WO2017159960A1 - 엑스선관모듈의 절연유 교체장치와 절연유 교체방법 - Google Patents

엑스선관모듈의 절연유 교체장치와 절연유 교체방법 Download PDF

Info

Publication number
WO2017159960A1
WO2017159960A1 PCT/KR2016/013436 KR2016013436W WO2017159960A1 WO 2017159960 A1 WO2017159960 A1 WO 2017159960A1 KR 2016013436 W KR2016013436 W KR 2016013436W WO 2017159960 A1 WO2017159960 A1 WO 2017159960A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating oil
ray tube
tube module
unit
oil
Prior art date
Application number
PCT/KR2016/013436
Other languages
English (en)
French (fr)
Inventor
이민영
정구현
정구일
Original Assignee
(주)영메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)영메디 filed Critical (주)영메디
Priority to RU2018132600A priority Critical patent/RU2696593C1/ru
Publication of WO2017159960A1 publication Critical patent/WO2017159960A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/20Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering

Definitions

  • the present invention relates to an insulating oil replacement device and an insulating oil replacement method of the X-ray tube module, and more particularly, to smoothly supply and discharge the insulating oil from the X-ray tube module by moving and defoaming the insulating oil using vacuum pressure, X-ray tube module
  • the present invention relates to an insulating oil replacement device and an insulating oil replacement method of an X-ray tube module that can prevent mixing of foreign substances and bubbles in the newly filled insulating oil.
  • the X-ray tube module is a device for generating X-rays by projecting electrons from the cathode installed in the vacuum tube toward the target anode.
  • X-ray tube module is used in various inspection devices or diagnostic devices such as non-destructive testing, medical diagnosis or chemical analysis.
  • the X-ray tube module can be roughly divided into a rotating anode type and a fixed anode type.
  • the rotating bipolar X-ray tube module can withstand a momentary large load, it can be widely used in a device involving X-ray imaging.
  • the fixed bipolar X-ray tube module is a small instantaneous load, but can be used for a relatively long time, so that it can be used for medical X-ray see-through devices or non-destructive inspection devices for industrial sites.
  • the X-ray tube module has an X-ray tube for generating X-rays and is filled with insulating oil. Then, the insulating oil filled in the X-ray tube module absorbs the heat generated by the X-ray tube and discharges it to the outside of the X-ray tube module.
  • the insulating oil filled in the X-ray tube module is reduced in viscosity due to the repeated absorption and heat release of the heat, deterioration in insulation as the foreign matter such as carbon generated, the insulating oil should be replaced in the X-tube module.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2001-0087942 (Invention name: Fixed bipolar X-ray tube apparatus, published on September 26, 2001)
  • An object of the present invention is to solve the conventional problems, to facilitate the supply and discharge of the insulating oil in the X-ray tube module through the movement and defoaming of the insulating oil using a vacuum pressure, foreign matter and the newly filled insulating oil in the X-ray tube module It is to provide an insulating oil replacement device and an insulating oil replacement method of the X-ray tube module to prevent the mixing of bubbles.
  • the insulating oil replacement device of the X-ray tube module according to the present invention is supplied to or discharged through the insulating oil connection portion provided in the X-ray tube module accommodated in the X-ray tube module
  • An apparatus for replacing insulating oil comprising: a waste oil collecting unit for collecting the insulating oil discharged from the insulating oil connection unit at a vacuum pressure; A defoaming supply unit for supplying new insulating oil to the X-ray tube module under vacuum pressure as well as defoaming new insulating oil; A buffer unit coupled to the waste oil collection unit or the defoaming supply unit, coupled to the insulating oil connection unit, and configured to form a movement path of the insulating oil according to a vacuum pressure; And a work table to which the X-ray tube module to which the buffer unit is coupled is reversibly coupled.
  • the insulating oil connecting portion faces the lower side of the X-ray tube module, and when the defoaming supply unit is coupled to the buffer unit, the insulating oil connecting portion is the X-ray tube Face the module up.
  • the waste oil collection unit a waste oil vacuum pump for generating waste oil vacuum pressure
  • a collection housing accommodating insulating oil discharged from the X-ray tube module by the waste oil vacuum pressure
  • a connection vacuum pipe connecting the waste oil vacuum pump and the collection housing
  • And a discharge insulating oil pipe connecting the collection housing and the buffer unit.
  • the defoaming supply unit may include: a first supply unit coupled to one side of the buffer unit and accommodating new insulating oil for supplying the X-ray tube module; And a second supply unit coupled to the other side of the buffer unit and supplying and defoaming the new insulating oil contained in the first supply unit to the X-ray tube module by vacuum pressure.
  • the first supply unit a defoaming housing for receiving the insulating oil for supplying the X-ray tube module; And a supply insulating oil pipe connecting the buffer unit and the defoaming housing.
  • the first supply unit a defoaming vacuum pump for applying a vacuum pressure to the defoaming housing so that the insulating oil contained in the defoaming housing degassing; And a degassing vacuum tube connecting the degassing housing and the degassing vacuum pump, wherein the vacuum pressure applied to the first supply unit is higher than the vacuum pressure applied to the second supply unit.
  • the second supply unit a supply vacuum pump for generating a vacuum pressure
  • a unit connection pipe connecting the buffer unit and the supply vacuum pump so that the vacuum pressure generated in the supply vacuum pump is applied to the buffer unit.
  • the second supply unit the vacuum housing connected to the buffer unit by the unit connecting pipe; And a connection vacuum tube connecting the supply vacuum pump and the vacuum housing so that the vacuum pressure generated by the supply vacuum pump is applied to the vacuum housing and the buffer unit.
  • the buffer unit the hollow buffer housing is provided with a vacuum pressure by the waste oil collection unit or the defoaming supply unit;
  • a buffer fixing unit provided at one side of the buffer housing and communicating the X-ray tube module and the buffer housing;
  • a branch connection part branched from the buffer fixing part;
  • a unit connecting portion provided on the other side of the buffer housing, wherein the unit connecting portion is disposed below the insulating oil connecting portion when the waste oil collecting unit is coupled to the buffer unit, and the defoaming supply unit is disposed in the buffer unit.
  • the unit connecting portion When coupled to the unit connecting portion is disposed above the insulating oil connecting portion.
  • the insulating oil replacement device of the X-ray tube module is coupled to the pressure adjusting unit provided in the X-ray tube module, the pressure adjusting unit for applying a predetermined pressure to the new insulating oil accommodated in the X-ray tube module;
  • Insulating oil replacement apparatus of the X-ray tube module according to the present invention is the X-ray tube module in the workbench so that the position of the insulating oil connecting portion is changed according to the combination of the waste oil collection unit and the buffer unit or the defoaming supply unit and the buffer unit.
  • the inverting unit for inverting further comprises.
  • the insulating oil replacement method of the X-ray tube module is a method for replacing the insulating oil contained in the X-ray tube module by supplying or discharging the insulating oil through the insulating oil connection portion provided in the X-ray tube module, the X-ray tube using a vacuum pressure
  • a waste oil collection step of discharging the insulating oil contained in the module After the waste oil collection step, the internal washing step of supplying a new insulating oil to the X-ray tube module using a vacuum pressure, and discharges the insulating oil from the X-ray tube module using a vacuum pressure;
  • the insulating oil injection step of supplying a new insulating oil to the X-ray tube module using a vacuum pressure; And a vacuum degassing step of degassing the new insulating oil contained in the X-ray tube module using the vacuum pressure after the insulating oil injection step.
  • the insulating oil connection part When the insulating oil is discharged from the X-ray tube module, the insulating oil connection part is connected to the X. Facing the lower side of the tube tube module, when the insulating oil is supplied to the X-ray tube module, the insulating oil connecting portion to face the upper side of the X-ray tube module.
  • the insulating oil replacement method of the X-ray tube module according to the present invention further includes a pressure adjusting step of applying a predetermined pressure to the new insulating oil received in the X-ray tube module after the vacuum defoaming step.
  • Insulating oil replacement method of the X-ray tube module includes the inverting step of inverting the X-ray tube module so that the position of the insulating oil connection portion is changed according to the discharge of the insulating oil from the X-ray tube module or supply of the insulating oil to the X-ray tube module; It includes more.
  • the insulating oil replacement device and the insulating oil replacement method of the X-ray tube module according to the present invention, by supplying and discharging the insulating oil in the X-ray tube module through the movement and defoaming of the vacuum oil using a vacuum pressure, the new charge in the X-ray tube module It is possible to prevent the mixing of foreign matter and bubbles in the insulating oil.
  • the present invention can be stably coupled to the waste oil collection unit and the defoaming unit to the X-ray tube module and prevent the vacuum pressure from leaking.
  • the present invention provides a stable vacuum pressure to the X-ray tube module, stabilizes the movement of the insulating oil, it is possible to prevent the back flow of the insulating oil to the unit connecting portion during the defoaming process.
  • the present invention facilitates the discharge of the insulating oil contained in the X-ray tube module by the vacuum pressure, prevents the insulating oil from flowing back to the waste oil vacuum pump side, and can stably dispose the insulating oil discharged from the X-ray tube module.
  • the present invention can safely supply a new insulating oil to the X-ray tube module, it is possible to prevent the bubbles contained in the new insulating oil through a second defoaming process.
  • the present invention can supply the new insulating oil supplied to the X-ray tube module in the primary degassing state, it is possible to prevent the inclusion of bubbles as the insulating oil moves.
  • the present invention can prevent the new insulating oil from being exposed to the outside air and prevent foreign substances from being mixed into the new insulating oil.
  • the present invention can adjust the vacuum pressure of the buffer housing, facilitate the supply of new insulating oil, and secondary defoaming of the new insulating oil contained in the X-ray tube module.
  • the present invention can simplify the supply of insulating oil and the discharge of the insulating oil in the X-ray tube module, to maintain a stable vacuum pressure of the buffer housing, it is possible to reduce the cost by reducing the number of repeated operations of the defoaming unit.
  • the present invention can stabilize the pressure inside the X-ray tube module, and can easily cope with the thermal deformation of the insulating oil, it is possible to reduce the generation of foreign matter or bubbles due to the thermal deformation of the insulating oil.
  • the present invention can reduce the time required for the secondary defoaming, it is possible to promote the discharge of bubbles contained in the insulating oil.
  • the present invention may limit the installation position of the X-ray tube module, stabilize the movement of the insulating oil, and facilitate the supply of the insulating oil and the discharge of the insulating oil in the X-ray tube module.
  • the present invention facilitates heat dissipation in the heated insulating oil, it is possible to prevent foreign matter from entering the X-ray tube module.
  • FIG. 1 is a perspective view showing an X-ray tube module according to an embodiment of the present invention.
  • Figure 2 is a block diagram showing an insulating oil replacement apparatus of the X-ray tube module according to an embodiment of the present invention.
  • FIG 3 is a view showing an installation state of the waste oil collection unit in the insulating oil replacement device of the X-ray tube module according to an embodiment of the present invention.
  • FIG. 4 is a view showing an installation state of the defoaming unit in the insulating oil replacement apparatus of the X-ray tube module according to an embodiment of the present invention.
  • Figure 5 is a perspective view showing a buffer unit in the insulating oil replacement apparatus of the X-ray tube module according to an embodiment of the present invention.
  • Figure 6 is a view showing a pressure adjusting unit in the insulating oil replacement device of the X-ray tube module according to an embodiment of the present invention.
  • FIG. 7 is a view showing a method of replacing the insulating oil of the X-ray tube module according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing an X-ray tube module according to an embodiment of the present invention
  • Figure 2 is a block diagram showing an insulating oil replacement device of the X-ray tube module according to an embodiment of the present invention
  • Figure 3 is a present invention 4 is a view showing an installation state of the waste oil collection unit in the insulating oil replacement device of the X-ray tube module according to an embodiment of the present invention
  • Figure 4 is an installation state of the defoaming unit in the insulating oil replacement apparatus of the X-ray tube module
  • 5 is a perspective view showing a buffer unit in the insulating oil replacement apparatus of the X-ray tube module according to an embodiment of the present invention
  • Figure 6 is a replacement of the insulating oil of the X-ray tube module according to an embodiment of the present invention The figure shows the pressure adjusting unit in the apparatus.
  • the insulating oil replacing apparatus of the X-ray tube module may replace the insulating oil contained in the X-ray tube module 100 through the movement and defoaming of the insulating oil using vacuum pressure. .
  • one side of the X-ray tube module 100 is provided with an insulating oil connection portion 102 for supplying or discharging the insulating oil.
  • the insulating oil connection unit 102 may be coupled to a buffer unit 50 to be described later.
  • the insulating oil connection part 102 may be opened and closed through the connection plug 101.
