WO2019245202A1 - 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자 - Google Patents

전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자 Download PDF

Info

Publication number
WO2019245202A1
WO2019245202A1 PCT/KR2019/006897 KR2019006897W WO2019245202A1 WO 2019245202 A1 WO2019245202 A1 WO 2019245202A1 KR 2019006897 W KR2019006897 W KR 2019006897W WO 2019245202 A1 WO2019245202 A1 WO 2019245202A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
fluoride copolymer
separator
electrochemical device
repeating unit
Prior art date
Application number
PCT/KR2019/006897
Other languages
English (en)
French (fr)
Inventor
이주성
이아영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19821866.1A priority Critical patent/EP3694020B1/en
Priority to US16/756,706 priority patent/US11657984B2/en
Priority to JP2020519970A priority patent/JP6953629B2/ja
Priority to CN201980005089.1A priority patent/CN111213256B/zh
Priority to PL19821866.1T priority patent/PL3694020T3/pl
Publication of WO2019245202A1 publication Critical patent/WO2019245202A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • H01M2300/0097Composites in the form of layered products, e.g. coatings with adhesive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for an electrochemical device, a method for manufacturing the same, and an electrochemical device including the same, and in particular, a separator having excellent adhesion between the porous polymer substrate and the porous coating layer and adhesion between the electrode, a manufacturing method thereof, and the same. It relates to an electrochemical device.
  • lithium secondary batteries developed in the early 1990s have a higher operating voltage and greater energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries that use an aqueous electrolyte solution. I am in the spotlight.
  • Electrochemical devices such as lithium secondary batteries are produced by many companies, but their safety characteristics are different. It is very important to evaluate the safety and secure the safety of these electrochemical devices. The most important consideration is that the electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous polymer substrates commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 ° C. or higher due to material characteristics and manufacturing process characteristics including stretching. It may cause a short circuit.
  • a separator having a porous coating layer formed by coating a mixture of excess inorganic particles and a binder polymer on at least one surface of a porous polymer substrate having a plurality of pores has been proposed.
  • the porous coating layer is coated on the porous substrate and then form pores in the porous coating layer through phase separation according to solvent and non-solvent selection.
  • phase separation rate kinetics of the binder polymer included in the slurry for forming the porous coating layer
  • pores having a large diameter are formed on the surface of the porous coating layer, thereby degrading the adhesive strength between the porous polymer substrate and the porous polymer coating layer.
  • phase separation rate of the binder polymer is slow, most of the binder polymer is positioned at the interface of the porous coating layer facing the porous polymer substrate, and a porous coating layer having a small or no pore size is formed, and adhesion between the separator and the electrode is increased. There was a problem falling.
  • the problem to be solved by the present invention is to provide a separator for an electrochemical device having excellent adhesion between the porous polymer substrate constituting the separator and the porous coating layer, and also excellent adhesion between the electrode and the separator.
  • Another object of the present invention is to provide a separator having a high oxidation potential of a porous coating layer facing an anode.
  • Another object of the present invention is to provide a method for manufacturing the separator and an electrochemical device including the same.
  • the present invention provides a separator for an electrochemical device according to the following embodiments.
  • the first embodiment is a first embodiment.
  • porous coating layer formed on at least one surface of the porous polymer substrate.
  • the porous coating layer includes inorganic particles, a first polyvinylidene fluoride copolymer, and a second polyvinylidene fluoride copolymer,
  • the storage modulus (G ') and the loss modulus (G ") of the second polyvinylidene fluoride copolymer are related to a separator for an electrochemical device, in which no reverse transition occurs.
  • the present invention relates to a separator for an electrochemical device, in which a reverse transition occurs in a region of 0.5 Hz or less in a solution condition.
  • the weight average molecular weight of a 1st polyvinylidene fluoride copolymer is related with the weight average molecular weight of a 2nd polyvinylidene fluoride copolymer, It is related with the separator for electrochemical devices.
  • the fourth embodiment is any of the foregoing embodiments.
  • the first polyvinylidene fluoride copolymer has a weight average molecular weight of 400,000 to 1.5 million
  • the second polyvinylidene fluoride copolymer has a weight average molecular weight of 50,000 to 350,000
  • the weight ratio of the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer relates to a separator for an electrochemical device, which is 90:10 to 40:60.
  • the fifth embodiment is any of the foregoing embodiments.
  • the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer are each independently a vinylidene fluoride-derived repeating unit; And at least one additional repeating unit derived from hexafluoropropylene, trichloroethylene, trifluoroethylene, tetrachloroethylene, tetrafluoroethylene or chlorotrifluoroethylene. will be.
  • the weight average molecular weight of the additional repeating unit of the second polyvinylidene fluoride copolymer is the same or smaller than the weight average molecular weight of the additional repeating unit of the first polyvinylidene fluoride copolymer It is about a separator.
  • the weight ratio of the vinylidene fluoride-derived repeating unit and the additional repeating unit in the first polyvinylidene fluoride copolymer is 99: 1 to 90:10,
  • the second polyvinylidene fluoride copolymer relates to a separator for an electrochemical device, wherein the weight ratio of the vinylidene fluoride-derived repeating unit and the additional repeating unit is 89:11 to 70:30.
  • An eighth embodiment is any of the foregoing embodiments.
  • the first polyvinylidene fluoride copolymer relates to an electrochemical device separator having an oxidation potential of 5.0 V or more on a Li basis.
  • Another aspect of the present invention provides a method of manufacturing a separator for an electrochemical device according to the following embodiments.
  • the porous coating layer includes inorganic particles, a first polyvinylidene fluoride copolymer, and a second polyvinylidene fluoride copolymer,
  • the storage modulus (G ') and the loss modulus (G ") of the second polyvinylidene fluoride copolymer are related to a method of manufacturing a separator for an electrochemical device.
  • the eleventh embodiment is any of the foregoing embodiments.
  • the solvent is acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (N-methyl-2- It relates to a method for producing a separator for an electrochemical device comprising pyrrolidone, NMP), cyclohexane, trimethyl phosphate, triethyl phosphate or a mixture of two or more thereof.
  • the non-solvent relates to a method for producing a separator for an electrochemical device comprising water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol or a mixture of two or more thereof. .
  • the first polyvinylidene fluoride copolymer has a weight average molecular weight of 400,000 to 1.5 million
  • the second polyvinylidene fluoride copolymer has a weight average molecular weight of 50,000 to 350,000
  • the weight ratio of the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer relates to a method for manufacturing a separator for an electrochemical device, which is 90:10 to 40:60.
  • the fourteenth embodiment can be any of the foregoing embodiments.
  • the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer are each independently a vinylidene fluoride-derived repeating unit; And at least one additional repeating unit derived from hexafluoropropylene, trichloroethylene, trifluoroethylene, tetrachloroethylene, tetrafluoroethylene or chlorotrifluoroethylene. It is about.
  • the weight average molecular weight of the additional repeating unit of the second polyvinylidene fluoride copolymer is the same or smaller than the weight average molecular weight of the additional repeating unit of the first polyvinylidene fluoride copolymer It is related with the manufacturing method of a separator.
  • the weight ratio of the vinylidene fluoride-derived repeating unit and the additional repeating unit in the first polyvinylidene fluoride copolymer is 99: 1 to 90:10,
  • a weight ratio of the vinylidene fluoride-derived repeat unit and the additional repeat unit in the second polyvinylidene fluoride copolymer is 89:11 to 70:30.
  • Another aspect of the present invention provides an electrochemical device according to the following embodiment.
  • the separator is an electrochemical device, which is a separator for an electrochemical device according to any one of the first to eighth embodiments.
  • the adhesion between the porous polymer substrate and the porous coating layer is excellent, the adhesiveness with the electrode also excellent electrochemical device and It is possible to provide an electrochemical device including the same.
  • the present invention by controlling the physical properties according to the phase separation rate (kinetics) of the binder polymer included in the porous coating layer, excellent adhesion between the porous polymer substrate and the porous coating layer, and also excellent adhesion to the electrode electrochemical device It is possible to provide a separator for an electrochemical device including the same.
  • a porous coating layer having a high oxidation potential for the anode by including a porous coating layer having a high oxidation potential for the anode, it is possible to provide a separator for an electrochemical device having improved safety and an electrochemical device including the same.
  • a separator having a low AC resistance value and an electrochemical device including the same may be provided.
  • connection when a part is "connected” to another part, this includes not only “directly connected” but also “indirectly connected” with another member in between. .
  • connection includes not only a physical connection but also an electrochemical connection.
  • the term "combination (s) thereof” included on the surface of the mark of the mark is used to mean one or more mixtures or combinations selected from the group consisting of the elements described in the mark of the mark type. It means to include one or more selected from the group consisting of the above components.
  • the present invention relates to a separator for an electrochemical device, a manufacturing method thereof, and an electrochemical device including the separator.
  • the separator In electrochemical devices such as lithium secondary batteries, the separator has a problem that heat shrinkage occurs at a high temperature, causing a short circuit between the positive electrode and the negative electrode.
  • porous coating layer including inorganic particles and a binder polymer.
  • the porous coating layer formed a porous coating layer by using a difference in the kinetics (kinetics) that depends on the solvent, non-solvent difference for the binder polymer.
  • the binder polymer when the phase separation rate of the binder polymer is large, the binder polymer is mainly located only on the surface of the porous coating layer, and large pores are mainly formed on the surface of the porous coating layer, so that adhesive strength between the porous polymer substrate and the porous coating layer falls. There is. On the contrary, when the phase separation rate of the binder polymer is small, since the binder polymer is mainly located between the interface of the porous polymer substrate and the porous coating layer, not only the adhesion between the electrode and the separator is lowered, but also no pores are formed or the size of the formed pores is small. There was a problem that ion permeation was difficult.
  • a separator having a porous coating layer comprising two kinds of polyvinylidene fluoride copolymers different in phase separation rate.
  • An electrochemical device separator includes a porous coating layer on at least one surface of a porous polymer substrate, wherein the porous coating layer is an inorganic particle, a first polyvinylidene fluoride copolymer, and a second polyvinylidene fluoride A copolymer,
  • the G '(storage modulus) and G "(loss modulus) of the second polyvinylidene fluoride copolymer are characterized in that no reverse transition occurs.
