preventing electrical short-circuits between the positive and negative electrodes, and are commercially manufactured by wet and dry methods. Polyolefin-based separators are widely used.
  • a sheet is prepared by kneading and extruding an inorganic particle or an oil component together with polyolefin in an extruder, and then forming a thin film by simultaneously or sequentially biaxially stretching using a roll or a tenter to form a thin film.
  • a porous film is manufactured by a method including an extraction process of extracting an oil component, and commercially, a film is mainly formed using polyethylene (PE) among polyolefins.
  • the dry method is a technique for producing a porous film without using an organic solvent, which is formed by melting or extruding a resin, followed by stretching with a roll or stretching with a tenter, to form a porous membrane.
  • polyethylene may be used.
  • the polyolefin-type porous separator for producing a porous substrate through a process called film stretching is basically a high temperature of the cell by the internal or external stimulation of 100 °C or more When rising to, it is inevitable to change the volume such as shrinkage or melting of the separator, resulting in an explosion due to an electrical short between the anode / cathode.
  • the separator ruptures due to dendrite growth inside the battery, there is also a problem that may induce a battery explosion due to an internal short circuit.
  • the inorganic particles are coated together with the binder on one or both surfaces of the porous separator substrate to impart the function of suppressing the shrinkage rate of the substrate and simultaneously to the inorganic coating layer.
  • a coating separator is disclosed.
  • the coating layer applied to the porous substrate is not uniformly coated with the porous substrate, the coating layer may be easily detached during the assembly of the secondary battery or partially in the battery due to coating defects on the surface. Since the desorption may lower the safety of the battery, a coating system for more uniform organic / inorganic coating is required to form a uniform inorganic coating layer and to secure excellent battery characteristics.
  • the role of the organic solvent is to dissolve the binder (PVDF-CTFE) to provide good adhesion between the powdered inorganic particles when it is evaporated.
  • the slurry prepared from the organic solvent binder solution provides the interconnectivity between the porous substrate, the organic / inorganic coating layer, and the inorganic particles in the inorganic coating layer, and the combined components generate heat without losing the interconnectivity during cell assembly and operation. It can withstand shrinkage of the porous membrane and external physical events.
  • the binder dissolved in the organic solvent undergoes a process of forming a gel as the organic solvent is volatilized during the drying process, thereby generating a solvent-impermeable space, resulting in an imbalanced organic / inorganic coating layer. As a result, battery characteristics may be lowered.
  • a secondary drying process using a vacuum above the glass transition temperature (Tg) of the binder is required. If residual solvent is present in the product due to insufficient drying, some of the binder may dissolve and a gel may form.
  • Japanese Patent Laid-Open No. 2004-227972 discloses a method for producing a coated separator containing a water-soluble polymer and fine particles.
  • the patent was prepared by coating a slurry in which 13 nm alumina particles were dispersed in an aqueous solution of carboxymethyl cellulose (CMC) in a support layer on a polyethylene porous membrane to form an organic / inorganic composite layer.
  • CMC carboxymethyl cellulose
  • particle dispersion stability in the slurry may be poor, leading to coating instability, and particles having a smaller size than pores of the porous separator may penetrate between pores. Because it prevents the pores, there may be a problem that the air permeability of the separator after the coating is greatly reduced.
  • an organic solvent A technique is disclosed in which a slurry is cast on a polyethylene porous membrane to form an organic / inorganic composite layer, followed by electrospinning a polymer compound solution thereon to prepare a coating separator in which two coating layers are formed.
  • Korean Patent Registration No. No. 1125013 discloses a method for producing a crosslinkable ceramic coated separator using an ionic polymer that is soluble in water. This method also uses an ionic polymer that can be dissolved in water, but it is not dispersed in water, but is completely dissolved so that solvent trapping cannot be avoided.
  • the organic solvent diethylacetamide solvent is 15 times higher than water.
  • the production volume may be very limited in the manufacturing process, and the porous substrate of the thin film may be damaged by high temperature / high energy during the drying process, and thus physical properties and air permeability may be reduced. There is a problem.
  • An object of the present invention to solve the problems of the prior art as described above, by coating the coating liquid obtained by dispersing the inorganic particles and the polymer compound binder in an aqueous solution in an emulsion or suspended state on the porous substrate to improve the thermal and chemical stability of the porous substrate.
  • the present invention provides an organic / inorganic composite coating porous separator and a method of manufacturing the same, which improve the wettability and improve lithium ion conductivity and electrolyte impregnation rate.
  • Still another object of the present invention is to provide an electrochemical device which simultaneously improves the performance and safety of a battery and an electrochemical device by including the organic / inorganic composite coating porous separator of the present invention.
  • At least one region in which an aqueous coating liquid formed by dispersing inorganic particles and a polymer compound binder in an aqueous solution (water) is selected from at least a portion of one surface, both surfaces, and a pore of the surface of the porous substrate. It is characterized in that coated on.
  • any porous substrate used in an electrochemical device such as a lithium secondary battery may be used, for example, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra high molecular weight polyethylene, Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, polyether sulfone, polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalene
  • membrane or nonwoven fabric formed using 1 or more types chosen from is mentioned.
  • the porous substrate may be surface treated using a surface treatment technique such as corona, plasma or high energy radiation treatment so that the aqueous coating liquid may be uniformly coated on the porous substrate more effectively.
  • a surface treatment technique such as corona, plasma or high energy radiation treatment
  • the porous substrate can be secured excellent breathability and adhesion even if not necessarily surface treatment, but when the surface treatment, it is possible to ensure a better breathability and adhesion, and also to improve the wettability with the electrolyte in the battery Surface treatment is advantageous.
  • the porous substrate may have a thickness of 1 to 100 ⁇ m, preferably 1 to 30 ⁇ m in thickness, and it is advantageous to use a thin film as the porous substrate as high power / high capacity of a battery has recently been advanced.
  • the pore size present in the porous substrate is 0.01 to 50 ⁇ m, porosity may be formed from 10 to 90%. However, this numerical range can be easily modified depending on the embodiment or the need.
  • the inorganic particles used in the aqueous coating liquid of the present invention can be used without limitation the inorganic particles of the type used in the conventional conventional coating separator for batteries.
  • Such inorganic particles include SnO 2 , BaTiO 2 , Al 2 O 3 , CeO 2 , SiO 2 , TiO 2 , Li 3 PO 4 , NiO, ZnO, MgO, Mg (OH) 2 , CaO, ZrO 2 , Y 2
  • One or more types selected from O 3 , talc and the like can be used.
  • the size of the inorganic particles is not limited, but in order to prepare a slurry having good dispersion stability and to form a coating layer having a uniform thickness, the average particle size is preferably 0.001 to 10 ⁇ m, most preferably 0.1 to 5 ⁇ m, and is preferably spherical or plate-shaped. Or it may have a particle shape of irregular shape.
  • the size of the inorganic particles is less than 0.001 ⁇ m the dispersibility of the inorganic particles may be reduced or the particles are distributed in the already formed pores may lower the breathability, if the size exceeds 10 ⁇ m the thickness of the organic / inorganic composite coating layer increases There is a problem that the mechanical properties are lowered or the probability of internal short circuits increases during battery charging and discharging due to excessively large pores.
  • the thickness of the overall organic / inorganic composite coating separator there may be a limitation when manufacturing a thin and high battery capacity medium and large battery cells.
  • the polymer compound binder used in the aqueous coating liquid of the present invention may include a first organic binder and a second organic binder, and may further include a third organic binder.
  • the first organic binder and the second organic binder which are essentially used in the aqueous coating solution of the present invention, bond and fix the surface of the inorganic substrate and the inorganic particles and the porous substrate between the inorganic particles and the particles, thereby reducing physical deformation and physical properties of the porous substrate. Serves to prevent.
  • the third organic binder serves to improve the wettability of the coating liquid on the porous substrate during coating through the role of a thickener for increasing the viscosity of the aqueous coating liquid.
  • the first organic binder in the polymer compound binder refers to a binder in which a water-insoluble polymer compound that is insoluble in water is dispersed in water by emulsion or suspension polymerization or post-processing.
  • any polymer compound emulsion dispersed in water may be used without limitation.
  • Specific examples include polystyrene-based, styrene-butadiene-based rubber (SBR), nitrile-based rubber (NBR), polyolefin-based, acrylic-based, acetate-based, PVDF-based or PVDF-based copolymer, ethylene-vinyl acetate-based (EVA), polyvinyl buty
  • SBR styrene-butadiene-based rubber
  • NBR nitrile-based rubber
  • EVA ethylene-vinyl acetate-based
  • EVA ethylene-vinyl acetate-based
  • PTFE polytetrafluoroethylene
  • the size of the dispersed binder can be controlled by temperature, pH, or emulsifier concentration in the manufacturing process, so that the adhesion between the inorganic particles or the inorganic particles and the substrate can be effectively controlled. Can be.
  • the second organic binder is a water-soluble high molecular compound, induces attraction between the first organic binder and the polymer and serves to more effectively improve the adhesion and coating properties between the inorganic particles, the inorganic particles and the substrate, and the main chain of the water-soluble high molecular compound Refers to those which are ionic in nature, or are prepared in the form of copolymers with water-soluble high molecular compounds, or water-soluble high molecular compounds themselves.
  • phosphate esters include phosphate esters, phosphate acryl copolymers, modified polyacrylate copolymers, modified polyacrylic acid copolymers, polyester polyamineamide copolymers, polycarboxylic acid copolymers, and poly Alkylolaminoamide copolymers, polysiloxane polyacrylic copolymers, polysiloxane polycarboxylic acid copolymers, polyalkoxylate copolymers, polyacrylic and polyether copolymers, and metal salt forms thereof, One kind or two or more kinds may be used. In order to express a more effective function, it is more effective as long as it has the structures listed above and is ionic or crosslinked by heat during drying. As a most preferable example, the polyacryl polyether copolymer represented by a following formula is mentioned.
  • R 1 , R 2 and R 3 each represent hydrogen or alkyl having 1 to 10 carbon atoms
  • R 4 represents an ether having 1 to 100 carbon atoms
  • M is composed of a hydrogen atom or a cation M and n are numbers selected such that the weight average molecular weight Mw of the copolymer is 40,000 or less.
  • the third organic binder may be additionally added to increase the dispersion effect of the inorganic particles of the aqueous coating liquid, to improve dispersibility by controlling the free viscosity of the aqueous coating liquid, and to improve the efficiency of the coating process as well as to improve the battery characteristics.
  • the water-soluble high molecular compound can be used without limitation. Specific examples include one selected from the group consisting of polyethylene oxide (PEO), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVOH), polyvinylpyrrolidone (PVP), starch and ionic polymer compounds The above can be used.
  • the preferred weight ratio of water: inorganic particles used in the aqueous coating liquid of the present invention is 95: 5 to 20:80, and the preferred weight ratio of the inorganic particles to the first organic binder is 4: 1 to 140: 1, and the inorganic particles: second
  • the preferred weight ratio of the organic binder is in the range of 10: 1 to 200: 1. In the above ranges, an organic / inorganic composite coating porous separator having excellent adhesion can be obtained.
  • the weight ratio of the inorganic particles exceeds 80, the dispersion state of the inorganic particles may be unstable, there is a possibility that aggregation occurs, it is difficult to control the thickness uniformity of the coating layer, if the weight ratio of the inorganic particles is less than 5 unit at the time of coating Since the amount of water to be dried per area is large, there is a problem that it is difficult to increase the line speed above a certain level in a drying zone of a limited length, which is not preferable.
  • the weight ratio of the inorganic particles to the first organic binder is less than 4: 1, the content of the first organic binder is higher than that of the inorganic particles, thereby reducing air permeability and lowering battery performance.
  • the weight ratio is greater than 140: 1. If the first organic binder content is low, the inorganic particle content is too high, the adhesion between the inorganic particles or the porous substrate and the inorganic particles may be lowered, which is not preferable.
  • the content of the second organic binder may be high, and thus battery rate and cycle characteristics may be lowered, which is not preferable.
  • the low content of is not preferable because the adhesion between the inorganic particles or the substrate and the heat shrinkage of the organic / inorganic composite coating porous separator may be inferior.
  • the first organic binder and the second organic binder may be used without the third organic binder, but in this case, since it is an aqueous solution dispersed in water, it is difficult to control the viscosity of the final slurry coating solution uniformly on the porous substrate during various types of coating processes. Since it may be difficult to coat, it is more advantageous to use a third organic binder. That is, by using the third organic binder, not only the result of more effectively improving the dispersibility of the inorganic particles may be obtained, and the rheology of the coating liquid may be adjusted, thereby providing uniform coating.
  • the preferred weight ratio of the first organic binder: the third organic binder is 100: 0 to 5:95.
  • the coating liquid may be prepared using only the first organic binder and the second organic binder without the third organic binder.
  • the coating liquid may have a high viscosity or a low dispersibility of inorganic particles, thereby limiting the applicable coating process. It is not preferable because there is a problem that the adhesion between the inorganic particles is lowered.
  • the amount of the third organic binder may be adjusted according to various coating methods, and coating such as dip-coating, die-coating, and gravure-coating which are generally used. Since the addition amount can be adjusted according to the method, it is possible to simply solve the problem that the content ratio of the binder and the inorganic particles in the method of manufacturing by dissolving in the existing organic solvent is limited. In addition, by using the third organic binder, there is an advantage that the solid content of the coating liquid can be freely controlled from low to high concentration, and the amount of the third organic binder can be adjusted to improve battery characteristics affecting the ion conductivity. have.
  • additives may be further used to prepare a coating liquid having excellent dispersion of the inorganic particles.
  • Additives can be used in various ways, depending on the purpose of the dispersion, wetting agents for water dispersion and additional wetting agents (wetting agent) for improving the wettability, antifoaming agent and anti-foaming agent to suppress the foaming, leveling agent to improve the smoothness ( leveling agent) and other fluidity regulators for fluidity control, and as little as possible should be added, preferably not added, for battery characteristics in the cell.
  • a polymeric wet dispersant to maintain dispersibility. desirable.
  • the organic / inorganic composite coating porous separator according to the present invention has a thickness of 0.1 to 50 ⁇ m, a pore size of 0.001 to 10 ⁇ m, and a porosity of 20 to 80%.
  • the thickness of the separator is less than 0.1 ⁇ m or pore. If the size is less than 0.001 ⁇ m or the porosity is less than 20%, a small amount of electrolyte is filled in the pores, and the capacity of the lithium ions is degraded and the performance of the cell is degraded. If the size exceeds 10 ⁇ m or the porosity exceeds 80% mechanical properties of the porous membrane may be lowered.
  • the method for producing an organic / inorganic composite coated porous film according to the present invention may include the following steps:
  • step (3) adding a first organic binder (aqueous emulsion) to the mixed solution of step (2) and mixing to obtain a coating solution;
  • step (3) coating and drying one or more regions selected from the group consisting of at least one side, both sides, and at least a portion of the pores of the surface of the porous substrate with the coating liquid obtained in step (3).
  • the second organic binder, and optionally the third organic binder may be added to a container containing water at room temperature or high temperature to prepare a polymer compound solution having a viscosity of 1 to 50,000 mPa ⁇ s.
  • the inorganic particles are added to the polymer compound solution obtained in the step (1), and then the inorganic particles are dispersed.
  • a conventional method known in the art may be used as the dispersion method.
  • an ultrasonic disperser a ball mill, a disperser, a mixer, or the like, may be used. Particularly, a ball mill method is preferable.
  • the dispersion treatment time may vary depending on the capacity, preferably 1 to 20 hours, the particle size of the crushed inorganic particles can be controlled according to the size and ball mill time of the beads used in the ball mill, but mentioned above As it is, 0.001-10 micrometers is preferable.
  • the dispersed state of the particles may be lowered, and in some cases, the addition of a polymer type wet dispersant may be more effectively dispersed.
  • the content of the wet dispersant is generally different depending on the size, chemical structure and surface area of the inorganic particles, but 0 to 3 parts by weight is appropriate for 100 parts by weight of the inorganic particles.
  • the first organic binder is added to the mixed solution in which the inorganic particles are dispersed in the aqueous solution of the second organic binder and optionally the third organic binder (polymer compound aqueous solution) to obtain a final organic / inorganic water dispersion coating solution.
  • the first organic binder Before dispersing the inorganic particles in step (2), the first organic binder may be added to the aqueous solution of the second organic binder and optionally the third organic binder, but the first organic binder is added to the aqueous solution in which the inorganic particles are dispersed. It is more advantageous in terms of producing a stable inorganic particle coating liquid.