  • the X-ray tube module 100 is provided with a mounting connecting portion 103 to which the mounting bracket 91 to be described later or the inverting unit 92 to be described below is fixedly coupled.
  • the mounting connector 103 may be provided with a tube window 106 for irradiating X-rays generated from the X-ray tube built in the X-ray tube module 100.
  • the other side of the X-ray tube module 100 is provided with a pressure adjusting unit 104 for applying pressure to the new insulating oil accommodated in the X-ray tube module 100.
  • the pressure adjusting unit 104 may be coupled to a pressure adjusting unit 60 to be described later.
  • the pressure adjusting unit 60 may apply a predetermined pressure to the new insulating oil accommodated in the X-ray tube module 100.
  • the X-ray tube module 100 may be provided with a heat exchanger 105 for heat dissipation of the X-ray tube module 100 and heat dissipation of the insulating oil.
  • the X-ray tube module 100 may be provided with a cable connecting portion 107 for supplying power to the X-ray tube.
  • the X-ray tube module 100 may be provided with a circulation pump (not shown) for circulating the contained insulating oil.
  • Insulating oil replacement device of the X-ray tube module supply or discharge the insulating oil through the insulating oil connecting portion 102 provided in the X-ray tube module 100, the insulating oil accommodated in the X-ray tube module 100 It is a device to replace.
  • Insulating oil replacement apparatus of the X-ray tube module is a waste oil collection unit 10 for collecting the insulating oil discharged from the insulating oil connection unit 102 with a vacuum pressure, and the new insulating oil to the X-ray tube module
  • the degassing supply unit 20 for degassing new insulating oil as well as supplying to the 100, and the waste oil collecting unit 10 or the defoaming supply unit 20 is coupled, coupled to the insulating oil connection portion 102
  • a workbench 90 to which the X-ray tube module 100 to which the buffer unit 50 is coupled is reversibly coupled, to the buffer unit 50 forming the movement path of the insulating oil according to the vacuum pressure.
  • the insulating oil connection unit 102 faces the lower side of the X-ray tube module 100, and the defoaming supply unit 20 is When coupled to the buffer unit 50, the insulating oil connecting portion 102 is to face the upper side of the X-ray tube module (100). Accordingly, the insulating oil may be easily discharged from the X-ray tube module 100 by the vacuum pressure, and the new insulating oil may be stably supplied to the X-ray tube module 100 by the vacuum pressure, and the new insulating oil may be defoamed. .
  • the waste oil collection unit 10 includes a waste oil vacuum pump 11, a collection housing 12, a connection vacuum tube 13, and a discharge insulating oil tube 14.
  • the waste oil vacuum pump 11 generates waste oil vacuum pressure.
  • the collection housing 12 is coupled to the waste oil vacuum pump 11 to receive the insulation oil discharged from the X-ray tube module 100 by the waste oil vacuum pressure.
  • connection vacuum tube 13 connects the waste oil vacuum pump 11 and the collection housing 12.
  • a valve (not shown) may be provided between the waste oil vacuum pump 11 and the collection housing 12 to select whether the waste oil vacuum pressure is transmitted.
  • the discharge insulating oil pipe 14 connects the collection housing 12 and the buffer unit 50.
  • a valve (not shown) may be provided between the collection housing 12 and the buffer unit 50 to select whether to move the insulating oil.
  • the discharge insulating oil pipe 14 is coupled to the unit connection portion 54 to be described later.
  • the waste oil collection unit 10 is a waste oil housing 15 for storing the insulating oil contained in the collection housing 12, and a waste oil pipe 16 for connecting the collection housing 12 and the waste oil housing 15. And, it may further include a waste oil transfer motor 17 for moving the insulating oil contained in the collection housing 12 to the waste oil housing (15). A valve (not shown) for selecting whether to move the insulating oil may be provided between the collection housing 12 and the waste oil housing 15.
  • the insulating oil connection part 102 is directed toward the lower side of the X-ray tube module 100.
  • the waste oil vacuum pump 11 is operated to impart waste oil vacuum pressure to the collection housing 12
  • the insulating oil accommodated in the X-ray tube module 100 by waste oil vacuum pressure causes the buffer unit 50 to operate.
  • the insulating oil of the collection housing 12 may be moved to the waste oil housing 15 through the waste oil pipe 16 according to the operation of the waste oil transfer motor 17.
  • the defoaming supply unit 20 may be divided into a first supply unit 30 and a second supply unit 40.
  • the first supply unit 30 is coupled to one side of the buffer unit 50.
  • the first advanced unit 30 accommodates a new insulating oil for supplying the X-ray tube module (100).
  • the first supply unit 30 is a defoaming housing 31 in which insulating oil for supplying the X-ray tube module 100 is accommodated, and a supply insulating oil pipe connecting the buffer unit 50 and the defoaming housing 31. (34). Between the defoaming housing 31 and the buffer unit 50 may be provided with a valve (not shown) for selecting whether to move the insulating oil.
  • the first supply unit 30 and the degassing vacuum pump 32 for applying a vacuum pressure to the degassing housing 31 so that the insulating oil contained in the degassing housing 31 is defoamed, and the degassing housing 31 and The degassing vacuum pump 32 may further include a degassing vacuum tube 33. Between the degassing housing 31 and the degassing vacuum pump 32 may be provided with a valve (not shown) for selecting whether to transfer the vacuum pressure.
  • the vacuum pressure applied to the first supply unit 30 is higher than the vacuum pressure applied to the second supply unit 40, whereby new insulating oil of the first supply unit 30 is supplied to the buffer unit 50. To move smoothly.
  • the first supply unit 30 is a supply pipe for connecting the insulating oil housing 35, the insulating oil housing 35 for receiving the insulating oil for supply to the defoaming housing 31, the defoaming housing 31 and the insulating oil housing 35 ( 36) may be further included.
  • a valve (not shown) for selecting whether to move the insulating oil may be provided between the defoaming housing 31 and the insulating oil housing 35.
  • the second supply unit 40 is coupled to the other side of the buffer unit 50.
  • the second supply unit 40 defoases the new insulating oil contained in the first supply unit 30 to the X-ray tube module 100 by a vacuum pressure.
  • the second supply unit 40 includes a supply vacuum pump 41 for generating a vacuum pressure, and the buffer unit 50 so that the vacuum pressure generated in the supply vacuum pump 41 is applied to the buffer unit 50. And a unit connection pipe 44 connecting the supply vacuum pump 41. Between the buffer unit 50 and the supply vacuum pump 41 may be provided with a valve (not shown) for selecting whether to transfer the vacuum pressure.
  • the second supply unit 40 has a vacuum housing 42 which is connected to the buffer unit 50 by the unit connecting pipe 44 and the vacuum pressure generated by the supply vacuum pump 41 is It may further include a connection vacuum pipe 43 for connecting the supply vacuum pump 41 and the vacuum housing 42 to be provided to the vacuum housing 42 and the buffer unit 50. Between the buffer unit 50 and the vacuum housing 42 may be provided with a valve (not shown) for selecting whether to transfer the vacuum pressure. Between the supply vacuum pump 41 and the vacuum housing 42 may be provided with a valve (not shown) for selecting whether to transfer the vacuum pressure.
  • the insulating oil connection part 102 is directed toward the upper side of the X-ray tube module 100.
  • the degassing housing 31 since the vacuum pressure is applied to the degassing housing 31 according to the operation of the degassing vacuum pump 32, the degassing housing 31 is transferred as well as the new insulating oil contained in the insulating oil housing 35.
  • the new insulating oil contained in (31) can be defoamed first.
  • the vacuum pressure is applied to the vacuum housing 42 and the buffer unit 50 according to the operation of the supply vacuum pump 32, the X-ray tube module receives new insulating oil contained in the first supply unit 30. It can be moved to (100), it is possible to secondary defoaming the new insulating oil accommodated in the buffer unit 50 or the X-ray tube module (100).
  • the insulating oil may be circulated in the X-ray tube module 100 as the circulation motor (not shown) is operated by an applied power source.
  • the circulation of insulating oil can be divided into normal cycle and down cycle.
  • the normal circulation is the operation of the circulation motor (not shown) according to the rated power, and as the insulating oil is circulated in the X-ray tube module 100, bubbles or foreign substances remaining inside the X-ray tube module 100 are new. Mix with insulating oil.
  • the waste oil collection unit 10 By operating the waste oil collection unit 10 to discharge the insulating oil from the X-ray tube module 100, it is possible to completely remove bubbles or foreign matter remaining in the X-ray tube module 100.
  • the down circulation is the operation of the circulation motor (not shown) in a state where the output is lowered, and as the insulating oil is circulated inside the X-ray tube module 100, new insulating oil accommodated in the X-ray tube module 100 is second.
  • degassing secondary defoaming can be made quickly and easily.
  • the buffer unit 50 includes a buffer housing 51, a buffer fixing portion 52, a branch connection portion 53, and a unit connection portion 54.
  • the buffer housing 51 is a hollow enclosure, and vacuum pressure is applied by the waste oil collecting unit 10 or the defoaming unit 20.
  • the buffer housing 51 may be made of a transparent or translucent material to visually check the movement state of the insulating oil or to observe the inside of the buffer housing.
  • a visual confirmation unit (not shown) may be provided in the buffer housing 51 to visually check the movement state of the insulating oil or to observe the inside of the buffer housing.
  • the buffer fixing unit 52 is provided at one side of the buffer housing 51.
  • the buffer fixing unit 52 communicates the X-ray tube module 100 and the buffer housing 51.
  • the buffer fixing part 52 is coupled to the insulating oil connection part 102.
  • the branch connection part 53 branches off from the buffer fixing part 52.
  • the buffer connecting portion 53 forms a path through which the insulating oil moves.
  • the supply insulating oil pipe 34 is coupled to the buffer connection portion 53.
  • the unit connection part 54 is provided on the other side of the buffer housing 51.
  • the discharge connection oil pipe 14 or the unit connection pipe 44 is coupled to the unit connection part 54.
  • the unit connection part 54 is arranged below the insulating oil connection part 102.
  • the X-ray tube module 100 is inverted so that the insulating oil connecting unit 102 faces the lower side of the X-ray tube module 100.
  • the unit connecting portion 54 may be disposed below the insulating oil connecting portion 102.
  • the unit connecting portion 54 is disposed above the insulating oil connecting portion 102.
  • the X-ray tube module 100 is inverted so that the insulating oil connecting part 102 faces the upper side of the X-ray tube module 100.
  • the unit connecting portion 54 may be disposed above the insulating oil connecting portion 102.
  • Insulating oil replacement apparatus of the X-ray tube module may further include a pressure adjusting unit (60).
  • the pressure adjusting unit 60 is coupled to the pressure adjusting unit 104 provided in the X-ray tube module 100.
  • the pressure adjusting unit 60 applies a predetermined pressure to the new insulating oil accommodated in the X-ray tube module 100.
  • the pressure adjusting unit 60 may be accommodated in the X-ray tube module 100 to apply a predetermined pressure to the new insulating oil degassed and adjust the pressure inside the X-ray tube module 100.
  • the pressure adjusting unit 60 includes a compressor 61 for generating a pressure, a restructor 62 for adjusting a pressure generated by the compressor 61 to a predetermined pressure, the compressor 61 and the recurator.
  • the X-ray tube module 100 is to be coupled to the adjustment connector 65 for the connection with the adjustment pressure tube (64).
  • the adjusting connector 65 is coupled to the pressure adjusting unit 104 provided in the X-ray tube module 100.
  • a valve (not shown) for selecting whether to transfer a vacuum pressure may be provided between the compressor 61 and the regulator 62.
  • a valve (not shown) for selecting whether to transfer the vacuum pressure may be provided between the regulator and the pressure adjusting unit 104.
  • the predetermined pressure is provided to the X-ray tube module 100 so that the new insulating oil accommodated in the X-ray tube module 100 receives a predetermined pressure. To maintain.
  • the buffer unit 50 is separated from the X-ray tube module 100, and then the connection plug 101 is coupled to one side of the X-ray tube module 100 to close the insulating oil connection unit 102. have.
  • the adjusting connector 65 in the pressure adjusting unit 104 can finish the insulating oil replacement operation.
  • Insulating oil replacement apparatus of the X-ray tube module may further include a down transformer (80).
  • the down transformer 80 is provided in the X-ray tube module 100 to lower the output of the circulation motor (not shown) for circulating the insulating oil. Then, the output of the circulation motor (not shown) is lowered according to the operation of the down transformer 80 to down-circulate the new insulating oil accommodated in the X-ray tube module 100. According to the down circulation, the secondary defoaming can be performed quickly and easily while stabilizing the secondary defoaming of the new insulating oil accommodated in the X-ray tube module 100.
  • Insulating oil replacement apparatus of the X-ray tube module may further include a reverse unit (92).
  • the inverting unit 92 is located at the position of the insulating oil connection unit 102 according to the combination of the waste oil collection unit 10 and the buffer unit 50 or the defoaming supply unit 20 and the buffer unit 50. Invert the X-ray tube module 100 in the workbench 90 so as to change.
  • the reversing unit 92 is operated by a user's manual operation or applied power to invert the X-ray tube module 100 in the work table 90.
  • the X-ray tube module 100 is coupled to the work table 90 via a mounting bracket 91, so that the reversing unit 92 inverts the X-ray tube module 100 at the work table 90.
  • the mounting bracket 91 is fixedly coupled to the mounting connector 103 provided in the X-ray tube module 100, and the inversion unit 92 is rotatably coupled to the work table 90.
  • the mounting bracket 91 is fixedly coupled to the inversion unit 92, so that the inversion unit 92 may invert the X-ray tube module 100 at the work table 90.
  • the insulating oil replacement device of the X-ray tube module may further include a control unit (not shown) for controlling the operation of the waste oil collection unit 10 and the defoaming unit 20. have.