  • G '(Storage modulus) refers to the elasticity that a material can be recovered as a storage modulus and represents the properties of a solid.
  • G ' is a direct result of frequency sweep measurement using a rheometer, and means a reversible elasticity of a sample due to periodic stress.
  • G "(Loss modulus) is the loss modulus, which means the elasticity of a material lost permanently and represents the liquid property. Specifically, G" is a phase shifted response up to 90 o and converted into heat and irreversibly lost. Corresponds to mechanical energy.
  • the G 'and G " can be measured using a rheometer (TA Instrument, ARES).
  • the "reverse transition” means a case where the G 'exceeds the value of "G" in the region of 0.5 Hz or less in the reverse transition condition.
  • the reverse transition condition comprises 5 wt% of the first polyvinylidene fluoride copolymer in a mixed solvent having a weight ratio of N-methylpyrrolidone and water of 90:10. Solution conditions.
  • the first polyvinylidene fluoride copolymer is a binder polymer mainly distributed on the surface of the porous coating layer when phase separation occurs after the phase separation rate is coated on the porous polymer substrate.
  • the first polyvinylidene fluoride copolymer may be located on the surface of the porous coating layer to form pores having a large diameter on the surface of the porous polymer substrate, thereby reducing the resistance of the surface of the porous coating layer.
  • the first polyvinylidene fluoride copolymer is advantageous at a faster phase separation rate, which can be seen from the inversion of G 'and G "under certain conditions.
  • the first polyvinylidene fluoride under certain conditions
  • the reverse transition between G 'and G "of the copolymer is that the binder polymer is solidified by phase separation, and it can be inferred that the first polyvinylidene fluoride copolymer has a high phase separation rate.
  • the second polyvinylidene fluoride copolymer is a binder polymer mainly distributed at an interface between the porous polymer substrate and the porous coating layer when phase separation occurs after coating on the porous polymer substrate due to a slow phase separation rate.
  • the second polyvinylidene fluoride copolymer having a slow phase separation rate may have a small or no pore diameter and may be disposed between the porous polymer substrate and the porous coating layer to increase adhesion between the porous polymer substrate and the porous polymer substrate.
  • the fact that the phase separation rate of the second binder polymer is slow can be confirmed from the fact that no reversal occurs between G 'and G "under predetermined conditions.
  • the second polyvinylidene fluoride copolymer under predetermined conditions
  • the absence of a reverse transition between G ′ and G ′′ of the above may be inferred from the fact that the first polyvinylidene fluoride copolymer has a slow phase separation rate.
  • Phase separation rate in the present invention can be measured by the following method:
  • the solvent and the non-solvent are not particularly limited, but when the polyvinylidene copolymer is used as the binder, N-methyl-2-pyrrolidone may be used as a representative example of the solvent, and water may be used as the representative example as the non-solvent.
  • the high phase separation speed in the present invention means that the time when the polymer solution is clouded cloudy by the introduction of the non-solvent is fast
  • the slow phase separation speed in the present invention means that the time when the clouded cloud solution is slow or does not appear it means.
  • the weight average molecular weight of the first polyvinylidene fluoride copolymer may be larger than the weight average molecular weight of the second polyvinylidene fluoride copolymer.
  • the first polyvinylidene fluoride copolymer has a weight average molecular weight of 400,000 to 1.5 million, or 500,000 to 1.2 million or 600,000 to 1 million
  • the second polyvinylidene fluoride copolymer has a weight average molecular weight May be from 50,000 to 350,000, or 100,000 to 300,000, or 150,000 to 280,000.
  • the first polyvinylidene fluoride copolymer is mainly distributed on the surface of the porous coating layer due to its high phase separation rate.
  • the second polyvinylidene fluoride copolymer is mainly located at the interface between the porous polymer substrate and the porous coating layer due to the slow phase separation rate. Accordingly, the separator having excellent adhesion between the porous polymer substrate and the porous coating layer and excellent adhesion between the electrode and the separator can be provided.
  • the phase separation rate of the first polyvinylidene fluoride copolymer is lower than that of the second polyvinylidene fluoride copolymer.
  • the resistance value is low on the surface of the porous coating layer, the adhesion between the porous polymer substrate and the porous coating layer can provide a more improved separator.
  • the weight ratio of the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer is 90:10 to 40:60 or 80:20 to 45:55, or 75:25 to 50:50 Can be.
  • the resistance value is low on the surface of the porous coating layer within the weight ratio value range, and the adhesion between the porous polymer substrate and the porous coating layer may provide a more improved separator. In addition, it is possible to improve the adhesion between the separator and the electrode at the same time.
  • the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer are each independently vinylidene fluoride derived repeating units; And one or more additional repeat units derived from hexafluoroflopylene, trichloroethylene, trifluoroethylene, tetrachloroethylene, tetrafluoroethylene or chlorotrifluoroethylene.
  • additional repeating units of the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer may be the same or different.
  • the molecular weight of the additional repeating unit of the second polyvinylidene fluoride copolymer may be the same or smaller than the molecular weight of the additional repeating unit of the first polyvinylidene fluoride copolymer.
  • the larger the size of the additional repeating units of the second polyvinylidene fluoride copolymer the faster the phase separation rate, because the non-solvent is readily accessible.
  • the weight average molecular weight of the additional repeating unit of the first polyvinylidene fluoride copolymer is large, the weight average molecular weight of the additional repeating unit of the second polyvinylidene fluoride copolymer is large, the first polyvinylidene fluoride air
  • the phase separation rate of the copolymer is higher, which is mainly located on the surface of the porous coating layer, thereby lowering the resistance.
  • the second polyvinylidene fluoride copolymer is located between the porous coating layer and the porous polymer substrate, thereby improving adhesion between the porous polymer substrate and the polycrystalline coating layer. Can be improved.
  • first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer may have different amounts of substitution.
  • the weight ratio of the vinylidene fluoride-derived repeating unit and the additional repeating unit in the first polyvinylidene fluoride copolymer is 99: 1 to 90:10, or 99: 1 to 91 : 9, or 99: 1 to 92: 8,
  • the weight ratio of the vinylidene fluoride-derived repeating unit and the additional repeating unit in the second polyvinylidene fluoride copolymer is 89:11 to 70:30, or 88:12 to 70:30, or 86:14 to 75: Can be 25 days.
  • the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride have the above weight ratio
  • the first polyvinylidene fluoride copolymer has a high phase separation rate and is thus mainly distributed on the surface of the porous coating layer.
  • the second polyvinylidene fluoride copolymer is mainly located at the interface between the porous polymer substrate and the porous coating layer due to the slow phase separation rate. Accordingly, the separator having excellent adhesion between the porous polymer substrate and the porous coating layer and excellent adhesion between the electrode and the separator can be provided.
  • the first polyvinylidene fluoride copolymer which is mainly distributed on the surface of the coating layer and comes into contact with the electrode, has an oxidation potential of 5.0 V or more, specifically 6.5 V to 8.5 V, based on Li. It can have
  • the inorganic particles in the present invention is not particularly limited as long as it is electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V based on Li / Li +) of the applied electrochemical device.
  • the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt, such as lithium salt, in the liquid electrolyte.
  • the inorganic particles may be inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transfer ability, and mixtures thereof.
  • the inorganic particles having a dielectric constant of 5 or more include Al 2 O 3 , SiO 2 , ZrO 2 , AlO (OH), TiO 2 , BaTiO 3 , Pb (Zr x Ti 1-x ) O 3 (PZT, where 0 ⁇ x ⁇ 1), Pb 1 - x La x Zr 1 - y Ti y O 3 (PLZT, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), (1-x) Pb (Mg 1/3 Nb 2 / 3 ) O 3 - x PbTiO 3 (PMN-PT, where 0 ⁇ x ⁇ 1), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZO 3 and SiC It may be one kind or a mixture of two or more kinds selected from the group consisting of.
  • the inorganic particles having a lithium ion transfer ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), and lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), (LiAlTiP) x O y series glass (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4 , 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5), Lithium Nitride (Li
  • the average particle diameter of the inorganic particles is not particularly limited, but for forming a porous coating layer having a uniform thickness and proper porosity, it is preferably in the range of 0.001 to 10 ⁇ m, more preferably 100 to 700 nm, even more preferably 150 to May be 600 nm.
  • the weight ratio of the inorganic particles and the binder polymer may be 50: 50 to 80: 20, or 60: 40 to 70: 30.
  • the content ratio of the total amount of the inorganic particles to the binder polymer satisfies the above range, the problem of decreasing the pore size and porosity of the porous coating layer formed by increasing the content of the binder polymer can be prevented, and the binder polymer content
  • the problem that the peeling resistance of the porous organic-inorganic coating layer generated due to this weakness is weakened can also be solved.
  • the porous coating layer component may further include other additives in addition to the above-described inorganic particles and binder polymer.
  • the thickness of the porous coating layer is not particularly limited, but the thickness of the porous coating layer formed on one surface of the porous substrate may be in detail 1 to 10 ⁇ m, more specifically 1.5 to 6 ⁇ m, on both sides of the porous substrate When the porous coating layer is formed, the sum of the thicknesses of the porous coating layers may be 2 to 20 ⁇ m, and more specifically 3 to 12 ⁇ m.
  • the porosity of the porous coating layer is also not particularly limited, but is preferably 35 to 65%.
  • the porous polymer substrate may specifically be a porous polymer film substrate or a porous polymer nonwoven substrate.
  • the porous polymer film substrate may be a porous polymer film made of polyolefin, such as polyethylene, polypropylene, such a polyolefin porous polymer film substrate, for example, exhibits a shutdown function at a temperature of 80 to 130 °C.
  • the polyolefin porous polymer film is a high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ultra-high molecular weight polyethylene, such as polyethylene, polypropylene, polybutylene, polypentene, such as polyolefin-based polymer, respectively, or a mixture of two or more thereof It can be formed as.
  • porous polymer film substrate may be manufactured by molding into a film shape using various polymers such as polyester in addition to polyolefin.
  • porous polymer film base material may be formed in a structure in which two or more film layers are laminated, and each film layer may be formed of a polymer such as the above-described polyolefin, polyester alone or a mixture of two or more thereof. have.
  • porous polymer film substrate and the porous non-woven fabric substrate in addition to the polyolefin-based as described above, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalene (polyethylenenaphthalene) Etc.), polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, Polyphenylenesulfide, and the like may be formed of a polymer alone or in combination thereof.
  • polyester for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalene (polyethylenenaphthalene) Etc.
  • polyacetal polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, Polyphenylenesulfide, and the like may be formed of a polymer alone or in combination thereof.