  • a small amount of additives may be optionally added to the coating solution depending on the viscosity or surface energy of the final coating solution.
  • wetting agents used to improve the wetting of coating solutions to porous substrates may be added to improve coating properties, such as UV absorbers.
  • Optional additives may be used depending on the desired coating method and coating properties, and the amount of the additive used may be 100 wt% of the coating solution prepared in step (3). 0 to 5 parts by weight each is preferable.
  • the method of coating the coating solution on the porous substrate may be coated through a conventional coating method known in the art, for example, dip coating, die coating, roll coating, comma (comma) coating, gravure coating, bar coating, or a mixture thereof, to at least one region selected from at least a portion (one side), both sides of the surface of the porous substrate, and at least a portion of the pores. It can be coated in single or multiple layers.
  • Electrochemical device according to the invention is characterized in that it comprises an organic / inorganic composite coating porous separator according to the present invention as described above.
  • the organic / inorganic composite coating porous separator may be used as a separator between the positive electrode and the negative electrode in an electrochemical device including a positive electrode, a negative electrode, and an electrolyte.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples thereof include all kinds of primary / secondary cells, fuel cells, solar cells, or supercapacitors, and in particular, lithium secondary batteries.
  • the battery is most preferred.
  • the electrochemical device may be manufactured according to a conventional method known in the art, and may be manufactured by injecting an electrolyte solution after assembling the organic / inorganic composite coating porous separator according to the present invention between an anode and a cathode. have.
  • the negative electrode, the positive electrode, and the electrolyte to be applied to the electrochemical device of the present invention are not particularly limited, and conventional ones used in the art may be used without limitation.
  • the present invention by forming a uniform porous organic / inorganic composite coating layer using the aqueous coating liquid on the porous substrate, excellent adhesion between the inorganic particles or between the porous substrate and the inorganic particles, it is possible to prevent heat shrinkage at high temperatures.
  • the aqueous coating solution is capable of high-speed coating with the advantage of using an environmentally friendly water-based (water) -based solvent, it is possible to commercially mass-produce a low-cost organic / inorganic composite coating porous film.
  • the electrochemical device using the organic / inorganic composite coating porous film of the present invention as a separator has an excellent thermal, electrochemical safety.
  • FIG. 1 is an FE-SEM photograph of the organic / inorganic composite coating porous separator prepared in Example 1, and FIGS. 1A and 1B show a coating layer and a porous substrate, respectively.
  • Figure 2 is a photograph showing the results of the thermal shrinkage experiment of the separator, a photograph after leaving the organic / inorganic composite coating porous separator prepared in Comparative Example 1 (polypropylene separator) and Example 2, respectively at 150 °C 1 hour.
  • Figure 3 is a graph showing the result of measuring the ion conductivity of the membrane, the ion conductivity of the organic / inorganic composite coating porous separator prepared in Comparative Example 1, Comparative Example 3 and Example 2, Example 5, Example 10 and Example 11 Is a graph showing the results of the measurement.
  • Figure 4 is a graph showing the results of measuring the discharge capacity change according to the cell rate of the organic / inorganic composite coating porous separator prepared in Comparative Example 1, Comparative Example 3 and Example 2.
  • the present invention may be modified in various ways, and may have various embodiments, but the present invention is provided below to illustrate preferred embodiments, but the following examples merely illustrate the present invention. The range is not limited to the following examples.
  • Coating thickness gauges were measured using Mitutoyo's Digimatic Thickness Gage 547-401 (flat tip type of ⁇ 6.3 mm, pressure less than 3.5N for measurement). The difference in the thickness of the original film before coating was calculated as compared with the thickness of the coating separator.
  • Air permeability was compared by measuring the time taken for permeation of 100 cc of air using a film permeability tester (densometer, manufactured by Toyoseiki) (ISO 5635/5).
  • the specimens were cut to a size of 50 mm x 50 mm, and then lined at the center of the specimen with a width x length (3 cm x 3 cm) and left in an oven at a temperature of 150 ° C ⁇ 5 for 1 hour. Then, after removing from the oven and left at room temperature for at least 5 minutes to cool to room temperature, by measuring the length of the line drawn in the center of the specimen to calculate the shrinkage ratio compared to the length before shrinking.
  • Ionic conductivity was measured by preparing a conductivity cell (conductivity cell) for conductivity measurement using each sample.
  • the conductivity cell is a coin cell type, and a separator ( ⁇ 18 mm) is placed between two SUS plates ( ⁇ 16 mm) of the same size, followed by lithium hexafluorophosphate (LiPF 6 ).
  • LiPF 6 lithium hexafluorophosphate
  • the solution was left at room temperature for 24 hours, and then measured using VSP at room temperature (25 ° C.).
  • a second, but as organic binder was added to polyacrylate polyether copolymer and the Al 2 O 3 powder, Al 2 O 3 powder is added so as to have 30% by weight of solid content, and the second organic binder is Al 2 O 3
  • the Al 2 O 3 particle diameter of the slurry after crushing may be controlled according to the particle size of the beads used in the ball mill method and the application time of the ball mill method, but in Example 1, the slurry was pulverized to an average particle size of 0.4 ⁇ m.
  • Corona-treated monoaxially stretched polypropylene separator (porosity 45%) was used as the porous substrate, and the coating solution was coated on both sides of the separator by a dip coating method. An organic / inorganic composite coated porous separator was prepared.
  • the air permeability (gurley) of the coating membrane is 240sec / 100cc, while having a similar air permeability as Comparative Example 1 described later, the heat shrinkage was greatly reduced from 35% to 4.2%.
  • the adhesive strength of Comparative Example 3 using PVDF-HFP as the first organic binder was increased, and the heat shrinkage rate was also decreased.
  • the LiNiCoMnO 2 type electrodes in a usual commercially available as the positive electrode, a graphite electrode as a cathode, the electrolytic solution include lithium hexafluorophosphate (LiPF 6) is dissolved in an ethylene carbonate / ethyl methyl carbonate / diethyl carbonate (EC / EMC / DEC A coin cell type lithium secondary battery was prepared using a 3: 2: 5:)-based electrolyte.
  • the air permeability of the coating membrane was 240sec / 100cc, showed the same physical properties as in Example 1, the heat shrinkage was reduced to 3.3%.
  • the air permeability of the coating membrane was 250sec / 100cc, the heat shrinkage was 4% and showed almost similar physical properties as in Example 1.
  • An organic / inorganic composite coating porous separator and a lithium secondary battery having the same are prepared in the same manner as in Example 2, except that polyethylene oxide (PEO) is used instead of carboxymethyl cellulose sodium (CMC) as the third organic binder. Prepared. As a result, the resulting coating separator showed almost the same physical properties as in Example 3.
  • PEO polyethylene oxide
  • CMC carboxymethyl cellulose sodium
  • An organic / inorganic composite coated porous separator and a lithium secondary battery including the same were prepared in the same manner as in Example 2, except that a 14 ⁇ m-thick polypropylene separator was not used as a porous substrate.
  • the resulting coating membrane showed a slight decrease in adhesive strength and thermal shrinkage, but showed similar properties as in Example 2.
  • An organic / inorganic composite coating porous separator and a lithium secondary battery having the same were prepared in the same manner as in Example 2, except that a separator having a thickness of 11 ⁇ m instead of 14 ⁇ m was used as the porous substrate.
  • the air permeability of the coating membrane was increased to 200 sec / 100cc due to the influence of the porous substrate thickness, compared with Example 2, the heat shrinkage was reduced to 1.8%.
  • the air permeability of the coating membrane was 230sec / 100cc
  • the heat shrinkage was 3% showed similar properties as in Example 2.
  • the air permeability of the coating membrane is 540sec / 100cc
  • the heat shrinkage is 7.2%
  • the air permeability is reduced compared to Example 2, but the heat shrinkage is slightly increased.
  • Example 2 Except for using a polyalkylammonium amide instead of a polyacryl polyether copolymer as the second organic binder, the same procedure as in Example 2 to prepare an organic / inorganic composite coating porous separator and a lithium secondary battery having the same.
  • the air permeability of the coating membrane is 520sec / 100cc
  • the heat shrinkage is 6.8%
  • the air permeability is reduced compared to Example 2, but the heat shrinkage is slightly increased.
  • An organic / inorganic composite coating porous separator and a lithium secondary battery having the same are prepared in the same manner as in Example 2, except that a polycarboxylic acid-siloxane copolymer is used instead of the polyacryl polyether copolymer as the second binder. Prepared.
  • the air permeability of the coating membrane was 510sec / 100cc, heat shrinkage rate of 8.4%, while the air permeability was reduced compared to Example 2, but the heat shrinkage rate was slightly increased.
  • the resulting coating membrane is air permeability of 280 sec / 100cc, heat shrinkage rate of 3.5%, almost similar to Example 2, but the adhesive strength was significantly increased compared to Example 2 with 550gf.
  • An organic / inorganic composite coated porous separator and a lithium secondary battery having the same were prepared in the same manner as in Example 2, except that an EVA emulsion was used instead of an SBL emulsion as the first organic binder.
  • the resulting coating membrane is air permeable 320sec / 100cc, heat shrinkage 20%, the air permeability was reduced compared to Example 2, but the heat shrinkage was increased.
  • An organic / inorganic composite coating porous separator and a lithium secondary battery having the same were prepared in the same manner as in Example 2, except that an acrylic emulsion was used instead of an SBL emulsion as the first organic binder.
  • the resulting coating separator had an adhesive strength of 450 gf, which was slightly increased compared to Example 2, and the thermal shrinkage was reduced to 2% compared to Example 2.
  • An organic / inorganic composite coated porous separator and a lithium secondary battery including the same were prepared in the same manner as in Example 13 except that the polyethylene separator was used instead of the polypropylene separator as the porous substrate.
  • the resulting coating membrane had an air permeability of 260 sec / 100cc, a heat shrinkage rate of 2.7%, a puncture strength of 530gf, and an adhesive strength of 400gf.
  • An organic / inorganic composite coating porous coating separator and the organic / inorganic composite coating porous coating separator were prepared in the same manner as in Example 2 except that the organic / inorganic composite coating porous separator coated on both sides by die coating instead of the dip coating method was prepared.
  • a lithium secondary battery having the same was prepared.
  • the resulting coated separator showed almost the same physical properties as Example 2.
  • Example 2 Same as Example 2 except that the die-coated film was coated on a polypropylene separator (45% porosity) having a thickness of about 14 ⁇ m, and finally a coated membrane having a thickness of 17 ⁇ m was prepared.
  • a polypropylene separator 45% porosity
  • a coated membrane having a thickness of 17 ⁇ m was prepared.
  • the resultant coating separator had a heat shrinkage of 12% and an increase in heat shrinkage compared to Example 14, but the air permeability was 220 sec / 100cc and adhesive strength of 340gf, which was similar to that of Example 14.
  • An organic / inorganic composite coated porous separator and a lithium secondary battery having the same were prepared in the same manner as in Example 2, except that the polyethylene separator was used instead of the polypropylene separator as the porous substrate.
  • the resulting coating membrane was similar to Example 2 with air permeability of 230 sec / 100cc, but the heat shrinkage was reduced to 1.8%, the prick strength was 530 gf, and the adhesive strength was 450 gf, which was significantly increased compared to Example 2.
  • An organic / inorganic composite porous coating separator and a lithium secondary battery including the same were prepared in the same manner as in Example 2 except that the particle size of Al 2 O 3 powder was ground to 0.7 ⁇ m instead of 0.4 ⁇ m. .
  • the resulting coating membrane exhibited almost similar physical properties as Example 2 with air permeability of 280 sec / 100cc and thermal shrinkage of 3.4%.
  • An organic / inorganic composite coated porous separator and a lithium secondary battery having the same were prepared in the same manner as in Example 2, except that the particle size of the Al 2 O 3 powder was ground to 1.1 ⁇ m instead of 0.4 ⁇ m. .
  • the resulting coating membrane was air permeable 320sec / 100cc, heat shrinkage of 3.7%, but slightly reduced air permeability, but exhibited almost the same physical properties as Example 2.
  • composition and physical properties of the coating separator prepared in Examples 1 to 19 are shown in Tables 1 to 4 below.
  • a lithium secondary battery was manufactured by the same method as Example 1, except that a polypropylene separator having a thickness of 14 ⁇ m (45% porosity) without using an organic / inorganic composite coating layer was used.
  • a lithium secondary battery was manufactured by the same method as Example 1, except that a polyethylene (PE) separator (48% porosity) having a thickness of 14 ⁇ m without forming an organic / inorganic composite coating layer was used.
  • PE polyethylene
  • PVDF-HFP 5 wt% of PVDF-HFP was added to acetone, and then dissolved at 40 ° C. for at least 2 hours to prepare a polymer compound solution.
  • the polymer compound solution Al 2 O 3 over 3 hours a ball mill by the addition of Al 2 O 3 powder, the powder / PVDF-HFP weight ratio (P / B ratio) of 90/10 so that the (ball mill) method inorganic particles using a
  • the inorganic slurry was prepared by crushing and dispersing.
  • the Al 2 O 3 particle size of the slurry after crushing may be controlled according to the particle size of the beads used in the ball mill method and the application time of the ball mill method.
  • the slurry was pulverized to an average particle size of 0.4 ⁇ m.
  • a porous substrate As a porous substrate, a polypropylene separator (45% porosity) having a thickness of 14 ⁇ m corona treated was used, and finally, a coating membrane (PVDF / Al 2 O 3 ) having a thickness of 20 ⁇ m was finally coated by dip coating.
  • PVDF / Al 2 O 3 a coating membrane having a thickness of 20 ⁇ m was finally coated by dip coating.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, using the prepared organic / inorganic composite coating porous separator.
  • the resulting coating membrane was air permeable 300 sec / 100cc, heat shrinkage rate of 10%, both the air permeability and heat shrinkage compared to Comparative Example 1.
  • Example 2 Except not using the second organic binder, was carried out in the same manner as in Example 2 to prepare an organic / inorganic composite coating porous separator and a lithium secondary battery having the same.
  • the resulting coating membrane is air permeable 520sec / 100cc, heat shrinkage of 19%, the air permeability was reduced compared to Example 2, heat shrinkage was increased.
  • PMMA polymethyl-methacrylate
  • CMC carboxymethyl cellulose
  • the resulting coating membrane was air permeable 580sec / 100cc, heat shrinkage of 25%, the air permeability was reduced compared to Example 2, heat shrinkage was increased.
  • An organic / inorganic composite coating porous separator was prepared in the same manner as in Example 2, except that only the carboxymethyl cellulose (CMC) was used as the third organic binder without using the first organic binder and the second organic binder.
  • CMC carboxymethyl cellulose
  • the resulting coating membrane was air permeable 230 sec / 100cc, similar to Example 2, but the adhesive strength was reduced, the heat shrinkage was increased.
  • the resulting coating membrane has air permeability of 1700 sec / 100cc, heat shrinkage of 12%, significantly reduced air permeability compared to Example 2, and increased heat shrinkage.
  • the resulting coating separator had an adhesive strength of 30 kgf and a heat shrinkage rate of 22%.
  • the adhesive strength was reduced compared to Example 2, and the heat shrinkage rate was increased.
  • the resulting coating membrane was air permeable 1500sec / 100cc, heat shrinkage rate of 10%, while the air permeability was significantly reduced compared to Example 2, while the heat shrinkage rate was increased.
  • the resulting coating membrane is air permeable 510sec / 100cc, heat shrinkage of 17%, while the air permeability is reduced compared to Example 2, heat shrinkage is increased.
  • the organic / inorganic composite coating porous separator of Example 1 in which a coating slurry including inorganic particles, an emulsion, and a water-soluble polymer was coated on both surfaces of a substrate on a polypropylene separator, was used.
  • the organic / inorganic composite coated porous separator of the present invention is not only a membrane substrate before coating (FIG. 1A) but also a coated double-sided oil. It can be seen that the uniform pore structure is formed in both the / inorganic composite coating layer (Fig. 1b).
  • the organic / inorganic composite coating porous separators of Examples 1 to 13 were used as samples, and the polypropylene separator of Comparative Example 1 was used as a control.
  • the polypropylene separator of Comparative Example 1 which is a control group, exhibited a phenomenon in which the film was partially transparent due to shrinkage of pores while shrinking by about 30% due to high temperature.
  • Inorganic / inorganic composite coating porous membranes showed significantly reduced heat shrinkage (3% ⁇ 10%), and the appearance of the film was also in good condition.
  • the organic / inorganic composite coating porous separators of the examples were used as samples, and the polypropylene separator of Comparative Example 1 and the organic coating separator of Comparative Example 3 were used as controls.
  • the organic / inorganic composite coating porous separator of the present invention exhibited a high ion conductivity value compared to the polypropylene separator of Comparative Example 1, which is a control group, and the coating separator of Comparative Example 3, which is an oil-based coating separator.
  • the organic / inorganic composite porous coating separator of the present invention can be seen that the ionic conductivity is significantly increased by the coating layer, the effect of increasing the ion conductivity in the water-based coating than the oil-based coating.
  • Example 2 of the present invention the capacity of each battery and the battery rate (C-rate) were measured.
  • the battery was cycled five times at discharge rates of 0.2C, 0.5C, 1C, 3C, and 5C, and their discharge capacities are shown in FIG. 4 by the C-rate characteristics.
  • the lithium secondary battery to which the aqueous organic / inorganic composite coating porous separator of the present invention was applied showed excellent C-rate characteristics compared to the batteries of the comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