  • the control unit (not shown) may control the operation of at least one of the pressure adjusting unit 60, the down transformer 80, and the inversion unit 92.
  • the control unit may control the overall insulating oil replacement method of the X-ray tube module according to an embodiment of the present invention to be described later by the applied power.
  • the waste oil collection unit 10 may further include a selection valve (not shown) for selecting the combination of the buffer unit 50 or the combination of the defoaming unit 20 and the buffer unit 50.
  • the selection valve may select the discharge insulating oil pipe 14 or the supply insulating oil pipe 34 from the unit connection part 54.
  • the selection valve interconnects the unit connection part 54, the discharge insulating oil pipe 14, and the supply insulating oil pipe 34, and discharges the insulating oil from the X-ray tube module 100.
  • the unit connecting portion 54 and the discharge insulating oil pipe 14 are in communication with each other, and when the insulating oil is supplied to the X-ray tube module 100, the unit connecting part 54 and the supply insulating oil pipe 34 This can be made to communicate with each other.
  • the mounting bracket 91 is fixed to the mounting connector 103, the mounting bracket 91 to the inversion unit 92 provided on the work table 90 ) To rotatably couple the X-ray tube module 100 to the work table 90.
  • the insulating oil may leak from the insulating oil connection part 102, the insulating oil connection part 102 is positioned above the X-ray tube module 100.
  • connection plug 101 is separated from the X-ray tube module 100, and the buffer fixing tube 52 is connected to the insulating oil connecting portion 102.
  • the waste oil collection unit 10 is coupled to the buffer unit 50, the discharge insulating oil pipe 14 is coupled to the branch connection portion 54 Be sure to
  • the inverting unit 92 is operated to rotate the X-ray tube module 100 such that the insulating oil connecting part 102 faces the lower side of the X-ray tube module 100 as shown in FIG. 3. Then, the insulating oil accommodated in the X-ray tube module 100 is moved to the buffer housing 51.
  • the insulation oil contained in the buffer housing 51 by the waste oil vacuum pressure is moved to the collection housing 12 via the discharge insulation oil pipe 14.
  • the insulating oil contained in the collection housing 12 is moved to the waste oil housing 15 via the waste oil pipe 16 according to the operation of the waste oil transfer motor 17.
  • the inverting unit 92 When all the insulating oil contained in the buffer housing 51 is discharged, the inverting unit 92 is operated to move the insulating oil connecting part 102 to the upper side of the X-ray tube module 100. Rotate
  • the defoaming vacuum pump 32 When the defoaming vacuum pump 32 is operated, new insulating oil contained in the insulating oil housing 35 is moved to the defoaming housing 31 via the supply pipe 36.
  • the insulating oil contained in the defoaming housing 31 may be first defoamed according to the operation of the defoaming vacuum pump 32.
  • the insulating oil contained in the defoaming housing 31 is moved to the X-ray tube module 100 and the buffer housing 51 via the supply insulating oil pipe 34.
  • the circulation pump (not shown)
  • the new insulating oil can be stably introduced into the X-ray tube module 100, the new insulating oil can be circulated normally in the X-ray tube module (100).
  • a new insulating oil is supplied to the X-ray tube module 100 and the buffer housing 51 through the supply of the insulating oil
  • the defoaming vacuum pump 32 in the new insulating oil can be secondary defoaming.
  • the X-ray tube module 100 is filled with a new insulating oil
  • the buffer housing 51 is filled with a new insulating oil 40% to 70% or less of the total volume.
  • the new insulating oil Since the new insulating oil is defoamed in a state in which the new insulating oil is filled in the buffer housing 51, the new insulating oil is secondly defoamed in response to bubbles discharged according to the defoaming of the insulating oil filled in the X-ray tube module 100. To be supplied to the 100, the X-ray tube module 100 can maintain a state filled with new insulating oil.
  • the X-ray tube module 100 by pivoting the X-ray tube module 100 from side to side based on the state (initial installation state) of the X-ray tube module 100 upright through the inversion unit 92, Bubbles generated from can be discharged stably. More specifically, the X-ray tube module 100 may be pivoted between -30 degrees and 30 degrees through the inversion unit 92. In addition, the X-ray tube module 100 may be pivoted between -20 degrees and 20 degrees through the inversion unit 92. In addition, the X-ray tube module 100 may be pivoted between -15 degrees and 15 degrees through the inversion unit 92. In addition, the X-ray tube module 100 may be pivoted between -10 degrees and 10 degrees through the inversion unit 92.
  • the X-ray tube module 100 may be pivoted between -5 degrees and 5 degrees through the inversion unit 92. When it is out of the allowable range of the pivot movement, new insulating oil contained in the buffer housing 51 can be prevented from flowing back to the unit connecting portion 54.
  • the X-ray tube module 100 in the upright state
  • the pressure adjusting unit 60 is coupled to the pressure adjusting part 104 so that the adjusting connector 65 and the adjusting pressure tube 64 are sequentially coupled.
  • a predetermined pressure is applied to the pressure adjusting unit 104, and the predetermined pressure may be applied to the new insulating oil accommodated in the X-ray tube module 100.
  • the buffer unit 50 is separated from the X-ray tube module 100 in a state where a predetermined pressure is applied to the new insulating oil, and then the insulating oil connecting part 102 is closed by using the connecting plug 101. Disconnect the adjusting connector 65 from the pressure adjusting unit 104. At this time, the state of the new insulating oil accommodated in the X-ray tube module 100 through the tube window 106 can be visually confirmed.
  • the new insulating oil accommodated in the X-ray tube module 100 is given a predetermined pressure in a state in which bubbles and foreign substances are not mixed, thereby stably coping with thermal deformation.
  • FIG. 7 is a view showing a method of replacing the insulating oil of the X-ray tube module according to an embodiment of the present invention.
  • the X-ray tube module is supplied or discharged through the insulating oil connection unit 102 provided in the X-ray tube module 100. It is a method of replacing the insulating oil accommodated in (100). Insulating oil replacement method of the X-ray tube module according to an embodiment of the present invention can use the insulating oil replacement apparatus of the X-ray tube module according to an embodiment of the present invention described above.
  • Insulating oil replacement method of the X-ray tube module includes a waste oil collection step (S2), internal washing step (S3), insulating oil injection step (S4), vacuum degassing step (S5), At least one of the external cleaning step (S1), the pressure adjusting step (S6), and an inversion step (not shown) may be further included.
  • the exterior cleaning step S1 cleans the exterior of the X-ray tube module 100.
  • the exterior cleaning step S1 may be performed prior to the waste oil collection step S2.
  • foreign matter may be removed from the exterior of the X-ray tube module 100 using the compressor 61 and the connection pressure tube 63.
  • the exterior cleaning step (S1) may maximize the heat dissipation of the heat exchange part 105 by removing the foreign matter attached to the heat exchange part 105. As the cleaning step S1 is performed, foreign matters may be prevented from flowing into the X-ray tube module 100 through the insulating oil connection unit 102 and the pressure adjusting unit 104.
  • the X-ray tube module 100 which has undergone the external cleaning step S1, is coupled to the work table 90 via the mounting bracket 91.
  • the X-ray tube module 100 that has undergone the external cleaning step S1 may be coupled to the work table 90 by the installation process of the X-ray tube module 100 described above.
  • the waste oil collection step (S2) discharges the insulating oil contained in the X-ray tube module 100 using a vacuum pressure.
  • the waste oil collection step (S2) may discharge the insulating oil accommodated in the X-ray tube module 100 through the above-described process of discharging the insulating oil.
  • new insulating oil is supplied to the X-ray tube module 100 using vacuum pressure, and the X-ray tube module 100 is used by vacuum pressure. Drain the insulating oil from the In the internal washing step S3, a new insulating oil is supplied to the X-ray tube module 100 using vacuum pressure by sequentially performing the above-described supply process of the insulating oil and the discharge process of the insulating oil. To discharge the insulating oil from the X-ray tube module 100.
  • the internal washing step S3 By repeating the internal washing step (S3), it is possible to remove the foreign substances in the X-ray tube module 100 by discharging the foreign substances generated in the X-ray tube module (100).
  • the internal washing step S3 may be performed 2 to 4 times.
  • the internal washing step (S3) is a washing supply step (S31) for supplying a new insulating oil to the X-ray tube module 100 using a vacuum after the waste oil collection step (S2), and the washing supply step (S31) After passing through) may include a discharge step (S33) for discharging the insulating oil from the X-ray tube module 100 using a vacuum pressure.
  • the internal washing step (S3) is a normal circulation step of circulating the insulating oil accommodated in the X-ray tube module 100 as the insulating oil is accommodated in the X-ray tube module 100 after the washing supply step (S31). It may further include (S32).
  • the internal washing step (S3) may further include a washing and defoaming step (S34) for defoaming the insulating oil for supply to the X-ray tube module 100, prior to the washing supply step (S31).
  • a washing and defoaming step (S34) for defoaming the insulating oil for supply to the X-ray tube module 100, prior to the washing supply step (S31).
  • the internal washing step (S3) may further include a repeat control step (S35) for determining the number of iterations from the washing supply step (S31) to the discharge step (S33).
  • the iterative control step (S35) may determine the number of iterations from the washing defoaming step (S34) to the discharge step (S33).
  • the internal washing step (S3) may further include a repeating closing step (S36) for selecting whether or not the repetition number of times in accordance with the repeating control step (S35).
  • a repeating closing step (S36) for selecting whether or not the repetition number of times in accordance with the repeating control step (S35).
  • the insulating oil injection step (S4) passes through the internal washing step (S3) and then supplies new insulating oil to the X-ray tube module 100 using a vacuum pressure.
  • new insulating oil may be supplied to the X-ray tube module 100 using a vacuum pressure through the supplying of the insulating oil.
  • the insulating oil injection step (S4) is a first defoaming step (S41) and the first degassing step (S41) and the first degassing step using a vacuum pressure after the first washing step (S3), and vacuum pressure
  • the insulating oil supply step (S42) for supplying the new insulating oil degassed first using the vacuum pressure to the X-ray tube module 100.
  • the new insulating oil degassed first is filled in the buffer housing 51 by about 40% to 70%.
  • the vacuum defoaming step (S5) is subjected to the insulating oil injection step (S4), and then defoaming the new insulating oil accommodated in the X-ray tube module (100).
  • the vacuum defoaming step S5 may secondary defoaming of the new insulating oil accommodated in the X-ray tube module 100 through the degassing process of the new insulating oil described above.
  • the vacuum defoaming step (S5) is a new cycle circulating in the X-ray tube module 100 and the down circulation step (S51) for circulating the new insulating oil slower than the normal circulation in the state where the new insulating oil is filled in the X-ray tube module 100 It may include a second defoaming step (S52) for secondary defoaming of the insulating oil.
  • the vacuum defoaming step (S5) is the X-ray tube module on the basis of the state (initial installation state) of the X-ray tube module 100 in the down circulation step (S51) or the second defoaming step (52). It may further include a pivot step (not shown) for pivoting the 100 to the left and right.
  • the pressure adjusting step (S6) passes through the vacuum defoaming step (S5), and gives a predetermined pressure to the new insulating oil accommodated in the X-ray tube module 100.
  • the pressure adjusting step S6 may apply a predetermined pressure to the new insulating oil accommodated in the X-ray tube module 100 through the pressure adjusting process of the defoamed insulating oil described above.
  • the inversion step may be performed in the work table 90 such that the position of the insulating oil connection part 102 is changed according to the discharge of the insulating oil from the X-ray tube module 100 or the supply of the insulating oil to the X-ray tube module 100. Inverts the X-ray tube module 100.
  • the inversion step (not shown) is included in the waste oil collection step (S2), the internal washing step (S3), and the insulating oil injection step (S4), respectively, to supply the insulating oil and the insulating oil through the inversion unit 92.
  • the X-ray tube module 100 is inverted so that the position of the insulating oil connection part 102 is changed in the discharge process.
  • waste oil collection unit 10 and the defoaming supply unit 20 are stably coupled to the X-ray tube module 100, and the vacuum pressure may be prevented from leaking.
  • a stable vacuum pressure is applied to the X-ray tube module 100, stabilizes movement of the insulating oil, and prevents backflow of the insulating oil toward the unit connection part 54 during defoaming.
  • the vacuum oil facilitates the discharge of the insulating oil contained in the X-ray tube module 100, prevents the insulating oil from flowing back to the waste oil vacuum pump 11 side, and the insulating oil discharged from the X-ray tube module 100 Can be disposed of stably.
  • the new insulating oil is safely supplied to the X-ray tube module 100, and it is possible to prevent bubbles from being contained in the new insulating oil through a second defoaming process.
  • the X-ray tube module 100 simplifies the supply of the insulating oil and the discharge of the insulating oil, keeps the vacuum pressure of the buffer housing 51 stable, and reduces the number of repeated operations of the defoaming unit 20 to reduce the cost. Can be saved.
  • the X-ray tube module 100 may prevent spits from occurring when X-rays are generated due to viscosity or bubbles or foreign substances, and prevent structural defects (such as tearing of the jars and loosening bolts) inside the X-ray tube module 100.
  • the new insulating oil accommodated in the can be kept stable at a predetermined pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Abstract