  • the thickness of the porous polymer substrate is not particularly limited, but is in particular 1 to 100 ⁇ m, more specifically 5 to 50 ⁇ m, and the pore size and pore present in the porous polymer substrate are also not particularly limited, but 0.01 to 50, respectively. Preference is given to m and 10 to 95%.
  • According to another aspect of the invention provides a method for producing a separator according to the following method.
  • a slurry including a solvent, inorganic particles, a first polyvinylidene fluoride copolymer, and a second polyvinylidene fluoride copolymer is prepared (S1).
  • inorganic particles may be added and dispersed in the solution to prepare a slurry.
  • the slurry may be prepared by adding and mixing the first polyvinylidene fluoride copolymer, the second polyvinylidene fluoride copolymer, and the inorganic particles into the solvent at once.
  • the first polyvinylidene fluoride copolymer, the second polyvinylidene fluoride copolymer, and the inorganic particles are referred to above.
  • the slurry is applied to at least one surface of the porous polymer substrate (S2).
  • the slurry coating method may be a slot coating method or a dip coating method, but is not limited thereto.
  • Slot coating is capable of adjusting the coating layer thickness in accordance with the flow rate supplied from the metering pump in such a way that the composition supplied through the slot die is applied to the front of the substrate.
  • dip coating is a method of dipping and coating the substrate in the tank containing the composition, it is possible to adjust the thickness of the coating layer according to the concentration of the composition and the rate of removing the substrate from the composition tank, and after immersion for more precise coating thickness control Meyer bar, etc. Post-measurement is possible through
  • the polyvinylidene fluoride copolymer solidifies while phase separation occurs in the applied slurry.
  • the porous coating layer comprising the first polyvinylidene fluoride copolymer, the second polyvinylidene fluoride copolymer, and inorganic particles is porous.
  • dissolves the said 1st polyvinylidene fluoride copolymer and the 2nd polyvinylidene fluoride copolymer is a good solvent.
  • a solvent is a polymer solution prepared by dissolving a first polyvinylidene fluoride copolymer in 5 wt% of a solid content in a specific solvent and measuring the rheological properties of the polymer solution.
  • the solvent is acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2- It may include pyrrolidone (N-methyl-2-pyrrolidone, NMP), cyclohexane, trimethyl phosphate, triethyl phosphate or a mixture of two or more thereof.
  • the non-solvent may include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol or mixtures of two or more thereof. Especially water is preferable as a nonsolvent.
  • the immersion is preferably controlled within 2 minutes. In the case where more than 2 minutes, phase separation is excessive, adhesion between the porous polymer substrate and the porous coating layer is lowered, thereby causing detachment of the porous coating layer.
  • the inorganic particles are filled and bound to each other by the binder polymer in contact with each other, thereby forming an interstitial volume between the inorganic particles, and interstitial between the inorganic particles.
  • the interstitial volume may become an empty space to form pores.
  • the binder polymer may be attached to each other, for example, the binder polymer may be connected and fixed between the inorganic particles so that the inorganic particles may remain bound to each other.
  • the pores of the porous organic inorganic coating layer is a pore formed by the interstitial volume between the inorganic particles becomes an empty space, which is substantially interviewed in a closed packed or densely packed by the inorganic particles It may be a space defined by inorganic particles.
  • An electrochemical device includes a cathode, an anode, and a separator interposed between the cathode and the anode, and the separator is a separator according to an embodiment of the present invention described above.
  • Such electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples thereof include all kinds of capacitors such as primary, secondary cells, fuel cells, solar cells, or supercapacitor devices.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery among the secondary batteries is preferable.
  • the positive electrode of the cathode and the anode to be applied together with the separator of the present invention is not particularly limited, and according to a conventional method known in the art, the electrode active material may be prepared in a form bound to the electrode current collector.
  • the cathode active material of the electrode active material may be a conventional cathode active material that can be used for the cathode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a combination thereof It is preferable to use one lithium composite oxide.
  • Non-limiting examples of the anode active material may be a conventional anode active material that can be used in the anode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred.
  • Non-limiting examples of cathode current collectors include foils made by aluminum, nickel, or combinations thereof, and non-limiting examples of anode current collectors are manufactured by copper, gold, nickel, or copper alloys or combinations thereof. Foil and the like.
  • Electrolyte that may be used in the electrochemical device of the present invention is A + B - A salt of the structure, such as, A + comprises a Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + B - is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C Salts containing ions consisting of anions such as (CF 2 SO 2 ) 3 - or a combination thereof are propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone
  • the electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.
  • Second polyvinylidene fluoride aerial having a copolymer of a ride copolymer (Arkema, Kynar2801, inversion occurring), a weight average molecular weight of 270,000, and a weight ratio of a repeating unit derived from vinylidene fluoride and a repeating unit derived from hexafluoropropylene.
  • a slurry for forming a porous coating layer was prepared by dispersing the copolymer (Solvay, Solef21510, no inversion) in a solvent N-methyl-2-pyrrolidone (NMP) in a weight ratio of 65:25:10. It was.
  • the content of the inorganic particles added to the slurry was 500g
  • the content ratio of the inorganic particles was 20 parts by weight based on 100 parts by weight of the solvent.
  • the weight ratio of the first polyvinylidene fluoride copolymer and the second polyvinylidene fluoride copolymer was 72:28
  • the first polyvinylidene fluoride copolymer had an oxidation potential of 8.16 V based on Li.
  • the slurry for forming the porous coating layer was applied to both sides of a polyethylene porous polymer substrate having a thickness of 9 ⁇ m using a dip coating method.
  • the slurry-coated polyethylene porous polymer substrate was immersed in non-solvent water for 40 seconds and dried to prepare a separator having a porous coating layer.
  • the thicknesses of the porous coating layers formed on both surfaces of the polyethylene porous polymer substrate were 3 ⁇ m, respectively.
  • Cathode active material LiCoO 2
  • conductive material carbon black
  • binder polymer polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • An anode active material graphite
  • a conductive material carbon black
  • carboxyl methyl cellulose CMC
  • a binder polymer styrene butadiene rubber, SBR
  • Ethylene carbonate (EC) and ethyl methyl carbonate (EMC) 3 a LiPF 6 in a mixed organic solvent in the proportion of 7 (volume ratio) was dissolved to a concentration of 1.0M to prepare a nonaqueous electrolyte.
  • the electrode assembly is manufactured by rolling at 90 ° C. and 8.5 MPa for 1 second, and stored in a pouch case. Then, the electrolyte is injected to form a lithium secondary battery. Prepared.
  • Example 2 Instead of the second polyvinylidene fluoride copolymer (Solvay, Solef21510, no inversion) used in Example 1, the weight average molecular weight was 230,000, and the vinylidene fluoride-derived repeating unit and the hexafluoropropene-derived repeating unit A separator was prepared in the same manner as in Example 1, except that a second polyvinylidene fluoride copolymer (Arkema, Kynar2500) having a weight ratio of 82:18 was used. In addition, a lithium secondary battery was manufactured in the same manner as in Example 1 using the separator.
  • a second polyvinylidene fluoride copolymer Arkema, Kynar2500
  • Example 1 Instead of the second polyvinylidene fluoride copolymer (Solvay, Solef21510, no inversion) used in Example 1, the weight average molecular weight was 250,000 and the weight ratio of the vinylidene fluoride-derived repeating unit and the trifluoroethylene-derived repeating unit A separator was prepared in the same manner as in Example 1, except that a second polyvinylidene fluoride copolymer having a 80:20 (Sigma Aldrich, Solvene200, no inversion) was changed. In addition, a lithium secondary battery was manufactured in the same manner as in Example 1 using the separator.
  • a second polyvinylidene fluoride copolymer having a 80:20 Sigma Aldrich, Solvene200, no inversion
  • Example 1 Instead of the second polyvinylidene fluoride copolymer (Solvay, Solef21510, no inversion) used in Example 1, the weight average molecular weight was 450,000, and the vinylidene fluoride-derived single unit and the hexafluoropropylene-derived repeating unit A separator and a lithium secondary battery including the same were manufactured in the same manner as in Example 1, except that a second polyvinylidene fluoride copolymer (Arkema, Kynar 2751, inversion occurred) having a weight ratio of 87:13 was used. . In addition, a lithium secondary battery was manufactured in the same manner as in Example 1 using the separator.
  • a second polyvinylidene fluoride copolymer Arkema, Kynar 2751, inversion occurred
  • a lithium secondary battery was prepared.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the separator.
  • the separator and the lithium including the same in the same manner as in Example 1, except that only the first polyvinylidene fluoride copolymer in which reverse transition occurs without using the second polyvinylidene fluoride copolymer is used alone.
  • a secondary battery was prepared.
  • a lithium secondary battery was manufactured in the same manner as in Example 1 using the separator.
  • Example 2 instead of the second polyvinylidene fluoride copolymer (Solvay, Solef21510, no inversion) used in Example 1, the weight average molecular weight was 320,000, and the weight ratio of the vinylidene fluoride repeat unit and the hexafluoropropylene repeat unit was A separator and a lithium secondary battery including the same were manufactured in the same manner as in Example 1, except that a second polyvinylidene fluoride copolymer (Arkema, Kynar 2821, inversion occurred) was used.
  • a second polyvinylidene fluoride copolymer Arkema, Kynar 2821, inversion occurred
  • the separators prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were cut to a size of 15 mm X 100 mm.
  • the double-sided adhesive tape was attached on the glass plate, and the surface of the prepared porous coating layer of the separator was adhered to the adhesive tape. Thereafter, the end of the bonded separator was mounted on a UTM instrument (LLOYD Instrument LF Plus), and then a force of 180 degrees was measured at 300 mm / min to measure the force required to peel the porous coating layer and the porous polymer substrate.
  • the anode prepared in Example 1 was prepared by cutting to a size of 15mm X 100mm.
  • the separators prepared in Examples 1 to 3 and Comparative Examples 1 to 4 were prepared by cutting to a size of 15 mm X 100 mm.
  • the prepared separator and the anode were overlapped with each other, sandwiched between 100 ⁇ m PET film, and bonded using a flat plate press. At this time, the conditions of the flat press machine was heated for 1 second at a pressure of 8.5 MPa of 90 °C.
  • G ' is G in a region of 0.5 Hz or less. If the value exceeds ", it is called reversal.
  • AC resistance of the pouch-type lithium secondary batteries prepared in Examples 1 to 3 and Comparative Examples 1 to 4 was measured, and the results are shown in Table 2 below. At this time, AC resistance is the value which measured resistance at 1KHz by Hioki.
  • the separator resistance used in Examples 1 to 3 and Comparative Examples 1 to 4 could be compared relative to the AC resistance of the secondary battery.
  • the interface between the electrode and the porous coating layer and the interface resistance between the porous coating layer and the porous polymer substrate can be kept similar to keep the overall resistance of the separator low.
  • the lithium secondary battery having a low resistance as described above has the advantage that can significantly improve the performance, in particular the output portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