본 발명은 전기화학소자에 사용되는 분리막에 관한 것으로서, 더욱 상세하게는 다공성 기재에 유/무기 복합 코팅층을 적용한 다공성 분리막, 그의 제조방법 및 이를 이용한 전기화학소자에 관한 것이다.

Description

수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
본 발명은 전기화학소자에 사용되는 분리막에 관한 것으로서, 더욱 상세하게는 다공성 기재에 유/무기 복합 코팅층을 적용한 다공성 분리막과 그의 제조방법 및 이를 이용한 전기화학소자에 관한 것이다.
리튬이온 이차전지는 양극/음극/분리막/전해액을 기본으로 구성되어, 화학에너지와 전기에너지가 가역적으로 변환되면서 충방전이 가능한 에너지 밀도가 높은 에너지 저장체로, 휴대폰, 노트북 등의 소형전자장비에 폭넓게 사용이 되었으나, 최근에는 환경문제, 고유가, 에너지 효율 및 저장을 위한 대응으로 복합 전기 자동차(hybrid electric vehicles, HEV), 플러그 전기 자동차(Plug-in EV), 전기자전거(e-bike) 및 에너지 저장 시스템(energy storage system, ESS)으로의 응용이 급속히 확대되고 있다.
리튬이온 이차전지는 분리막에 의해 절연화되어 있는 안정한 전기화학소자이지만, 내부 혹은 외부의 전지이상현상이나 충격에 의해 양극과 음극의 단락이 발생되어 발열 및 폭발 가능성이 있으므로 절연체로서의 분리막의 열적/화학적 안전성의 확보는 가장 중요하게 고려되어야 할 사항이다.
또한, 최근 리튬이차전지의 고용량화, 고출력화의 요구가 증가됨에 따라 전지의 안전성, 즉 폭발(explosion), 발화(fire)와 같은 전지에 대한 안전성이 보다 중요하게 대두되고 있으며, 이러한 전지의 안전성을 확보하고자 전자적인 보호회로나 배터리 성능진단 시스템(battery management system; BMS)에 의한 전지셀의 전압/전류/임피던스/온도 등을 종합적으로 제어하여 과충전, 과전류 등의 전지 이상에 대응하고자 한다.
리튬이차전지에서 상업적으로 많이 이용되는 폴리올레핀 계열의 분리막은 양극과 음극의 전기적인 단락을 방지하면서 리튬이온의 통로가 되는 기공을 제공하는 기능을 하는 다공성 필름으로, 상업적으로는 습식법과 건식법에 의해서 제조되는 폴리올레핀계열의 분리막이 널리 이용되고 있다.
습식법은 무기물 입자나, 오일성분을 폴리올레핀과 함께 압출기 내에서 혼련용융압출을 하여 시트를 제조한 후, 롤이나 텐터를 이용하여 동시 혹은 축차 이축연신을 하여 박막필름을 제막하고, 솔벤트로 무기입자나 오일성분을 추출해 내는 추출공정을 포함하는 방식으로 다공성 필름을 제조하고, 상업적으로는 폴리올레핀계 중에서 폴리에틸렌(PE)을 주로 이용하여 제막을 한다. 한편, 건식법은 수지를 용융압출 한 후에 롤에 의해 연신을 하거나 텐터로 연신을 하여 다공성 막을 제막하는, 유기용제를 사용하지 않고, 다공성 필름을 제조하는 기술로, 일반적으로는 폴리프로필렌을 주로 사용하며, 때에 따라서는 폴리에틸렌을 사용하기도 한다.
여기서, 다공성 분리막을 제조하는 공정에서, 부직포 형태의 분리막을 제외하고, 일반적으로 필름연신이라는 공정을 통해 다공성 기재를 제조하는 폴리올레핀형 다공성 분리막은 근본적으로 100℃ 이상의 내부 또는 외부자극에 의해 전지가 고온으로 상승하는 경우, 분리막의 수축 혹은 용융 등과 같은 부피변화를 피할 수 없게 되고, 이로 인한 양극/음극간의 전기적인 단락으로 인한 폭발 등이 발생될 수 있다. 또한, 전지 내부에서 덴드라이트 성장(dendrite growth)에 기인하여 분리막이 파열되는 경우, 내부 단락으로 인한 전지 폭발을 유도할 수 있는 문제도 있다. 이러한 고온에 의한 열수축 및 덴드라이트에 의한 전지의 불안정성을 억제하기 위해 다공성 분리막 기재 단면 혹은 양면에 무기물 입자를 바인더와 함께 코팅함으로써 무기물 입자가 기재의 수축율을 억제하는 기능을 부여함과 동시에 무기물 코팅층에 의해 보다 안전한 분리막을 부여하는 코팅 분리막이 개시되고 있다.
이때, 다공성 기재에 적용된 유/무기 코팅층은 다공성 기재와의 균일한 코팅이 되지 않으면 표면에서의 코팅 결점(defect)으로 인해 코팅층이 이차전지 조립시 혹은 전지 내에서 부분적으로 무기코팅층이 쉽게 탈리가 될 수 있으며, 이러한 탈리는 전지의 안전성을 저하시킬 수 있으므로, 보다 균일한 유/무기 코팅을 위한 코팅 시스템이 균일한 무기코팅층을 형성하고, 우수한 전지 특성을 확보하기 위해서 필요하다.
유/무기 코팅 분리막에 대해 알려진 종래 기술로서, 유기 용제를 사용하여 유/무기 슬러리(PVDF-CTFE/BaTiO3 혹은 PVDF-CTFE/Al2O3)를 코팅한 유/무기 코팅 다공성 분리막의 제조 방법이 대한민국 특허등록번호 제0775310호에 각각 개시되어 있다. 본 공정은 다량의 N-메틸피롤리돈(NMP) 용제 혹은 아세톤을 분산 매질로 사용하는 종래의 전극 용액 주형 공정과 일치한다.
일반적으로 유기 용제의 역할은, 자신이 증발될 때, 분말형 무기물 입자들 사이의 양호한 접착성을 제공하기 위해 바인더(PVDF-CTFE)를 용해시키는 것이다. 유기 용제 바인더 용액으로부터 제조되는 슬러리는 다공성 기재와 유/무기 코팅층, 그리고 무기 코팅층 내의 무기물 입자들 사이의 상호 연결성을 제공하며, 이렇게 결합된 성분들은 전지 조립 및 구동 시에 상호 연결성을 잃지 않으면서도 발열에 의한 다공성 분리막의 수축과 외부 물리적 이벤트(event)를 견딜 수 있다.
그러나, 이들 유기용제에 가용한 바인더 조성물을 기초로 하는 코팅법에는 몇몇 문제점이 있다. 첫째, 유기용제에 녹는 바인더는 건조과정에서 유기용제가 휘발됨에 따라 겔이 형성되는 과정을 거치게 되고, 이에 따라 용매가 갇히는(solvent-impermeable) 공간이 발생되어 불균형한 유/무기 코팅층이 생기게 되는 원인이 되고, 이러한 현상에 의해 전지특성이 낮아질 수 있다. 이러한 문제점을 극복하고자 바인더의 유리전이온도(Tg) 이상에서의 진공을 이용한 2차 건조 과정이 필요하다. 불충분한 건조로 인해 제품에 잔류 용매가 존재하는 경우, 바인더 일부가 용해되고, 겔이 형성될 수 있다. 이로 인해 코팅층 표면이 끈적이게 되면 외부 먼지나 불필요한 입자들이 달라붙을 수 있고, 제품 권취시에 코팅층 간 혹은 기재와의 접착으로 제품의 불량률이 증가 될 수 있다. 둘째, 슬러리 내 바인더 농도가 높아지는 경우, 슬러리 점도가 매우 높아지기 때문에 박막의 유/무기 복합층 제조를 어렵게 만들고, 끓는점이 높기 때문에 건조 과정에서 높은 온도를 필요로 한다. 셋째, 슬러리 점도를 낮게 유지하는 경우는 다공성 기재와의 접착력이나 무기물 간의 접착력이 낮아져 무기물 입자가 쉽게 탈리되는 현상이 발생되며, 넷째, 유기용제에 기초한 공정은 건조시 임계폭발한계에 의해 건조라인의 건조존(dry zone)이 길어질 수 밖에 없으므로, 가공속도를 향상시키기 어려운 가공상의 문제점이 발생되고, 다섯째, 유기용제는 휘발성을 가지고 있으므로 슬러리가 외부환경에 노출되는 순간부터 지속적으로 용매가 휘발하므로 슬러리 제조 및 이송, 코팅 공정상에서 용매증발로 인한 슬러리의 농도 변화 및 유변학적 성질이 변하게 되므로써 최종 제품의 코팅 품질에 영향을 미칠 수 있고, 여섯째, 코팅 분리막 제조시 안전, 건강 및 환경에 대한 위험요소들이 내재되어 있다. 특성상 유기용제는 독성, 가연성 및 휘발성을 띄며, 유기용제로부터의 위험성을 완화시키고, 환경오염을 줄이기 위한 특별 제조 관리가 필요하다. 이와 같이 유기용제에 가용한 바인더를 이용한 유/무기 코팅 분리막 제조는 전지특성 및 가공특성상 한계를 가지고 있다.
한편, 일본국 특허공개공보 제2004-227972호에는 수용성 폴리머와 미립자를 포함하는 코팅 분리막의 제조 방법에 대한 내용이 개시되어있다. 상기 특허는 지지층에 카르복실메틸셀룰로우스(CMC) 수용액에 13nm의 알루미나 입자를 분산시킨 슬러리를 폴리에틸렌 다공성막에 캐스팅하여, 유/무기 복합층을 형성하는 방법으로 코팅 분리막을 제조하였다.
그러나, 알루미나 입자를 사용하지 않고 카르복실메틸셀룰로우스만 사용하여 코팅하는 경우와 알루미나 입자를 사용하는 경우, 각각의 치수 안정성 결과가 유사한 것으로 보아, 알루미나 입자로 인한 분리막의 열적 치수 안정성 제어 효과가 확인되지 않는다.
또한, 상기 개시된 내용과 같이, 0.1㎛ 이하의 작은 알루미나 입자를 사용하는 경우, 슬러리 내에서의 입자 분산 안정성이 떨어져 코팅 불안정성을 유도할 수 있고, 다공성 분리막의 기공보다 작은 크기의 미립자들은 기공 사이로 침투하여 기공을 막기 때문에, 코팅 이후 분리막의 통기도가 크게 저하되는 문제점이 발생할 수 있다.
반면, 다공성 기재와 코팅층 사이의 접착력을 향상시키기 위한 방법으로 대한민국 공개특허공보 제2012-0052100호에서는, 스티렌부타디엔고무(SBR)와 카르복실메틸셀룰로우스(CMC)를 유기용제인 아세톤에 용해시킨 슬러리를 폴리에틸렌 다공성 막에 캐스팅하여, 유/무기 복합층을 형성한 후, 그 위에 다시 고분자 화합물 용액을 전기방사 하여 2개의 코팅층이 형성된 코팅 분리막을 제조한 기술이 개시되었다. 이러한 방법으로 유/무기 복합층을 형성시킬 경우도, 위에 제시한 유기용제를 사용한 코팅에 있어서의 문제점을 피할 수 없으며, 기재와의 접착력이 낮아 무기물 탈리에 의한 문제점을 해결하고자 무기물 코팅층 위에 방사를 하여 3층으로 코팅 분리막을 제조한 경우에는, 방사에 의한 막의 형성으로 인해, 코팅 분리막의 박막화가 요구되고 있는 시점에서, 코팅층의 두께 조절에 대한 한계를 극복하기 어려울 뿐만 아니라 기공의 균일성이 낮아 전지 적용시 전류가 균일하게 분포되어 흐르지 못하고 한 부분으로 집중되어, 부분적인 발열, 열화 및 폭발이 발생될 수 있으므로 유/무기 코팅 분리막의 근본적인 기술적 제시를 하지 못하였다.
상기와 같은 기술들에 의한 방법으로 유/무기 복합 코팅 다공성 분리막을 제조하는 경우, 다공성 기재와 코팅층 사이의 접착력이 취약하여 코팅된 재료들이 기재로부터 쉽게 벗겨지는 문제점을 해결하기 위해, 대한민국 특허등록번호 제1125013호에는 물에 녹는 이온성 고분자를 사용하는 가교형 세라믹 코팅 분리막의 제조 방법이 개시되어 있다. 이 방법 또한 물에 녹을 수 있는 이온성 고분자를 사용하지만 물에 분산되어 있는 것이 아니라, 완전히 용해시켜 사용하므로 용매가 갇히게 되는 현상을 피할 수 없으며, 유기용제인 디에틸아세트아미드 용매를 물대비 15배 사용하여, 근본적으로 수계를 이용한 코팅법에 대한 제시를 해 주지 못했으며, 기재와의 접착력 향상을 목적으로 코팅 후 화학 가교를 유도하기 위해 슬러리 제조 과정에서 가교제 및 개시제가 유기용제와 함께 첨가되어야 하며, 건조과정에서 20시간 이상의 열 또는 UV 처리가 필수적으로 요구된다. 그러나, 슬러리 용액에 가교제 및 개시제를 첨가하는 경우, 다공성 기재에 적용되기 전, 코팅 용액의 보관 및 이송 과정에서 외부에서 가해진 열과 에너지에 의해 부분적으로 자체 가교가 진행되어 슬러리의 고화 현상이 진행될 수 있어 최종적으로 코팅 분리막의 균일성이 낮아지는 단점이 있다. 또한, 건조 시에도 장시간의 열처리 및 UV처리가 필요하기 때문에, 제조 공정상 생산량이 매우 제한적일 수 있으며, 건조과정에서 고온/고에너지에 의해 박막의 다공성 기재가 손상되어 물성 및 통기도가 저하될 수 있는 문제점이 있다.
본 발명의 목적은, 상기와 같은 종래 기술들의 문제점을 해결하기 위한 것으로, 다공성 기재에 무기물 입자와 고분자 화합물 바인더를 수계에 에멀젼 또는 현탁상태로 분산시킨 코팅액을 코팅함으로써 다공성 기재의 열적, 화학적 안정성을 향상시키고, 통기성과 접착성이 우수하며, 가교제 및 열에너지나 UV 에너지 없이도 자체적으로 점착성이 부여되므로, 가교로 인한 다공성 기재의 손상 및 슬러리의 자체 가교에 대한 문제를 해결할 수 있고, 또한, 전해액에 대한 젖음성이 향상되므로써, 리튬의 이온전도도 및 전해액 함침율을 향상시키는 유/무기 복합 코팅 다공성 분리막 및 그 제조방법을 제공하는데에 있다.
본 발명의 또 다른 목적은 본 발명의 유/무기 복합 코팅 다공성 분리막을 포함하므로써 전지 및 전기화학소자의 성능 및 안전성을 동시에 향상시킨 전기화학소자를 제공하는 것이다.
본 발명에 따른 유/무기 복합 코팅 다공성 분리막은 수계(물)에 무기물 입자와 고분자 화합물 바인더가 분산되어 이루어진 수계 코팅액이 다공성 기재의 표면의 한면, 양면 및 기공부의 적어도 일부로부터 선택되는 하나 이상의 영역에 코팅된 것을 특징으로 한다.
본 발명에 있어서, 상기 다공성 기재로는 일반적으로, 리튬이차전지와 같은 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능한데, 예를 들면, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌 등으로부터 선택되는 1종 이상을 사용하여 형성한 막 또는 부직포를 들 수 있다.
상기 다공성 기재는 수계 코팅액이 보다 효과적으로 다공성 기재 위에 균일하게 코팅이 될 수 있도록, 코로나, 플라즈마 또는 고에너지 방사선 처리 등의 표면 처리 기술을 이용하여 표면처리될 수도 있다.