본 발명은 진공압을 이용한 절연유의 이동 및 탈포를 통해 엑스선관모듈에서 절연유의 공급과 배출을 원활하게 하고, 엑스선관모듈에서 새롭게 충전된 절연유에 이물질 및 기포가 혼합되는 것을 방지할 수 있는 엑스선관모듈의 절연유 교체장치와 절연유 교체방법에 관한 것이다.

Description

엑스선관모듈의 절연유 교체장치와 절연유 교체방법
본 발명은 엑스선관모듈의 절연유 교체장치와 절연유 교체방법에 관한 것으로, 보다 구체적으로는 진공압을 이용한 절연유의 이동 및 탈포를 통해 엑스선관모듈에서 절연유의 공급과 배출을 원활하게 하고, 엑스선관모듈에서 새롭게 충전된 절연유에 이물질 및 기포가 혼합되는 것을 방지할 수 있는 엑스선관모듈의 절연유 교체장치와 절연유 교체방법에 관한 것이다.
일반적으로, 엑스선관모듈은 진공관에 설치된 음극으로부터 타켓인 양극을 향해서 전자를 투사하여 엑스선을 발생시키는 장치이다. 엑스선관모듈은 비파괴 검사용이나 의료진단용 또는 화학분석용 등 다양한 검사장치나 진단장치에 사용된다.
상기 엑스선관모듈은 회전양극형과 고정양극형으로 크게 구분할 수 있다.
상기 회전양극형 엑스선관모듈은 순간적인 큰 부하에 견딜 수 있기 때문에 엑스선 촬영을 수반하는 장치에 넓게 사용할 수 있다. 또한, 고정양극형 엑스선관모듈은 순간적인 부하는 작지만 비교적 장시간에 걸쳐 사용할 수 있기 때문에 의료용 엑스선 투시장치나 산업 현장에서의 비파괴 검사장치 등에 사용할 수 있다.
여기서, 상기 엑스선관모듈에는 엑스선을 발생시키는 엑스레이튜브가 내장되고, 절연유가 충전된다. 그러면, 상기 엑스선관모듈에 충전된 절연유는 상기 엑스선 발생에 따른 열을 흡수하여 상기 엑스선관모듈의 외부로 방출한다.
이때, 상기 엑스선관모듈에 충전된 절연유는 반복적인 열의 흡수와 열의 방출로 인해 점도가 떨어지고, 카본 등과 같은 이물질이 발생됨에 따라 절연성이 저하되므로, 상기 엑스관모듈에서 절연유를 교체해야 한다.
하지만, 상기 엑스선관모듈에서 절연유를 교체하는 경우, 교체하고자 하는 절연유와 새로운 절연유의 혼합에 따라 이물질의 제거가 불확실하고, 새로게 충전된 절연유의 탈포 작업이 어려운 문제점이 있었다.
<선행기술문헌>
<특허문헌>
(특허문헌 1) 대한민국 공개특허공보 제2001-0087942호(발명의 명칭 : 고정양극형 엑스선관 장치, 2001. 09. 26. 공개)
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 진공압을 이용한 절연유의 이동 및 탈포를 통해 엑스선관모듈에서 절연유의 공급과 배출을 원활하게 하고, 엑스선관모듈에서 새롭게 충전된 절연유에 이물질 및 기포가 혼합되는 것을 방지할 수 있는 엑스선관모듈의 절연유 교체장치와 절연유 교체방법을 제공함에 있다.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 엑스선관모듈의 절연유 교체장치는 엑스선관모듈에 구비된 절연유연결부를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈에 수용된 절연유를 교체하는 장치에 있어서, 상기 절연유연결부에서 배출되는 절연유를 진공압으로 수집하는 폐유수집유닛; 진공압으로 새로운 절연유를 상기 엑스선관모듈에 공급함은 물론 새로운 절연유를 탈포하는 탈포공급유닛; 상기 폐유수집유닛 또는 상기 탈포공급유닛이 결합되고, 상기 절연유연결부에 결합되며, 진공압에 따른 절연유의 이동 경로를 형성하는 버퍼유닛; 및 상기 버퍼유닛이 결합된 상기 엑스선관모듈이 반전 가능하게 결합되는 작업대;를 포함한다.
이때, 상기 폐유수집유닛이 상기 버퍼유닛에 결합되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 하측을 향하도록 하고, 상기 탈포공급유닛이 상기 버퍼유닛에 결합되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 상측을 향하도록 한다.
여기서, 상기 폐유수집유닛은, 폐유진공압을 발생시키는 폐유진공펌프; 상기 폐유진공압에 의해 상기 엑스선관모듈에서 배출되는 절연유를 수용하는 수집하우징; 상기 폐유진공펌프와 상기 수집하우징을 연결하는 접속진공관; 및 상기 수집하우징과 상기 버퍼유닛을 연결하는 배출절연유관;을 포함한다.
여기서, 상기 탈포공급유닛은, 상기 버퍼유닛의 일측에 결합되고, 상기 엑스선관모듈에 공급하기 위한 새로운 절연유가 수용되는 제1공급유닛; 및 상기 버퍼유닛의 타측에 결합되고, 진공압에 의해 상기 제1공급유닛에 수용된 새로운 절연유를 상기 엑스선관모듈에 공급 탈포하는 제2공급유닛;을 포함한다.
여기서, 상기 제1공급유닛은, 상기 엑스선관모듈에 공급하기 위한 절연유가 수용되는 탈포하우징; 및 상기 버퍼유닛과 상기 탈포하우징을 연결하는 공급절연유관;을 포함한다.
여기서, 상기 제1공급유닛은, 상기 탈포하우징에 수용된 절연유가 탈포되도록 상기 탈포하우징에 진공압을 부여하는 탈포진공펌프; 및 상기 탈포하우징과 상기 탈포진공펌프를 연결하는 탈포진공관;을 더 포함하고, 상기 제1공급유닛에 부여되는 진공압은 상기 제2공급유닛에 부여되는 진공압보다 높다.
여기서, 상기 제2공급유닛은, 진공압을 발생시키는 공급진공펌프; 및 상기 공급진공펌프에서 발생된 진공압이 상기 버퍼유닛에 부여되도록 상기 버퍼유닛과 상기 공급진공펌프를 연결하는 유닛연결관;을 포함한다.
여기서, 상기 제2공급유닛은, 상기 유닛연결관에 의해 상기 버퍼유닛과 연결되는 진공하우징; 및 상기 공급진공펌프에서 발생된 진공압이 상기 진공하우징과 상기 버퍼유닛에 부여되도록 상기 공급진공펌프와 상기 진공하우징을 연결하는 연결진공관;을 더 포함한다.
여기서, 상기 버퍼유닛은, 상기 폐유수집유닛 또는 상기 탈포공급유닛에 의해 진공압이 부여되는 중공의 버퍼하우징; 상기 버퍼하우징의 일측에 구비되고, 상기 엑스선관모듈과 상기 버퍼하우징을 연통시키는 버퍼고정부; 상기 버퍼고정부에서 분기되는 분기접속부; 및 상기 버퍼하우징의 타측에 구비되는 유닛접속부;를 포함하고, 상기 폐유수집유닛이 상기 버퍼유닛에 결합되는 경우, 상기 유닛접속부는 상기 절연유연결부의 하측에 배치되며, 상기 탈포공급유닛이 상기 버퍼유닛에 결합되는 경우, 상기 유닛접속부는 상기 절연유연결부의 상측에 배치된다.
본 발명에 따른 엑스선관모듈의 절연유 교체장치는 상기 엑스선관모듈에 구비된 압력조정부에 결합되고, 상기 엑스선관모듈에 수용된 새로운 절연유에 대해 기설정된 압력을 부여하는 압력조정유닛;을 더 포함한다.
본 발명에 따른 엑스선관모듈의 절연유 교체장치는 상기 폐유수집유닛과 상기 버퍼유닛의 결합 또는 상기 탈포공급유닛과 상기 버퍼유닛에 결합에 따라 상기 절연유연결부의 위치가 바뀌도록 상기 작업대에서 상기 엑스선관모듈을 반전시키는 반전유닛;을 더 포함한다.
본 발명에 따른 엑스선관모듈의 절연유 교체방법은 엑스선관모듈에 구비된 절연유연결부를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈에 수용된 절연유를 교체하는 방법에 있어서, 진공압을 이용하여 상기 엑스선관모듈에 수용된 절연유를 배출시키는 폐유수집단계; 상기 폐유수집단계를 거친 다음, 진공압을 이용하여 상기 엑스선관모듈에 새로운 절연유를 공급하였다가, 진공압을 이용하여 상기 엑스선관모듈에서 절연유를 배출시키는 내부세척단계; 상기 내부세척단계를 거친 다음, 진공압을 이용하여 새로운 절연유를 상기 엑스선관모듈에 공급하는 절연유주입단계; 및 상기 절연유주입단계를 거친 다음, 진공압을 이용하여 상기 엑스선관모듈에 수용된 새로운 절연유를 탈포하는 진공탈포단계;를 포함하고, 상기 엑스선관모듈에서 절연유가 배출되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 하측을 향하도록 하고, 상기 엑스선관모듈로 절연유가 공급되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 상측을 향하도록 한다.
본 발명에 따른 엑스선관모듈의 절연유 교체방법은 상기 진공탈포단계를 거친 다음, 상기 엑스선관모듈에 수용된 새로운 절연유에 대해 기설정된 압력을 부여하는 압력조정단계;를 더 포함한다.
본 발명에 따른 엑스선관모듈의 절연유 교체방법은 상기 엑스선관모듈에서의 절연유 배출 또는 상기 엑스선관모듈로의 절연유 공급에 따라 상기 절연유연결부의 위치가 바뀌도록 상기 엑스선관모듈을 반전시키는 반전단계;를 더 포함한다.
본 발명에 따른 엑스선관모듈의 절연유 교체장치와 절연유 교체방법에 따르면, 진공압을 이용한 절연유의 이동 및 탈포를 통해 엑스선관모듈에서 절연유의 공급과 배출을 원활하게 하고, 엑스선관모듈에서 새롭게 충전된 절연유에 이물질 및 기포가 혼합되는 것을 방지할 수 있다.
또한, 본 발명은 엑스선관모듈에 폐유수집유닛과 탈포유닛이 안정되게 결합되고 진공압이 누설되는 것을 방지할 수 있다.
또한, 본 발명은 엑스선관모듈에 안정적인 진공압이 부여되고, 절연유의 이동을 안정화시키며, 탈포 과정에서 절연유가 유닛접속부 측으로 역류하는 것을 방지할 수 있다.
또한, 본 발명은 진공압에 의해 엑스선관모듈에 수용된 절연유의 배출을 용이하게 하고, 절연유가 폐유진공펌프 측으로 역류하는 것을 방지하며, 엑스선관모듈에서 배출된 절연유를 안정하게 폐기시킬 수 있다.
또한, 본 발명은 엑스선관모듈에 새로운 절연유를 안전하게 공급하며, 2차에 걸친 탈포 공정을 통해 새로운 절연유에 기포가 함유되는 것을 방지할 수 있다.
또한, 본 발명은 엑스선관모듈에 공급되는 새로운 절연유를 1차 탈포된 상태로 공급할 수 있고, 절연유가 이동하면서 기포가 함유되는 것을 방지할 수 있다.
또한, 본 발명은 새로운 절연유가 외기에 노출되는 것을 방지하고, 새로운 절연유에 이물질이 혼입되는 것을 방지할 수 있다.
또한, 본 발명은 버퍼하우징의 진공압을 조절하고, 새로운 절연유의 공급을 원활하게 하며, 엑스선관모듈에 수용된 새로운 절연유를 2차 탈포할 수 있다.
또한, 본 발명은 엑스선관모듈에서 절연유의 공급과 절연유의 배출을 간소화시키고, 버퍼하우징의 진공압을 안정되게 유지시키며, 탈포유닛의 반복 동작 횟수를 줄여 비용을 절감할 수 있다.
또한, 본 발명은 엑스선관모듈 내부의 압력을 안정화시키고, 절연유의 열변형에 용이하게 대응할 수 있으며, 절연유의 열변형에 따른 이물질 또는 기포 발생을 저하시킬 수 있다.
또한, 본 발명은 2차 탈포에 소요되는 시간을 줄이고, 절연유에 함유된 기포의 배출을 촉진시킬 수 있다.
또한, 본 발명은 엑스선관모듈의 설치 위치를 한정하고, 절연유의 이동을 안정화시키며, 엑스선관모듈에서 절연유의 공급과 절연유의 배출을 용이하게 할 수 있다.
또한, 본 발명은 가열된 절연유에서 열 방출을 용이하게 하고, 이물질이 엑스선관모듈 내부로 유입되는 것을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 엑스선관모듈을 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치를 도시한 블럭도이다.
도 3은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 폐유수집유닛의 설치 상태를 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 탈포유닛의 설치 상태를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 버퍼유닛을 도시한 사시도이다.
도 6은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 압력조정유닛을 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법을 도시한 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 엑스선관모듈의 절연유 교체장치와 절연유 교체방법의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.
도 1은 본 발명의 일 실시예에 따른 엑스선관모듈을 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치를 도시한 블럭도이며, 도 3은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 폐유수집유닛의 설치 상태를 도시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 탈포유닛의 설치 상태를 도시한 도면이며, 도 5는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 버퍼유닛을 도시한 사시도이고, 도 6은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치에서 압력조정유닛을 도시한 도면이다.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 진공압을 이용한 절연유의 이동 및 탈포를 통해 엑스선관모듈(100)에 수용된 절연유를 교체할 수 있다.