본 발명은 다공성 고분자 기재; 및 상기 다공성 고분자 기재의 적어도 일면에 형성된 다공성 코팅층;을 포함하며, 상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하는 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자를 제공한다. 본 발명은 상기와 같은 구성적 특징으로 인하여 다공성 고분자 기재와 다공성 코팅층 간의 접착력이 우수하며, 전극과의 접착력 또한 우수한 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자를 제공할 수 있다.

Description

전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자
본 발명은 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자에 관한 것으로서, 구체적으로는 다공성 고분자 기재와 다공성 코팅층 간의 접착력 및 전극과의 접착력이 우수한 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자에 관한 것이다.
본 출원은 2018년 6월 20일자로 출원된 한국 특허출원 번호 제10-2018-0071063호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목 받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.
리튬 이차전지 등의 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안 된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 고분자 기재는 재료적 특성과 연신을 포함하는 제조공정상의 특성으로 인하여 100℃ 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으킬 수 있다.
이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 고분자 기재의 적어도 일면에, 과량의 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 코팅층을 형성한 세퍼레이터가 제안되었다.
이러한 다공성 코팅층은 다공성 기재 위에 코팅한 후 용매, 비용매 선택에 따른 상분리를 통해 다공성 코팅층에 기공을 형성하게 된다. 이 때 다공성 코팅층 형성을 위한 슬러리에 포함되는 바인더 고분자의 상분리 속도(kinetics)가 빠르면 다공성 코팅층의 표면에 큰 직경을 갖는 기공이 형성됨으로써, 다공성 고분자 기재와 다공성 고분자 코팅층 간의 접착력이 떨어지는 문제가 있다.
반면, 상기 바인더 고분자의 상분리 속도가 느리면 대부분의 바인더 고분자가 다공성 고분자 기재와 대면하는 다공성 코팅층의 계면에 위치하게 되며, 기공 크기가 작거나 없는 다공성 코팅층이 형성될 뿐만 아니라, 세퍼레이터와 전극 간의 접착력이 떨어지는 문제가 있었다.
따라서 본 발명이 해결하고자 하는 과제는, 세퍼레이터를 구성하는 다공성 고분자 기재와 다공성 코팅층 간의 접착력이 우수하며, 동시에 전극과 세퍼레이터 간의 접착력 또한 우수한 전기화학소자용 세퍼레이터를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 양극과 대면하는 다공성 코팅층의 산화 전위가 높은 세퍼레이터를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 상기 세퍼레이터의 제조방법 및 이를 포함하는 전기화학소자를 제공하는 것이다.
이 외의 본 발명의 목적 및 장점들은 특허 청구 범위에서 기재되는 수단 또는 방법, 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명은 하기 구현예들에 따른 전기화학소자용 세퍼레이터를 제공한다.
제1 구현예는,
다공성 고분자 기재; 및
상기 다공성 고분자 기재의 적어도 일면에 형성된 다공성 코팅층;을 포함하며,
상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하며,
상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나지 않는 것인, 전기화학소자용 세퍼레이터에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G'와 G"가 N-메틸피롤리돈 및 물의 중량비가 90 : 10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건에서 주파수가 0.5Hz 이하 영역에서 역전이가 일어나는 것인, 전기화학소자용 세퍼레이터에 관한 것이다.
제3 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
제1 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량이 제2 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량에 비해 큰 것인, 전기화학소자용 세퍼레이터에 관한 것이다.
제4 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
제1 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 40만 내지 150만이며, 제2 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 5만 내지 35만이고,
상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 90 : 10 내지 40 : 60인, 전기화학소자용 세퍼레이터에 관한 것이다.
제5 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체 및 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 각각 독립적으로 비닐리덴 플루오라이드 유래 반복 단위; 및 헥사플루오로프로필렌, 트리클로로에틸렌, 트리플루오로에틸렌, 테트라클로로에틸렌, 테트라플루오로에틸렌 또는 클로로트리플루오로에틸렌으로부터 유래된 1 이상의 추가 반복단위;를 포함하는 것인 전기화학소자용 세퍼레이터에 관한 것이다.
제6 구현예는, 제5 구현예에 있어서,
상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이 상기 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량 대비 동일하거나 또는 작은 것을 특징으로 하는 전기화학소자용 세퍼레이터에 관한 것이다.
제7 구현예는, 제5 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 99 : 1 내지 90 : 10이며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 89 : 11 내지 70 : 30인, 전기화학소자용 세퍼레이터에 관한 것이다.
제8 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체가 Li 기준으로 5.0V 이상의 산화 전위를 갖는 전기화학소자용 세퍼레이터에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예들에 따른 전기화학소자용 세퍼레이터의 제조방법을 제공한다.
제9 구현예는,
(S1) 용매, 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하는 슬러리를 준비하는 단계;
(S2) 상기 슬러리를 다공성 고분자 기재의 적어도 일면 상에 도포하는 단계;
(S3) 상기 (S2)의 결과물을 비용매에 침지하여 상분리하는 단계; 및
(S4) 상기 (S3)의 결과물을 건조하여 상기 다공성 고분자 기재의 적어도 일면에 다공성 코팅층을 형성하는 단계;를 포함하며,
상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하며,
상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나지 않는 것인, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제10 구현예는, 제9 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G'와 G"가
N-메틸피롤리돈 및 물의 중량비가 90 : 10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건에서 주파수가 0.5Hz 이하 영역에서 역전이가 일어나는 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제11 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 용매는 아세톤(acetone), 테트라하이드로퓨란(tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름아미드(dimethylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 사이클로헥산(cyclohexane), 트리메틸 포스페이트(trimethyl phosphate), 트리에틸 포스페이트(triethyl phosphate) 또는 이들 중 2종 이상의 혼합물을 포함하는 것인, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제12 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 비용매는 물, 메탄올, 에탄올, 프로필알코올, 부틸알코올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜 또는 이들 중 2종 이상의 혼합물을 포함하는 것인, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제13 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
제1 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 40만 내지 150만이며, 제2 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 5만 내지 35만이고,
상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 90 : 10 내지 40 : 60인, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제14 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체 및 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 각각 독립적으로 비닐리덴 플루오라이드 유래 반복 단위; 및 헥사플루오로프로필렌, 트리클로로에틸렌, 트리플루오로에틸렌, 테트라클로로에틸렌, 테트라플루오로에틸렌 또는 클로로트리플루오로에틸렌으로부터 유래된 1 이상의 추가 반복단위;를 포함하는, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제15 구현예는, 제14 구현예에 있어서,
상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이 상기 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량 대비 동일하거나 또는 작은 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
제16 구현예는, 제14 구현예에 있어서,
상기 제1 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 99 : 1 내지 90 : 10이며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 89 : 11 내지 70 : 30인, 전기화학소자용 세퍼레이터의 제조방법에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예에 따른 전기화학소자를 제공한다.
제17 구현예는,
캐소드, 애노드 및 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하며,
상기 세퍼레이터가 상기 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 따른 전기화학소자용 세퍼레이터인 것인, 전기화학소자에 관한 것이다.
본 발명의 일 실시예에 따르면, 다공성 코팅층에 물성이 상이한 폴리비닐리덴 플루오라이드 공중합체를 포함함으로써, 다공성 고분자 기재와 다공성 코팅층 간의 접착력이 우수하며, 전극과의 접착력 또한 우수한 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 다공성 코팅층에 포함되는 바인더 고분자의 상분리 속도(kinetics)에 따른 물성을 제어함으로써, 다공성 고분자 기재와 다공성 코팅층 간의 접착력이 우수하며, 전극과의 접착력 또한 우수한 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 양극에 대한 산화 전위가 높은 다공성 코팅층을 포함함으로써, 안전성이 개선된 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자를 제공할 수 있다.
본 발명의 일 실시예에 따르면, AC 저항값이 낮은 세퍼레이터 및 이를 포함하는 전기화학소자를 제공할 수 있다.
이하, 본 발명을 상세히 설명하도록 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 「연결」되어 있다고 할 때, 이는 「직접적으로 연결되어 있는 경우」뿐만 아니라 그 중간에 다른 부재를 사이에 두고 「간접적으로 연결」되어 있는 경우도 포함한다. 또한, 상기 연결은 물리적 연결뿐만 아니라 전기화학적 연결을 내포한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 경우 「포함한다(comprise)」 및/또는 「포함하는(comprising) 」은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표면에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
본 발명은 전기화학소자용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 포함하는 전기화학소자에 관한 것이다.
리튬 이차전지 등의 전기화학소자에 있어서, 세퍼레이터는 고온에서 열 수축 현상이 발생하여 양극과 음극 사이의 단락을 일으키는 문제가 있다.
이러한 열 수축을 방지하기 위하여 기존의 세퍼레이터들은 무기물 입자 및 바인더 고분자를 포함하는 다공성 코팅층을 구비하였다. 이러한 다공성 코팅층은 바인더 고분자에 대한 용매, 비용매 차이에 따라 달라지는 상분리 속도(kinetics) 차이를 이용하여 다공성 코팅층을 형성하였다.
그러나 상기 바인더 고분자의 상분리 속도가 큰 경우에는 상기 바인더 고분자가 다공성 코팅층의 표면에만 주로 위치하게 되며, 다공성 코팅층 표면에서 직경이 큰 기공이 주로 형성됨으로써, 다공성 고분자 기재와 다공성 코팅층 간의 접찹력이 떨어지는 문제가 있다. 반대로, 상기 바인더 고분자의 상분리 속도가 작은 경우에는 바인더 고분자가 다공성 고분자 기재와 다공성 코팅층의 계면 사이에 주로 위치하기 때문에 전극과 세퍼레이터 간의 접착력이 떨어질 뿐만 아니라, 기공이 형성되지 않거나 형성된 기공의 크기가 작아 이온 투과가 어려운 문제가 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 일 측면에 따르면, 상분리 속도가 서로 상이한 2종의 폴리비닐리덴 플루오라이드 공중합체를 포함하는 다공성 코팅층을 구비한 세퍼레이터를 제공한다.
본 발명의 일 측면에 따른 전기화학소자용 세퍼레이터는 다공성 고분자 기재의 적어도 일면에 다공성 코팅층을 포함하며, 상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하며,
상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나지 않는 것을 특징으로 한다.
본 발명에서 G'(Storage modulus)는 저장 탄성률로서 어떤 물질이 회복될 수 있는 탄성을 의미하며 고체의 성질을 대변한다. 구체적으로, G'은 유변물성측정기(Rheometer)를 이용하여 주파수 스윕(frequency sweep) 측정에 의한 직접적인 결과로서, 주기적 응력에 의한 시료의 가역적 탄성도를 의미한다.
본 발명에서 G"(Loss modulus)는 손실 탄성률로서 어떤 물질이 영구히 잃어버린 탄성을 의미하며 액체의 성질을 대변한다. 구체적으로, G"은 90 o까지 상이동된 응답이며 열로 전환되어 비가역적으로 손실되는 기계적 에너지에 해당한다.
본 발명에서 상기 G' 과 G"은 유변물성측정기(TA Instrument, ARES)를 이용하여 측정할 수 있다.