상기 다공성 기재는 반드시 표면처리를 하지 않아도 우수한 통기성과 접착력이 확보될 수 있으나, 표면처리를 한 경우, 보다 우수한 통기성과 접착력이 확보될 수 있고, 또 전지 내에서 전해액과의 젖음성을 향상시킬 수 있으므로 표면처리를 하는 것이 유리하다.
상기 다공성 기재의 두께는 1 내지 100㎛로 제작될 수 있으며, 바람직하게는 1 내지 30㎛ 두께이며, 최근 전지의 고출력/고용량화가 진행됨에 따라 다공성 기재는 박막을 이용하는 것이 유리하다. 다공성 기재에 존재하는 기공크기는 0.01 내지 50㎛이고, 기공도는 10 내지 90%로 형성될 수 있다. 그러나 이러한 수치 범위는 실시 형태 또는 필요에 따라 용이하게 변형될 수 있다.
본 발명의 수계 코팅액에 사용되는 무기물 입자는 종래의 통상적인 전지용 코팅 분리막 제조에 사용되는 종류의 무기물 입자가 제한 없이 사용 가능하다. 이러한 무기물 입자로는, SnO2, BaTiO2, Al2O3, CeO2, SiO2, TiO2, Li3PO4, NiO, ZnO, MgO, Mg(OH)2, CaO, ZrO2, Y2O3 및 탈크 등으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 무기물 입자의 크기는 제한이 없으나, 분산 안정성이 좋은 슬러리 제조 및 균일한 두께의 코팅층 형성을 위해 평균입도 0.001~10㎛인 것이 좋으며, 가장 바람직하게는 0.1~5㎛인 것이 좋으며, 구형 혹은 판상형 혹은 불규칙한 형상의 입자형태를 가질 수 있다.
상기 무기물 입자의 크기가 0.001㎛ 미만인 경우에는 무기물 입자의 분산성이 저하되거나 이미 형성된 기공내에 입자가 분포되어 통기성이 낮아질 수 있으며, 10㎛를 초과하는 경우에는 유/무기 복합 코팅층의 두께가 증가하여 기계적 물성이 저하되거나, 과도하게 큰 기공으로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아지는 문제가 있다. 또한 전체적인 유/무기 복합 코팅 분리막의 두께 증가로 인해, 얇고 전지용량이 높은 중대형 전지셀 제조시 제한이 있을 수 있다.
본 발명의 수계 코팅액에 사용되는 상기 고분자 화합물 바인더는 제1 유기물 바인더와 제2 유기물 바인더를 포함하고, 선택적으로 제3 유기물 바인더를 더 포함할 수 있다. 본 발명의 수계 코팅액에 필수적으로 사용되는 상기 제1 유기물 바인더와 제2 유기물 바인더는 무기물 입자와 입자사이, 무기물 입자들과 다공성 기재의 표면을 접착 및 고정시켜 줌으로써, 다공성 기재의 물리적 변형 및 물성 저하를 방지하는 역할을 한다. 제3 유기물 바인더는 수계 코팅액의 점도를 증가시키기 위한 증점제의 역할을 통해 코팅 시 다공성 기재에 대한 코팅액의 젖음성을 향상시키는 역할을 한다.
상기 고분자 화합물 바인더 중 제1 유기물 바인더는 물에 녹지 않는 수불용성 고분자 화합물이 물에 분산된 에멀젼이나 현탁중합에 의해 혹은 후가공에 의해 물에 분산된 형태의 바인더를 의미하는 것으로, 유화 혹은 현탁된 드럽렛(droplet)의 크기가 분포를 가질 수 있는 수계 바인더이다.
제1 유기물 바인더로는 물에 분산된 고분자 화합물 에멀젼이라면 제한 없이 모두 사용이 가능하다. 구체적인 예로는, 폴리스티렌계, 스티렌부타디엔계 고무(SBR), 니트릴계 고무(NBR), 폴리올레핀계, 아크릴계, 아세테이트계, PVDF계 혹은 PVDF계 공중합체, 에틸렌-비닐 아세테이트계(EVA), 폴리비닐 부티랄계(polyvinyl butyral), 폴리테트라플루오로에틸렌계(PTFE) 등의 고분자의 에멀젼 혹은 현탁액에서 선택되는 1종 혹은 2종 이상을 혼합하여 사용할 수 있다.
본 발명에서는 상기와 같은 제1 유기물 바인더를 사용함으로써 분산된 바인더의 크기를 제조과정에서 온도나 pH 혹은 유화제 농도 등에 의해 조절할 수 있어서, 보다 효과적으로 무기입자 상호 간 혹은 무기입자와 기재간의 접착력을 효과적으로 조절할 수 있다.
상기 제2 유기물 바인더는 수용성 고분자 화합물로, 제1 유기물 바인더와 고분자간 인력을 유도하여 무기물 입자간, 무기물 입자와 기재와의 접착력과 코팅성을 보다 효과적으로 향상시키는 역할을 하며, 수용성 고분자 화합물의 주쇄에 이온성을 띄게 한 것, 또는 수용성 고분자 화합물과 공중합체 형태로 제조된 것, 또는 수용성 고분자 화합물 자체를 지칭하는 것이다. 구체적인 예로서는, 인산염에스테르(phosphoric ester), 인산염아크릴계(phosphoric acryl) 공중합체, 변성 폴리아크릴레이트계 공중합체, 변성 폴리아크릴산계 공중합체, 폴리에스테르 폴리아민아미드계 공중합체, 폴리카르복실산계 공중합체, 폴리알킬올아미노아미드계 공중합체, 폴리실록산 폴리아크릴계 공중합체, 폴리실록산 폴리카르복실산계 공중합체, 폴리알콕실레이트계 공중합체, 폴리아크릴계와 폴리에테르계의 공중합체 및 이들의 금속염 형태를 포함하며, 이들의 1종 혹은 2종 이상이 사용될 수 있다. 보다 효과적인 기능을 발현하기 위해서는 위에 열거한 구조를 가지고 있으면서 이온성을 띠고 있거나, 건조시 열에 의해 가교가 되는 구조이면 더욱 효과적이다. 가장 바람직한 예로는, 하기 화학식으로 표시되는 폴리아크릴폴리에테르 공중합체를 들 수 있다.
Figure PCTKR2013009824-appb-I000001
상기 화학식에서, R1, R2 및 R3는 각각 수소, 또는 탄소 원자수 1~10개인 알킬을 나타내고, R4는 탄소 원자수 1~100개인 에테르를 나타내며, M은 수소원자 또는 양이온으로 이루어진 군으로부터 선택되며, m 및 n은 공중합체의 중량 평균 분자량 Mw가 4만 이하가 되도록 선택되는 수이다.
상기 제3 유기물 바인더는 수계 코팅액의 무기물 입자의 분산 효과 상승, 수계 코팅액의 자유로운 점도 조절에 의한 분산성 향상 및 코팅공정의 효율화뿐만 아니라 전지특성의 향상을 위해 추가적으로 첨가될 수 있으며, 물에 용해되는 수용성 고분자 화합물이라면 제한없이 사용이 가능하다. 구체적인 예로는, 폴리에틸렌옥사이드(PEO), 카르복실메틸셀룰로오스(CMC), 폴리비닐알콜(PVOH), 폴리비닐피롤리돈(PVP), 전분 및 이온성 고분자 화합물 등으로 구성되는 군에서 선택되는 1종 이상을 사용할 수 있다.
본 발명의 수계 코팅액에 사용되는 물:무기물 입자의 바람직한 중량비는 95:5~20:80이며, 무기물 입자:제1 유기물 바인더의 바람직한 중량비는 4:1~140:1이고, 무기물 입자:제2 유기물 바인더의 바람직한 중량비는 10:1~200:1의 범위인데, 상기 범위들인 경우 접착력이 우수한 유/무기 복합 코팅 다공성 분리막을 얻을 수 있어 바람직하다.
상기 무기물 입자의 중량비가 80 을 초과하면, 무기물 입자의 분산 상태가 불안정해 응집이 일어날 가능성이 있고, 코팅층의 두께 균일도 조절이 어려운 문제가 있으며, 상기 무기물 입자의 중량비가 5이 미만이면 코팅 시 단위 면적당 건조되어야 하는 물의 양이 많아 한정된 길이의 건조 존에서 라인 속도를 일정 수준 이상으로 증가시키기 어려운 문제가 있어 바람직하지 않다.
상기 제1 유기물 바인더에 대한 무기물 입자의 중량비가 4:1 미만이면 무기물 입자 대비 제1 유기물 바인더의 함량이 높아 통기도가 감소하고, 전지성능이 낮아지는 문제가 있으며, 상기 중량비가 140:1을 초과하면 제1 유기물 바인더 함량이 낮고, 무기물 입자 함량이 지나치게 많아져 무기물 입자간 혹은 다공성 기재와 무기물 입자간의 접착력이 낮아져서 탈리될 수 있어 바람직하지 않다.
상기 제2 유기물 바인더에 대한 무기물 입자의 중량비가 10:1 미만이면 제2 유기물 바인더의 함량이 높아 전지 율속 및 사이클 특성이 낮아질 수 있어 바람직하지 않고, 200:1을 초과하는 경우에는 제2 유기물 바인더의 함량이 낮아 무기입자간 혹은 기재와의 접착력이나 유/무기 복합 코팅 다공성 분리막의 열수축율이 열세해 질 수 있어 바람직하지 않다.
상기에서 제3 유기물 바인더 없이 제1 유기물 바인더와 제2 유기물 바인더 만으로도 사용할 수 있으나, 이러한 경우 물에 분산된 수용액이기 때문에 최종 슬러리 코팅액의 점도를 조절하기 어려워 여러형태의 코팅공정시 다공성 기재위에 균일하게 코팅하기 어려울 수도 있으므로, 제3 유기물 바인더를 사용하는 것이 보다 유리하다. 즉, 제3 유기물 바인더를 사용함으로써 보다 효과적으로 무기물 입자의 분산성이 향상되는 결과를 얻을 수 있을 뿐만 아니라 코팅액의 레올로지를 조절할 수 있어 균일한 코팅이 가능한 장점이 있다. 코팅액 제조시, 상기 제1 유기물 바인더:제3 유기물 바인더의 바람직한 중량비는 100:0~5:95이다. 제1 유기물 바인더:제3 유기물 바인더의 중량비가 100:0인 경우, 즉, 제3 유기물 바인더 없이 제1 유기물 바인더와 제2 유기물 바인더 만으로도 코팅액을 제조할 수 있다. 그러나 제1 유기물 바인더:제3 유기물 바인더의 중량비가 5:95를 초과하는 경우, 코팅액의 점도가 너무 높거나 무기물 입자의 분산성이 낮아져 적용 가능한 코팅 공정이 제한적이며, 무기물 입자 간의 접착력 혹은 기재와 무기물 입자간의 접착력이 낮아지는 문제가 있어 바람직하지 않다.
상기 제3 유기물 바인더는 여러가지 코팅방식에 따라 첨가되는 양이 조절될 수도 있으며, 일반적으로 사용되는 딥코팅(dip-coating), 다이코팅(die-coating), 그라비아코팅(Gravure-coating) 등의 코팅 방식에 맞게 첨가량이 조절될 수 있으므로 기존 유기용제에 용해시켜 제조하는 방식에서 바인더와 무기물 입자의 함량비가 제한되는 문제를 간단히 해결할 수 있다. 또한, 제3 유기물 바인더의 사용에 의해 코팅액의 고형분 함량을 저농도에서 고농도까지 자유로이 조절 가능할 수 있는 장점이 있으며, 이온 전도도에 영향이 있는 전지특성을 향상시키기 위해서도 제3 유기물 바인더의 첨가량이 조절될 수 있다.
본 발명에 있어서, 상기 무기물 입자의 분산이 우수한 코팅액을 제조하기 위해서는 여러가지 형태의 첨가제가 추가로 더 사용될 수 있다. 첨가제는 그 목적에 따라 여러 가지가 이용될 수 있는데, 분산을 위한 습윤분산제와 추가적으로 젖음성을 향상시키는 수계용 습윤제 (wetting agent), 기포발생을 억제하는 소포제 및 탈포제, 평활성을 향상시키는 레벨링제(leveling agent), 기타 유동성 조절을 위한 유동성 조절제가 포함될 수 있으며, 전지 내의 전지특성을 위해 되도록이면 적은 양이 첨가되어야 하며, 바람직하게는 첨가되지 않는 것이 좋다. 그러나, 본 발명에서 보다 균일한 유/무기 복합 코팅을 위해서 무기물 입자가 침강(sedimentation), 응결(coagulation), 유동(floating)되는 것을 막고, 분산성을 유지하기 위해서 고분자형 습윤 분산제를 첨가하는 것이 바람직하다.
본 발명에 따른 유/무기 복합 코팅 다공성 분리막의 두께는 0.1~50㎛이고, 기공크기는 0.001~10㎛이며, 기공도는 20~80%인 것이 바람직한데, 분리막의 두께가 0.1㎛ 미만이거나 기공크기가 0.001㎛ 미만이거나 기공도가 20% 미만인 경우에는 적은 양의 전해액이 기공에 채워져 리튬 이온의 전달 능력이 떨어져 셀의 성능이 저하되어 바람직하지 않고, 분리막의 두께가 50㎛를 초과하거나, 기공크기가 10㎛을 초과하거나 기공도가 80%를 초과하는 경우 다공성 분리막의 기계적 물성이 저하될 수 있다.
본 발명에 따른 유/무기 복합 코팅 다공성 필름의 제조 방법은 다음의 단계들을 포함하여 이루어질 수 있다:
(1) 제2 유기물 바인더 및 선택적으로 제3 유기물 바인더를 물에 용해시켜 고분자 화합물 수용액을 제조하는 단계;
(2) 무기물 입자를 상기 (1) 단계에서 얻은 고분자 화합물 수용액에 첨가 및 혼합하여 무기물 입자를 분산시켜 혼합용액을 제조하는 단계;
(3) 제1 유기물 바인더(수계 에멀젼)를 상기 (2) 단계의 혼합용액에 첨가 및 혼합하여 코팅액을 얻는 단계; 및
(4) 다공성 기재의 표면의 한면, 양면 및 기공부의 적어도 일부로 구성되는 군으로부터 선택되는 하나 이상의 영역을 상기 (3) 단계에서 얻은 코팅액으로 코팅 후 건조하는 단계.
상기 (1) 단계에서, 상온 혹은 고온의 물이 들어 있는 용기에 제2 유기물 바인더, 및 선택적으로 제3 유기물 바인더를 첨가하여 1~50,000mPa·s의 점도의 고분자 화합물 용액을 제조할 수 있다.
상기 (2) 단계에서, 상기 (1) 단계에서 얻은 고분자 화합물 용액에 무기물 입자를 첨가한 후, 무기물 입자를 분산시키는데, 이 때 분산방법으로는 당 업계에 알려진 통상적인 방법을 이용할 수 있으며, 예로서 초음파분산기, 볼밀(ball-mill), 디스퍼서(disperser), 믹서(mixer) 등을 이용할 수 있으며, 특히 볼밀(ball mill)법이 바람직하다. 이 때, 분산처리시간은 용량에 따라 다를 수 있으나, 1 내지 20시간이 바람직하며, 파쇄된 무기물 입자의 입도는 볼밀에 사용된 비드의 사이즈 및 볼밀 시간에 따라 제어할 수 있으나, 상기에 언급된 바와 같이 0.001 내지 10㎛가 바람직하다. 상기 (2) 단계에서 무기물 입자의 크기나 형태 및 표면의 화학적인 구조에 따라 입자 분산상태가 저하될 수 있으며, 경우에 따라서 고분자형 습윤 분산제를 첨가하면 더욱 효과적으로 분산시킬 수 있다. 습윤 분산제의 함량은 일반적으로 무기물 입자의 크기, 화학적인 구조 및 표면적에 따라 상이하나 무기물 입자 100중량부에 대해서 0~3중량부가 적절하다.