특히, 도 1에 도시된 바와 같이 상기 엑스선관모듈(100)의 일측에는 절연유가 공급 또는 배출되는 절연유연결부(102)가 구비된다. 상기 절연유연결부(102)에는 후술하는 버퍼유닛(50)이 결합될 수 있다. 상기 절연유연결부(102)는 연결마개(101)를 통해 개폐될 수 있다.
또한, 상기 엑스선관모듈(100)에는 후술하는 마운팅브라켓(91) 또는 후술하는 반전유닛(92)이 결합 고정되는 마운팅연결부(103)가 구비된다. 이때, 상기 마운팅연결부(103)에는 상기 엑스선관모듈(100)에 내장된 엑스선관에서 발생된 엑스선이 조사되는 튜브윈도우(106)가 구비될 수 있다.
또한, 상기 엑스선관모듈(100)의 타측에는 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 압력을 부여하기 위한 압력조정부(104)가 구비된다. 상기 압력조정부(104)에는 후술하는 압력조정유닛(60)이 결합될 수 있다. 압력조정유닛(60)을 통해 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 대해 기설정된 압력을 부여할 수 있다.
또한, 상기 엑스선관모듈(100)에는 상기 엑스선관모듈(100)의 방열 및 절연유의 방열을 위한 열교환부(105)가 구비될 수 있다.
또한, 상기 엑스선관모듈(100)에는 상기 엑스선관에 전원을 공급하기 위한 케이블접속부(107)가 구비될 수 있다.
도시되지 않았지만, 상기 엑스선관모듈(100)에는 수용된 절연유를 순환시키기 위한 순환펌프(미도시)가 구비될 수 있다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 상기 엑스선관모듈(100)에 구비된 상기 절연유연결부(102)를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈(100)에 수용된 절연유를 교체하는 장치이다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 상기 절연유연결부(102)에서 배출되는 절연유를 진공압으로 수집하는 폐유수집유닛(10)과, 진공압으로 새로운 절연유를 상기 엑스선관모듈(100)에 공급함은 물론 진공압으로 새로운 절연유를 탈포하는 탈포공급유닛(20)과, 상기 폐유수집유닛(10) 또는 상기 탈포공급유닛(20)이 결합되고, 상기 절연유연결부(102)에 결합되며, 진공압에 따른 절연유의 이동 경로를 형성하는 버퍼유닛(50)과, 상기 버퍼유닛(50)이 결합된 상기 엑스선관모듈(100)이 반전 가능하게 결합되는 작업대(90)를 포함한다.
이때, 상기 폐유수집유닛(10)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 하측을 향하도록 하고, 상기 탈포공급유닛(20)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 상측을 향하도록 한다. 이에 따라, 진공압에 의해 상기 엑스선관모듈(100)에서 절연유의 배출을 용이하게 함은 물론 진공압에 의해 상기 엑스선관모듈(100)로 새로운 절연유가 안정되게 공급되며 새로운 절연유를 탈포할 수 있다.
상기 폐유수집유닛(10)은 폐유진공펌프(11)와, 수집하우징(12)과, 접속진공관(13)과, 배출절연유관(14)을 포함한다.
상기 폐유진공펌프(11)는 폐유진공압을 발생시킨다.
상기 수집하우징(12)은 상기 폐유진공펌프(11)에 결합되어 상기 폐유진공압에 의해 상기 엑스선관모듈(100)에서 배출되는 절연유가 수용된다.
상기 접속진공관(13)은 상기 폐유진공펌프(11)와 상기 수집하우징(12)을 연결한다. 상기 폐유진공펌프(11)와 상기 수집하우징(12) 사이에는 폐유진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
상기 배출절연유관(14)은 상기 수집하우징(12)과 상기 버퍼유닛(50)을 연결한다. 상기 수집하우징(12)과 상기 버퍼유닛(50) 사이에는 절연유의 이동 여부를 선택하는 밸브(미도시)가 구비될 수 있다. 상기 배출절연유관(14)은 후술하는 유닛접속부(54)에 결합되도록 한다.
또한, 상기 폐유수집유닛(10)은 상기 수집하우징(12)에 수용된 절연유가 저장되는 폐유하우징(15)과, 상기 수집하우징(12)과 상기 폐유하우징(15)을 연결하는 폐유관(16)과, 상기 수집하우징(12)에 수용된 절연유를 상기 폐유하우징(15)으로 이동시키는 폐유이송모터(17)를 더 포함할 수 있다. 상기 수집하우징(12)과 상기 폐유하우징(15) 사이에는 절연유의 이동 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
그러면, 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 하측을 향하도록 한다. 그리고, 상기 폐유진공펌프(11)가 동작됨에 따라 상기 수집하우징(12)에 폐유진공압을 부여하므로, 폐유진공압에 의해 상기 엑스선관모듈(100)에 수용된 절연유는 상기 버퍼유닛(50)을 거쳐 상기 수집하우징(12)에 수용되도록 한다. 그리고, 상기 수집하우징(12)의 절연유는 상기 폐유이송모터(17)의 동작에 따라 상기 폐유관(16)을 거쳐 상기 폐유하우징(15)으로 이동될 수 있다.
상기 탈포공급유닛(20)은 제1공급유닛(30)과, 제2공급유닛(40)으로 구분할 수 있다.
상기 제1공급유닛(30)은 상기 버퍼유닛(50)의 일측에 결합된다. 상기 제1고급유닛(30)은 상기 엑스선관모듈(100)에 공급하기 위한 새로운 절연유가 수용된다.
상기 제1공급유닛(30)은 상기 엑스선관모듈(100)에 공급하기 위한 절연유가 수용되는 탈포하우징(31)과, 상기 버퍼유닛(50)과 상기 탈포하우징(31)을 연결하는 공급절연유관(34)을 포함한다. 상기 탈포하우징(31)과 상기 버퍼유닛(50) 사이에는 절연유의 이동 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
또한, 상기 제1공급유닛(30)은 상기 탈포하우징(31)에 수용된 절연유가 탈포되도록 상기 탈포하우징(31)에 진공압을 부여하는 탈포진공펌프(32)와, 상기 탈포하우징(31)과 상기 탈포진공펌프(32)를 연결하는 탈포진공관(33)을 더 포함할 수 있다. 상기 탈포하우징(31)과 상기 탈포진공펌프(32) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
이때, 상기 제1공급유닛(30)에 부여되는 진공압은 상기 제2공급유닛(40)에 부여되는 진공압보다 높게 함으로써, 상기 제1공급유닛(30)의 새로운 절연유가 상기 버퍼유닛(50)으로 원활하게 이동할 수 있도록 한다.
또한, 상기 제1공급유닛(30)은 상기 탈포하우징(31)에 공급하기 위한 절연유가 수용되는 절연유하우징(35)과, 상기 탈포하우징(31)과 상기 절연유하우징(35)을 연결하는 공급관(36)을 더 포함할 수 있다. 상기 탈포하우징(31)과 상기 절연유하우징(35) 사이에는 절연유의 이동 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
상기 제2공급유닛(40)은 상기 버퍼유닛(50)의 타측에 결합된다. 상기 제2공급유닛(40)은 진공압에 의해 상기 제1공급유닛(30)에 수용된 새로운 절연유를 상기 엑스선관모듈(100)에 공급 탈포한다.
상기 제2공급유닛(40)은 진공압을 발생시키는 공급진공펌프(41)와, 상기 공급진공펌프(41)에서 발생된 진공압이 상기 버퍼유닛(50)에 부여되도록 상기 버퍼유닛(50)과 상기 공급진공펌프(41)를 연결하는 유닛연결관(44)을 포함한다. 상기 버퍼유닛(50)과 상기 공급진공펌프(41) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
또한, 상기 제2공급유닛(40)은 상기 유닛연결관(44)에 의해 상기 버퍼유닛(50)과 연결되는 진공하우징(42)과, 상기 공급진공펌프(41)에서 발생된 진공압이 상기 진공하우징(42)과 상기 버퍼유닛(50)에 부여되도록 상기 공급진공펌프(41)와 상기 진공하우징(42)을 연결하는 연결진공관(43)을 더 포함할 수 있다. 상기 버퍼유닛(50)과 상기 진공하우징(42) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다. 상기 공급진공펌프(41)와 상기 진공하우징(42) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
그러면, 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 상측을 향하도록 한다. 그리고, 상기 탈포진공펌프(32)의 동작에 따라 상기 탈포하우징(31)에 진공압을 부여하므로, 상기 절연유하우징(35)에 수용된 새로운 절연유가 상기 탈포하우징(31)가 전달됨은 물론 상기 탈포하우징(31)에 수용된 새로운 절연유를 1차 탈포할 수 있다. 또한, 상기 공급진공펌프(32)의 동작에 따라 상기 진공하우징(42)과 상기 버퍼유닛(50)에 진공압을 부여하므로, 상기 제1공급유닛(30)에 수용된 새로운 절연유를 상기 엑스선관모듈(100)로 이동시킬 수 있고, 상기 버퍼유닛(50) 또는 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 2차 탈포할 수 있다.
여기서, 상기 엑스선관모듈(100)에 새로운 절연유가 수용되면, 인가되는 전원에 의해 상기 순환모터(미도시)가 동작됨에 따라 절연유를 상기 엑스선관모듈(100) 내부에서 순환시킬 수 있다. 절연유의 순환에는 정상순환과 다운순환으로 구분할 수 있다.
첫째, 정상순환은 정격전원에 따른 상기 순환모터(미도시)의 동작으로써, 절연유가 상기 엑스선관모듈(100) 내부에서 순환됨에 따라 상기 엑스선관모듈(100) 내부에 잔류하는 기포 또는 이물질이 새로운 절연유에 혼합되도록 한다. 상기 폐유수집유닛(10)을 동작시켜 상기 엑스선관모듈(100)에서 절연유를 배출시킴으로써, 상기 엑스선관모듈(100)의 내부에 잔류하는 기포 또는 이물질을 완전히 제거할 수 있다.
둘째, 다운순환은 출력이 강하된 상태에서 상기 순환모터(미도시)의 동작으로써, 절연유가 상기 엑스선관모듈(100) 내부에서 순환됨에 따라 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 2차로 탈포함에 있어서 2차 탈포를 신속하고 용이하게 할 수 있다.
상기 버퍼유닛(50)은 버퍼하우징(51)과, 버퍼고정부(52)와, 분기접속부(53)와, 유닛접속부(54)를 포함한다.
상기 버퍼하우징(51)은 중공의 함체로써, 상기 폐유수집유닛(10) 또는 상기 탈포유닛(20)에 의해 진공압이 부여된다. 육안으로 절연유의 이동 상태를 확인하거나 상기 버퍼하우징 내부를 관찰하기 위해 상기 버퍼하우징(51)은 투명 또는 반투명한 재질로 이루어질 수 있다. 또한, 육안으로 절연유의 이동 상태를 확인하거나 상기 버퍼하우징 내부를 관찰하기 위해 상기 버퍼하우징(51)에는 육안확인부(미도시)가 구비될 수 있다.
상기 버퍼고정부(52)는 상기 버퍼하우징(51)의 일측에 구비된다. 상기 버퍼고정부(52)는 상기 엑스선관모듈(100)과 상기 버퍼하우징(51)을 연통시킨다. 상기 버퍼고정부(52)는 상기 절연유연결부(102)에 결합되도록 한다.
상기 분기접속부(53)는 상기 버퍼고정부(52)에서 분기된다. 상기 버퍼접속부(53)는 절연유가 이동되는 경로를 형성한다. 상기 버퍼접속부(53)에는 상기 공급절연유관(34)이 결합되도록 한다.
상기 유닛접속부(54)는 상기 버퍼하우징(51)의 타측에 구비된다. 상기 유닛접속부(54)에는 상기 배출절연유관(14) 또는 상기 유닛연결관(44)이 결합되도록 한다.
이때, 상기 폐유수집유닛(10)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 유닛접속부(54)는 상기 절연유연결부(102)의 하측에 배치되도록 한다. 다시 말해, 상기 폐유수집유닛(10)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 엑스선관모듈(100)을 반전시켜 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 하측을 향하도록 함으로써, 상기 유닛접속부(54)는 상기 절연유연결부(102)의 하측에 배치될 수 있다.