본 발명에서 '역전이'란 역전이 조건에서 주파수가 0.5Hz 이하 영역에서 G'이 G"의 값을 넘어서는 경우를 의미한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 역전이 조건은 N-메틸피롤리돈 및 물의 중량비가 90:10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건일 수 있다.
본 발명에서 제1 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 빨라 다공성 고분자 기재 상에 코팅된 후 상분리가 일어나는 경우 다공성 코팅층의 표면에 주로 분포되는 바인더 고분자이다. 제1 폴리비닐리덴 플루오라이드 공중합체는 다공성 코팅층의 표면에 위치하여 다공성 고분자 기재의 표면에 직경이 큰 기공을 형성할 수 있어, 다공성 코팅층 표면의 저항을 감소시킬 수 있다. 제1 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 빠를수록 유리하며, 이는 소정 조건에서 G'과 G" 간에 역전이 일어나는 것으로부터 확인할 수 있다. 환언하면, 소정 조건에서 제1 폴리비닐리덴 플루오라이드 공중합체의 G'과 G" 간에 역전이가 일어난다는 것은 바인더 고분자가 상분리되어 고체화되는 것으로, 제1 폴리비닐리덴 플루오라이드 공중합체가 상분리 속도가 빠르다고 유추할 수 있다.
본 발명에서 제2 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 느려 다공성 고분자 기재 상에 코팅된 후 상분리가 일어나는 경우 다공성 고분자 기재와 다공성 코팅층의 계면에 주로 분포되는 바인더 고분자이다. 특히 상분리 속도가 느린 제2 폴리비닐리덴 플루오라이드 공중합체는 기공 직경이 작거나 없어 다공성 고분자 기재와 다공성 코팅층 사이에 위치하여 다공성 고분자 기재와 다공성 고분자 기재 사이의 접착력을 높일 수 있다. 이 때, 제2 바인더 고분자의 상분리 속도가 느리다는 점은 이는 소정 조건에서 G'과 G" 간에 역전이 일어나지 않는 것으로부터 확인할 수 있다. 환언하면, 소정 조건에서 제2 폴리비닐리덴 플루오라이드 공중합체의 G'과 G" 간에 역전이가 일어나지 않는다는 것은 제1 폴리비닐리덴 플루오라이드 공중합체가 상분리 속도가 느리다고 유추할 수 있다.
본 발명에서 상분리 속도는 다음과 같은 방법으로 측정할 수 있다:
투명한 바이알에 용매에 5wt%로 용해한 고분자 용액을 준비한다. 용해가 잘 이루어진 경우 고분자 용액은 투명하게 보인다. 여기에 고분자 용액을 혼련하면서 비용매를 일정 속도로 적정하여 고분자 용액이 뿌옇게 흐려지는 시점(cloud point)를 측정하고, 이때 도입된 비용매의 양으로부터 상분리 속도를 예측할 수 있다. 여기서, 용매와 비용매는 특별히 한정하지 않으나 폴리비닐리덴 공중합체를 바인더로 사용하는 경우, 용매의 대표적인 예로 N-메틸-2-피롤리돈, 비용매로 대표적인 예로 물을 사용할 수 있다.
따라서, 본 발명에서 상분리 속도가 빠르다는 것은 비용매 도입에 의해 고분자 용액이 뿌옇게 흐려지는 시점이 빠르다는 것을 의미하며, 본 발명에서 상분리 속도라 느리다는 것은 고분자 용액이 뿌옇게 흐려지는 시점이 느리거나 나타나지 않는 것을 의미한다.
본 발명의 구체적인 일 실시양태에 있어서, 제1 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량이 제2 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량에 비해 큰 것일 수 있다.
구체적으로, 제1 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 40만 내지 150만, 또는 50만 내지 120만 또는 60만 내지 100만 이며, 제2 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 5만 내지 35만, 또는 10만 내지 30만 또는 15만 내지 28만 일 수 있다.
제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드의 중량평균분자량이 상기 수치 범위를 가지는 경우, 제1 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 빨라 다공성 코팅층의 표면에 주로 분포하게 되며, 제2 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 느려 다공성 고분자 기재와 다공성 코팅층 계면에 주로 위치하게 된다. 이에 따라, 다공성 고분자 기재와 다공성 코팅층 사이의 접착력이 우수하며, 전극과 세퍼레이터 간의 접착력이 우수한 세퍼레이터를 제공할 수 있다. 환언하면, 제1 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량에 비해 제2 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량이 작은 경우 제1 폴리비닐리덴 플루오라이드 공중합체의 상분리 속도가 제2 폴리비닐리덴 플루오라이드 공중합체의 상분리 속도보다 빨라, 다공성 코팅층 표면에서 저항값이 낮으며, 다공성 고분자 기재와 다공성 코팅층 사이의 접착력은 보다 향상된 분리막을 제공할 수 있다.
이 때, 상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 90 : 10 내지 40 : 60 또는 80 : 20 내지 45 : 55, 또는 75 : 25 내지 50 : 50 일 수 있다. 상기 중량비 수치 범위 내에서 다공성 코팅층 표면에서 저항값이 낮으며, 다공성 고분자 기재와 다공성 코팅층 사이의 접착력은 보다 향상된 분리막을 제공할 수 있다. 또한 동시에 분리막과 전극 간의 접착력을 개선할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 제1 폴리비닐리덴 플루오라이드 공중합체 및 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 각각 독립적으로 비닐리덴 플루오라이드 유래 반복 단위; 및 헥사플루오로플로필렌, 트리클로로에틸렌, 트리플루오로에틸렌, 테트라클로로에틸렌, 테트라플루오로에틸렌 또는 클로로트리플루오로에틸렌으로부터 유래된 1종 이상의 추가 반복단위를 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 제1 폴리비닐리덴 플루오라이드 공중합체와 상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위는 동일하거나 또는 다를 수 있다.
이 때, 상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 분자량이 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 분자량 대비 동일하거나 또는 작을 수 있다. 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 크기가 클수록 비용매가 쉽게 접근할 수 있기 때문에 상분리 속도가 빨라질 수 있다. 따라서, 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이, 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이 큰 경우, 제1 폴리비닐리덴 플루오라이드 공중합체의 상분리 속도가 보다 빨라 다공성 코팅층의 표면에 주로 위치하여 저항을 낮추고, 제2 폴리비닐리덴 플루오라이드 공중합체는 다공성 코팅층과 다공성 고분자 기재 사이에 위치하여 다공성 고분자 기재와 다고성 코팅층 사이의 접착력을 향상시킬 수 있다.
한편, 상기 제1 폴리비닐리덴 플루오라이드 공중합체와 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 서로 다른 치환량을 가질 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 제1 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 99 : 1 내지 90 : 10, 또는 99 : 1 내지 91 : 9, 또는 99 : 1 내지 92 : 8이며,
상기 제2 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 89 : 11 내지 70 : 30, 또는 88 : 12 내지 70 : 30, 또는 86 : 14 내지 75 : 25 일 수 있다. 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드가 상기와 같은 중량비를 가지는 경우, 제1 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 빨라 다공성 코팅층의 표면에 주로 분포하게 되며, 제2 폴리비닐리덴 플루오라이드 공중합체는 상분리 속도가 느려 다공성 고분자 기재와 다공성 코팅층 계면에 주로 위치하게 된다. 이에 따라, 다공성 고분자 기재와 다공성 코팅층 사이의 접착력이 우수하며, 전극과 세퍼레이터 간의 접착력이 우수한 세퍼레이터를 제공할 수 있다.
제1 폴리비닐리덴 플루오라이드 공중합체만 단독으로 적용하는 경우에는, 상분리에 의해서 다공성 고분자 기재와 다공성 코팅층 계면의 접착력을 확보하기 어려우며, 특히 상분리시 코팅층의 전체 용매가 비용매로 치환되는 침지상분리 공법을 도입하는 경우 더욱 접착력 확보가 어려워진다. 반대로 제2 폴리비닐리덴 플루오라이드 공중합체만 단독으로 적용하는 경우에는, 상분리가 빠르게 일어나지 않아 다공성 코팅층 표면에서 외부 전극과의 접착력을 구현하는 데에 어려움이 있다.
본 발명의 구체적인 일 실시양태에 있어서, 코팅층 표면에 주로 분포하여 전극과 접촉하게 되는 상기 제1 폴리비닐리덴 플루오라이드 공중합체가 Li 기준으로 5.0V 이상, 상세하게는 6.5V 내지 8.5V의 산화 전위를 가질 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 본 발명에서 상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+기준으로 0~5V)에서 산화 및/ 또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물일 수 있다.
상기 유전율 상수가 5 이상인 무기물 입자는 Al 2O 3, SiO 2, ZrO 2, AlO(OH), TiO 2, BaTiO 3, Pb(Zr xTi 1-x)O 3 (PZT, 여기서 0 < x < 1), Pb 1 - xLa xZr 1 - yTi yO 3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), (1-x)Pb(Mg 1/3Nb 2/3)O 3 - xPbTiO 3 (PMN-PT, 여기서 0 < x < 1), 하프니아(HfO 2), SrTiO 3, SnO 2, CeO 2, MgO, NiO, CaO, ZnO, ZO 3 및 SiC로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li 3PO 4), 리튬티타늄포스페이트(Li xTi y(PO 4) 3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(Li xAl yTi z(PO 4) 3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP) xO y 계열glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(Li xLa yTiO 3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(Li xGe yP zS w, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(Li xN y, 0 < x <4, 0 < y < 2), SiS 2 계열 glass(Li xSi yS z, 0 < x < 3, 0 < y < 2, 0 < z < 4) 및 P 2S 5 계열 glass(Li xP yS z, 0 < x < 3, 0 < y < 3, 0 < z < 7)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 무기물 입자의 평균입경은 특별한 제한이 없으나 균일한 두께의 다공성 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하며, 보다 바람직하게는 100 내지 700 nm, 보다 더 바람직하게는 150 내지 600 nm 일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 무기물 입자와 상기 바인더 고분자의 중량비는 50 : 50 내지 80 : 20, 또는 60 : 40 내지 70 : 30 일 수 있다. 바인더 고분자에 대한 무기물 입자의 총합에 대한 함량비가 상기 범위를 만족하는 경우, 바인더 고분자의 함량이 많아지게 되어 형성되는 다공성 코팅층의 기공 크기 및 기공도가 감소되는 문제가 방지될 수 있고, 바인더 고분자 함량이 적기 때문에 발생되는 다공성 유기 무기 코팅층의 내필링성이 약화되는 문제도 해소될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 코팅층 성분으로 전술한 무기물 입자 및 바인더 고분자 이외에 기타 첨가제를 더 포함할 수 있다.
상기 다공성 코팅층의 두께는 특별히 제한되지 않으나, 상기 다공성 기재의 일면에 형성된 상기 다공성 코팅층의 두께는 상세하게는 1 내지 10 ㎛, 더욱 상세하게는 1.5 내지 6 ㎛일 수 있고, 상기 다공성 기재의 양면에 상기 다공성 코팅층이 형성되는 경우에 상기 다공성 코팅층들의 두께의 총합은 상세하게는 2 내지 20 ㎛, 더욱 상세하게는 3 내지 12 ㎛일 수 있다.
상기 다공성 코팅층의 기공도 역시 특별히 제한되지 않으나 35 내지 65%인 것이 바람직하다.
본 발명에 따른 세퍼레이터에 있어서 상기 다공성 고분자 기재는, 구체적으로 다공성 고분자 필름 기재 또는 다공성 고분자 부직포 기재일 수 있다.
상기 다공성 고분자 필름 기재로는 폴리에틸렌, 폴리프로필렌과 같은 폴리올레핀으로 이루어진 다공성 고분자 필름일 수 있으며, 이러한 폴리올레핀 다공성 고분자 필름 기재는 예를 들어 80 내지 130 ℃의 온도에서 셧다운 기능을 발현한다.
이때, 폴리올레핀 다공성 고분자 필름은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독 또는 이들의 2종 이상 혼합하여 고분자로 형성할 수 있다.
또한, 상기 다공성 고분자 필름 기재는 폴리올레핀 외에 폴리에스테르 등의 다양한 고분자들을 이용하여 필름 형상으로 성형하여 제조될 수도 있다. 또한, 상기 다공성 고분자 필름 기재는 2층 이상의 필름층이 적층된 구조로 형성될 수 있으며, 각 필름층은 전술한 폴리올레핀, 폴리에스테르 등의 고분자 단독으로 또는 이들을 2종 이상 혼합한 고분자로 형성될 수도 있다.
또한, 상기 다공성 고분자 필름 기재 및 다공성 부직포 기재는 상기와 같은 폴리올레핀계 외에, 폴리에스테르(polyester) (예를 들어, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에틸렌나프탈렌(polyethylenenaphthalene) 등), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 등을 각각 단독으로 또는 이들을 혼합한 고분자로 형성될 수 있다.
상기 다공성 고분자 기재의 두께는 특별히 제한되지 않으나, 상세하게는 1 내지 100 ㎛, 더욱 상세하게는 5 내지 50 ㎛이고, 다공성 고분자 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.01 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다.
본 발명의 다른 일 측면에 따르면 하기 방법에 따른 세퍼레이터의 제조방법을 제공한다.
먼저, 용매, 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하는 슬러리를 준비한다(S1).
구체적으로, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 용매에 녹인 후, 상기 용액에 무기물 입자를 첨가하여 분산시켜 슬러리를 준비할 수 있다.
또는, 제1 폴리비닐리덴 플루오라이드 공중합체, 제2 폴리비닐리덴 플루오라이드 공중합체, 무기물 입자를 한번에 용매에 투입 및 혼합하여 슬러리를 준비할 수 있다.
제1 폴릴비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체, 무기물 입자는 전술한 바를 참고한다.
다음으로, 상기 슬러리를 다공성 고분자 기재의 적어도 일면에 도포한다(S2).