상기 (3) 단계에서, 제2 유기물 바인더 및 선택적으로 제3 유기물 바인더의 수용액(고분자 화합물 수용액)에 무기물 입자가 분산된 혼합용액에 제1 유기물 바인더를 첨가하여 최종적인 유/무기 수분산 코팅액을 제조한다.
상기 (2) 단계에서 무기물 입자를 분산시키기 전에 제1 유기물 바인더를 제2 유기물 바인더 및 선택적으로 제3 유기물 바인더의 수용액에 첨가하여도 무방하나, 무기물 입자를 분산시킨 수용액에 제1 유기물 바인더를 첨가하는 것이, 안정한 무기물 입자 코팅액 제조의 측면에서 더 유리하다.
상기 (3) 단계에서 제조된 코팅액을 (4) 단계에서의 코팅에 사용하기 전에, 최종으로 얻어진 코팅액의 점도나 표면에너지에 따라서 선택적으로 첨가제가 코팅액에 소량 첨가될 수 있다.
예로서, 다공성 기재에 대한 코팅액의 젖음성(wetting)을 향상시키기 위해 사용되는 습윤제, 코팅 층의 표면 균일도 향상을 위한 레벨링제, 다공성 기재와 코팅액 사이의 접착력을 향상시키기 위한 접착 증진제, 증점제, 유동성 첨가제, UV 흡수제 등 코팅성 향상을 위해 적용 가능한 첨가제들을 첨가할 수 있는데, 원하는 코팅 방법 및 코팅 특성에 따라 첨가제의 선택적 사용이 가능하며, 사용되는 첨가제의 함량은 (3) 단계에서 제조된 코팅액 100중량부 당 각각 0 내지 5중량부가 바람직하다.
상기 (4) 단계에서는, 상기 (3) 단계에서 제조된 코팅액을 다공성 기재상에 코팅 및 건조함으로써 최종적으로 본 발명에 따른 유/무기 복합 코팅 다공성 필름을 제조할 수 있다. 이때, 상기 코팅액을 다공성 기재상에 코팅하는 방법은 당 업계에 알려진 통상적인 코팅방법을 통해 코팅할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅, 그라비아(Gravure) 코팅, 바(bar) 코팅 또는 이들의 혼합방식을 이용하여, 다공성 기재의 표면의 단면(한쪽면), 양면 및 기공부의 적어도 일부 중에서 선택되는 하나 이상의 영역에 단층 혹은 복층으로 코팅할 수 있다.
본 발명에 따른 전기화학소자는 상기와 같은 본 발명에 따른 유/무기 복합 코팅 다공성 분리막을 포함하는 것을 특징으로 한다.
상기 유/무기 복합 코팅 다공성 분리막은 양극, 음극 및 전해질을 포함하는 전기화학소자에 있어서, 상기 양극과 음극의 사이에서 분리막으로 사용될 수 있다.
상기 전기화학소자는 전기화학반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차/2차 전지, 연료전지, 태양전지 또는 슈퍼 커패시터 등이 있으며, 특히 상기 이차전지 중 리튬이차전지가 가장 바람직하다.
상기 전기화학소자는 당 기술분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 양극과 음극 사이에 본 발명에 따른 상기 유/무기 복합 코팅 다공성 분리막을 개재시켜 조립한 후 전해액을 주입함으로써 제조될 수 있다.
본 발명의 전기화학소자에 적용될 음극, 양극, 전해질은 특별히 제한되지 않으며, 당분야에서 사용되는 통상적인 것을 제한없이 사용할 수 있다.
본 발명에 따르면, 다공성 기재에 수계 코팅액을 이용하여 균일한 다공성 유/무기 복합 코팅층을 형성함으로써, 무기입자 간 혹은 다공성 기재와 무기입자 간 접착력이 우수하며, 고온에서의 열수축을 방지할 수 있다. 또한, 상기 수계 코팅액은 친환경적인 수계(물) 기반의 용매를 사용하는 장점과 함께 고속코팅이 가능하여, 저가의 유/무기 복합 코팅 다공성 필름을 상업적으로 대량생산하는 것이 가능하다. 또한, 본 발명의 유/무기 복합 코팅 다공성 필름을 분리막으로 이용한 전기화학소자는 열적, 전기화학적 안전성이 우수한 효과를 갖는다.
도 1은 실시예 1에서 제조된 유/무기 복합 코팅 다공성 분리막의 FE-SEM 사진으로서, 도 1a 및 도1b는 각각 코팅층 및 다공성 기재를 나타낸 도면이다.
도 2는 분리막의 열수축 실험 결과를 나타내는 사진으로서, 비교예 1(폴리프로필렌 분리막)과 실시예 2에서 제조된 유/무기 복합 코팅 다공성 분리막을 각각 150℃에서 1시간 방치한 후의 사진이다.
도 3은 분리막의 이온전도도 측정 결과를 나타내는 그래프로서, 비교예 1, 비교예 3과 실시예 2, 실시예 5, 실시예 10 및 실시예 11에서 제조된 유/무기 복합 코팅 다공성 분리막의 이온전도도를 측정한 결과를 나타낸 그래프이다.
도 4는 비교예 1, 비교예 3과 실시예 2에서 제조된 유/무기 복합 코팅 다공성 분리막의 전지율속에 따른 방전용량 변화를 측정한 결과를 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시예를 가질 수 있는 바, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 하기에 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
하기 실시예와 비교예 및 실험예에서 적용된 물성 측정방법은 다음과 같다.
물성측정법
1. 코팅두께 측정법
코팅 두께 측정기로는 미쓰도요(Mitutoyo)의 디지매틱 티크니스 게이지(digimatic thickness gage) 547-401(Φ6.3㎜의 플랫팁 타입(flat tip type), 측정 시 압력 3.5N 이하)을 사용하여 측정하였으며, 코팅 분리막의 두께 대비 코팅 전 원판 필름 두께의 차이를 계산하였다.
2. 접착력 측정법
코팅 분리막 위에 18㎜ x 20㎜ (접착면적)의 테이프를 접착시킨 후, 10분간 (??)gf의 하중을 가한 다음 LLOYD UTM장비를 이용하여 접착 강도를 측정하였다. 이때 접착력은 180° 필 테스트(peel test)를 사용하여, 2㎜/min.의 속도로 테이프를 잡아 당기면서 떨어질 때까지 걸리는 힘을 측정하여 비교하였다.
3. 공기 투과성(Gurley) 측정법
공기투과성은 필름투기도 시험기(densometer, Toyoseiki사 제)를 이용하여, 100cc의 공기가 투과하는데 걸리는 시간을 측정하여 비교하였다(ISO 5635/5).
4. 열수축율 측정법
시편을 50㎜ x 50㎜의 크기로 자른 뒤, 시편 중앙에 가로x세로(3㎝ x 3㎝)로 선을 긋고, 온도가 150℃±5인 오븐에 1시간 동안 방치하였다. 이후, 오븐에서 꺼내어 상온에서 5분 이상 방치하여 상온으로 식힌 후, 시편 중앙에 그었던 선의 길이를 측정하여 수축 전 길이 대비 수축율을 계산하였다.
5. 인장강도 측정법
인장강도 측정은 로이드 사의 만능재료 시험기(LLOYD UTM)를 사용하였다. 시편을 각각 MD,TD 방향으로 각각 10㎜ x 50㎜의 크기로 자른 뒤, 20㎜의 그립(girp)간격에서 100㎜/min.의 속도로 인장강도를 측정하였다.
6. 찌름강도 측정법
찌름강도 측정 기기인 Katotech KES-G5를 사용하여 측정하였으며, 측정하고자 하는 시편을 고정시킨 후, 끝단부가 볼(ball) 형태로 되어있는 Φ1.0mm의 니들(needle)을 2㎜/sec.의 속도로 찌르면서 분리막이 파열될 때의 강도를 측정하였다.
7. 이온전도도 측정법
이온전도도는 각 시료를 사용하여 전도도 측정용 전도도셀(conductivity cell)을 제조하여 측정하였다. 전도도셀은 코인셀타입(coin cell type)으로 동일 사이즈의 두 개의 메탈마스크(SUS Plate)(Φ 16㎜) 사이에 분리막(Φ 18㎜)을 위치시킨 후, 리튬헥사플루오로포스페이트(LiPF6)가 용해된 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트(EC/EMC/DEC=3:2:5)계 전해액을 채우고, 셀(cell)을 조립하였다. 전해액에 대한 분리막의 습윤(wetting)을 위해, 24시간 동안 상온 방치한 후, 상온(25℃)에서 VSP를 이용하여 측정하였다.
[실시예 1~19 및 비교예 1~10]
실시예 1
1-1. 유/무기 복합 코팅 다공성 분리막(SBL/Al 2 O 3 ) 제조
물에, 제2 유기물 바인더로서 폴리아크릴폴리에테르 공중합체와 Al2O3분말을 첨가하되, Al2O3분말은 고형분 함량 30중량%가 되도록 첨가하고, 상기 제2 유기물 바인더는 Al2O3분말/폴리아크릴폴리에테르 공중합체=15/1(중량비)의 비율이 되도록 첨가하여 3시간 이상 볼밀(ball mill)법을 이용하여 무기물 입자를 파쇄 및 분산시켜 수분산 무기물 슬러리를 제조하였다. 파쇄 후 슬러리의 Al2O3 입경은 볼밀법에 사용되는 비드의 입도 및 볼밀법의 적용 시간에 따라 제어될 수 있으나, 본 실시예 1에서는 평균입도 0.4㎛로 분쇄하여 슬러리를 제조하였다. 이 슬러리에 수분산된 스티렌부타디엔 라텍스(SBL) 에멀젼을 Al2O3/SBL = 40/1(중량비)이 되도록 첨가한 후 약 2시간 이상 교반하여, 슬러리 내에 에멀젼을 고르게 분산시켜 코팅액을 제조하였다. 다공성 기재로는 코로나 처리된 두께 14㎛의 일축연신 폴리프로필렌 분리막(기공도 45%)을 사용하였으며, 상기 코팅액을 딥(dip) 코팅법으로 상기 분리막의 양면에 코팅하여, 최종적으로 20㎛ 두께의 유/무기 복합 코팅 다공성 분리막을 제조하였다.
그 결과, 코팅 분리막의 공기투과성(gurley)은 240sec/100cc로, 후술하는 비교예 1과 유사한 통기도를 가지면서도 열수축율이 35%에서 4.2%로 크게 감소하였다. 또한, 후술하는 바와 같이, 제1 유기물 바인더로 PVDF-HFP를 사용한 비교예 3 대비 접착강도가 증가되었으며, 열수축율 또한 감소하였다.
1-2. 리튬 이차 전지 제조
일상적으로 상용화된 양극으로 LiNiCoMnO2계 전극을, 음극으로 그라파이트 전극을, 전해액으로는 리튬헥사플루오로포스페이트(LiPF6)가 용해된 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트(EC/EMC/DEC=3:2:5:)계 전해액을 사용하여 코인셀 타입의 리튬이차전지를 제조하였다.
실시예 2
제2 유기물 바인더인 폴리아크릴폴리에테르 공중합체와 Al2O3를 포함하는 수분산 무기물 슬러리 제조 시, 물 대신 카르복실메틸셀룰로오스 나트륨(CMC)을 물에 약 0.5중량% 첨가한 후 50℃에서 약 2시간 이상 용해시켜 제조한 제3 유기물 바인더 수용액을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 유/무기 복합 코팅 다공성 코팅 분리막 및 이를 구비하는 리튬이차전지를 제조하였다
그 결과, 코팅 분리막의 공기투과성은 240sec/100cc로, 실시예 1과 유사한 물성을 나타내었으며, 열수축율은 3.3%로 감소하였다.
실시예 3
제3 유기물 바인더로 카르복실메틸셀룰로오스 나트륨(CMC) 대신 전분을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다
그 결과, 코팅 분리막의 공기투과성은 250sec/100cc, 열수축율은 4%로 실시예 1과 거의 유사한 물성을 보였다.
실시예 4
제3 유기물 바인더로 카르복실메틸셀룰로오스 나트륨(CMC) 대신 폴리에틸렌옥사이드(PEO)를 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다. 그 결과, 만들어진 코팅 분리막은 실시예 3과 거의 유사한 물성을 보였다.
실시예 5
표면에 코로나 처리를 하지 않은 14㎛ 두께의 폴리프로필렌 분리막을 다공성 기재로 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다
그 결과로 만들어진 코팅 분리막은 접착강도와 열수축율 특성은 다소 감소하였으나 실시예 2 대비 유사한 수준의 물성을 보였다.
실시예 6
다공성 기재로 사용한 폴리프로필렌 분리막으로서 두께가 14㎛ 대신 11㎛인 분리막을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다
그 결과, 다공성 기재 두께의 영향으로 인해 코팅 분리막의 공기투과성이 200sec/100cc로 실시예 2 대비 증가하였으며, 열수축율은 1.8%로 실시예 2 대비 감소하였다.
실시예 7
Al2O3분말과 제2 유기물 바인더로 사용된 폴리아크릴폴리에테르 공중합체의 혼합 비율을 Al2O3분말/폴리아크릴폴리에테르 공중합체=15/1(중량비) 대신 Al2O3분말/폴리아크릴폴리에테르 공중합체=30/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과, 코팅 분리막의 공기투과성은 230sec/100cc, 열수축율은 3%로 실시예 2와 유사한 물성을 보였다.
실시예 8
Al2O3분말과 제2 유기물 바인더로 사용된 폴리아크릴폴리에테르 공중합체의 혼합 비율을 Al2O3분말/폴리아크릴폴리에테르 공중합체=15/1(중량비) 대신 Al2O3분말/폴리아크릴폴리에테르 공중합체=100/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과, 코팅 분리막의 공기투과성은 540sec/100cc, 열수축율은 7.2%로, 실시예 2 대비 통기도는 감소하였으나, 열수축율은 다소 증가하였다.
실시예 9