또한, 상기 탈포공급유닛(20)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 유닛접속부(54)는 상기 절연유연결부(102)의 상측에 배치되도록 한다. 다시 말해, 상기 탈포공급유닛(20)이 상기 버퍼유닛(50)에 결합되는 경우, 상기 엑스선관모듈(100)을 반전시켜 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 상측을 향하도록 함으로써, 상기 유닛접속부(54)는 상기 절연유연결부(102)의 상측에 배치될 수 있다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 압력조정유닛(60)을 더 포함할 수 있다.
상기 압력조정유닛(60)은 상기 엑스선관모듈(100)에 구비된 압력조정부(104)에 결합된다. 상기 압력조정유닛(60)은 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 대해 기설정된 압력을 부여한다.
상기 압력조정유닛(60)은 상기 엑스선관모듈(100)에 수용되어 2차 탈포된 새로운 절연유에 대해 기설정된 압력을 부여하고, 상기 엑스선관모듈(100) 내부의 압력을 조정할 수 있다.
상기 압력조정유닛(60)은 압력을 발생시키는 콤프레셔(61)와, 상기 콤프레셔(61)에서 발생된 압력을 기설정된 압력으로 조정하는 레큘레이터(62)와, 상기 콤프레셔(61)와 상기 레큘레이터(62)를 연결하는 연결압력관(63)과, 상기 레큘레이터(62)와 상기 엑스선관모듈(100)을 연결하는 조정압력관(64)을 포함한다. 여기서, 상기 엑스선관모듈(100)에는 상기 조정압력관(64)과의 연결을 위해 조정커넥터(65)가 결합되도록 한다. 상기 조정커넥터(65)는 상기 엑스선관모듈(100)에 구비된 상기 압력조정부(104)에 결합된다. 상기 콤프레셔(61)와 상기 레귤레이터(62) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다. 또한, 상기 레귤레이터와 상기 압력조정부(104) 사이에는 진공압의 전달 여부를 선택하는 밸브(미도시)가 구비될 수 있다.
그러면, 상기 버퍼유닛(50)이 상기 절연유연결부(102)에 결합된 상태에서 상기 엑스선관모듈(100)에 기설정된 압력을 제공하여 상기 엑스선관모듈(100)에 수용된 새로운 절연유가 기설정된 압력을 유지할 수 있도록 한다.
그리고, 상기 엑스선관모듈(100)에서 상기 버퍼유닛(50)을 분리한 다음, 상기 엑스선관모듈(100)의 일측에 상기 연결마개(101)를 결합하여 상기 절연유연결부(102)를 폐쇄할 수 있다. 또한, 상기 압력조정부(104)에서 상기 조정커넥터(65)를 분리하여 절연유 교체 작업을 마무리할 수 있다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 다운트랜스(80)를 더 포함할 수 있다.
상기 다운트랜스(80)는 상기 엑스선관모듈(100)에 구비되어 절연유를 순환시키는 상기 순환모터(미도시)의 출력을 강하시킨다. 그러면, 상기 다운트랜스(80)의 동작에 따라 상기 순환모터(미도시)의 출력이 강하되어 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 다운순환시킬 수 있다. 다운순환에 따라 상기 엑스선관모듈(100)에 수용된 새로운 절연유의 2차 탈포를 안정화시키면서 신속하고 용이하게 2차 탈포가 이루어지도록 할 수 있다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 반전유닛(92)을 더 포함할 수 있다.
상기 반전유닛(92)은 상기 폐유수집유닛(10)과 상기 버퍼유닛(50)의 결합 또는 상기 탈포공급유닛(20)과 상기 버퍼유닛(50)에 결합에 따라 상기 절연유연결부(102)의 위치가 바뀌도록 상기 작업대(90)에서 상기 엑스선관모듈(100)을 반전시킨다. 상기 반전유닛(92)은 사용자의 수조작 또는 인가되는 전원에 의해 동작되어 상기 작업대(90)에서 상기 엑스선관모듈(100)을 반전시킨다.
이때, 상기 엑스선관모듈(100)은 마운팅브라켓(91)을 매개로 상기 작업대(90)에 결합됨으로써, 상기 반전유닛(92)은 상기 작업대(90)에서 상기 엑스선관모듈(100)을 반전시킬 수 있다. 다른 표현으로, 상기 마운팅브라켓(91)은 상기 엑스선관모듈(100)에 구비되는 상기 마운팅연결부(103)에 결합 고정되고, 상기 반전유닛(92)은 상기 작업대(90)에 회전 가능하게 결합되며, 상기 마운팅브라켓(91)이 상기 반전유닛(92)에 결합 고정됨으로써, 상기 반전유닛(92)은 상기 작업대(90)에서 상기 엑스선관모듈(100)을 반전시킬 수 있다.
도시되지 않았지만, 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 상기 폐유수집유닛(10)과 상기 탈포유닛(20)의 동작을 제어하는 제어유닛(미도시)을 더 포함할 수 있다. 상기 제어유닛(미도시)은 상기 압력조정유닛(60), 상기 다운트랜스(80), 상기 반전유닛(92) 중 적어도 어느 하나의 동작을 제어할 수 있다.
상기 제어유닛(미도시)은 인가되는 전원에 의해 후술하는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법을 전체적으로 제어할 수 있다.
도시되지 않았지만, 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치는 상기 엑스선관모듈(100)에서 절연유를 배출시키거나 상기 엑스선관모듈(100)로 절연유를 공급할 때, 상기 폐유수집유닛(10)과 상기 버퍼유닛(50)의 결합 또는 상기 탈포유닛(20)과 상기 버퍼유닛(50)의 결합을 선택하는 선택밸브(미도시)를 더 포함할 수 있다.
상기 선택밸브(미도시)는 상기 유닛접속부(54)에서 상기 배출절연유관(14)을 선택하거나 상기 공급절연유관(34)을 선택할 수 있다. 다른 표현으로, 상기 선택밸브(미도시)는 상기 유닛접속부(54)와 상기 배출절연유관(14)과 상기 공급절연유관(34)을 상호 연결하고, 상기 엑스선관모듈(100)에서 절연유를 배출시키는 경우, 상기 유닛접속부(54)와 상기 배출절연유관(14)이 연통되도록 하고, 상기 엑스선관모듈(100)로 절연유를 공급하는 경우, 상기 유닛접속부(54)와 상기 공급절연유관(34)이 상호 연통되도록 할 수 있다.
상기 엑스선관모듈(100)의 설치 과정을 살펴보면, 상기 마운팅연결부(103)에 상기 마운팅브라켓(91)을 고정시키고, 상기 작업대(90)에 구비된 상기 반전유닛(92)에 상기 마운팅브라켓(91)을 결합하여 상기 엑스선관모듈(100)을 상기 작업대(90)에 회전 가능하게 결합시킨다. 이때, 상기 절연유연결부(102)에서 절연유가 누출될 수 있으므로, 상기 절연유연결부(102)는 상기 엑스선관모듈(100)의 상측에 위치하도록 한다.
그리고, 상기 엑스선관모듈(100)에서 상기 연결마개(101)를 분리하고, 상기 절연유연결부(102)에 상기 버퍼고정관(52)을 연결한다.
상기 엑스선관모듈(100)에 수용된 절연유가 배출되는 과정을 살펴보면, 상기 버퍼유닛(50)에 상기 폐유수집유닛(10)을 결합하여 상기 분기접속부(54)에는 상기 배출절연유관(14)이 결합되도록 한다.
그리고, 상기 반전유닛(92)을 동작시켜 도 3에 도시된 바와 같이 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 하측을 향하도록 상기 엑스선관모듈(100)을 회전시킨다. 그러면, 상기 엑스선관모듈(100)에 수용된 절연유는 상기 버퍼하우징(51)으로 이동된다.
상기 폐유진공펌프(11)를 동작시키면, 폐유진공압에 의해 상기 버퍼하우징(51)에 수용된 절연유는 상기 배출절연유관(14)을 거쳐 상기 수집하우징(12)으로 이동된다. 또한, 상기 수집하우징(12)에 수용된 절연유는 상기 폐유이송모터(17)의 동작에 따라 상기 폐유관(16)을 거쳐 상기 폐유하우징(15)으로 이동된다.
상기 버퍼하우징(51)에 수용된 절연유가 모두 배출되면, 상기 반전유닛(92)을 동작시켜 상기 절연유연결부(102)가 상기 엑스선관모듈(100)의 상측을 향하도록 상기 엑스선관모듈(100)을 회전시킨다.
상기 엑스선관모듈(100)에 절연유를 공급하는 과정을 살펴보면, 상기 버퍼유닛(50)에 상기 탈포공급유닛(20)을 결합하여 도 4에 도시된 바와 같이 상기 분기접속부(53)에는 상기 공급절연유관(34)이 결합되도록 하고, 상기 유닛접속부(54)에는 상기 유닛연결관(44)이 결합되도록 한다.
그리고, 상기 탈포진공펌프(32)를 동작시키면, 상기 절연유하우징(35)에 수용된 새로운 절연유는 상기 공급관(36)을 거쳐 상기 탈포하우징(31)으로 이동된다. 또한, 상기 탈포하우징(31)에 수용된 절연유는 상기 탈포진공펌프(32)의 동작에 따라 1차 탈포될 수 있다.
다음으로, 상기 공급진공펌프(41)를 동작시키면, 상기 탈포하우징(31)에 수용된 절연유는 상기 공급절연유관(34)을 거쳐 상기 엑스선관모듈(100)과 상기 버퍼하우징(51)으로 이동된다. 이때, 상기 순환펌프(미도시)를 동작시킴으로써, 새로운 절연유가 상기 엑스선관모듈(100)로 안정되게 유입될 수 있고, 새로운 절연유가 상기 엑스선관모듈(100)에서 정상순환될 수 있다.
상기 엑스선관모듈(100)에 새로운 절연유가 수용된 상태에서 새로운 절연유를 탈포하는 과정을 살펴보면, 절연유의 공급 과정을 통해 상기 엑스선관모듈(100)과 상기 버퍼하우징(51)에 새로운 절연유가 공급된 상태에서 상기 탈포진공펌프(32)를 동작시킴으로써, 새로운 절연유가 2차 탈포될 수 있다. 이때, 상기 엑스선관모듈(100)에는 새로운 절연유가 가득 채워지도록 하고, 상기 버퍼하우징(51)에는 새로운 절연유가 전체 체적의 40% 내지 70% 이하로 채워지도록 한다. 상기 버퍼하우징(51)에도 새로운 절연유가 채워진 상태로 새로운 절연유를 탈포하므로, 상기 엑스선관모듈(100)에 채워진 절연유의 탈포에 따라 배출되는 기포에 대응하여 2차 탈포되는 새로운 절연유가 상기 엑스선관모듈(100)에 공급되도록 하고, 상기 엑스선관모듈(100)에는 새로운 절연유가 가득 채워진 상태를 유지시킬 수 있다.
이때, 상기 다운트랜스(80)를 통해 상기 순환펌프(미도시)를 동작시킴으로써, 상기 엑스선관모듈(100)에서 새로운 절연유가 다운순환될 수 있다.
또한, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)이 직립한 상태(초기 설치 상태)를 기준으로 상기 엑스선관모듈(100)을 좌우로 피벗 운동시킴으로써, 상기 엑스선관모듈(100)에서 발생되는 기포가 안정되게 배출될 수 있다. 좀더 자세하게, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)을 -30도 내지 30도 사이에서 피벗 운동시킬 수 있다. 또한, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)을 -20도 내지 20도 사이에서 피벗 운동시킬 수 있다. 또한, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)을 -15도 내지 15도 사이에서 피벗 운동시킬 수 있다. 또한, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)을 -10도 내지 10도 사이에서 피벗 운동시킬 수 있다. 또한, 상기 반전유닛(92)을 통해 상기 엑스선관모듈(100)을 -5도 내지 5도 사이에서 피벗 운동시킬 수 있다. 상기 피벗 운동의 허용범위를 벗어나는 경우, 상기 버퍼하우징(51)에 수용된 새로운 절연유가 상기 유닛접속부(54)로 역류하는 것을 방지할 수 있다.
상기 엑스선관모듈(100)에서 최종적으로 탈포된 절연유가 수용된 상태에서 탈포된 절연유의 압력을 조정하는 과정을 살펴보면, 상기 엑스선관모듈(100)이 직립된 상태에서 상기 엑스선관모듈(100)에상기 압력조정유닛(60)을 상기 압력조정부(104)에 상기 조정커넥터(65)와 상기 조정압력관(64)이 순차적으로 결합되도록 한다.
그리고, 상기 콤프레셔(61)를 동작시키면, 기설정된 압력이 상기 압력조정부(104)에 가해지고, 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 기설정된 압력을 부여할 수 있다. 기설정된 압력이 새로운 절연유에 부여된 상태에서 상기 엑스선관모듈(100)로부터 상기 버퍼유닛(50)을 분리한 다음, 상기 연결마개(101)를 이용하여 상기 절연유연결부(102)를 폐쇄하고, 상기 압력조정부(104)에서 상기 조정커넥터(65)를 분리한다. 이때, 상기 튜브윈도우(106)를 통해 상기 엑스선관모듈(100)에 수용된 새로운 절연유의 상태를 육안으로 확인할 수 있다.