상기 슬러리의 도포 방법은 슬랏 코팅 또는 딥 코팅 방법을 사용할 수 있으나 이에 제한되는 것은 아니다. 슬랏 코팅은 슬랏 다이를 통해 공급된 조성물이 기재의 전면에 도포되는 방식으로 정량 펌프에서 공급되는 유량에 따라 코팅층 두께의 조절이 가능하다. 또한 딥 코팅은 조성물이 들어있는 탱크에 기재를 담그어 코팅하는 방법으로, 조성물의 농도 및 조성물 탱크에서 기재를 꺼내는 속도에 따라 코팅층 두께의 조절이 가능하며 보다 정확한 코팅 두께 제어를 위해 침지 후 메이어바 등을 통해 후계량할 수 있다.
이후, 상기 (S2)의 결과물을 비용매에 소정 시간 동안 침지하여 상분리한다(S3).
이에 따라, 도포된 슬러리에서 상분리 현상이 일어나면서 폴리비닐리덴 플루오라이드 공중합체를 고화시킨다. 이 공정에서 제1 폴리비닐리덴 플루오라이드 공중합체, 제2 폴리비닐리덴 플루오라이드 공중합체, 및 무기물 입자를 포함하는 다공성 코팅층이 다공화된다.
이 후, 상기 (S3)의 결과물을 수세하여 다른 이물질들을 제거하고, 건조함으로써 다공성 고분자 기재의 적어도 일면에 다공성 코팅층을 형성할 수 있다(S4).
상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체를 용해하는 용매는 양용매인 것이다.
본 발명에서 용매란 제 1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5wt%로 포함하여 특정 용제에 용해시킨 고분자 용액을 제조하고, 상기 고분자 용액의 유변 물성을 측정하였을 때, 주파수 0.5Hz 이하 영역에서 G'이 G"보다 작은 경우를 사용된 용제를 용매로 정의한다.
본 발명에서 비용매란 제 2 폴리비닐리덴 플루오라이드 공중합체를 고형분 5wt%로 포함하여 가장 적절한 용매로 알려진 N-메틸피롤리돈에 용해시킨 고분자 용액을 제조하고, 상기 고분자 용액에 특정 용제를 중량비로 15pt 후첨한 고분자 용액을 제조하고, 상기 고분자 용액의 유변 물성을 측정하였을 때, 주파수 0.5Hz 이하 영역에서 G'이 G"보다 큰 경우를 사용된 용제를 비용매로 정의한다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 용매는 아세톤(acetone), 테트라하이드로퓨란(tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름아미드(dimethylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 사이클로헥산(cyclohexane), 트리메틸 포스페이트(trimethyl phosphate), 트리에틸 포스페이트(triethyl phosphate) 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 비용매는 물, 메탄올, 에탄올, 프로필알코올, 부틸알코올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜 또는 이들 중 2종 이상의 혼합물을 포함할 수 있다. 특히 물이 비용매로서 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 침지는 2분 이내로 제어되는 것이 바람직하다. 2분을 초과하는 경우 상분리가 과도하게 일어나 다공성 고분자 기재와 다공성 코팅층 사이의 접착력이 저하되어 다공성 코팅층의 탈리가 발생될 수 있다.
상기 다공성 코팅층에서는 무기물 입자는 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기물 입자 사이에 인터스티셜 볼륨(interstitial volume)이 형성될 수 있고, 상기 무기물 입자 사이의 인터스티셜 볼륨(Interstitial Volume)은 빈 공간이 되어 기공을 형성할 수 있다.
즉, 바인더 고분자는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착, 예를 들어, 바인더 고분자가 무기물 입자사이를 연결 및 고정시킬 수 있다. 또한, 상기 다공성 유기 무기 코팅층의 기공은 무기물 입자 간의 인터스티셜 볼륨(interstitial volume)이 빈 공간이 되어 형성된 기공이고, 이는 무기물 입자들에 의한 충진 구조(closed packed or densely packed)에서 실질적으로 면접하는 무기물 입자들에 의해 한정되는 공간일 수 있다.
본 발명의 다른 일 측면에 따른 전기화학소자는 캐소드, 애노드 및 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하며, 상기 세퍼레이터는 전술한 본 발명의 일 실시예에 따른 세퍼레이터이다.
이러한 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차전지, 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 이온 폴리머 이차전지 등을 포함하는 리튬 이차전지가 바람직하다.
본 발명의 세퍼레이터와 함께 적용될 캐소드와 애노드의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 집전체에 결착된 형태로 제조할 수 있다. 상기 전극 활물질 중 캐소드 활물질의 비제한적인 예로는 종래 전기화학소자의 캐소드에 사용될 수 있는 통상적인 캐소드 활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 애노드 활물질의 비제한적인 예로는 종래 전기화학소자의 애노드에 사용될 수 있는 통상적인 애노드 활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 캐소드 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A +B -와 같은 구조의 염으로서, A +는 Li +, Na +, K +와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B -는 PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3CO 2 -, CF 3SO 3 -, N(CF 3SO 2) 2 -, C(CF 2SO 2) 3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마 부티로락톤 (g-부티로락톤) 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
(1) 세퍼레이터의 제조
60℃에서 무기물 입자로 알루미나(일본경금속, LS235), 중량평균분자량이 60만이며, 비닐리덴 플루오라이드 유래 반복 단위 및 헥사플루오로프로필렌 유래 반복단위의 중량비가 93 : 7인 제1 폴리비닐리덴 플루오라이드 공중합체(Arkema, Kynar2801, 역전이 발생), 중량평균분자량이 27만이며 비닐리덴 플루오라이드 유래 반복 단위 및 헥사플루오로프로필렌 유래 반복단위의 중량비가 85 : 15인 제2 폴리비닐리덴 플루오라이드 공중합체(Solvay, Solef21510, 역전이 없음)를 65 : 25 : 10의 중량비로 용매 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone, NMP)에 분산시켜 다공성 코팅층 형성용 슬러리를 제조하였다. 이 때 슬러리에 첨가된 무기물 입자의 함량은 500g 이었으며, 무기물 입자의 함량비는 용매 100 중량부 기준으로 20 중량부 이었다. 또한 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 72 : 28 이었으며, 제1 폴리비닐리덴 플루오라이드 공중합체는 Li 기준으로 8.16V의 산화 전위를 가졌다.
이후 상기 다공성 코팅층 형성용 슬러리를 딥코팅 방법을 이용하여 두께 9 ㎛ 의 폴리에틸렌 다공성 고분자 기재의 양면에 도포하였다.
다음으로 상기 슬러리가 도포된 폴리에틸렌 다공성 고분자 기재를 비용매인 물에 40초간 침지한 후 건조하여 다공성 코팅층이 형성된 세퍼레이터를 제조하였다. 상기 폴리에틸렌 다공성 고분자 기재의 양면에 형성된 다공성 코팅층의 두께는 각각 3 ㎛이었다.
(2) 캐소드의 제조
캐소드 활물질(LiCoO 2), 도전재(카본 블랙), 바인더 고분자(폴리비닐리덴 플루오라이드)를 각각 96 : 1.5 : 2.5의 중량비로 N-메틸-2-피롤리돈(NMP)에 투입하고 믹싱하여 슬러리를 제조하였다. 제조된 슬러리를 두께 30 ㎛의 알루미늄 호일에 3.285 mAh/cm 2의 용량으로 코팅하여 캐소드를 제조하였다.
(3) 애노드의 제조
애노드 활물질 (흑연), 도전재 (카본 블랙), 카르복실 메틸 셀룰로오스(CMC), 바인더 고분자(스티렌 부타디엔 고무, SBR)를 각각 95 : 2.5 : 1.5 : 1의 중량비로 물에 혼합하여 슬러리를 제조하였다. 상기 슬러리를 두께 8 ㎛의 구리 호일에 코팅하여 기공도가 28%이며, 두께가 50 ㎛ 인 애노드를 제조하였다.
(4) 리튬 이차전지의 제조
에틸렌 카보네이트(EC) 및 에틸메틸카보네이트(EMC)를 3:7(부피비)의 조성으로 혼합된 유기 용매에 LiPF 6를 1.0M의 농도가 되도록 용해시켜 비수성 전해액을 제조하였다.
상기 제조된 캐소드와 애노드 사이에 세퍼레이터를 개재한 후 90℃, 8.5MPa 에서 1초(sec)간 압연하여 전극조립체를 제조하고, 이를 파우치 케이스에 수납한 후, 상기 전해액을 주입하여 리튬 이차전지를 제조하였다.
실시예 2
실시예 1에서 사용한 제2 폴리비닐리덴 플루오라이드 공중합체(Solvay, Solef21510, 역전이 없음) 대신에, 중량평균분자량이 23만이며, 비닐리덴 플루오라이드 유래 반복 단위 및 헥사플루오로프로플렌 유래 반복 단위의 중량비가 82 : 18인 제2 폴리비닐리덴 플루오라이드 공중합체(Arkema, Kynar2500)를 사용한 것을 제외하고 실시예 1과 동일하게 세퍼레이터를 제조하였다. 또한, 상기 세퍼레이터를 사용하여 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
실시예 3
실시예 1에서 사용한 제2 폴리비닐리덴 플루오라이드 공중합체(Solvay, Solef21510, 역전이 없음) 대신에, 중량평균분자량이 25만이며 비닐리덴 플루오라이드 유래 반복 단위 및 트리플루오로에틸렌 유래 반복단위의 중량비가 80 : 20인 제2 폴리비닐리덴 플루오라이드 공중합체(Sigma Aldrich, Solvene200, 역전이 없음)를 변경한 것을 제외하고 실시예 1과 동일하게 세퍼레이터를 제조하였다. 또한, 상기 세퍼레이터를 사용하여 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
비교예 1
실시예 1에서 사용한 제2 폴리비닐리덴 플루오라이드 공중합체(Solvay, Solef21510, 역전이 없음) 대신에, 중량평균분자량이 45만이며, 비닐리덴 플루오라이드 유래 단복 단위 및 헥사플루오로프로필렌 유래 반복 단위의 중량비가 87 : 13인 제2 폴리비닐리덴 플루오라이드 공중합체(Arkema, Kynar 2751, 역전이 발생)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터 및 이를 포함하는 리튬 이차전지를 제조하였다. 또한, 상기 세퍼레이터를 사용하여 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
비교예 2
제1 폴리비닐리덴 플루오라이드 공중합체를 사용하지 않고, 역전이가 발생하지 않는 제2 폴리비닐리덴 플루오라이드 공중합체만을 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터 및 이를 포함하는 리튬 이차전지를 제조하였다. 또한, 상기 세퍼레이터를 사용하여 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
비교예 3
제2 폴리비닐리덴 플루오라이드 공중합체를 사용하지 않고, 역전이가 발생하는 제1 폴리비닐리덴 플루오라이드 공중합체만을 단독으로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터 및 이를 포함하는 리튬 이차전지를 제조하였다. 또한, 상기 세퍼레이터를 사용하여 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
비교예 4
실시예 1에서 사용한 제2 폴리비닐리덴 플루오라이드 공중합체(Solvay, Solef21510, 역전이 없음) 대신에 중량평균분자량이 32만이며, 비닐리덴 플루오라이드 유래 반복단위 및 헥사플루오로프로필렌 반복단위의 중량비가 92 : 8인 제2 폴리비닐리덴 플루오라이드 공중합체(Arkema, Kynar 2821, 역전이 발생)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터 및 이를 포함하는 리튬이차전지를 제조하였다.
실험예
1) 다공성 고분자 기재와 다공성 코팅층 사이의 접착력(Peel Strength)측정법 :
실시예 1 내지 3 및 비교예 1 내지 4에서 제조된 세퍼레이터를 15mm X 100mm 크기로 재단하였다. 유리판 위에 양면 접착 테이프를 붙이고 준비된 세퍼레이터의 다공성 코팅층 표면이 접착테이프와 접착되도록 붙였다. 이 후, 접착된 세퍼레이터의 말단부를 UTM 장비(LLOYD Instrument LF Plus)에 장착 후 측정 속도 300mm/min으로 180도로 힘을 가해 다공성 코팅층과 다공성 고분자 기재가 박리되는데 필요한 힘을 측정하였다.
2) 세퍼레이터와 전극 사이의 접착력(Lami Strength)측정법 :
실시예 1에서 제조된 애노드를 15mm X 100mm 크기로 재단하여 준비하였다. 실시예 1 내지 3 및 비교예 1 내지 4에서 제조된 세퍼레이터를 15mm X 100mm 크기로 재단하여 준비하였다. 준비된 세퍼레이터와 애노드를 서로 겹친 뒤 100㎛의 PET 필름 사이에 끼운 후 평판 프레스를 사용하여 접착시켰다. 이때, 평판 프레스기의 조건은 90℃의 8.5MPa의 압력으로 1초 동안 가열하였다. 접착된 세퍼레이터와 애노드의 말단부를 UTM 장비(LLOYD Instrument LF Plus)에 장착 후 측정 속도 300mm/min으로 180 도로 힘을 가해 애노드와 애노드에 대향된 다공성 코팅층이 박리되는 데 필요한 힘을 측정하였다.
상기 실시예 1 내지 3 및 비교예 1 내지 4에서 준비된 세퍼레이터의 접착력 측정 결과는 아래 표 1과 같다.
다공성 고분자 기재와 다공성 코팅층 사이의 접착력 (Peel Strength) (gf/15mm) 세퍼레이터와 전극 사이의 접착력(Lami Strength) (gf/15mm)
실시예1 81.1 75.3
실시예2 83.8 74.4
실시예3 85.9 73.8
비교예1 12.5 측정불가
비교예2 98.1 33.1
비교예3 26.4 측정불가
비교예4 37.2 16.8
실시예 1 내지 3에서 제작된 세퍼레이터로부터 다공성 고분자 기재와 다공성 코팅층 사이의 접착력 및 다공성 코팅층과 애노드 사이의 접착력이 균형있게 높음을 알 수 있다. 비교예 1과 3의 세퍼레이터는 다공성 고분자 기재와 다공성 코팅층 사이의 접착력이 낮아 전극과 세퍼레이터 사이의 박리력 측정시 해당 계면의 박리로 인해 전극과의 박리력을 측정할 수 없었으며, 비교예 2는 다공성 코팅층과 애노드의 박리력이 낮은 문제가 있었다. 비교예 4의 세퍼레이터는 다공성 고분자 기재와 다공성 코팅층 및 세퍼레이터와 전극 사이의 접착력이 모두 열위로 나타나, 리튬 이차전지용 분리막에 사용하기에 적합하지 않았다.
3) 역전이 측정 방법
N-메틸피롤리돈 및 물의 중량비가 90:10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건에서, 주파수가 0.5Hz 이하 영역에서 G'이 G"의 값을 넘어서는 경우 역전이라고 한다.
실시예 1 내지 3에서 사용한 제1 폴리비닐리덴 플루오라이드 공중합체는 역전이 일어났으며, 제2 폴리비닐리덴 플루오라이드 공중합체는 모두 역전이 일어나지 않았다.
4) 저항 측정 방법
실시예 1 내지 3 및 비교예 1 내지 4에서 제조된 파우치형 리튬 이차전지의 AC 저항을 측정하고, 그 결과를 아래 표 2에 나타내었다. 이 때, AC 저항은 Hioki로 1KHz에서의 저항을 측정한 값이다. 이러한 이차전지의 AC 저항 값으로부터 실시예 1 내지 3 및 비교예 1 내지 4에 사용된 세퍼레이터 저항을 상대 비교 할 수 있었다.
AC 저항 (Ohm)
실시예1 8.6
실시예2 8.7
실시예3 8.9
비교예1 9.3
비교예2 10.1
비교예3 9.0
비교예4 9.1
상기 표 2의 결과로부터 제2 폴리비닐리덴 플루오라이드 공중합체만을 단독 사용한 비교예 2는 저항이 높은 문제가 있었다. 이는 다공성 코팅층의 두께 방향으로 바인더 고분자의 함량이 과도한 층이 형성되면 상기 층에서 리튬 이온의 이동이 병목 현상을 일으켜 저항이 높아지기 때문이다.
반면, 본 발명에서는 상분리 특성이 상이한 2종의 폴리비닐리덴 플루오라이드 공중합체를 혼합하여 서로 다른 위치에 다공성 코팅층을 형성함으로써, 전극과 다공성 코팅층 사이의 계면 및 다공성 코팅층과 다공성 고분자 기재 사이의 계면 저항을 유사하게 유지하여 세퍼레이터 전체 저항을 낮게 유지할 수 있다. 상기와 같이 낮은 저항을 갖는 리튬 이차 전지는 성능 특히 출력 부분을 크게 개선할 수 있는 장점이 있다.