제2 유기물 바인더로 폴리아크릴폴리에테르 공중합체 대신 폴리알킬암모늄아미드를 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과, 코팅 분리막의 공기투과성은 520sec/100cc, 열수축율은 6.8%로, 실시예 2 대비 통기도는 감소하였으나, 열수축율은 다소 증가하였다.
실시예 10
제2 바인더로 폴리아크릴폴리에테르 공중합체 대신 폴리카르복실릭산-실록산 공중합체를 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과, 코팅 분리막의 공기투과성은 510sec/100cc, 열수축율 8.4%로, 실시예 2 대비 통기도는 감소하였으나 열수축율은 다소 증가하였다.
실시예 11
Al2O3분말과 제1 유기물 바인더로 사용된 SBL의 혼합 비율을 Al2O3분말/SBL = 40/1(중량비) 대신 Al2O3분말/SBL=20/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과도 280sec/100cc, 열수축율 3.5%로, 실시예 2와 거의 유사하지만, 접착강도는 550gf로 실시예 2 대비 크게 증가하였다.
실시예 12
제1 유기물 바인더로 SBL 에멀젼 대신 EVA 에멀젼을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 320sec/100cc, 열수축율 20%로, 실시예 2 대비 통기도는 감소하였으나, 열수축율은 증가하였다.
실시예 13
제1 유기물 바인더로 SBL 에멀젼 대신 아크릴계 에멀젼을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 접착강도가 450gf로, 실시예 2 대비 다소 증가하였으며, 열수축율은 2%로 실시예 2 대비 감소하였다.
실시예 14
다공성 기재로 폴리프로필렌 분리막 대신, 폴리에틸렌 분리막을 사용한 것을 제외하고는, 상기 실시예 13과 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 260sec/100cc, 열수축율 2.7%, 찌름강도 530gf, 접착강도 400gf로 물성이 실시예 13과 거의 유사하였다.
실시예 15
딥(dip) 코팅법 대신 다이(die) 코팅법으로 양면 코팅된 유/무기 복합 코팅 다공성 분리막을 제조한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 코팅 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 실시예 2와 거의 유사한 물성을 보였다
실시예 16
다이(die) 코팅법을 사용하여 두께 14㎛ 정도의 폴리프로필렌 분리막(기공도 45%)에 단면 코팅하여, 최종적으로 17㎛ 두께의 코팅 분리막을 제조한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 열수축율 12%로, 실시예 14 대비 열수축율이 증가하였으나, 공기투과성 220sec/100cc, 접착강도 340gf로 실시예 14와 유사한 수준을 나타내었다
실시예 17
다공성 기재로 폴리프로필렌 분리막 대신, 폴리에틸렌 분리막을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성이 230sec/100cc로 실시예 2와 유사하였으나, 열수축율은 1.8%로 감소하였고, 찌름강도는 530gf, 접착강도는 450gf로 실시예 2 대비 크게 증가하였다.
실시예 18
Al2O3분말의 입자 크기를 0.4㎛ 대신 0.7㎛로 분쇄한 것을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 다공성 코팅 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 280sec/100cc, 열수축율 3.4%로 실시예 2와 거의 유사한 물성을 나타내었다.
실시예 19
Al2O3분말의 입자 크기를 0.4㎛ 대신 1.1㎛로 분쇄한 것을 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 320sec/100cc, 열수축율 3.7%로 통기도가 다소 감소하였으나, 이를 제외하고는 실시예 2와 거의 유사한 물성을 나타내었다.
상기 실시예 1~19에서 제조된 코팅 분리막의 구성 및 물성 측정결과를 하기 표 1~4에 나타내었다.
표 1
Figure PCTKR2013009824-appb-T000001
표 2
표 3
Figure PCTKR2013009824-appb-T000003
표 4
Figure PCTKR2013009824-appb-T000004
비교예 1
유/무기 복합 코팅층을 형성하지 않은 두께 14㎛의 폴리프로필렌 분리막(기공도 45%)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬이차전지를 제조하였다.
비교예 2
유/무기 복합 코팅층을 형성하지 않은 두께 14㎛의 폴리에틸렌(PE) 분리막(기공도 48%)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 리튬이차전지를 제조하였다.
비교예 3
PVDF-HFP를 아세톤에 5중량% 첨가한 후, 40℃에서 약 2시간 이상 용해시켜 고분자 화합물 용액을 제조하였다. 이 고분자 화합물 용액에 Al2O3분말/PVDF-HFP의 중량비(P/B ratio)가 90/10이 되도록 Al2O3분말을 첨가하여 3시간 이상 볼밀(ball mill)법을 이용하여 무기물 입자를 파쇄 및 분산시켜 무기물 슬러리를 제조하였다. 파쇄 후 슬러리의 Al2O3 입경은 볼밀법에 사용되는 비드의 입도 및 볼밀법의 적용 시간에 따라 제어될 수 있으나, 본 비교예 3에서는 평균입도 0.4㎛로 분쇄하여 슬러리를 제조하였다. 다공성 기재로는 코로나 처리된 두께 14㎛의 폴리프로필렌 분리막(기공도 45%)을 사용하였으며, 딥(dip) 코팅법으로 코팅하여 최종적으로 20㎛ 두께의 코팅 분리막(PVDF/Al2O3)을 제조하였다. 상기 제조된 유/무기 복합 코팅 다공성 분리막을 이용하여 상기 실시예 1과 동일한 방법으로 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 300sec/100cc, 열수축율 10%로, 비교예 1 대비 통기도와 열수축율 모두 감소하였다.
비교예 4
제2 유기물 바인더를 사용하지 않은 것을 제외하고는, 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 520sec/100cc, 열수축율 19%로, 실시예 2 대비 통기도는 감소하였고, 열수축율은 증가하였다.
비교예 5
제3 유기물 바인더로 카르복실메틸셀룰로즈(CMC) 대신 폴리메틸-메타크릴레이트(PMMA)를 사용한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 580sec/100cc, 열수축율 25%로, 실시예 2 대비 통기도는 감소하였고, 열수축율은 증가하였다.
비교예 6
제1 유기물 바인더와 제2 유기물 바인더를 사용하지 않고, 제3 유기물 바인더로 카르복실메틸세룰로즈(CMC)만을 사용한 것을 제외하고는, 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과 만들어진 코팅 분리막은 공기투과성 230sec/100cc로, 실시예 2와 유사하나, 접착강도가 감소하고, 열수축율이 증가하였다.
비교예 7
Al2O3분말/제1 유기물 바인더(SBL 에멀젼)의 혼합 비율을 Al2O3분말/SBL=40/1(중량비) 대신 Al2O3분말/SBL=1/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성은 1700sec/100cc, 열수축율 12%로, 실시예 2 대비 통기도가 크게 감소하고, 열수축율은 증가하였다.
비교예 8
Al2O3분말/제1 유기물 바인더(SBL 에멀젼)의 혼합 비율을 Al2O3분말/제1바인더=40/1(중량비) 대신 Al2O3분말/SBL=150/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2과 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 접착강도 30kgf, 열수축율 22%로, 실시예 2 대비 접착강도가 감소하고, 열수축율은 증가하였다.
비교예 9
Al2O3분말/폴리아크릴폴리에테르 공중합체의 혼합 비율을 Al2O3분말/폴리아크릴폴리에테르 공중합체=15/1(중량비) 대신 Al2O3분말/폴리아크릴폴리에테르 공중합체=1/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기 투과성 1500sec/100cc, 열수축율 10%로, 실시예 2 대비 통기도는 크게 감소한 반면, 열수축율은 증가하였다.
비교예 10
Al2O3분말/폴리아크릴폴리에테르 공중합체의 혼합 비율을 Al2O3분말/폴리아크릴폴리에테르 공중합체=15/1(중량비) 대신 Al2O3분말/폴리아크릴폴리에테르 공중합체=250/1(중량비)로 변경한 것을 제외하고는, 상기 실시예 2와 동일하게 실시하여 유/무기 복합 코팅 다공성 분리막 및 이를 구비하는 리튬이차전지를 제조하였다.
그 결과로 만들어진 코팅 분리막은 공기투과성 510sec/100cc, 열수축율 17%로, 실시예 2 대비 통기도는 감소한 반면, 열수축율은 증가하였다.
상기 비교예 1~10에서 제조된 분리막의 구성 및 물성 측정 결과를 하기 표 5~6에 나타내었다.
표 5
Figure PCTKR2013009824-appb-T000005
표 6
Figure PCTKR2013009824-appb-T000006
[실험예 1~4]
실험예 1: 유/무기 복합 코팅 다공성 분리막의 표면 분석
본 발명에 따라 제조된 유/무기 복합 코팅 다공성 분리막의 표면을 분석하고자, 하기와 같은 실험을 실시하였다. 시료로는 폴리프로필렌 분리막 상에 무기물 입자와 에멀젼 및 수용성 고분자를 포함하는 코팅 슬러리를 기재의 양면에 코팅한 실시예 1의 유/무기 복합 코팅 다공성 분리막을 사용하였다.
주사 전자 현미경(Scanning Electron Microscope:SEM)으로 표면을 확인한 결과, 도 1에 나타낸 바와 같이, 본 발명의 유/무기 복합 코팅 다공성 분리막은 코팅 전 분리막 기재(도 1a) 뿐만 아니라, 코팅된 양면의 유/무기 복합코팅층(도 1b) 모두 균일한 기공 구조가 형성되어 있음을 확인 할 수 있다.
실험예 2: 유/무기 복합 코팅 다공성 분리막의 열 수축 분석
본 발명에 따라 제조된 유/무기 복합 코팅 다공성 분리막의 열 수축 개선 효과를 확인하기 위하여, 하기와 같은 실험을 수행하였다.
시료로는 실시예 1 내지 실시예 13의 유/무기 복합 코팅 다공성 분리막을 사용하였으며, 대조군으로는 비교예 1의 폴리프로필렌 분리막을 사용하였다.
상기의 각 시료들을 150℃의 온도에서 1시간 방치한 후, 이들을 수집하여 확인한 결과, 150℃의 온도에서 1시간 경과한 이후, 서로 다른 수축율을 나타내었다. 도 2에 대표적인 예를 나타낸 바와 같이, 대조군인 비교예 1의 폴리프로필렌 분리막은 고온으로 인해 약 30% 정도 수축되면서 기공이 막혀 부분적으로 필름이 투명해지는 현상을 보여준 반면, 본 발명의 실시예 2의 유/무기 복합 코팅 다공성 분리막은 열수축이 크게 줄어들었으며(3%~10%), 필름의 외관 역시 양호한 상태를 보여주었다.
실험예 3: 유/무기 복합 코팅 다공성 분리막의 이온전도도 평가
본 발명에 따라 제조된 유/무기 복합 코팅 다공성 분리막의 유/무기 복합 코팅층에 의한 이온 전도도 변화를 확인하기 위하여, 하기와 같은 실험을 수행하였다.
시료로는 실시예들의 유/무기 복합 코팅 다공성 분리막을 사용하였으며, 대조군으로는 비교예 1의 폴리프로필렌 분리막과 비교예 3의 유계 코팅 분리막을 각각 사용하였다.
상기의 각 시료를 이용하여 1.3M의 리튬헥사플루오로포스페이트(LiPF6)가 용해된 에틸렌카보네이트/프로필렌카보네이트/디에틸카보네이트(EC/DMC/DEC=3:2:5)계 전해액에 함침시켰다. 이후, 전해액에 의해 함침된 분리막을 VSP를 이용하여 이온 전도도를 측정하였다. 이때, 측정 온도는 25℃였다.
도 3에 나타난 바와 같이, 본 발명의 유/무기 복합 코팅 다공성 분리막은 대조군인 비교예 1의 폴리프로필렌 분리막에 비해, 높은 이온 전도도값을 나타내었고, 유계 코팅 분리막인 비교예 3의 코팅 분리막에 대해서도 동등 수준 이상의 이온 전도도값을 나타내었다.
따라서, 본 발명의 유/무기 복합 다공성 코팅 분리막은 코팅층에 의해 이온 전도도가 월등히 증가하며, 유계 코팅에 비해 수계코팅에서 이온전도도 증가 효과가 더 크게 나타나는 것을 확인할 수 있다.
실험예 4: 리튬 이차전지의 성능 평가
본 발명의 실시예 2에 따라 제조된 리튬 이차전지의 성능을 평가하기 위하여 각 전지의 용량 및 전지율속(C-rate)을 측정하였다. 전지를 0.2C, 0.5C, 1C, 3C, 5C의 방전속도로 사이클링을 5회 실시하였으며, 이들의 방전용량을 C-rate 특성별로 도식하여 도 4에 나타내었다.
실험결과, 본 발명의 수계 유/무기 복합 코팅 다공성 분리막을 적용한 리튬이차전지는 비교예들의 전지 대비 우수한 C-rate특성을 보여주었다.