그러면, 상기 엑스선관모듈(100)에 수용된 새로운 절연유는 기포와 이물질이 혼합되지 않은 상태에서 기설정된 압력이 부여됨으로써, 열변형에 안정되게 대응할 수 있다.
지금부터는 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법에 대하여 설명한다. 도 7은 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법을 도시한 도면이다.
도 8을 참조하면, 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법은 상기 엑스선관모듈(100)에 구비된 상기 절연유연결부(102)를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈(100)에 수용된 절연유를 교체하는 방법이다. 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법은 상술한 본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체장치를 이용할 수 있다.
본 발명의 일 실시예에 따른 엑스선관모듈의 절연유 교체방법은 폐유수집단계(S2)와, 내부세척단계(S3)와, 절연유주입단계(S4)와, 진공탈포단계(S5)를 포함하고, 외관청소단계(S1)와, 압력조정단계(S6)와, 반전단계(미도시) 중 적어도 어느 하나를 더 포함할 수 있다.
상기 외관청소단계(S1)는 상기 엑스선관모듈(100)의 외관을 청소한다. 상기 외관청소단계(S1)는 상기 폐유수집단계(S2)에 앞서, 실시될 수 있다. 상기 외관청소단계(S1)는 상기 콤프레셔(61)와 상기 연결압력관(63)을 이용하여 상기 엑스선관모듈(100)의 외관에서 이물질을 제거할 수 있다. 또한, 상기 외관청소단계(S1)는 상기 열교환부(105)에 부착된 이물질을 제거하여 상기 열교환부(105)의 열방출을 극대화할 수 있다. 상기 외관청소단계(S1)를 거침에 따라 이물질이 상기 절연유연결부(102)와 상기 압력조정부(104)를 통해 상기 엑스선관모듈(100)의 내부로 유입되는 것을 방지할 수 있다.
상기 외관청소단계(S1)를 거친 상기 엑스선관모듈(100)은 상기 마운팅브라켓(91)을 매개로 상기 작업대(90)에 결합된다. 상기 외관청소단계(S1)를 거친 상기 엑스선관모듈(100)은 상술한 엑스선관모듈(100)의 설치 과정으로 상기 작업대(90)에 결합될 수 있다.
상기 폐유수집단계(S2)는 진공압을 이용하여 상기 엑스선관모듈(100)에 수용된 절연유를 배출시킨다. 상기 폐유수집단계(S2)는 상술한 절연유의 배출 과정을 통해 상기 엑스선관모듈(100)에 수용된 절연유를 배출시킬 수 있다.
상기 내부세척단계(S3)는 상기 폐유수집단계(S2)를 거친 다음, 진공압을 이용하여 상기 엑스선관모듈(100)에 새로운 절연유를 공급하였다가 진공압을 이용하여 상기 엑스선관모듈(100)에서 절연유를 배출시킨다. 상기 내부세척단계(S3)는 상술한 절연유의 공급 과정과 상술한 절연유의 배출 과정을 순차적으로 실시함으로써, 진공압을 이용하여 상기 엑스선관모듈(100)에 새로운 절연유를 공급하였다가 진공압을 이용하여 상기 엑스선관모듈(100)에서 절연유를 배출시킬 수 있다.
상기 내부세척단계(S3)는 반복 실시함으로써, 상기 엑스선관모듈(100) 내부에 발생된 이물질을 배출시켜 상기 엑스선관모듈(100) 내부에서 이물질을 제거할 수 있다. 본 발명의 일 실시예에서 상기 내부세척단계(S3)는 2~4회를 실시할 수 있다.
상기 내부세척단계(S3)는 상기 폐유수집단계(S2)를 거친 다음 진공압을 이용하여 상기 엑스선관모듈(100)에 새로운 절연유를 공급하는 세척공급단계(S31)와, 상기 세척공급단계(S31)를 거친 다음 진공압을 이용하여 상기 엑스선관모듈(100)에서 절연유를 배출시키는 배출단계(S33)를 포함할 수 있다.
또한, 상기 내부세척단계(S3)는 상기 세척공급단계(S31)를 거친 다음, 상기 엑스선관모듈(100)에 절연유가 수용됨에 따라 상기 엑스선관모듈(100)에 수용된 절연유를 순환시키는 정상순환단계(S32)를 더 포함할 수 있다.
또한, 상기 내부세척단계(S3)는 상기 세척공급단계(S31)에 앞서, 상기 엑스선관모듈(100)에 공급하기 위한 절연유를 탈포하는 세척탈포단계(S34)를 더 포함할 수 있다.
또한, 상기 내부세척단계(S3)는 상기 세척공급단계(S31)부터 상기 배출단계(S33)까지의 반복 횟수를 결정하는 반복제어단계(S35)를 더 포함할 수 있다. 상기 반복제어단계(S35)는 상기 세척탈포단계(S34)부터 상기 배출단계(S33)까지의 반복 횟수를 결정할 수 있다.
또한, 상기 내부세척단계(S3)는 상기 반복제어단계(S35)를 거침에 따라 상기 반복 횟수의 마감 여부를 선택하는 반복마감단계(S36)를 더 포함할 수 있다. 상기 반복마감단계(S36)를 거침에 따라 상기 반복 횟수가 마감되면, 상기 절연유주입단계(S4)를 실시하고, 상기 반복마감단계(S36)를 거침에 따라 상기 반복 횟수가 마감되지 않으면, 상술한 절연유의 공급 과정과 상술한 절연유의 배출 과정을 다시 실시한다.
상기 절연유주입단계(S4)는 상기 내부세척단계(S3)를 거친 다음, 진공압을 이용하여 새로운 절연유를 상기 엑스선관모듈(100)에 공급한다. 상기 절연유주입단계는 상술한 절연유의 공급 과정을 통해 진공압을 이용하여 새로운 절연유를 상기 엑스선관모듈(100)에 공급할 수 있다.
상기 절연유주입단계(S4)는 상기 내부세척단계(S3)를 거친 다음, 진공압을 이용하여 새로운 절연유를 1차 탈포하는 제1탈포단계(S41)와, 상기 제1탈포단계(S41)를 거친 다음, 진공압을 이용하여 1차 탈포된 새로운 절연유를 상기 엑스선관모듈(100)에 공급하는 절연유공급단계(S42)를 포함할 수 있다. 상기 절연유공급단계(S42)에서는 1차 탈포된 새로운 절연유가 상기 버퍼하우징(51)에 40% 내지 70% 정도 채워지도록 한다.
상기 진공탈포단계(S5)는 상기 절연유주입단계(S4)를 거친 다음, 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 탈포한다. 상기 진공탈포단계(S5)는 상술한 새로운 절연유의 탈포 과정을 통해 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 2차 탈포할 수 있다.
상기 진공탈포단계(S5)는 상기 엑스선관모듈(100)에 새로운 절연유가 채워진 상태에서 새로운 절연유를 정상순환보다 느리게 순환시키는 다운순환단계(S51)와, 상기 엑스선관모듈(100)에서 순환하는 새로운 절연유를 2차 탈포하는 제2탈포단계(S52)를 포함할 수 있다. 또한, 상기 진공탈포단계(S5)는 상기 다운순환단계(S51) 또는 상기 제2탈포단계(52)에서 상기 엑스선관모듈(100)이 직립한 상태(초기 설치 상태)를 기준으로 상기 엑스선관모듈(100)을 좌우로 피벗 운동시키는 피벗단계(미도시)를 더 포함할 수 있다.
상기 압력조정단계(S6)는 상기 진공탈포단계(S5)를 거친 다음, 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 대해 기설정된 압력을 부여한다. 상기 압력조정단계(S6)는 상술한 탈포된 절연유의 압력 조정 과정을 통해 상기 엑스선관모듈(100)에 수용된 새로운 절연유에 대해 기설정된 압력을 부여할 수 있다.
상기 반전단계(미도시)는 상기 엑스선관모듈(100)에서의 절연유 배출 또는 상기 엑스선관모듈(100)로의 절연유 공급에 따라 상기 절연유연결부(102)의 위치가 바뀌도록 상기 작업대(90)에서 상기 엑스선관모듈(100)을 반전시킨다. 상기 반전단계(미도시)는 상기 폐유수집단계(S2), 상기 내부세척단계(S3), 상기 절연유주입단계(S4)에 각각 포함되어 상기 반전유닛(92)을 통해 절연유의 공급 과정과 절연유의 배출 과정에서 상기 절연유연결부(102)의 위치가 바뀌도록 상기 엑스선관모듈(100)을 반전시킨다.
상술한 엑스선관모듈의 절연유 교체장치와 절연유 교체방법에 따르면, 진공압을 이용한 절연유의 이동 및 탈포를 통해 상기 엑스선관모듈(100)에서 절연유의 공급과 배출을 원활하게 하고, 상기 엑스선관모듈(100)에서 새롭게 충전된 절연유에 이물질 및 기포가 혼합되는 것을 방지할 수 있다.
또한, 상기 엑스선관모듈(100)에 상기 폐유수집유닛(10)과 상기 탈포공급유닛(20)이 안정되게 결합되고, 진공압이 누설되는 것을 방지할 수 있다.
또한, 상기 엑스선관모듈(100)에 안정적인 진공압이 부여되고, 절연유의 이동을 안정화시키며, 탈포 과정에서 절연유가 상기 유닛접속부(54) 측으로 역류하는 것을 방지할 수 있다.
또한, 진공압에 의해 상기 엑스선관모듈(100)에 수용된 절연유의 배출을 용이하게 하고, 절연유가 상기 폐유진공펌프(11) 측으로 역류하는 것을 방지하며, 상기 엑스선관모듈(100)에서 배출된 절연유를 안정하게 폐기시킬 수 있다.
또한, 상기 엑스선관모듈(100)에 새로운 절연유를 안전하게 공급하며, 2차에 걸친 탈포 공정을 통해 새로운 절연유에 기포가 함유되는 것을 방지할 수 있다.
또한, 상기 엑스선관모듈(100)에 공급되는 새로운 절연유를 1차 탈포된 상태로 공급할 수 있고, 절연유가 이동하면서 기포가 함유되는 것을 방지할 수 있다.
또한, 새로운 절연유가 외기에 노출되는 것을 방지하고, 새로운 절연유에 이물질이 혼입되는 것을 방지할 수 있다.
또한, 상기 버퍼하우징(51)의 진공압을 조절하고, 새로운 절연유의 공급을 원활하게 하며, 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 2차 탈포할 수 있다.
또한, 상기 엑스선관모듈(100)에서 절연유의 공급과 절연유의 배출을 간소화시키고, 상기 버퍼하우징(51)의 진공압을 안정되게 유지시키며, 상기 탈포유닛(20)의 반복 동작 횟수를 줄여 비용을 절감할 수 있다.
또한, 상기 엑스선관모듈(100) 내부의 압력을 안정화시키고, 절연유의 열변형에 용이하게 대응할 수 있으며, 절연유의 열변형에 따른 이물질 또는 기포 발생을 저하시킬 수 있다.
또한, 2차 탈포에 소요되는 시간을 줄이고, 절연유에 함유된 기포의 배출을 촉진시킬 수 있다.
또한, 상기 엑스선관모듈(100)의 설치 위치를 한정하고, 절연유의 이동을 안정화시키며, 상기 엑스선관모듈(100)에서 절연유의 공급과 절연유의 배출을 용이하게 할 수 있다.
또한, 가열된 절연유에서 열 방출을 용이하게 하고, 이물질이 상기 엑스선관모듈(100) 내부로 유입되는 것을 방지할 수 있다.
또한, 상술한 바와 같이 상기 엑스선관모듈(100)에서 절연유를 교체함으로써, 상기 엑스선관모듈(100)에서 절연유의 점도를 회복시킬 수 있고, 절연유에 혼입된 카본 등과 같은 이물질을 제거할 수 있으며, 점도 또는 기포 또는 이물질에 따른 저항으로 엑스선 발생 시 스핏이 생기는 것을 방지할 수 있고, 상기 엑스선관모듈(100) 내부의 구조 결함(자바라 찢어짐, 볼트 풀림 등)을 방지하여 상기 엑스선관모듈(100)에 수용된 새로운 절연유를 기설정된 압력으로 안정되게 유지시킬 수 있다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
10: 폐유수집유닛
11: 폐유진공펌프
12: 수집하우징
13: 접속진공관
14: 배출절연유관
15: 폐유하우징
16: 폐유관
17: 폐유이송모터
20: 탈포공급유닛
30: 제1공급유닛
31: 탈포하우징
32: 탈포진공펌프
33: 탈포진공관
34: 공급절연유관
35: 절연유하우징
36: 공급관
40: 제2공급유닛
41: 공급진공펌프
42: 진공하우징
43: 연결진공관
44: 유닛연결관
50: 버퍼유닛
51: 버퍼하우징
52: 버퍼고정부
53: 분기접속부
54: 유닛접속부
60: 압력조정유닛
61: 콤프레셔
62: 레귤레이터
63: 연결압력관
64: 조정압력관
65: 조정커넥터
80: 다운트랜스
90: 작업대
91: 마운팅브라켓
92: 반전유닛
100: 엑스선관모듈
101: 연결마개
102: 절연유연결부
103: 마운팅연결부
104: 압력조정부
105: 열교환부
106: 튜브윈도우
107: 케이블접속부
S1: 외관청소단계
S2: 폐유수집단계
S3: 내부세척단계
S31: 세척공급단계
S32: 정상순환단계
S33: 배출단계
S34: 세척탈포단계
S35: 반복제어단계
S36: 반복마감단계
S4: 절연유주입단계
S41: 제1탈포단계
S42: 절연유공급단계
S5: 진공탈포단계
S51: 다운순환단계
S52: 제2탈포단계
S6: 압력조정단계