Claims (17)

  1. 다공성 고분자 기재; 및
    상기 다공성 고분자 기재의 적어도 일면에 형성된 다공성 코팅층;을 포함하며,
    상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하며,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나며,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나지 않는 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  2. 제1항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G'와 G"가 N-메틸피롤리돈 및 물의 중량비가 90 : 10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건에서 주파수가 0.5Hz 이하 영역에서 역전이가 일어나는 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  3. 제1항에 있어서,
    제1 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량이 제2 폴리비닐리덴 플루오라이드 공중합체의 중량평균분자량에 비해 큰 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  4. 제1항에 있어서,
    제1 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 40만 내지 150만이며, 제2 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 5만 내지 35만이고,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 90 : 10 내지 40 : 60인 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  5. 제1항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체 및 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 각각 독립적으로 비닐리덴 플루오라이드 유래 반복 단위; 및 헥사플루오로프로필렌, 트리클로로에틸렌, 트리플루오로에틸렌, 테트라클로로에틸렌, 테트라플루오로에틸렌 또는 클로로트리플루오로에틸렌으로부터 유래된 1 이상의 추가 반복단위;를 포함하는 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  6. 제5항에 있어서,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이 상기 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량 대비 동일하거나 또는 작은 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  7. 제5항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 99 : 1 내지 90 : 10이며,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 89 : 11 내지 70 : 30인 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  8. 제1항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체가 Li 기준으로 5.0V 이상의 산화 전위를 갖는 것을 특징으로 하는 전기화학소자용 세퍼레이터.
  9. (S1) 용매, 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하는 슬러리를 준비하는 단계;
    (S2) 상기 슬러리를 다공성 고분자 기재의 적어도 일면 상에 도포하는 단계;
    (S3) 상기 (S2)의 결과물을 비용매에 침지하여 상분리하는 단계; 및
    (S4) 상기 (S3)의 결과물을 건조하여 상기 다공성 고분자 기재의 적어도 일면에 다공성 코팅층을 형성하는 단계;를 포함하며,
    상기 다공성 코팅층은 무기물 입자, 제1 폴리비닐리덴 플루오라이드 공중합체, 및 제2 폴리비닐리덴 플루오라이드 공중합체를 포함하며,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나며,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체의 G' (storage modulus)과 G"(loss modulus)는 역전이가 일어나지 않는 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  10. 제9항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체의 G'와 G"가
    N-메틸피롤리돈 및 물의 중량비가 90 : 10인 혼합 용매에 상기 제1 폴리비닐리덴 플루오라이드 공중합체를 고형분 5 중량%로 포함하는 용액 조건에서 주파수가 0.5Hz 이하 영역에서 역전이가 일어나는 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  11. 제9항에 있어서,
    상기 용매는 아세톤(acetone), 테트라하이드로퓨란(tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름(chloroform), 디메틸포름아미드(dimethylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 사이클로헥산(cyclohexane), 트리메틸 포스페이트(trimethyl phosphate), 트리에틸 포스페이트(triethyl phosphate) 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  12. 제9항에 있어서,
    상기 비용매는 물, 메탄올, 에탄올, 프로필알코올, 부틸알코올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  13. 제9항에 있어서,
    제1 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 40만 내지 150만이며, 제2 폴리비닐리덴 플루오라이드 공중합체는 중량평균분자량이 5만 내지 35만이고,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체와 제2 폴리비닐리덴 플루오라이드 공중합체의 중량비는 90 : 10 내지 40 : 60인 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  14. 제9항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체 및 상기 제2 폴리비닐리덴 플루오라이드 공중합체는 각각 독립적으로 비닐리덴 플루오라이드 유래 반복 단위; 및 헥사플루오로프로필렌, 트리클로로에틸렌, 트리플루오로에틸렌, 테트라클로로에틸렌, 테트라플루오로에틸렌 또는 클로로트리플루오로에틸렌으로부터 유래된 1 이상의 추가 반복단위;를 포함하는 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  15. 제14항에 있어서,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량이 상기 제1 폴리비닐리덴 플루오라이드 공중합체의 추가 반복단위의 중량평균분자량 대비 동일하거나 또는 작은 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  16. 제14항에 있어서,
    상기 제1 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 99 : 1 내지 90 : 10이며,
    상기 제2 폴리비닐리덴 플루오라이드 공중합체에서 상기 비닐리덴 플루오라이드 유래 반복 단위 및 추가 반복단위의 중량비가 89 : 11 내지 70 : 30인 것을 특징으로 하는 전기화학소자용 세퍼레이터의 제조방법.
  17. 캐소드, 애노드 및 상기 캐소드 및 애노드 사이에 개재된 세퍼레이터를 포함하며,
    상기 세퍼레이터가 상기 제1항 내지 제8항 중 어느 한 항에 따른 전기화학소자용 세퍼레이터인 것을 특징으로 하는 전기화학소자.
PCT/KR2019/006897 2018-06-20 2019-06-07 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자 WO2019245202A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19821866.1A EP3694020B1 (en) 2018-06-20 2019-06-07 Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
US16/756,706 US11657984B2 (en) 2018-06-20 2019-06-07 Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
JP2020519970A JP6953629B2 (ja) 2018-06-20 2019-06-07 電気化学素子用セパレータ、その製造方法、及びそれを含む電気化学素子
CN201980005089.1A CN111213256B (zh) 2018-06-20 2019-06-07 电化学装置用隔膜、其制造方法和包含其的电化学装置
PL19821866.1T PL3694020T3 (pl) 2018-06-20 2019-06-07 Separator dla urządzenia elektrochemicznego, sposób wytwarzania separatora oraz urządzenie elektrochemiczne zawierające separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0071063 2018-06-20
KR20180071063 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019245202A1 true WO2019245202A1 (ko) 2019-12-26