Claims (15)

  1. 물에 무기물 입자, 및 수불용성 고분자 화합물이 물에 분산되어 이루어진 에멀젼 또는 현탁액인 제1 유기물 바인더와 수용성 고분자 화합물인 제2 유기물 바인더를 포함하는 고분자 화합물 바인더가 분산되어 이루어진 코팅액이 다공성 기재의 한면, 양면 및 기공부의 적어도 일부로 이루어진 군으로부터 선택되는 하나 이상의 영역에 코팅된 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  2. 제1항에 있어서, 상기 고분자 화합물 바인더는 수용성 고분자 화합물인 제3 유기물 바인더를 더 포함하는 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  3. 제1항에 있어서,
    상기 다공성 기재는 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이
    미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로부터 선택되는 1종 이상으로 형성한 막 또는 부직포인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  4. 제1항에 있어서, 상기 다공성 기재의 두께는 1~100㎛이고, 기공크기는 0.01~50㎛이며, 기공도는 10~90%인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  5. 제1항에 있어서, 상기 무기물 입자는 SnO2, BaTiO2, Al2O3, CeO2, SiO2, TiO2, Li3PO4, NiO, ZnO, MgO, Mg(OH)2, CaO, ZrO2, Y2O3 및 탈크로부터 선택되는 1종 이상인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  6. 제1항에 있어서, 상기 무기물 입자의 평균입도 0.001~10㎛인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  7. 제 1항에 있어서, 상기 제1 유기물 바인더는 폴리스티렌계, 스티렌부타디엔계 고무, 니트릴계 고무, 폴리올레핀계, 아크릴계, 아세테이트계, PVDF계 또는 PVDF계 공중합체, 에틸렌-비닐 아세테이트계, 폴리비닐 부티랄계, 또는 폴리테트라플루오로에틸렌계 고분자가 물에 분산된 에멀젼 또는 현탁액으로부터 선택되는 1종 이상인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  8. 제 1항에 있어서, 상기 제2 유기물 바인더는 인산염에스테르, 인산염아크릴계계 공중합체, 변성 폴리아크릴레이트계 공중합체, 변성 폴리아크릴산계 공중합체, 폴리에스테르 폴리아민아미드계 공중합체, 폴리카르복실산계 공중합체, 폴리알킬올아미노아미드계 공중합체, 폴리실록산 폴리아크릴계 공중합체, 폴리실록산 폴리카르복실산계 공중합체, 폴리알콕실레이트계 공중합체, 폴리아크릴계와 폴리에테르계의 공중합체 및 이들의 금속염으로부터 선택되는 1종 이상인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  9. 제 2항에 있어서, 상기 제3 유기물 바인더는 폴리에틸렌옥사이드, 카르복실메틸셀룰로오스, 폴리비닐알콜, 폴리비닐피롤리돈, 전분 및 이온성 고분자로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  10. 제1항에 있어서, 상기 물:무기물 입자의 중량비는 95:5~20:80이고, 무기물 입자:제1 유기물 바인더의 중량비는 4:1~140:1이며, 무기물 입자:제2 유기물 바인더의 중량비는 10:1~200:1인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  11. 제1항에 있어서, 상기 유/무기 복합 코팅 다공성 분리막의 두께는 0.1~50㎛이고, 기공크기는 0.001~10㎛이며, 기공도는 20~80%인 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막.
  12. 다음의 단계들을 포함하는 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막의 제조 방법:
    (1) 제2 유기물 바인더를 물에 용해시켜 고분자 화합물 용액을 제조하는 단계;
    (2) 무기물 입자를 상기 (1) 단계에서 얻은 고분자 화합물 용액에 첨가 및 혼합하여 무기물 입자를 분산시켜 혼합용액을 제조하는 단계;
    (3) 제1 유기물 바인더를 상기 (2) 단계의 혼합용액에 첨가 및 혼합하여 코팅액을 얻는 단계; 및
    (4) 다공성 기재의 표면의 한면, 양면 및 기공부의 적어도 일부로 이루어진 군으로부터 선택되는 하나 이상의 영역을 상기 (3) 단계에서 얻은 코팅액으로 코팅 후 건조하는 단계.
  13. 제12항에 있어서, 상기 (1) 단계에서 추가로 제3 유기물 바인더를 물에 용해시키는 것을 특징으로 하는 유/무기 복합 코팅 다공성 분리막의 제조 방법.
  14. 제1항 내지 제11항 중 어느 한 항에 기재된 유/무기 복합 코팅 분리막을 포함하는 것을 특징으로 하는 전기화학소자.
  15. 제14항에 있어서, 상기 전기화학소자는 이차전지인 것을 특징으로 하는 전기화학소자.
PCT/KR2013/009824 2012-12-10 2013-11-01 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자 WO2014092334A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013005887.1T DE112013005887T5 (de) 2012-12-10 2013-11-01 "Poröser Separator mit wasserbasierter organischer/anorganischer komplexen Beschichtung, Verfahren zum Herstellen desselben und denselben verwendende elektrochemische Vorrichtung"
JP2015512592A JP6148331B2 (ja) 2012-12-10 2013-11-01 水系コーティング液を用いたリチウム二次電池用有/無機複合コーティング多孔性分離膜の製造方法
CN201380022732.4A CN104272501B (zh) 2012-12-10 2013-11-01 具有水性有机/无机络合物涂层的多孔隔板,其制备方法,和使用它的电化学装置
US14/396,028 US9711772B2 (en) 2012-12-10 2013-11-01 Porous separator with water-based organic/inorganic complex coating, a method for preparing the same, and an electrochemical device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0142940 2012-12-10
KR1020120142940A KR101341196B1 (ko) 2012-12-10 2012-12-10 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자