Claims (13)

  1. 엑스선관모듈에 구비된 절연유연결부를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈에 수용된 절연유를 교체하는 장치에 있어서,
    상기 절연유연결부에서 배출되는 절연유를 진공압으로 수집하는 폐유수집유닛;
    진공압으로 새로운 절연유를 상기 엑스선관모듈에 공급함은 물론 새로운 절연유를 탈포하는 탈포공급유닛;
    상기 폐유수집유닛 또는 상기 탈포공급유닛이 결합되고, 상기 절연유연결부에 결합되며, 진공압에 따른 절연유의 이동 경로를 형성하는 버퍼유닛; 및
    상기 버퍼유닛이 결합된 상기 엑스선관모듈이 반전 가능하게 결합되는 작업대;를 포함하고,
    상기 폐유수집유닛이 상기 버퍼유닛에 결합되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 하측을 향하도록 하고,
    상기 탈포공급유닛이 상기 버퍼유닛에 결합되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 상측을 향하도록 하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  2. 제1항에 있어서,
    상기 폐유수집유닛은,
    폐유진공압을 발생시키는 폐유진공펌프;
    상기 폐유진공압에 의해 상기 엑스선관모듈에서 배출되는 절연유를 수용하는 수집하우징;
    상기 폐유진공펌프와 상기 수집하우징을 연결하는 접속진공관; 및
    상기 수집하우징과 상기 버퍼유닛을 연결하는 배출절연유관;을 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  3. 제1항에 있어서,
    상기 탈포공급유닛은,
    상기 버퍼유닛의 일측에 결합되고, 상기 엑스선관모듈에 공급하기 위한 새로운 절연유가 수용되는 제1공급유닛; 및
    상기 버퍼유닛의 타측에 결합되고, 진공압에 의해 상기 제1공급유닛에 수용된 새로운 절연유를 상기 엑스선관모듈에 공급 탈포하는 제2공급유닛;을 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  4. 제3항에 있어서,
    상기 제1공급유닛은,
    상기 엑스선관모듈에 공급하기 위한 절연유가 수용되는 탈포하우징; 및
    상기 버퍼유닛과 상기 탈포하우징을 연결하는 공급절연유관;을 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  5. 제4항에 있어서,
    상기 제1공급유닛은,
    상기 탈포하우징에 수용된 절연유가 탈포되도록 상기 탈포하우징에 진공압을 부여하는 탈포진공펌프; 및
    상기 탈포하우징과 상기 탈포진공펌프를 연결하는 탈포진공관;을 더 포함하고,
    상기 제1공급유닛에 부여되는 진공압은 상기 제2공급유닛에 부여되는 진공압보다 높은 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  6. 제3항에 있어서,
    상기 제2공급유닛은,
    진공압을 발생시키는 공급진공펌프; 및
    상기 공급진공펌프에서 발생된 진공압이 상기 버퍼유닛에 부여되도록 상기 버퍼유닛과 상기 공급진공펌프를 연결하는 유닛연결관;을 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  7. 제6항에 있어서,
    상기 제2공급유닛은,
    상기 유닛연결관에 의해 상기 버퍼유닛과 연결되는 진공하우징; 및
    상기 공급진공펌프에서 발생된 진공압이 상기 진공하우징과 상기 버퍼유닛에 부여되도록 상기 공급진공펌프와 상기 진공하우징을 연결하는 연결진공관;을 더 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  8. 제1항에 있어서,
    상기 버퍼유닛은,
    상기 폐유수집유닛 또는 상기 탈포공급유닛에 의해 진공압이 부여되는 중공의 버퍼하우징;
    상기 버퍼하우징의 일측에 구비되고, 상기 엑스선관모듈과 상기 버퍼하우징을 연통시키는 버퍼고정부;
    상기 버퍼고정부에서 분기되는 분기접속부; 및
    상기 버퍼하우징의 타측에 구비되는 유닛접속부;를 포함하고,
    상기 폐유수집유닛이 상기 버퍼유닛에 결합되는 경우,
    상기 유닛접속부는 상기 절연유연결부의 하측에 배치되며,
    상기 탈포공급유닛이 상기 버퍼유닛에 결합되는 경우,
    상기 유닛접속부는 상기 절연유연결부의 상측에 배치되는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  9. 제1항에 있어서,
    상기 엑스선관모듈에 구비된 압력조정부에 결합되고, 상기 엑스선관모듈에 수용된 새로운 절연유에 대해 기설정된 압력을 부여하는 압력조정유닛;을 더 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  10. 제1항에 있어서,
    상기 폐유수집유닛과 상기 버퍼유닛의 결합 또는 상기 탈포공급유닛과 상기 버퍼유닛에 결합에 따라 상기 절연유연결부의 위치가 바뀌도록 상기 작업대에서 상기 엑스선관모듈을 반전시키는 반전유닛;을 더 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체장치.
  11. 엑스선관모듈에 구비된 절연유연결부를 통해 절연유를 공급 또는 배출시켜 상기 엑스선관모듈에 수용된 절연유를 교체하는 방법에 있어서,
    진공압을 이용하여 상기 엑스선관모듈에 수용된 절연유를 배출시키는 폐유수집단계;
    상기 폐유수집단계를 거친 다음, 진공압을 이용하여 상기 엑스선관모듈에 새로운 절연유를 공급하였다가, 진공압을 이용하여 상기 엑스선관모듈에서 절연유를 배출시키는 내부세척단계;
    상기 내부세척단계를 거친 다음, 진공압을 이용하여 새로운 절연유를 상기 엑스선관모듈에 공급하는 절연유주입단계; 및
    상기 절연유주입단계를 거친 다음, 진공압을 이용하여 상기 엑스선관모듈에 수용된 새로운 절연유를 탈포하는 진공탈포단계;를 포함하고,
    상기 엑스선관모듈에서 절연유가 배출되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 하측을 향하도록 하고,
    상기 엑스선관모듈로 절연유가 공급되는 경우, 상기 절연유연결부가 상기 엑스선관모듈의 상측을 향하도록 하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체방법.
  12. 제11항에 있어서,
    상기 진공탈포단계를 거친 다음, 상기 엑스선관모듈에 수용된 새로운 절연유에 대해 기설정된 압력을 부여하는 압력조정단계;를 더 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체방법.
  13. 제11항에 있어서,
    상기 엑스선관모듈에서의 절연유 배출 또는 상기 엑스선관모듈로의 절연유 공급에 따라 상기 절연유연결부의 위치가 바뀌도록 상기 엑스선관모듈을 반전시키는 반전단계;를 더 포함하는 것을 특징으로 하는 엑스선관모듈의 절연유 교체방법.
PCT/KR2016/013436 2016-03-18 2016-11-22 엑스선관모듈의 절연유 교체장치와 절연유 교체방법 WO2017159960A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018132600A RU2696593C1 (ru) 2016-03-18 2016-11-22 Система повторной загрузки изоляционного масла в модуль рентгеновской трубки и способ повторной загрузки изоляционного масла в модуль рентгеновской трубки

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160032633A KR101651611B1 (ko) 2016-03-18 2016-03-18 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
KR10-2016-0032633 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159960A1 true WO2017159960A1 (ko) 2017-09-21

Family

ID=56886024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013436 WO2017159960A1 (ko) 2016-03-18 2016-11-22 엑스선관모듈의 절연유 교체장치와 절연유 교체방법

Country Status (5)

Country Link
KR (1) KR101651611B1 (ko)
CN (1) CN107204266B (ko)
PH (1) PH12016000423B1 (ko)
RU (1) RU2696593C1 (ko)
WO (1) WO2017159960A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101790111B1 (ko) * 2017-06-27 2017-10-25 (주)영메디 Ct 기기의 냉각수 교환 장치 및 교환 방법
KR102287551B1 (ko) 2021-01-29 2021-08-09 더영메디주식회사 Ct 기기의 절연유 교체방법 및 교체장치
KR102451350B1 (ko) * 2021-07-22 2022-10-07 성기봉 기포 제거 성능이 높은 휴대용 엑스선 촬영기기 제조방법 및 제조장치
KR20240048345A (ko) 2022-10-06 2024-04-15 더영메디주식회사 스마트 콘솔유닛을 구비한 컴퓨터단층촬영장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101778A (ja) * 1991-10-09 1993-04-23 Toshiba Corp X線管装置の製造方法
JPH10223141A (ja) * 1997-02-03 1998-08-21 Toshiba Corp X線管装置の製造装置
JP2000048745A (ja) * 1998-07-31 2000-02-18 Toshiba Corp X線管装置
KR200324878Y1 (ko) * 2003-06-16 2003-08-27 이정두 변압기의 절연유 여과시스템
KR101475418B1 (ko) * 2013-09-30 2014-12-22 한국전력공사 전력용 변압기의 수분제거 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249390A (ja) * 1994-03-09 1995-09-26 Hitachi Medical Corp 冷却器付きx線管装置
KR20010087942A (ko) 2000-03-09 2001-09-26 김성헌 고정양극형 엑스선관 장치
JP2002025792A (ja) * 2000-07-11 2002-01-25 Shimadzu Corp X線発生装置
US20030164472A1 (en) * 2002-03-04 2003-09-04 Shepodd Timothy J. Oxidation resistant organic hydrogen getters
JP2008066248A (ja) * 2006-09-11 2008-03-21 Toshiba Corp 冷却媒体交換システム
US7881436B2 (en) * 2008-05-12 2011-02-01 General Electric Company Method and apparatus of differential pumping in an x-ray tube
RU2555576C1 (ru) * 2014-02-06 2015-07-10 Общество с ограниченной ответственностью "Супервариатор" Гидросистема многодиапазонной многопоточной электромеханической трансмиссии

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05101778A (ja) * 1991-10-09 1993-04-23 Toshiba Corp X線管装置の製造方法
JPH10223141A (ja) * 1997-02-03 1998-08-21 Toshiba Corp X線管装置の製造装置
JP2000048745A (ja) * 1998-07-31 2000-02-18 Toshiba Corp X線管装置
KR200324878Y1 (ko) * 2003-06-16 2003-08-27 이정두 변압기의 절연유 여과시스템
KR101475418B1 (ko) * 2013-09-30 2014-12-22 한국전력공사 전력용 변압기의 수분제거 장치

Also Published As

Publication number Publication date
PH12016000423A1 (en) 2018-06-04
CN107204266B (zh) 2018-09-25
CN107204266A (zh) 2017-09-26
RU2696593C1 (ru) 2019-08-05
KR101651611B1 (ko) 2016-08-29
PH12016000423B1 (en) 2018-06-04

Similar Documents

Publication Publication Date Title
WO2017159960A1 (ko) 엑스선관모듈의 절연유 교체장치와 절연유 교체방법
WO2016117726A1 (en) Cartridge
WO2017026711A1 (ko) 세탁기 및 그 제어방법
EP3485326A1 (en) Display apparatus
WO2018048137A1 (en) Cooking appliance and method for controlling the same
WO2018093064A1 (ko) 선박용 연료유 전환 시스템 및 방법
WO2020042689A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2014133332A1 (en) Refrigerator and method of controlling the same
WO2017111503A1 (ko) 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
WO2021261743A1 (ko) 신발 관리장치
WO2016148468A1 (en) Cooking device
WO2017004849A1 (zh) 一种扫描驱动电路
WO2021177671A1 (ko) 세탁물 건조기 및 세탁물 건조기의 제어방법
WO2020036346A1 (ko) 정련 장치 및 방법
WO2018143553A1 (ko) 메소코즘 모사 시스템에 장착되는 실험수조
WO2018084330A1 (ko) 연속식 열분해 장치 및 열분해 방법
WO2021107485A1 (en) Display apparatus
WO2022114441A1 (ko) 케미컬 필터 교체장치
WO2013094859A1 (ko) 유기물 열가수분해 시스템의 운전로직
WO2016035919A1 (ko) 캠방식을 이용하여 역세척을 제어하는 캔들타입 밸러스트수 여과장치
WO2019194327A1 (ko) 웨이퍼 수납용기
WO2014115982A1 (ko) 방사성 폐수지 이송 및 처리를 위한 시스템과 그것을 이용한 방사성 폐수지 이송 및 처리방법
WO2019177258A1 (ko) 차단기 개폐 보조 장치
WO2023234564A1 (ko) 양극과 음극이 구비된 전극모듈 및 이를 구비하는 s-ecam 프린팅 장치
WO2019045410A1 (ko) 프리캐스트 겔, 전기 전달 모듈, 전기영동 및 웨스턴 블롯용 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894690

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894690

Country of ref document: EP

Kind code of ref document: A1