Family

ID=68982679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006897 WO2019245202A1 (ko) 2018-06-20 2019-06-07 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자

Country Status (9)

Country Link
US (1) US11657984B2 (ko)
EP (1) EP3694020B1 (ko)
JP (1) JP6953629B2 (ko)
KR (1) KR102077274B1 (ko)
CN (1) CN111213256B (ko)
HU (1) HUE064617T2 (ko)
PL (1) PL3694020T3 (ko)
TW (1) TWI791854B (ko)
WO (1) WO2019245202A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644377A (zh) * 2021-07-08 2021-11-12 河北金力新能源科技股份有限公司 一种半固态磷酸钛锂铝凝胶电解质隔膜浆料及其制备方法和应用
CN114142176B (zh) * 2021-11-30 2023-08-25 珠海冠宇电池股份有限公司 一种电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090095478A (ko) * 2008-03-04 2009-09-09 주식회사 엘지화학 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자
KR20140016715A (ko) * 2012-07-31 2014-02-10 주식회사 엘지화학 세퍼레이터 도포용 슬러리, 그 슬러리를 이용한 세퍼레이터 및 그를 포함하는 전기화학소자
KR20140060800A (ko) * 2012-11-12 2014-05-21 주식회사 엘지화학 상 전환법을 이용한 전기화학소자용 세퍼레이터의 제조방법, 그로부터 형성된 세퍼레이터 및 그를 포함하는 전기화학소자
KR20160077529A (ko) * 2014-12-23 2016-07-04 주식회사 포스코 전기화학 소자용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기화학 소자
KR20170085825A (ko) * 2016-01-15 2017-07-25 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20180071063A (ko) 2016-12-19 2018-06-27 (주) 디아이엔바이로 집수식 투수블록

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128377A (ja) 1984-07-20 1986-02-08 東洋ガラス株式会社 合せガラス板による灰皿の製造方法
CA2251648A1 (en) 1997-02-28 1998-09-03 Elf Atochem North America, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity
US7008724B2 (en) * 2002-07-24 2006-03-07 Enerdel, Inc. Lithium cell with mixed polymer system
JP5250261B2 (ja) 2005-11-01 2013-07-31 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
KR101173202B1 (ko) 2010-02-25 2012-08-13 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
JP2012256505A (ja) 2011-06-08 2012-12-27 Sony Corp 二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
JP5342088B1 (ja) 2011-10-21 2013-11-13 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP5282181B1 (ja) * 2011-10-21 2013-09-04 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR101434379B1 (ko) * 2011-10-21 2014-08-27 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
CN102532758A (zh) * 2012-02-14 2012-07-04 天津市捷威动力工业有限公司 锂离子二次电池负极粘结剂及其制备方法、负极及其制备方法和锂离子二次电池
KR101794264B1 (ko) 2012-07-31 2017-12-01 삼성에스디아이 주식회사 세퍼레이터, 이를 채용한 리튬전지 및 상기 세퍼레이터 제조방법
JP6412760B2 (ja) 2014-09-30 2018-10-24 旭化成株式会社 蓄電デバイス用セパレータ
KR101822695B1 (ko) 2014-10-02 2018-01-26 주식회사 엘지화학 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102028113B1 (ko) * 2015-04-30 2019-10-02 주식회사 엘지화학 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 상기 세퍼레이터를 포함하는 전기화학소자
CN107735884B (zh) 2015-07-02 2021-01-15 帝人株式会社 非水系二次电池用隔膜、非水系二次电池及非水系二次电池的制造方法
KR102063627B1 (ko) 2015-08-19 2020-02-11 주식회사 엘지화학 접착층을 구비하고 있는 분리막 및 전극과 분리막 사이에 접착층이 형성되어 있는 전극 적층체
KR102225305B1 (ko) 2015-09-25 2021-03-10 주식회사 엘지화학 상분리를 이용하여 무기물 코팅층을 포함하는 분리막을 제조하는 방법
EP3376561A4 (en) 2015-11-11 2018-09-19 Teijin Limited Separator for non-aqueous secondary cell, and non-aqueous secondary cell
KR101904296B1 (ko) 2015-12-22 2018-11-13 삼성에스디아이 주식회사 다공성 접착층을 포함하는 분리막 및 이를 포함하는 전기 화학 전지
CN108779312A (zh) 2016-03-11 2018-11-09 Agc株式会社 氟树脂组合物、成形材料及成形体
JP6766411B2 (ja) 2016-03-31 2020-10-14 東レ株式会社 電池用セパレータおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090095478A (ko) * 2008-03-04 2009-09-09 주식회사 엘지화학 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자
KR20140016715A (ko) * 2012-07-31 2014-02-10 주식회사 엘지화학 세퍼레이터 도포용 슬러리, 그 슬러리를 이용한 세퍼레이터 및 그를 포함하는 전기화학소자
KR20140060800A (ko) * 2012-11-12 2014-05-21 주식회사 엘지화학 상 전환법을 이용한 전기화학소자용 세퍼레이터의 제조방법, 그로부터 형성된 세퍼레이터 및 그를 포함하는 전기화학소자
KR20160077529A (ko) * 2014-12-23 2016-07-04 주식회사 포스코 전기화학 소자용 세퍼레이터, 이의 제조 방법 및 이를 포함하는 전기화학 소자
KR20170085825A (ko) * 2016-01-15 2017-07-25 삼성에스디아이 주식회사 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
KR20180071063A (ko) 2016-12-19 2018-06-27 (주) 디아이엔바이로 집수식 투수블록

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3694020A4

Also Published As

Publication number Publication date
KR20190143366A (ko) 2019-12-30
TWI791854B (zh) 2023-02-11
JP6953629B2 (ja) 2021-10-27
CN111213256B (zh) 2022-07-08
HUE064617T2 (hu) 2024-04-28
EP3694020A1 (en) 2020-08-12
CN111213256A (zh) 2020-05-29
US11657984B2 (en) 2023-05-23
US20200259149A1 (en) 2020-08-13
EP3694020A4 (en) 2021-04-14
KR102077274B1 (ko) 2020-02-13
EP3694020B1 (en) 2023-11-22
TW202019003A (zh) 2020-05-16
JP2020537290A (ja) 2020-12-17
PL3694020T3 (pl) 2024-03-11

Similar Documents

Publication Publication Date Title
WO2018030797A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021172958A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2019164130A1 (ko) 분리막, 이의 제조방법 및 이를 포함하는 리튬전지
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020096310A1 (ko) 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자
WO2013028046A2 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2013089313A1 (ko) 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2020022851A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020013671A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2019132456A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020091537A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2020171661A1 (ko) 리튬이차전지용 세퍼레이터 및 이의 제조방법
WO2019078650A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022050801A1 (ko) 전기화학소자용 분리막 및 이의 제조방법
WO2018236200A1 (ko) 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
WO2020197102A1 (ko) 전기화학소자용 세퍼레이터의 제조방법
WO2022071775A1 (ko) 리튬 이차 전지용 분리막, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2022086142A1 (ko) 분리막 및 이를 포함하는 리튬 이차 전지
WO2019245202A1 (ko) 전기화학소자용 세퍼레이터, 이의 제조방법 및 이를 포함하는 전기화학소자
WO2020251230A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519970

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019821866

Country of ref document: EP

Effective date: 20200507

NENP Non-entry into the national phase

Ref country code: DE