Publications (1)

Publication Number Publication Date
WO2014092334A1 true WO2014092334A1 (ko) 2014-06-19

Family

ID=49988238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009824 WO2014092334A1 (ko) 2012-12-10 2013-11-01 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자

Country Status (6)

Country Link
US (1) US9711772B2 (ko)
JP (1) JP6148331B2 (ko)
KR (1) KR101341196B1 (ko)
CN (1) CN104272501B (ko)
DE (1) DE112013005887T5 (ko)
WO (1) WO2014092334A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090199A1 (en) * 2014-12-05 2016-06-09 Celgard, Llc Improved coated separators for lithium batteries and related methods
WO2016109527A1 (en) * 2014-12-29 2016-07-07 Celgard, Llc Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
JP2017538248A (ja) * 2014-10-24 2017-12-21 エルジー・ケム・リミテッド 有機無機複合多孔層を含む二次電池用セパレータ及びこの製造方法
WO2019135527A1 (ko) * 2018-01-05 2019-07-11 주식회사 엘지화학 Cmc, 입자형 바인더 및 용해형 바인더를 포함하는 분리막
US11923496B2 (en) 2019-03-05 2024-03-05 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3158598B1 (en) * 2014-06-17 2021-02-24 OCV Intellectual Capital, LLC Anti-sulphation pasting mats for lead-acid batteries
BR112016029519B8 (pt) 2014-06-17 2022-12-13 Ocv Intellectual Capital Llc Tapete de fibra não tecida redutor de perda de água, bateria de chumbo ácido que compreende o dito tapete e método para formar o dito tapete de fibra não tecida para o uso em uma bateria de chumbo ácido
KR101670802B1 (ko) 2014-12-01 2016-10-31 에스케이씨 주식회사 이차전지용 다공성 분리막
KR101618681B1 (ko) * 2014-12-30 2016-05-11 삼성에스디아이 주식회사 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법
KR101551757B1 (ko) * 2014-12-30 2015-09-10 삼성에스디아이 주식회사 다공성 내열층 조성물, 다공성 내열층을 포함하는 분리막, 상기 분리막을 이용한 전기 화학 전지, 및 상기 분리막의 제조 방법
KR101709697B1 (ko) * 2014-12-30 2017-02-23 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
US9508976B2 (en) 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating
KR101692537B1 (ko) * 2015-01-21 2017-01-04 재단법인대구경북과학기술원 전지용 코팅액 슬러리 제조방법
KR101695967B1 (ko) * 2015-01-21 2017-01-13 재단법인대구경북과학기술원 전지용 수계 코팅액 조성물
CN104701479B (zh) * 2015-03-02 2016-08-31 常州大学 一种含有机/无机复合交联涂层的聚丙烯微孔隔膜及其制备方法
KR102604599B1 (ko) 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법
KR102018299B1 (ko) * 2015-04-22 2019-11-14 주식회사 엘지화학 리튬 이차전지용 분리막 및 그의 제조방법
KR102005870B1 (ko) * 2016-01-15 2019-07-31 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR101774683B1 (ko) * 2016-01-26 2017-09-19 현대자동차주식회사 전극 활물질 슬러리, 이의 제조 방법 및 이를 포함하는 전고체 이차전지
KR102586597B1 (ko) * 2016-07-22 2023-10-11 셀가드 엘엘씨 개선된 코팅, 코팅된 분리기, 전지 및 관련 방법
US11110733B2 (en) 2016-09-09 2021-09-07 Hewlett-Packard Development Company, L.P. Fabric print medium
CN109415870B (zh) 2016-09-09 2021-05-18 惠普发展公司,有限责任合伙企业 织物印刷介质
US10906345B2 (en) 2016-09-09 2021-02-02 Hewlett-Packard Development Company, L.P. Fabric print medium
EP3598543A4 (en) * 2017-03-13 2021-01-06 Zeon Corporation Sludge composition for functional layers for water-free secondary batteries, functional layer for water-free secondary batteries and water-free secondary batteries
KR102357946B1 (ko) 2017-08-17 2022-02-08 어플라이드 머티어리얼스, 인코포레이티드 올레핀 분리기가 없는 Li-이온 배터리
US11469476B2 (en) 2017-10-20 2022-10-11 Lg Energy Solution, Ltd. Separator and electrochemical device comprising same
US11450921B2 (en) 2017-11-24 2022-09-20 Lg Energy Solution, Ltd. Separator fabrication method, separator fabricated thereby, and electrochemical element comprising same separator
CN111712906B (zh) * 2017-11-30 2023-11-03 株式会社新川 聚四氟乙烯片以及晶粒封装方法
CN110770941B (zh) * 2017-12-27 2021-12-14 株式会社Lg化学 制造隔板的方法、由此形成的隔板以及包括所述隔板的电化学装置
CN111463390A (zh) * 2018-01-22 2020-07-28 赛尔格有限责任公司 改善的涂覆的分隔件、锂电池及相关方法
KR102209826B1 (ko) * 2018-03-06 2021-01-29 삼성에스디아이 주식회사 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
CN108963158B (zh) * 2018-07-10 2021-10-22 福建师范大学 一种含p-o键化合物的聚合物涂覆膜的制备方法
EP3841631A4 (en) 2018-08-21 2022-03-30 Applied Materials, Inc. ULTRA-THIN CERAMIC COATING ON SEPARATOR FOR BATTERIES
CN109244315A (zh) * 2018-08-24 2019-01-18 中国电力科学研究院有限公司 一种基于介孔材料的无机隔膜制备工艺
US20210057698A1 (en) * 2018-11-14 2021-02-25 Lg Chem, Ltd. Separator for lithium secondary battery and method for manufacturing same
WO2020171661A1 (ko) * 2019-02-22 2020-08-27 주식회사 엘지화학 리튬이차전지용 세퍼레이터 및 이의 제조방법
KR102524662B1 (ko) * 2019-05-09 2023-04-20 주식회사 엘지에너지솔루션 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
CN111584799B (zh) * 2019-12-20 2022-08-16 湖南高瑞电源材料有限公司 一种锂电池涂覆隔膜的制备方法
CN111244362B (zh) * 2020-01-15 2022-09-30 惠州锂威新能源科技有限公司 一种复合隔膜及其制备方法、锂离子电池
JP7470205B2 (ja) * 2020-03-27 2024-04-17 新能源科技有限公司 電気化学装置
WO2022097804A1 (ko) * 2020-11-06 2022-05-12 한국재료연구원 리튬 이차전지 전극 형성용 조성물 및 이로부터 형성되는 전극을 포함하는 리튬 이차전지
CN112920430B (zh) * 2021-01-21 2022-12-27 河北金力新能源科技股份有限公司 多层包覆无机物颗粒及其制备方法、水系功能性涂覆浆料、锂电池隔膜和锂电池
EP4156400A1 (en) 2021-09-27 2023-03-29 LG Energy Solution, Ltd. Separator for secondary battery
CN114865224A (zh) * 2022-03-30 2022-08-05 东风汽车集团股份有限公司 一种安全性能高的隔膜及其涂覆层、制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
KR100727247B1 (ko) * 2005-12-06 2007-06-11 주식회사 엘지화학 모폴로지 그래디언트를 갖는 유기/무기 복합 분리막, 그제조방법 및 이를 구비한 전기화학소자
WO2009110726A2 (en) * 2008-03-04 2009-09-11 Lg Chem, Ltd. Separator having porous coating layer and electrochemical device containing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792688B2 (ja) 2003-01-24 2011-10-12 住友化学株式会社 非水電解液二次電池用セパレータの製造方法
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP5225173B2 (ja) * 2009-03-30 2013-07-03 三菱製紙株式会社 リチウムイオン二次電池用セパレータ
KR101237331B1 (ko) * 2009-06-10 2013-02-28 히다치 막셀 가부시키가이샤 전기 화학 소자용 세퍼레이터 및 그것을 사용한 전기 화학 소자
KR101801049B1 (ko) * 2010-08-31 2017-11-24 제온 코포레이션 전지 다공막용 슬러리 조성물, 이차 전지용 다공막의 제조 방법, 이차 전지용 다공막, 이차 전지용 전극, 이차 전지용 세퍼레이터 및 이차 전지
KR101247248B1 (ko) 2010-11-15 2013-03-25 한국생산기술연구원 내열성이 향상된 다공성 분리막, 이의 제조방법 및 다공성 분리막을 포함하는 전기화학소자
KR101670723B1 (ko) * 2011-01-04 2016-11-01 삼성전자주식회사 비디오 및 오디오 통신 시스템에서 가변 길이의 전송 패킷 지원 방법 및 장치
KR20130048843A (ko) * 2011-11-03 2013-05-13 에스케이이노베이션 주식회사 내열성 및 안정성이 우수한 폴리올레핀계 복합 미세다공막 및 이를 제조하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727247B1 (ko) * 2005-12-06 2007-06-11 주식회사 엘지화학 모폴로지 그래디언트를 갖는 유기/무기 복합 분리막, 그제조방법 및 이를 구비한 전기화학소자
KR100727248B1 (ko) * 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자
WO2009110726A2 (en) * 2008-03-04 2009-09-11 Lg Chem, Ltd. Separator having porous coating layer and electrochemical device containing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538248A (ja) * 2014-10-24 2017-12-21 エルジー・ケム・リミテッド 有機無機複合多孔層を含む二次電池用セパレータ及びこの製造方法
EP3227940A4 (en) * 2014-12-05 2018-06-06 Celgard, LLC Improved coated separators for lithium batteries and related methods
JP2021141078A (ja) * 2014-12-05 2021-09-16 セルガード エルエルシー リチウム電池用の改善されたコーティングしたセパレータおよび関連方法
CN107210411A (zh) * 2014-12-05 2017-09-26 赛尔格有限责任公司 用于锂电池的改进的带涂层隔板及相关方法
EP3866244A1 (en) * 2014-12-05 2021-08-18 Celgard, LLC Improved coated separators for lithium batteries and related methods
JP2017536677A (ja) * 2014-12-05 2017-12-07 セルガード エルエルシー リチウム電池用の改善されたコーティングしたセパレータおよび関連方法
WO2016090199A1 (en) * 2014-12-05 2016-06-09 Celgard, Llc Improved coated separators for lithium batteries and related methods
US9985263B2 (en) 2014-12-29 2018-05-29 Celgard, Llc Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
US10879514B2 (en) 2014-12-29 2020-12-29 Celgard, Llc Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
CN107408655A (zh) * 2014-12-29 2017-11-28 赛尔格有限责任公司 用于锂离子二次电池的聚内酰胺涂覆的隔板膜及相关涂覆配方
WO2016109527A1 (en) * 2014-12-29 2016-07-07 Celgard, Llc Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
WO2019135527A1 (ko) * 2018-01-05 2019-07-11 주식회사 엘지화학 Cmc, 입자형 바인더 및 용해형 바인더를 포함하는 분리막
US11349177B2 (en) 2018-01-05 2022-05-31 Lg Energy Solution, Ltd. Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder
US11923496B2 (en) 2019-03-05 2024-03-05 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP2015522904A (ja) 2015-08-06
US20150140404A1 (en) 2015-05-21
KR101341196B1 (ko) 2013-12-12
DE112013005887T5 (de) 2015-08-27
CN104272501B (zh) 2018-02-09
US9711772B2 (en) 2017-07-18
CN104272501A (zh) 2015-01-07
JP6148331B2 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2014126325A1 (ko) 유/무기 복합 코팅 다공성 분리막 및 이를 이용한 이차전지소자
WO2019164130A1 (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2016159724A1 (ko) 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
WO2014104677A1 (en) Micro-porous hybrid film having electro-chemical stability and method for preparing the same
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
EP2260523A2 (en) Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2020130723A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022015119A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2022158951A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2022071775A1 (ko) 리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020197102A1 (ko) 전기화학소자용 세퍼레이터의 제조방법
WO2022015026A1 (ko) 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지
WO2023063461A1 (ko) 분리막용 공중합체 및 이를 포함하는 이차전지
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396028

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015512592

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013005887

Country of ref document: DE

Ref document number: 1120130058871

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862503

Country of ref document: EP

Kind code of ref document: A1